

# VOLUME II

Technical Memorandums #1 - #6



#### MEMORANDUM

# **Technical Memorandum #1: Plans and Policy Review**Woodburn TSP

DATE February 5, 2018

TO Project Management Team

FROM Darci Rudzinski, Clinton "CJ" Doxsee, Kyra Schneider, Angelo Planning Group

CC Matt Hughart, Kittelson & Associates, Inc.

#### **OVERVIEW**

This memorandum presents a review of existing plans, regulations, and policies that affect transportation planning in the City of Woodburn. The review explains the relationship between the documents and planning within the City's Urban Growth Boundary (UGB), identifying key issues that will guide the Transportation System Plan (TSP) update process. This memorandum is intended to guide later decisions regarding selection of preferred transportation solutions and necessary amendments to related plan documents and regulations.

Some documents included in this review establish transportation-related standards, targets, and guidelines with which the TSP update must be coordinate and consistent with; others contain transportation improvements that will need to be factored into the future demand modeling and otherwise reflected in the draft TSP update. Local policy and regulatory requirements described in this review – such as the Woodburn Development Ordinance (WDO) – may be subject to recommended amendments in order to implement the recommendations of the updated TSP. This memorandum helps set the state for those potential amendments, which will be prepared as part of project implementation (Tasks 6 and 7).

The following plans were reviewed.

| Overview                                       | 1 |
|------------------------------------------------|---|
| Key Findings                                   | 3 |
| Statewide Plans                                | 3 |
| Statewide Planning Goals                       | 3 |
| Oregon Transportation Plan (2006)              | 5 |
| Oregon Highway Plan (1999, last amended 2015)  | 6 |
| Policy 1A: State Highway Classification System | 7 |
| Policy 1C: State Highway Freight System        | 7 |
| Policy 1D: Scenic Byways                       | 8 |

| Policy 1F: Highway Mobility Standards Access Management Policy Policy 1G: Major Improvements Policy 2B: Off-System Improvements | 8<br>9<br>10     |
|---------------------------------------------------------------------------------------------------------------------------------|------------------|
| Policy 2F: Traffic Safety                                                                                                       | 10               |
| Policy 2G: Rail and Highway Compatibility                                                                                       | 10               |
| Policy 3A: Classification and Spacing Standards                                                                                 | 10               |
| Policy 4A: Efficiency of Freight Movement                                                                                       | 11               |
| Policy 4B: Alternative Passenger Modes Policy 4D: Transportation Demand Management                                              | 11<br>11         |
| Oregon Freight Plan (2011)                                                                                                      | 11               |
| Oregon Public Transportation Plan (1997)                                                                                        | 12               |
| Oregon Rail Plan (2014)                                                                                                         | 13               |
| Oregon Bicycle and Pedestrian Plan (2016)                                                                                       | 13               |
| Oregon Transportation Safety Action Plan (2016)                                                                                 | 14               |
| Reduction Review Routes (ORS 366.215 & OAR 731-017)                                                                             | 15               |
| Transportation Planning Rule (OAR 660-012) (2011)                                                                               | 15               |
| Access Management Rule (OAR 734-051) (2014)                                                                                     | 16               |
| Statewide Transportation Improvement Program                                                                                    | 16               |
| ODOT Highway Design Manual (2012)                                                                                               | 17               |
| Oregon Roadway Departure Implementation Plan (2017)                                                                             | 18               |
| Oregon Intersection Safety Implementation Plan (2012)                                                                           | 19               |
| Oregon Bicycle and Pedestrian Safety Implementation Plan (2014)                                                                 | 19               |
| 2015 Oregon Standard Specifications for Construction, Standard Drawings, Standard Detail                                        | ls 19            |
| Regional Plans                                                                                                                  | 19               |
| Marion County Rural Transportation System Plan (2005, last amended in 2013)                                                     | 20               |
| Marion County Comprehensive Land Use Plan (1981, last amended in 2010)                                                          | 20               |
| City of Woodburn Plans                                                                                                          | 21               |
| Comprehensive Plan (2012)                                                                                                       | 21               |
| Urban Growth Coordination Agreement (2015)                                                                                      | 22               |
| Woodburn Comprehensive Plan, Growth Management Goals and Policies Amendment                                                     | 22               |
| Woodburn Comprehensive Plan and UGB Amendment Justification Studies (2000 – 2005)                                               | 24               |
| City of Woodburn Local Wetlands Inventory and Riparian Assessment (2000)                                                        | 24               |
| Woodburn Economic Opportunities Analysis (EOA) and Development Strategy (EDS) Rep                                               |                  |
| Technical Report 1, Buildable Lands Inventory (2005)                                                                            | 25               |
| Technical Report 2, Woodburn Residential Lands Needs Analysis (2005)                                                            | 25               |
| Technical Report 3, Potential UGB Expansion Area Analysis Natural Resources Inventory Citizen Involvement Report (2005)         |                  |
| City of Woodburn Periodic Review and Urban Growth Boundary Amendments Findings                                                  | 25<br>of Fact 26 |
| City's Public Facilities Plan (2005)                                                                                            | 26               |
| Woodburn TSP (Volumes I and II) (2005)                                                                                          | 26               |
| Woodburn Transit Plan Update (2010)                                                                                             | 26               |

| Highway 99E Corridor Plan (2012)                                                                                                                                                                                       | 27                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Woodburn Interchange Area Management Plan (2006)                                                                                                                                                                       | 27                         |
| Woodburn Downtown Development Plan Update (2010)                                                                                                                                                                       | 28                         |
| Woodburn Proposed Budget FY 2016-17                                                                                                                                                                                    | 28                         |
| Woodburn Park Master Plans Woodburn Parks and Recreation Master Plan Update (2009) Mill Creek Greenway Master Plan (2006) Community Centers Feasibility Study (2007) Legion Park & Settlemier Park Master Plans (2003) | 31<br>31<br>32<br>32<br>32 |
| City of Woodburn Addendum to the Marion County Natural Hazards Mitigation Plan (2010)                                                                                                                                  | 33                         |
| Woodburn Target Industries Analysis (2016)                                                                                                                                                                             | 33                         |
| Woodburn Wastewater Facilities Plan (2010)                                                                                                                                                                             | 34                         |
| Woodburn Development Ordinance (2002, last amended in 2017)                                                                                                                                                            | 34                         |

# **Key Findings**

- The updated Oregon Highway Plan mobility policy (Policy 1F) embodies more flexibility for meeting "targets" for state highways.
- Significant updates to the Oregon Bicycle and Pedestrian Plan were adopted in 2016 and the Woodburn TSP update can benefit from new state policy.
- The Transportation Planning Rule has been updated since the last Woodburn TSP update.
- The TSP update's regulatory review assesses Woodburn's consistency with the Transportation Planning Rule (TPR) and makes recommendations for policy and code amendments to ensure compliance.
- There are a number of local plans that have been adopted subsequent to the 2005 TSP. For adopted plans that are not currently reflected in the TSP, policies, standards, and recommendations that have an impact on the transportation system will be considered for consistency as part of this TSP update.

### STATEWIDE PLANS

# **Statewide Planning Goals**

The foundation of Oregon's statewide land use planning program is a set of 19 Statewide Planning Goals. The goals express the state's policies on land use and on related topics, such as citizen involvement, housing, and natural resources. Oregon's statewide goals are achieved through local comprehensive planning, including the development and implementation of TSPs.

All of Oregon's Statewide Goals have an influence on transportation planning, either directly or indirectly. However only certain Goals directly apply to transportation planning at a local level; the Goals listed in Table 1 are most relevant to Woodburn's TSP update.

Table 1: Statewide Planning Goals

| Statewide Planning<br>Goal                                                     | Relevancy to the Woodburn TSP Update                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Goal 1: Citizen<br>Involvement                                                 | Establishes citizen involvement as the primary goal of the land use planning process in Oregon. The Woodburn TSP Update process is guided by a robust public involvement plan that includes public involvement goals, identified affected and interested stakeholder and target audiences, and critical factors that will gage success. In addition, this project will be guided by citizen and technical advisory committees that will inform the TSP update throughout the course of the project. |
| Goal 2: Land Use<br>Planning                                                   | Establishes a process and policy framework for all decisions and actions related to uses of land; ensures that such decisions and actions are premised on an adequate factual base. Existing and future transportation needs will be based on inventories of existing conditions, including existing and planned land uses, as well as improving efficient multi-modal connections to housing, public services, employment areas, and recreational opportunities (see Tech Memo #3).                |
| Goal 5: Natural<br>Resources, Scenic and<br>Historic Areas, and<br>Open Spaces | Existing natural resources and environmental features influence the siting, construction, and cost of transportation improvements.  Inventories of these resources illustrate and describe areas within Woodburn that may pose barriers to providing transportation access or improvements (see Tech Memo #3).                                                                                                                                                                                      |
| Goal 7: Natural Hazards                                                        | The risk of natural hazards affects site selection and alignment decisions and design standards. Transportation improvement projects in Woodburn should avoid natural hazard areas, such as floodplains, to the extent feasible.                                                                                                                                                                                                                                                                    |
| Goal 9: Economic<br>Development                                                | Addresses the need for a variety of economic opportunities in support of the health, welfare, and prosperity of Oregon's citizens. The TSP Update process should be coordinated with current and planned economic development activities, such as the recent UGB expansion for the industrial reserve area.                                                                                                                                                                                         |
| Goal 10: Housing                                                               | Cities are required to anticipate ongoing needs for housing, and to provide adequate infrastructure to serve residential uses.  Transportation facilities and project prioritization will be based, in part, on the demands generated by current and projected housing needs.                                                                                                                                                                                                                       |
| Goal 11: Public Facilities and Services                                        | Local governments are required to provide adequate public facilities, including transportation facilities, in a timely and efficient manner. The TSP update will coordinate with or consider the provision of other public facilities consistent with adopted plans.                                                                                                                                                                                                                                |
| Goal 12: Transportation                                                        | Requires multi-modal transportation plans for transportation service providers that need to:                                                                                                                                                                                                                                                                                                                                                                                                        |

| Statewide Planning<br>Goal | Relevancy to the Woodburn TSP Update                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            | Be based upon factual inventories,                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                            | Minimize adverse social, environmental, economic, and energy impacts,                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                            | Meet the needs of the transportation disadvantaged,                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                            | Facilitate the flow of goods and services, and                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                            | Be consistent with related local and regional plans.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                            | As described in more detail below, Goal 12 is implemented through the Transportation Planning Rule (OAR 660, Division 12).                                                                                                                                                                                                                                                                                                                                                                              |
| Goal 13: Energy            | Land uses shall be managed and controlled to maximize the                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Conservation               | conservation of all forms of energy based upon sound economic principles. In transportation planning, this includes consideration of travel distances and mode share.                                                                                                                                                                                                                                                                                                                                   |
| Goal 14: Urbanization      | Requires UGBs to "provide an orderly and efficient transition from rural to urban land use." Findings of feasibility of providing adequate transportation and other public facilities is required for expansion of UGB's. Woodburn's adoption of the UGB expansion was recently acknowledged, adding new urbanizing areas to the city. These areas are expected to be developed within the planning horizon and will require improved transportation facilities to accommodate expected planned growth. |

**Project Relevance:** The TSP update will be consistent with the Statewide Planning Goals

# **Oregon Transportation Plan (2006)**

The Oregon Transportation Plan (OTP) is the state's long-range multi-modal transportation plan that addresses the future transportation needs of the State of Oregon through the year 2030. The primary function of the OTP is to establish goals, policies, strategies, and initiatives that are translated into a series of modal plans, such as the Oregon Highway Plan and Oregon Bike and Pedestrian Plan. The OTP considers all modes of Oregon's transportation system, including Oregon's airports, bicycle and pedestrian facilities, highways and roadways, pipelines, ports and waterway facilities, public transportation, and railroads. It assesses state, regional, and local public and private transportation facilities. In addition, the OTP provides the framework for prioritizing transportation improvements based on varied future revenue conditions, but it does not identify specific projects for development.

The OTP provides broad policy guidance and sets seven overarching goals for the state. Through these goals and associated policies and strategies, the OTP emphasizes:

- Maintaining and maximizing the assets in place.
- Optimizing the performance of the existing system through technology.
- Integrating transportation, land use, economic development, and the environment.
- Integrating the transportation system across jurisdictions, ownerships, and modes.
- Creating sustainable funding.
- Investing in strategic capacity enhancements.

The Implementation Framework section of the OTP describes the implementation process and how state multimodal, modal/topic plans, regional and local TSPs and master plans will further refine the OTP's broad policies and investment levels. Local TSPs can further OTP implementation by defining standards, instituting performance measures, and requiring that operational strategies be developed.

The last chapter of the OTP provides implementation and investment frameworks and key initiatives to be consulted in developing TSP projects and implementation measures.

**Project Relevance:** The OTP's Key Initiatives will guide the TSP update, specifically in the areas of system management, maximizing performance of the existing transportation system using technology and creative design solutions, pursuing sustainable funding sources, and investing strategically in capacity projects. Consistent with a central OTP policy, the TSP update will seek to maximize the performance of the existing local transportation system by the use of technology and system management before considering larger and costlier additions to the system.

# Oregon Highway Plan (1999, last amended 2015)

The Oregon Highway Plan (OHP) is a modal plan of the OTP that guides Oregon Department of Transportation's (ODOT's) Highway Division in planning, operations, and financing. Policies in the OHP emphasize the efficient management of the highway system to increase safety and to extend highway capacity, partnerships with other agencies and local governments, and the use of new techniques to improve road safety and capacity. These policies also link land use and transportation, set standards for highway performance and access management, and emphasize the relationship between state highways and local road, bicycle, pedestrian, transit, rail, and air systems.

The following policies are relevant to the TSP update process.

APG Woodburn TSP 2/5/18

\_

<sup>&</sup>lt;sup>1</sup> The seven goals are Goal 1 – Mobility and Accessibility; Goal 2 – Management of the System; Goal 3 – Economic Vitality; Goal 4 – Sustainability; Goal 5 – Safety and Security; Goal 6 – Funding the Transportation System; and Goal 7 – Coordination, Communication, and Cooperation.

### Policy 1A: State Highway Classification System

The OHP classifies the state highway system into four levels of importance: Interstate, Statewide, Regional, and District. ODOT uses this classification system to guide management and investment decisions regarding state highway facilities. The system guides the development of the facility plans, as well as ODOT's review of local plan and zoning amendments, highway project selection, design and development, and facility management decisions including road approach permits.

Interstate 5 (I-5), Pacific Highway (OR-99E), Hillsboro-Silverton Highway (OR-214 and OR-219), and Woodburn-Estacada Highway (OR-211) are classified highways in the state classification system. The purpose and management objectives of these highways are provided in Policy 1A, as summarized below.

- Interstate highways (I-5) provide connections between major cities in a state, regions of the state, and other states. A secondary function in urban areas is to serve regional trips within the urban area. Their primary objective is to provide mobility and, therefore, the management objective is to provide for safe and efficient high-speed continuous-flow operation in urban and rural areas.
- Regional highways (OR-99E) typically provide connections and links to regional centers,
   Statewide or Interstate highways, or economic or activity centers of regional significance.
   The management objective for these facilities is to provide safe and efficient, high-speed,
   continuous-flow operation in rural areas and moderate to high-speed operations in urban
   and urbanizing areas. A secondary function is to serve land uses in the vicinity of these
   highways.
- District highways (OR-211, OR-214, and OR-219) are facilities of county-wide significance
  and function largely as county and city arterials or collectors. They provide connections and
  links between small urbanized areas, rural centers, and urban hubs, and also serve local
  access and traffic. The management objective is to provide for safe and efficient, moderate
  to high-speed continuous-flow operation in rural areas reflecting the surrounding
  environment and moderate to low-speed operation in urban and urbanizing areas for traffic
  flow and for pedestrian and bicycle movements.

The following classifications also apply in addition to the OHP Highway Classifications

- I-5, OR-214 (between Woodland Avenue and Young St/Silverton Ave), and OR-99E (between Molalla Rd and Young St/Silverton Ave) are classified as part of the National Highway System (NHS)
- OR-214 is also classified as an Oregon Scenic Byway.

### Policy 1C: State Highway Freight System

The primary purpose of the State Highway Freight System is to facilitate efficient and reliable interstate, intrastate, and regional truck movement through a designated freight system. This freight system, made up of the Interstate Highways and select Statewide, Regional, and District Highways, includes routes that carry significant tonnage of freight by truck and serve as the primary interstate and intrastate highway freight connection to ports, intermodal terminals, and urban

areas. Highways included in this designation have higher highway mobility standards than other statewide highways. I-5 is a designated freight route.

### Policy 1D: Scenic Byways

Several highways throughout the state have been designated Scenic Byways which have exceptional scenic value. To protect the scenic assets of its Scenic Byways, ODOT has developed guidelines for aesthetic and design elements within the public right-of-way that are appropriate for Scenic Byways. Highway 214, east of I-5 is designated as a State Scenic Byway.

### Policy 1F: Highway Mobility Standards Access Management Policy

Policy 1F sets mobility standards for ensuring a reliable and acceptable level of mobility on the state highway system. The standards are used to assess system needs as part of long range, comprehensive planning transportation planning projects (such as an IAMP), during development review, and to demonstrate compliance with the TPR.

Significant amendments to Policy 1F were adopted at the end of 2011. The 2011 revisions were made to address concerns that state transportation policy and requirements have led to unintended consequences and inhibited economic development. Policy 1F now provides a clearer policy framework for considering measures other than volume-to-capacity (v/c) ratios for evaluating mobility performance. Also as part of these amendments, v/c ratios established in Policy 1F were changed from being standards to "targets." These targets are to be used to determine significant effect pursuant to TPR Section -0060. The I-5 (Pacific Highway) IAMP, adopted before the revisions to Policy 1F, may benefit from being revisited to evaluate how changes to Policy 1F affect the area.

Table 1 includes the mobility targets for the state facilities in the TSP study area.

Table 2: Volume to Capacity Ratio Targets Outside Metro

|                                                       | VOLUME TO CAPACITY RATIO TARGETS OUTSIDE METRO <sup>17A, B, C, D</sup> |      |                                                                                        |                                                                                         |                                                              |                                            |                |  |
|-------------------------------------------------------|------------------------------------------------------------------------|------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------|----------------|--|
| Highway Category                                      | yay Category Inside Urban Growth Boundary                              |      |                                                                                        |                                                                                         | Outside Urban Growth<br>Boundary                             |                                            |                |  |
|                                                       | STAE                                                                   | MPO  | Non-MPO Outside of STAs where non- freeway posted speed <= 35 mph, or a Designated UBA | Non-MPO<br>outside of<br>STAs where<br>non-freeway<br>speed > 35<br>mph but < 45<br>mph | Non-MPO<br>where non-<br>freeway<br>speed limit<br>>= 45 mph | Unincorporated<br>Communities <sup>F</sup> | Rural<br>Lands |  |
| Interstate Highways                                   | N/A                                                                    | 0.85 | N/A                                                                                    | N/A                                                                                     | 0.80                                                         | 0.70                                       | 0.70           |  |
| Statewide<br>Expressways                              | N/A                                                                    | 0.85 | 0.85                                                                                   | 0.80                                                                                    | 0.80                                                         | 0.70                                       | 0.70           |  |
| Freight Route on a<br>Statewide Highway               | 0.90                                                                   | 0.85 | 0.85                                                                                   | 0.80                                                                                    | 0.80                                                         | 0.70                                       | 0.70           |  |
| Statewide (not a<br>Freight Route)                    | 0.95                                                                   | 0.90 | 0.90                                                                                   | 0.85                                                                                    | 0.80                                                         | 0.75                                       | 0.70           |  |
| Freight Route on a<br>regional or District<br>Highway | 0.95                                                                   | 0.90 | 0.90                                                                                   | 0.85                                                                                    | 0.85                                                         | 0.75                                       | 0.70           |  |
| Expressway on a<br>Regional or District<br>Highway    | N/A                                                                    | 0.90 | N/A                                                                                    | 0.85                                                                                    | 0.85                                                         | 0.75                                       | 0.70           |  |
| Regional Highways                                     | 1.0                                                                    | 0.95 | 0.90                                                                                   | 0.85                                                                                    | 0.85                                                         | 0.75                                       | 0.70           |  |
| District/Local<br>Interest Roads                      | 1.0                                                                    | 0.95 | 0.95                                                                                   | 0.90                                                                                    | 0.90                                                         | 0.80                                       | 0.75           |  |

A Unless the Oregon Transportation Commission has adopted an alternative mobility target for the impacted facility, the mobility targets in Tables 6 are considered standards for purposes of determining compliance with OAR 660-012, the Transportation Planning Rule.

### Policy 1G: Major Improvements

This policy requires maintaining performance and improving safety on the highway system by improving efficiency and management on the existing roadway network before adding capacity. The state's highest priority is to preserve the functionality of the existing highway system. Tools that could be employed to improve the function of the existing interchanges include access management, transportation demand management, traffic operations modifications, and changes to local land use designations or development regulations.

<sup>&</sup>lt;sup>B</sup> For the purposes of this policy, the peak hour shall be the 30th highest annual hour. This approximates weekday peak hour traffic in larger urban areas. Alternatives to the 30th highest annual hour may be considered and established through alternative mobility target processes.

C Highway design requirements are addressed in the Highway Design Manual (HDM).

D See Action 1F.1 for additional technical details.

E Interstates and Expressways shall not be identified as Special Transportation Areas.

For unincorporated communities inside MPO boundaries, MPO mobility targets shall apply.

After existing system preservation, the second priority is to make minor improvements to existing highway facilities, such as adding ramp signals, or making improvements to the local street network to minimize local trips on the state facility.

The third priority is to make major roadway improvements such as adding lanes to increase capacity on existing roadways. As part of this TSP process, ODOT will work with Woodburn and other stakeholders to determine appropriate strategies and tools that can be implemented at the local level that are consistent with this policy.

### Policy 2B: Off-System Improvements

This policy recognizes that the state may provide financial assistance to local jurisdictions to make improvements to local transportation systems if the improvements would provide a cost-effective means of improving the operations of the state highway system. As part of this TSP update process, ODOT will work with the City and project stakeholders to identify improvements to the local road system that support the planned land use designations in the study area and that will help preserve capacity and ensure the long-term efficient and effective operation of high functional class facilities.

### Policy 2F: Traffic Safety

This policy emphasizes the state's efforts to improve safety of all users of the highway system. Action 2F.4 addresses the development and implementation of the Safety Management System to target resources to sites with the most significant safety issues. The TSP update process will include citywide crash analysis to identify sites with a history of fatal and serious injury crashes and identify potential countermeasures to reduce crashes.

### Policy 2G: Rail and Highway Compatibility

This policy recognizes the need to increase safety and transportation efficiency through the reduction and prevention of conflicts between railroads and highway users. Woodburn currently has three primary rail providers. Union Pacific and Portland & Western (PNWR) provide rail service through the City, with connections between Portland and Salem. Willamette Valley Railroad (WVR) provides a connection between Woodburn and Silverton. The Union Pacific railroad is classified as a Type I freight facility and handles the vast majority of freight rail traffic. In addition, Amtrak uses Union Pacific railroad facilities for two intercity routes – the Coast Starlight and Amtrak Cascade – however, neither service stops in Woodburn.

### Policy 3A: Classification and Spacing Standards

State policy seeks to manage the location, spacing, and type of road intersections on state highways in a manner that ensures the safe and efficient operation of state highways consistent with their highway classification.

Action 3A.2 calls for spacing standards to be established for state highways based on highway classification, type of area, and posted speed. Tables in OHP Appendix C present access spacing standards which consider urban and rural highway classification, traffic volumes, speed, safety, and operational needs. The access management spacing standards established in the OHP are implemented by access management rules in OAR 734, Division 51, addressed later in this report. The TSP update process will include an analysis of how existing ODOT arterials and collectors compare to these standards.

### Policy 4A: Efficiency of Freight Movement

Policy 4A emphasizes the need to maintain and improve the efficiency of freight movement on the state highway system. It seeks to balance the needs of long distance and through freight movements with local transportation needs on highway facilities in both urban and rural areas. I-5 is an OHP designated Freight Route.

### Policy 4B: Alternative Passenger Modes

Policy 4B encourages the development of alternative passenger services and systems as part of broader corridor strategies. The policy promotes the development of alternative passenger transportation services located off the highway system to help preserve the performance and function of the state highway system. Mid-Columbia Council of Government's Transportation Network (The Link), Columbia Area Transit, and Greyhound provide public transportation service in the study area. Improving safety, access, and mobility for pedestrians and bicyclists is an objective of this update process.

### **Policy 4D: Transportation Demand Management**

This policy supports the efficient use of the state transportation system through investment in transportation demand management (TDM) strategies. Action 4D.1 calls for reducing peak period sing-occupancy vehicle travel and to move traffic demand out of the peak period so as to improve the flow of traffic on state highways. The TSP update process will review TDM strategies that can be adopted into the Woodburn Development Ordinance in the form of requirement for new developments and incentives for employers.

**Project Relevance:** The TSP planning process will consider policies in the OHP for any improvements, modifications, or policies that would affect I-5, OR-99E, OR-211, OR-214, or OR-219. OHP policies provide guidance in developing recommended improvements that would impact the accessibility, mobility, or function of each highway. The TSP is being developed in coordination with ODOT so that projects, policies, and regulations proposed as part of the TSP will comply with or move in the direction of meeting the standards and targets established in the OHP related to safety, access, and mobility.

# Oregon Freight Plan (2011)

The Oregon Freight Plan (OFP) is a modal plan of the OTP that implements the State's goals and policies related to the movement of goods and commodities. Its purpose statement identifies that State's intent to "improve freight connections to local, Native America, state, regional, national and global markets in order to increase trade-related jobs and income for workers and businesses." The objectives of the plan include prioritizing and facilitating investments in freight facilities (including rail, marine, air, and pipeline infrastructure) and adopting strategies to maintain and improve the freight transportation system.

The plan defines a statewide strategic freight network. I-5 and parallel railroads are designated as a strategic corridor in the OFP.

The following policy and strategic direction provided in the OFP prioritizes preservation of strategic corridors as well as improvements to the supply chain achieved through coordination of freight and system management planning.

- Strategy 1.2: Support freight access to the Strategic Freight System. This includes proactively protecting and preserving corridors designated as strategic.
- Action 1.2.1. Preserve freight facilities included as part of the Strategic Freight System from changes that would significantly reduce the ability of these facilities to operate as efficient components of the freight system unless alternate facilities are identified or a safety-related need arises.
- Strategy 2.4: Coordinate freight improvements and system management plans on corridors comprising the Strategic Freight System with the intent to improve supply chain performance.

**Project Relevance:** Maintaining and enhancing efficiency of the truck and rail freight system in the study area will be an objective of the updated TSP. The project advisory committee include representatives from ODOT.

# **Oregon Public Transportation Plan (1997)**

The Oregon Public Transportation Plan (OPTP) is the modal plan of the OTP that provides guidance for ODOT and public transportation agencies regarding the development of public transportation systems. The current guiding vision for the State is to create a:

- A comprehensive, interconnected, and dependable public transportation system, with stable funding, that provides access and mobility in and between communities of Oregon in a convenient, reliable, and safe manner that encourages people to ride.
- A public transportation system that provides appropriate service in each area of the state, including service in urban areas that is an attractive alternative to the single-occupant vehicle, and high-quality, dependable service in suburban, rural, and frontier (remote) areas.
- A system that enables those who do not drive to meet their daily needs.
- A public transportation system that plays a critical role in improving the livability and economic prosperity for Oregonians.

The OPTP is currently being updated; a new plan is scheduled to be adopted by the Oregon Transportation Commission in Spring 2018.

**Project Relevance:** The TSP will consider the needs of the transit system within City limits while developing recommended policies and projects related to improving transit service. In addition, the project technical advisory committee includes a representative of Woodburn Transit System service provider that will advise on transit improvements.

# Oregon Rail Plan (2014)

The Oregon State Rail Plan is a state modal plan under the OTP that addresses long-term freight and passenger rail planning in Oregon. The Plan provides a comprehensive assessment of the state's rail planning, freight rail, and passenger rail systems. It identifies specific policies concerning rail in the state, establishes a system of integration between freight and passenger elements into the land use and transportation planning process, and calls for cooperation between state, regional, and local jurisdictions in planning for rail.

Woodburn currently has three primary rail providers. Union Pacific and Portland & Western (PNWR) provide rail service through the City, with connections between Portland and Salem. Willamette Valley Railroad (WVR) provides a connection between Woodburn and Silverton. The Union Pacific railroad is classified as a Type I freight facility and handles the vast majority of freight rail traffic. In addition, Amtrak uses Union Pacific railroad facilities for the Coast Starlight and Amtrak Cascade passenger trains. There is no passenger service stop in Woodburn.

**Project Relevance:** The TSP will consider the needs of the freight and passenger rail system within City limits while developing recommended policies and projects related to improving safety and mobility in the City. In addition, the project technical advisory committee includes ODOT representative that will advise on rail and freight interests.

# Oregon Bicycle and Pedestrian Plan (2016)

The intent of the Oregon Bicycle and Pedestrian Plan (OBPP) is to create a policy foundation that supports decision-making for walking and biking investments, strategies and programs that help to develop an interconnected, robust, efficient, and safe transportation system. The OBPP established the role of walking and biking as essential modes of travel within the context of the entire transportation system, and recognizes the benefit to the people and places in Oregon.

The OBPP provides direction for what needs to be achieved, including 20 policies and associated strategies design to help develop, sustain, and improve walking and biking networks. It identifies nine goals based upon the broader goals of the OTP that reflect statewide values and desired accomplishments relating to walking and biking:

- Goal 1: Safety
- Goal 2: Accessibility and Connectivity
- Goal 3: Mobility and Efficiency
- Goal 4: Community and Economic Vitality
- Goal 5: Equity
- Goal 6: Health
- Goal 7: Sustainability
- Goal 8: Strategic Investment
- Goal 9: Coordination, Cooperation, and Collaboration

The OBPP also provides background information related to state and federal law, funding opportunities, and implementation strategies proposed by ODOT to improve bicycle and pedestrian transportation. It outlines the role that local jurisdictions play in the implementation of the Plan,

including the development of local pedestrian and bicycle plans as stand-along documents within TSPs.

**Project Relevance:** The policies and design guidance in the OBPP apply to state highway facilities in Woodburn, which include: I-5, OR-99E, OR-211, OR-214, and OR-219

Policy and design guidance should also be considered in the TSP's local street standards and the bicycle and pedestrian system components. In addition, the bicycle and pedestrian system components of the local TSP should reflect the goals, policies, and strategies for implementation identified in the OBPP. Woodburn should work with regional and state agencies to help identify gaps in the regional walking and biking network and prioritize projects accordingly.

# **Oregon Transportation Safety Action Plan (2016)**

An element of the OTP, the Oregon Transportation Safety Action Plan (TSAP) provides long-term goals, policies and strategies and near-term actions to eliminate deaths and life-changing injuries. The TSAP addresses all modes on all public roads in Oregon. Over the long term, the goals of the TSAP are:

- Infrastructure Develop and improve infrastructure to eliminate fatalities and serious injuries for users of all modes.
- Healthy, Livable Communities Plan, design, and implement safe systems. Support
  enforcement and emergency medical services to improve the safety and livability of
  communities, including improved health outcomes.
- Technology Plan, prepare for, and implement technologies (existing and new) that can affect transportation safety for all users.

The Plan identifies actions that cities, including Woodburn, can take to increase transportation safety. They include adopting a Safe Communities Program and Safe Routes to School. The Safe Communities Program are collaborative partnership with the National Highway Traffic Safety Administration and the ODOT to promote safety. The Safe Routes to School program is a local initiative supported by grant funding that targets safety improvements to encourage walking and biking to schools.

In addition, the TSAP also identifies activities and roles for cities that can do to improve safety. They include:

- Evaluate local spot-specific systemic safety needs; develop plans and programs to address needs.
- Collaborate with the state and stakeholder partners to educate the public about transportation safety-related behavioral issues.
- Integrate safety programming, planning, and policy into local planning.

**Project Relevance:** The TSAP will be used as a resource to develop local goals, policies, and strategies while updating the TSP to increase safety in the City.

# Reduction Review Routes (ORS 366.215 & OAR 731-017)

ORS 366.215 states the Oregon Transportation Commission may not permanently reduce the vehicle-carrying capacity of specific state routes when improvement projects alter, relocate, change, or realign the facility. Exceptions are allowed if safety or access considerations require a reduction.

Transportation improvements that are identified by ODOT as having the potential for a Reduction of Vehicle-Carrying Capacity are required to conduct a stakeholder forum. The stakeholder forum is intended to include representatives from a range of affected groups to discuss design issues with the planned improvements.

**Project Relevance:** Analysis for the TSP update and final project recommendations will need to reflect state requirements for state facilities; the updated TSP will comply with Reduction Review Route standards for state facilities.

# Transportation Planning Rule (OAR 660-012) (2011)

The Transportation Planning Rule (TPR), OAR 660-012, implements Goal 12 (Transportation) of the statewide planning goals. The TPR contains numerous requirements governing transportation planning and project development, including the required elements of a TSP. In addition to plan development, the TPR requires each local government to amend its land use regulations to implement its TSP (-0045). It also requires local government to adopt land use or subdivision ordinance regulations consistent with applicable federal and state requirements: "to protect transportation facilities, corridors and sites for their identified functions."

Local compliance with -0045 provisions is achieved through a variety of measures, including access control requirements, standards to protect future operations of roads, and notice and coordinated review procedures for land use applications. Local development codes should also include a process to apply conditions of approval to development proposals, and regulations ensuring that amendments to land use designations, densities, and design standards are consistent with the functions, capacities, and performance standards of facilities identified in the TSP.

The TPR does not regulate access management. ODOT adopted OAR 734-051 to address access management and it is expected that ODOT, as part of this project, will coordinate with the City in planning for access management on state roadways consistent with its Access Management Rule. See the review of OAR 734-051 in the next section for a review of these access management rules.

Amendments to the TPR adopted in 2012 include new language in Section -0060 that allows a local government to exempt a zone change from the "significant effect" determination if the proposed zoning is consistent with the comprehensive plan map designation and the TSP. The amendments also allow a local government to amend a functional plan, comprehensive plan, or land use regulation without applying mobility standards (V/C, for example) if the subject area is within a designated multi-modal mixed-use area (MMA).

**Project Relevance:** The TPR directs local TSP development and requires specific transportation elements be implemented in the local development ordinance. Local requirements such as access management, coordinated land use review procedures, and transportation facility standards and requirements are meant to protect road

operations and safety and provide for multi-modal access and mobility. Implementation measures that will be developed with the TSP update may entail proposed amendments to the Woodburn Development Ordinance to ensure consistency with TPR requirements as well as to reflect TSP recommendations.

# Access Management Rule (OAR 734-051) (2014)<sup>2</sup>

Oregon Administrative Rule (OAR) 734-051 defines the State's role in managing access to highway facilities in order to maintain functional use and safety and to preserve public investment. OHP Policy 3A and OAR 734-051 set access spacing standards for driveways and approaches to the state highway system<sup>3</sup>. The most recent amendments presume that existing driveways with access to state highways have written permission from ODOT as required by ORS 734. The standards are based on state highway classification and differ depending on posted speed and average daily traffic volume.

**Project Relevance:** Analysis for the TSP update and final project recommendations will need to reflect state requirements for state facilities; the updated TSP will comply or move in the direction of meeting access management standards for state facilities. Implementation measures that will be developed for the TSP update may entail amendments to the Land Use Development Ordinance to ensure that it is consistent with these access management requirements as well as TSP recommendations related to access management.

# **Statewide Transportation Improvement Program**

The State Transportation Improvement Program (STIP) is the four-year programming and funding document for transportation projects and programs for state and regional transportation systems, including federal land and Indian reservation road systems, interstate, state, and regional highways, bridges, and public transit. It includes state- and federally-funded system improvements that have approved funding and are expected to be undertaken during the upcoming four-year period. The projects and programs undergo a selection process managed by ODOT Regions or ODOT central offices, a process that is held every two years in order to update the STIP.

**Project Relevance:** The TSP update analysis will take into account projects that are programmed in the STIP. An expected outcome of this planning process is proposed recommendations to eventually amend the STIP to include projects from the updated TSP. The STIP projects will most likely involve improvements that are eligible for funding through the ODOT Enhance program, which awards funding through a competitive application process.

<sup>&</sup>lt;sup>2</sup> Amendments to OAR 734-051 were adopted in early 2014 based on passage of Senate Bill 1024 (2010, Senate Bill 264 (2011, and Senate Bill 408 (2014). The amendments were intended to allow more consideration for economic development when developing and implementing access management rules, and involved changes to how ODOT deals with approach road spacing, highway improvement requirements with development, and traffic impact analyses requirements for approach road permits.

<sup>&</sup>lt;sup>3</sup> ODOT Access Management Standards – OHP Appendix C Revisions to Address Senate Bill 264 (2011): http://www.oregon.gov/ODOT/TD/TP/docs/ohp\_am/apdxc.pdf

# **ODOT Highway Design Manual (2012)**

The 2012 Highway Design Manual provides ODOT with uniform standards and procedures for planning studies and project development for the state's roadways. It is intended to provide guidance for the design of new construction; major reconstruction (4R); resurfacing, restoration, and rehabilitation (3R); or resurfacing (1R) projects. It is generally in agreement with the American Association of State Highway and Transportation Officials (AASHTO) document *A Policy on Geometric Design of Highways and Streets - 2011*. However, sound engineering judgment must continue to be a vital part in the process of applying the design criteria to individual projects. The flexibility contained in the 2012 Highway Design Manual supports the use of Practical Design concepts and Context Sensitive Design practices.

The Highway Design Manual is to be used for all projects that are located on state highways. National Highway System or Federal-aid projects on roadways that are under local jurisdiction will typically use the 2011 AASHTO design standards or ODOT 3R design standards. Table 3 shows which design standards are applicable for certain projects based on project type, and whether or not the project involves a state route. State and local planners will also use the manual in determining design requirements as they relate to the state highways in TSPs, Corridor Plans, and Refinement Plans. Some projects under ODOT roadway jurisdiction traverse across local agency boundaries. Some local agencies have adopted design standards and guidelines that may differ from the various ODOT design standards. Although the appropriate ODOT design standards are to be applied on ODOT roadway jurisdiction facilities, local agency publications and design practices can also provide additional guidance, concepts, and strategies related to roadway design.

| Table 2. Decide | Ctoodoudo | Calaatiana | 1 /a+uix | $\Delta D \Delta T High$ | Daaida Maa  | ~ 1  |
|-----------------|-----------|------------|----------|--------------------------|-------------|------|
| Table 3: Design | Sianoaros | Selections | Wairix.  | UDUI HISHWAV             | Design Manu | aı - |

| Project Type                                              | Roadway Jurisdiction      |                                                                    |                         |           |                    |  |
|-----------------------------------------------------------|---------------------------|--------------------------------------------------------------------|-------------------------|-----------|--------------------|--|
|                                                           | State Highways            |                                                                    |                         | Local Age | Local Agency Roads |  |
|                                                           | Interstate (I-5)          | Urban State<br>Highways<br>(OR-99E, OR-<br>211, OR-214,<br>OR-219) | Rural State<br>Highways | Urban     | Rural              |  |
| Modernization/ Bridge<br>New/Replacement                  | ODOT<br>4R/New<br>Freeway | ODOT<br>4R/New<br>Urban                                            | ODOT<br>4R/New<br>Rural | AASHTO    |                    |  |
| Preservation/ Bridge<br>Rehabilitation                    | ODOT 3R<br>Freeway        | ODOT 3R<br>Urban                                                   | ODOT 3R<br>Rural        | AASHTO    | ODOT 3R<br>Rural   |  |
| Preventive Maintenance                                    | 1R                        | 1R                                                                 | 1R                      | NA        | NA                 |  |
| Safety- Operations-<br>Miscellaneous/ Special<br>Programs | ODOT<br>Freeway           | ODOT<br>Urban                                                      | ODOT<br>Rural           | AASHTO    | ODOT 3R<br>Rural   |  |

The Highway Design Manual includes mobility standards related to project development and design that are applicable to all modernization projects, except for development review projects (see Table 4). The v/c ratios in the Highway Design Manual are different than those shown in the Oregon

Highway Plan (OHP). The v/c ratio values in the OHP are used to assist in the planning phase to identify future system deficiencies; the Highway Design Manual v/c ratio values provide a mobility solution that corrects those previously identified deficiencies and provides the best investment for the State over a 20-year design life.

| Table 4: 20-Year Design M | lobility Standards | (Volume/Capacit | y [V/C]) Ration |
|---------------------------|--------------------|-----------------|-----------------|
|                           |                    |                 |                 |

| 20 Year Design-Mobility Standards    |                               |                     |
|--------------------------------------|-------------------------------|---------------------|
| Highway Category                     | Inside Urban Growth Boundary  |                     |
|                                      | Non-MPO outside of STAs       | Non-MPO where non-  |
|                                      | where non-freeway speed limit | freeway speed limit |
|                                      | <45 mph                       | >=45                |
| Interstate Highways and Statewide    | 0.70                          | 0.65                |
| (NHS) Expressways                    |                               |                     |
| Statewide (NHS) Non-Freight Routes   | 0.75                          | 0.70                |
| and Regional or District Expressways |                               |                     |
| Regional Highways                    | 0.75                          | 0.75                |
| District/Local Interest Roads        | 0.80                          | 0.75                |

**Project Relevance:** The ODOT Highway Design Manual provides design standards on state roadways; analysis for the TSP update and final project recommendations will need to reflect state requirements for state facilities. Standards and guidelines adopted by Woodburn should be considered for additional guidance, concepts, and strategies for design.

# **Oregon Roadway Departure Implementation Plan (2017)**

The Roadway Departure Implementation Plan provides specific information regarding roadway departure safety improvements to implement the current TSAP. It identifies the most cost-effective types of transportation improvements for reducing roadway departure crashes. The countermeasures that are generally considered to be the most effective are listed below. Each method is intended to address specific safety concerns and is considered a low-cost way to systematically reduce fatal and serious injury accidents.

- Curve signing and marking
- Center line rumble strips
- Edge rumble strips
- Delineation
- High friction surface treatments.
- Tree management
- Shoulder widening

**Project Relevance:** The Roadway Departure Implementation Plan identifies low cost, cost effective safety treatments (e.g. resurfacing, surface transportation projects) to

reduce the potential for future crashes. The TSP update will consider and incorporate safety treatments for transportation projects where crash history exists.

# **Oregon Intersection Safety Implementation Plan (2012)**

The Intersection Safety Plan provides specific information and direction regarding intersection safety improvements to implement the current TSAP. It directs that the traditional approach of relying primarily on pursuing major improvements at high-crash intersections be complemented with an expanded systematic approach. This approach should involve deploying large numbers of relatively low-cost, cost-effective countermeasures at many targeted high-crash intersections and coordinating engineering, education, and enforcement (3E) initiatives on corridors with high numbers of severe intersection crashes.

**Project Relevance:** Consistent with the State's Transportation Safety Action Plan, the TSP consider corridors and appropriate countermeasures identified in the Intersection Safety Implementation Plan to reduce bicycle and pedestrian crashes.

# Oregon Bicycle and Pedestrian Safety Implementation Plan (2014)

The Bicycle and Pedestrian Safety Implementation Plan identifies priority locations and countermeasure options for reducing pedestrian and bicycle crashes. The Plan conducted a systemic planning process to create a prioritized list of candidate locations for safety improvement within each ODOT Region. It also provides recommendations on appropriate countermeasures to reduce crashes.

**Project Relevance:** The TSP update will consider the corridors and priority locations within Woodburn, as well as the appropriate countermeasures, identified in the Oregon Bicycle and Pedestrian Safety Implementation Plan to ensure that planned projects will serve to reduce bicycle and pedestrian crashes.

# 2015 Oregon Standard Specifications for Construction, Standard Drawings, Standard Details

The Oregon Standard Specifications for Construction includes, and provides assistance on the application and interpretation of, standard specifications and special provisions for project contracting with ODOT. The Standard Drawing and Standard Details are engineering manuals and tools that specify construction details for public works projects.

**Project Relevance:** The TSP update will reference the specifications, drawings, and details for evaluating initial project cost estimates during the TSP update process.

### **REGIONAL PLANS**

# Marion County Rural Transportation System Plan (2005, last amended in 2013)

The Marion County Rural Transportation System Plan (RTSP) is the County's long-range plan for developing and managing its transportation system in rural areas (outside Urban Growth Boundaries). The TSP was adopted in 2005, and was last amended in 2013 with updated chapters 3, 4, 5, 6, 7, and Appendix B.

The Marion County Rural TSP provides the framework for developing an efficient, well-balanced, and cost-effective transportation system for areas outside of incorporated cities. Chapter 6 of the RTSP (updated in 2013) includes 2030 population forecasts generated by PSU for Marion County's larger cities, including Woodburn. These population forecasts were used by County staff to project future traffic volumes for the year 2032 for roadways in rural Marion County.

Chapter 8 of the Marion County Rural TSP was last updated in 2005 and lists the existing and future needs of the Marion County rural roadway system and the projects recommended to address those needs. In addition to County-recommended projects, it lists connectivity and modernization needs proposed by cities, including two projects proposed by Woodburn. Chapter 8 also identifies a state highway safety improvement needed at the interchange of I-5 and Highways 214 and 219 (also known as the Woodburn Interchange). The TSP notes that although the Woodburn Interchange is within the Woodburn UGB, transportation to and from rural areas of Marion County is affected by the issue.

Chapter 8 also notes the need to improve regional passenger and freight mobility on I-5 through Woodburn by constructing new interchange and connector roads, as well as a recommended corridor study on Oregon 99E, which passes through Woodburn. In addition, Chapter 9 of the TSP makes recommendations regarding the expansion of public transit services along major corridors from, to, and through Woodburn, and Chapter 10 includes policies for coordinating access management and design standards for county roadways inside the UGB.

**Project Relevance:** County transportation improvement projects will be reviewed and considered in the Woodburn TSP update. Recommendations in the updated TSP will need to be consistent with the County TSP; if necessary, needed refinements to the County plan will be identified and discussed as part of this update process.

### Marion County Comprehensive Land Use Plan (1981, last amended in 2010)

The Marion County Comprehensive Plan was originally adopted in 1981 and last updated in September 2010. The Comprehensive Plan includes general transportation policies in the Transportation Element (Section E of Chapter II). More detailed transportation policies are included in the Marion County Rural Transportation System Plan, reviewed separately in this memorandum.

Policies relevant to the Woodburn TSP update can be found in the Urbanization and Transportation chapters of the Marion County Comprehensive Plan. The Urbanization chapter contains transportation policies and coordination guidelines relating to street connectivity, transit, freight routes, and active transportation. The Transportation chapter contains policies for coordinating access management and design standards for county roadways inside the UGB. However, Transportation System Management (TSM) Policy 3 states that for County Roads within the UGB of a city that has adopted access spacing requirements (in their Transportation System Plan or other

official document) the County will use the City's adopted spacing standards, unless in the County's judgment they would not be appropriate. Because Woodburn has adopted access spacing requirements in the current TSP, the County's spacing requirements would not apply within the city's UGB.

**Project Relevance:** The TSP update process will consider the relevant goals and policies in the Marion County Comprehensive Plan in the development of the updated TSP.

#### CITY OF WOODBURN PLANS

# Comprehensive Plan (last amended 2016)

The Woodburn Comprehensive Plan is the controlling land use document for the City and its Urban Growth Boundary (UGB). The Comprehensive Plan has a chapter dedicated to Transportation Goals and Polices. There are seven Transportation Goals, each with between two and seven policies. The Comprehensive Plan includes other transportation-related policies in other chapters. An excerpt of all the Goals and Policies that are relevant to the Woodburn TSP update are provided in Attachment A. In general, goals and policies in Woodburn's Comprehensive Plan provide guidance in the following areas.

- The design and location relationship between land use development street classifications.
- Guidance on the future land use development and transportation facility improvements for Highway 99E.
- Growth management restrictions on Butteville Road NE and the Southwest Industrial Reserve area to protect future industrial development viability.
- The multi-modal transportation system, including intra-city transit, complete bikeway network, improved sidewalk, and off-street pathway connections.
- Coordination with Marion County and ODOT to improve safety, preserve capacity and accessibility, and construct needed street connections outside the UGB.
- The design, safety, and function of streets in the Woodburn downtown area.

In January 2016 the Oregon Department of Land Conservation and Development (DLCD) approved Woodburn's Comprehensive Plan Amendments, amending the UGB expansion and establishing an Urban Reserve Area. The UGB expansion consists of approximately 619 gross acres. This includes 190 acres for industrial use, 23 acres for commercial use and 406 acres for residential use. Part of the UGB amendment included the following conditions:

- A twenty-year expansion limitation condition west of Butteville Road NE.
- A twenty-year expansion limitation condition northeast of Highway 99E.
- An Urban Reserve, consisting of 230 acres, east of the intersection of Butteville Road NE and Parr Road NE.

In addition, the amendments to the Comprehensive Plan also included the following:

### **Urban Growth Coordination Agreement (2015)**

The Urban Growth Coordination Agreement provides coordination and revision procedures and policies that, along with the policies of the Woodburn Comprehensive Plan, serve as the basis for land use decisions within the Urban Growth Area and within the Urban Reserve Area. The Coordination Agreement establishes an Urban Reserve Area and two 20-year UGB expansion limitations (see Figure 1).

Coordination Policy and Procedure 10 discourages new public facilities in the Urban Growth Area without annexation into the City's jurisdiction.

10. The City shall discourage the extension of public facilities into the Urban Growth Area without annexation. However, if the extension of public facilities into the Urban Growth Area is necessary because of an emergency, health hazard or the City determines it is otherwise desirable, the facilities may be extended subject to terms and conditions contained in a service contract between the City and the property owner.

The Coordination Agreement also provides restrictions to Butteville Road NE to discourage urban traffic unrelated to planned and existing industrial uses in the immediate area and unrelated to agricultural uses west of Butteville Road.<sup>4</sup>

### Woodburn Comprehensive Plan, Growth Management Goals and Policies Amendment

As a result of the Urban Growth Coordination Agreement, the Growth Management Goals and Policies section of the Comprehensive Plan were amended to include additional policies to support the UGB expansion limitations (Policy G-1.20) shown in Figure 1 and establishing an Urban Reserve Area (Policy G-1.21) shown in Figure 2.

Policy G-1.27 in the amended Comprehensive Plan discourages urban traffic on Butteville Road unrelated to planned and existing industrial uses in the immediate area and unrelated agricultural to agricultural uses to the west.

APG Woodburn TSP 2/5/18

\_

<sup>&</sup>lt;sup>4</sup> This portion of the Coordination Agreement was also adopted as an amendment to the Comprehensive Plan (Policy G-1.27) as described below.

Figure 1: UGB Expansion Limitation

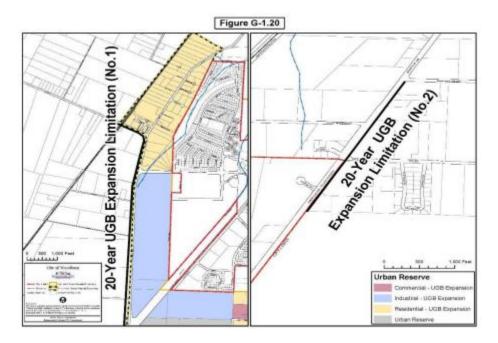
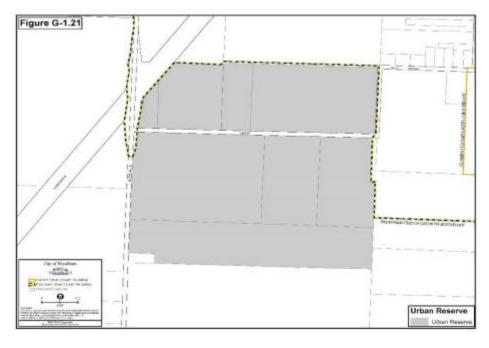




Figure 2: Urban Reserve



**Project Relevance.** The updated TSP is intended to be adopted as the transportation element of the City's Comprehensive Plan, replacing the 2005 TSP. Recommendations resulting from the TSP update process will either be consistent with existing policies, including those identified in the appendix, or will inform updated policy language that will be proposed for adoption as part of the TSP update. Amendments to the Zoning and Land Use Development Ordinance will also

likely be needed in order to implement the updated TSP; proposed amendments will be based on existing, revised, or new policies related to, among other things, procedures, land use review coordination, strengthening multi-modal connectivity and access, and protection of transportation facilities.

# Woodburn Comprehensive Plan and UGB Amendment Justification Studies (2000 – 2005)

The documents reviewed below include background studies and memoranda that are considered the principal documents used to support the amendments to Woodburn's Comprehensive Plan and UGB in 2005. All the documents were reviewed for pertinent transportation-related policies or projects; however, only some documents include information that is relevant to Woodburn's TSP update. In general, most of the recommendations from the effort that led to the 2005 amendments were related to land use, growth, and economic development. Although all these topics influence or are influenced by transportation planning, very little information was directly related to transportation.

### City of Woodburn Local Wetlands Inventory and Riparian Assessment (2000)

The report is one of several background documents used to inform and support 2005 amendments to the Comprehensive Plan and UGB amendment. It includes the methods and results of a Local Wetlands Inventory (LWI) for land within the 2003 UGB.<sup>5</sup> The LWI replaced the US Fish and Wildlife Service National Wetlands Inventory and has been incorporated into the statewide wetlands inventory. Riparian assessments were also conducted as part of the report. Woodburn amended the WDO to comply with the safe harbor provisions for wetlands and riparian corridors through adopting the Riparian Corridor and Wetlands Overlay District (RCWOD) based on the results and inventories in this document.

# Woodburn Economic Opportunities Analysis (EOA) and Development Strategy (EDS) Report (2001)

These documents form the foundation for the 2005 Comprehensive Plan and UGB expansion amendments. The EOA identified "target industries" based on Woodburn's comparative economic advantages and local policy objectives and describe site requirements of each employment category. The City's comparative advantages include the City's I-5 location between Salem and Portland; the availability of large tracts of land with direct access to the I-5 interchange with Highway 214; and the City's commitment to provide services to these sites.

Multiple other documents were produced that refined the findings and recommendations of the EOA and EDS. They include:

Woodburn Population and Employment Projections (2002). The memorandum reviews the
City's population and employment forecasts and presents revised growth projections based
on data from the EOA and EDS. In addition, it allocates employment projections and reviews
impacts from forecasts. The memorandum suggests that Woodburn's population and

<sup>&</sup>lt;sup>5</sup> Wetlands, stream corridors, floodplains and wildlife habitat for areas outside of the 2003 UGB were documented in Technical Report 3, Potential UGB Expansion Area Analysis, Natural Resources Inventory

- employment growth would grow faster than the average for Marion County from 2000-2020.
- Woodburn Occupation/Wage Forecast (2003). The memorandum researches the impacts
  the City's economic development strategies will have on household incomes. The
  memorandum suggests that a higher percentage of new jobs created in Woodburn between
  2000 and 2020 will pay more than existing jobs, the impacts of which would create more
  demand on single-family housing in a broad range of prices.
- Site Requirements for Woodburn Target Industries (2003). The memorandum researches the demand for non-residential land implied by the revised employment forecast and site needs for industries targeted as part of the City's economic development strategy. The memorandum recommends about 370 acres of new development is needed between 2000 and 2020 and provides a range of required parcel sizes, from 0.5 acres to 100+ acres, necessary to attract businesses. It also identifies several industries that are reliant on transportation facilities, such as large printing and publishing firms, stone, clay, glass, and concrete manufacturers, and large warehousing.

### Technical Report 1, Buildable Lands Inventory (2005)

The Technical Report determined the buildable land area, on a parcel-by-parcel bases, within the 2005 Woodburn UGB. The revisions in 2005 accounted for changes in the Comprehensive Plan and UGB amendment package, adopted in 2005. The study determined there are 679 vacant buildable acres of land for low, nodal-low, medium, and nodal-medium density residential uses. It also determined there are 459 vacant buildable acres of land for industrial and commercial uses.

### Technical Report 2, Woodburn Residential Lands Needs Analysis (2005)

The Technical Report projects the land area needed for residential and public/semi-public uses for a planning period between 2003 and 2020. Two scenarios were presented for projected residential land needs; a base case scenario based historic trends and a modeled scenario based on projected income by age cohort, related to assumptions of types and cost for various housing types. The model scenario result suggested the additional total acreage needed to serve the 2020 growth projections would be approximately 339 acres across various residential plan designations. The report also recommends new overlay plan designations to implement the identified needed housing types and reduce the demand for needed acreage. These recommendations have been incorporated into in Woodburn's current Comprehensive Plan and Development Ordinance.

# Technical Report 3, Potential UGB Expansion Area Analysis Natural Resources Inventory (2002)

The Technical Report examined eight UGB expansion areas that extend approximately one-half mile outside of the 2002 UGB. The report considered factors such as agricultural and exceptions lands and natural resources to determine the amount of buildable land in each area. The information documented wetlands, stream corridors, floodplains, and wildlife habitat within the UGB study areas to identify which areas were most suitable to expand the UGB.

### Citizen Involvement Report (2005)

The Citizen Involvement Report provides a summary of citizen involvement opportunities that occurred during the periodic review planning process.

# City of Woodburn Periodic Review and Urban Growth Boundary Amendments Findings of Fact

The Findings of Facts provides a summary of new and amended ordinances and decisions, a comprehensive list of periodic review work tasks that were completed, and findings for compliance with state requirements.

### City's Public Facilities Plan (2005)

The Public Facilities Plan (PFP) identifies major infrastructure projects necessary to serve the growth in Woodburn through the year 2020. PFP's typically include four elements: Domestic Water, Sanitary Sewer, Storm Drainage, and Transportation. However, Woodburn's PFP incorporates the 2005 TSP by reference and refers to it for information related to transportation project descriptions, location, timing, and costs necessary to serve land within the UGB.

**Project Relevance:** The TSP update process will reflect the findings of the various studies and reports used to support the updated UGB boundary, as it related to multi-modal transportation facilities to serve areas where expected residential, commercial, and industrial growth is expected to occur.

### Woodburn TSP (Volumes I and II) (2005)

The Woodburn TSP guides the management and development of appropriate transportation facilities in Woodburn, incorporating the community's vision, while remaining consistent with state, regional, and local plans. The current plan was adopted in October of 2005. It contains transportation goals, policies, and strategies to address the city's transportation needs. The TSP provides a plan for the development of the transportation system, which addresses improvements to roadways, new pedestrian and bicycle facilities, improvements in public transit service, and transportation demand management strategies.

**Project Relevance:** The TSP update process will review goals, objectives, standards, and recommended projects from the current plan and will determine what to retain or change in the updated TSP. This project will update transportation improvement projects for all modes, based on current and projected needs. Updated data, stakeholder and community involvement, and evaluation criteria will be used in making these determinations.

# Woodburn Transit Plan Update (2010)

The Woodburn Transit Plan Update (TPU) was adopted in 2010 and guides the provision of transit services and facilities in Woodburn over 20 years. It is intended to supplement the 2005 TSP to ensure that transit is an integral component of the Woodburn's multimodal transportation network. Recommendations in the TPU offer guidance on where transit infrastructure investments should be made, compliance with the Americans with Disabilities Act (ADA), and connectivity to regional transit services.

Key findings in the TPU were developed based on the review of related plans and documents, community and demographic trends, existing public transportation services, transit services of a similar scale, passenger surveys, and community input. These key findings are summarized in

Chapter 8 of the TPU. Additionally, the TPU includes goals and objectives derived from key findings that are tailored to the provision of public transportation and include objectives that offer very specific guidelines for how to improve public transportation service, as well as a basic set of performance standards to guide operations.

The TPU also identifies a set of potential service strategies based on the needs assessment and goals and objectives. The strategies, presented as options for improving the transit system in Woodburn, are prioritized based on how well they satisfy the 28 identified objectives.

**Project Relevance:** The TPU was developed to serve as the transit element of the TSP and allow the City to make land use code and guideline revisions to ensure a safe and efficient public transportation system. The TSP update process will review relevant findings, goals, objectives, and policies related to transit; updated TSP policy will reflect and be consistent with the objectives of the TPU and proposed projects should be consistent with the TPU's identified routes and service standards.

# Highway 99E Corridor Plan (2012)

The Highway 99E Corridor Plan was developed to facilitate the revitalization of the corridor as a viable, safe, and sustainable business district. The project focused on Highway 99E corridor from the proposed southern Woodburn Urban Growth Boundary (just south of Belle Passi Road) to the northern Urban Growth Boundary (near the intersection of Highway 99E and Carl Road, north of Industrial Way). It identifies needed transportation improvements, recommends appropriate land uses, and illustrates the urban design vision for the section of Highway 99E running through the City of Woodburn. The Corridor Plan also identifies the policies, regulations, and actions necessary to implement this vision.

**Project Relevance:** The TSP update process will review, and modify and/or incorporate as appropriate, the plan's relevant transportation-related vision statements, goals, guiding principles, proposed improvements, access management strategies, and proposed implementation measures.

# **Woodburn Interchange Area Management Plan (2006)**

The Woodburn Interchange Area Management Plan (IAMP) documents interchange management measures and summarizes information on the project's background, purpose and need, relevant plans and policies, land use and environmental issues, transportation conditions and deficiencies, alternatives development and analysis, plan recommendations, public involvement, and implementation strategies. The stated purpose of the Woodburn Interchange Project was to improve the traffic flow and safety conditions of the existing I-5/Woodburn interchange, as the existing interchange does not meet current design and operational standards. The IAMP includes a set of approved project goals, as well as a set of recommendations and local and state implementation actions and responsibilities.

**Project Relevance:** IAMP recommended amendments to the TSP will be considered, and the TSP update process will review the plan's goals, recommendations, and implementation measures and consider what elements should be incorporated into the updated Woodburn TSP update.

### Woodburn Downtown Development Plan Update (2010)

The Woodburn Downtown Development Plan, updated in 2010, includes a framework plan for transportation improvements. These improvements focus on pedestrian and bicycle circulation, parking in Old Town, and streetscape enhancement concepts for three of the planning sub-districts (Old Town, the Gateway Subarea, and Young Street Corridor). The Plan's study area encompasses important transportation facilities, including the Union Pacific Railroad, which provides both freight and Amtrak service, and North Front Street, South Front Street, and Young Street, which serve as gateways to downtown from Highways 214 and 99E.<sup>6</sup> In addition to pedestrian and bicycle circulation improvements, parking, and streetscapes, the Plan addresses future rail transit and bus transit.

The implementation chapter of the Plan includes a list of specific transportation projects ("Transportation Catalysts") that will support and provide enhanced vehicular and pedestrian access to the project area. To integrate the transportation improvements and street design concepts therein, the Plan also includes a list of potential amendments to the City's TSP. Recommended projects and amendments include the identification of one-way streets and cross section standards for the Old Town Commercial street grid.

**Project Relevance:** The TSP update process will review, update as necessary, and incorporate where relevant, the plan's goals, implementation measures, and recommended projects and amendments to the TSP.

# Woodburn Proposed Budget FY 2016-17

Woodburn's Proposed FY 2016-17 Budget provides an outline and summary of the City's total proposed budget, excluding transfers. The City's proposed budget is balanced; however, it describes a sense of caution regarding the City's financial capacity to maintain current levels of service in upcoming years.

City's current and historic funding and sources

Woodburn relies on two major sources of revenue to fund operations: property taxes and utility charges. These two revenue categories constitute more than 70 percent of the City's operating revenues. Other revenues supplement City operations, including franchise fees (levied on utilities for use of public right-of-way), intergovernmental revenue (state shared revenue, liquor and cigarette taxes, transportation revenues), fees and charges (planning and engineering fees, recreation fees, business and solicitation registration fees), and fines (municipal court). These secondary revenue sources are critical to overall financial health of the City and are historically less volatile than other revenue sources.

<sup>&</sup>lt;sup>6</sup> Note that the 2012 Highway 99E Corridor Plan contains specific recommended improvements at Young Street and Highway 99E. See Figures 4 and 5.

Table 5: Transportation Related Funds

|                 | Revenues & Expenditures (Total) | FY 2013-14<br>Actual | FY 2014-15<br>Actual | FY 2015-16<br>Budget | FU 2016-17<br>Proposed |
|-----------------|---------------------------------|----------------------|----------------------|----------------------|------------------------|
| Transit Fund    | Revenues                        | 752,574              | 1,174,532            | 684,750              | 754,750                |
|                 | Expenditures                    | 624,811              | 1,034,507            | 684,750              | 754,750                |
| Street Fund     | Revenues                        | 4,296,805            | 5,001,328            | 5,065,034            | 4,801,497              |
|                 | Expenditures                    | 1,536,183            | 2,035,284            | 5,065,034            | 4,801,497              |
| Street & Storm  | Revenues                        | 773,933              | 179,375              | 345,000              | 2,995,000              |
| Cap Const. Fund | Expenditures                    | 595,781              | 113,938              | 345,000              | 3,506,000              |
| Special         | Revenues                        | 1,041,261            | 1,051,658            | 1,071,849            | 80,500                 |
| Assessment Fund | Expenditures                    | -                    | -                    | 1,071,849            | 80,500                 |
| Street SDC Fund | Revenues                        | 5,861,072            | 5,711,077            | 6,965,223            | 2,509,838              |
|                 | Expenditures                    | 657,506              | 4,366,640            | 6,965,223            | 2,509,838              |

### City's Capital Improvement Program

The Proposed FY 2016-17 Budget lists all capital construction projects individually, including a specific scope and budget and project data sheets. All projects are budgeted for the full cost, even if

the project is expected to span multiple budget periods, to ensure enough budget is available should project schedules accelerate. A list of current year projects is included below, in Figure 3.

Figure 3: Woodburn Current Year Projects

### **Current Year Projects**

|                                                                      | Project  | Street & Storm<br>Cap Const | Sewer<br>Cap Const | Water<br>Cap Const |           |
|----------------------------------------------------------------------|----------|-----------------------------|--------------------|--------------------|-----------|
| Project Name                                                         | Number   | Fund 363                    | Fund 465           | Fund 466           | Total     |
| West Hayes - Settlemier to Cascade - road improvement <sup>(A)</sup> | CIST1486 | 3,125,000                   | -                  | -                  | 3,125,000 |
| Safety Sidewalk & ADA Construction                                   | CIST1165 | 25,000                      | -                  | -                  | 25,000    |
| Settlemier/W. Lincoln intersection improvement                       | CIST1470 | 60,000                      | -                  | -                  | 60,000    |
| 4th Street - Garfield to Harrison Storm Replacement                  | CDST1471 | 10,000                      | -                  | -                  | 10,000    |
| 5th Street - Lincoln to Harrison Storm Replacement (8)               | CDST1487 | 275,000                     |                    |                    | 275,000   |
| Automatic Read Meter Replacement Program                             | CDWA1060 |                             | -                  | 300,000            | 300,000   |
| Hwy 99E Aztec to Tomlin                                              | CDWA1468 | -                           | -                  | 75,000             | 75,000    |
| POTW Phase 2A/Natural Treatment System                               | CISW1052 | -                           | 1,000,000          | -                  | 1,000,000 |
| Mill Creek Pump Station - Phase 1                                    | CDSW1413 |                             | 150,000            | -                  | 150,000   |
| Pump Station Upgrades (Existing Upgrades - Reliability)              | CDSW1414 |                             | 225,000            | -                  | 225,000   |
| Sanitary Sewer Collection System Piping replacement                  | CDSW1488 |                             | 250,000            | -                  | 250,000   |
| W Hayes Street Sanitary Sewer Pipeline Project                       | CDSW1417 | -                           | 1,500,000          |                    | 1,500,000 |
| Young Street Pipeline Project (C)                                    | CDSW1469 |                             | 1,700,000          |                    | 1,700,000 |
| Total                                                                |          | 3,495,000                   | 4,825,000          | 375,000            | 8,695,000 |

 $<sup>^{(</sup>A)}$  CIST1486 - \$1,700,000 funded from Street SDC Fund and \$80,000 being funded from Storm SDC Fund

Capital Improvement Plan for future Fiscal Years is shown in Figure 4.

Figure 4: Capital Improvement Plan – FY 2017-18 to FY 2021-22

<sup>(8)</sup> CDST1487 - \$75,000 funded from Storm SDC Fund

<sup>(</sup>C) CDSW1469 - \$500,000 funded from Sewer SDC Fund

| Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Revenue Source                                                                                                                                                       | 2017-18                                      | 2018-19                                      | 2019-20                                                        | 2020-21                                    | 2021-22                                     | Total                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------------------------|--------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Street & Storm Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                      |                                              |                                              |                                                                |                                            |                                             |                                                                                                                                 |
| Construction of Pedestrian Enhancements along Hwy 99E                                                                                                                                                                                                                                                                                                                                                                                                                                                               | State/Street SDC                                                                                                                                                     |                                              |                                              |                                                                | 390,000                                    |                                             | 390,00                                                                                                                          |
| Hwy 99E Widening - Lincoln Street to south of Cleveland                                                                                                                                                                                                                                                                                                                                                                                                                                                             | State/Street SDC                                                                                                                                                     |                                              |                                              |                                                                |                                            | 7,150,000                                   | 7,150,00                                                                                                                        |
| Improve Roadway Lighting along Hwy 99E Corridor                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | State/Street Fund                                                                                                                                                    |                                              |                                              |                                                                | 2,110,000                                  |                                             | 2,110,00                                                                                                                        |
| Hardcastle/Railroad Realignment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Street Fund/Street SDC                                                                                                                                               | 1,100,000                                    | •                                            | •                                                              | •                                          |                                             | 1,100,00                                                                                                                        |
| Evergreen Rd: connect to Parr Rd • Street Improvements                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Developer/Street SDC                                                                                                                                                 |                                              | 600,000                                      | 000,000                                                        |                                            |                                             | 1,400,00                                                                                                                        |
| Alley: Garfield - Cleveland - Street Improvement                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Street Fund                                                                                                                                                          |                                              |                                              | 342,000                                                        | •                                          |                                             | 342,00                                                                                                                          |
| Willow Avenue Extension                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Street Fund                                                                                                                                                          |                                              | 40,000                                       | 1,000,000                                                      |                                            |                                             | 1,040,00                                                                                                                        |
| HarrisonSettlemier to Front • Street Improvement                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Street Fund/Storm SDC/Street SDC                                                                                                                                     |                                              |                                              |                                                                | 60,000                                     | 935,000                                     | 995,00                                                                                                                          |
| Front Street Improvements • Front Street Ramp •• NCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Street SDC                                                                                                                                                           |                                              |                                              | 1,500,000                                                      | 2,300,000                                  |                                             | 3,800,00                                                                                                                        |
| Safety Sidewalk Construction/ADA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Street Fund                                                                                                                                                          | 25,000                                       | 25,000                                       | 25,000                                                         | 25,000                                     | 25,000                                      | 125,00                                                                                                                          |
| Storm Drain Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                      |                                              |                                              |                                                                |                                            |                                             |                                                                                                                                 |
| North 2nd & 3rd • South of Yew St.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Street Fund/Storm SDC                                                                                                                                                |                                              |                                              | 230,000                                                        |                                            |                                             | 230,00                                                                                                                          |
| North Front Detention - Culvert to Commerce                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Street Fund/Storm SDC                                                                                                                                                | 18,000                                       | 282,000                                      |                                                                |                                            |                                             | 300,00                                                                                                                          |
| Harrison Street, Replace Storm that is under existing homes                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Street Fund                                                                                                                                                          | 275,000                                      |                                              |                                                                |                                            |                                             | 275,00                                                                                                                          |
| Landau/Laurel/George Storm (to Pudding)                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Street Fund/Storm SDC                                                                                                                                                |                                              |                                              | 250,000                                                        | 600,000                                    |                                             | 850,00                                                                                                                          |
| 122 Tooze Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Street Fund/Storm SDC                                                                                                                                                |                                              |                                              |                                                                | 150,000                                    |                                             | 150,0                                                                                                                           |
| Settlemier Detention and Outlet Works                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Storm SDC                                                                                                                                                            | 300,000                                      | 352,000                                      |                                                                |                                            |                                             | 652,0                                                                                                                           |
| Drainage work & street modifications @ High St                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Street Fund/Storm SDC                                                                                                                                                |                                              |                                              |                                                                |                                            | 30,000                                      | 30,00                                                                                                                           |
| Cleveland Street at Mill Creek Culvert Rehabilitation                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Street Fund                                                                                                                                                          | 209,000                                      |                                              |                                                                |                                            |                                             | 209,00                                                                                                                          |
| Aquatic Center Area Storm Improvement                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Street Fund                                                                                                                                                          | 78,800                                       |                                              |                                                                |                                            |                                             | 78,8                                                                                                                            |
| Rehab Existing Collection System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Street Fund                                                                                                                                                          |                                              |                                              |                                                                | 500,000                                    | 500,000                                     | 1,000,0                                                                                                                         |
| Total Street and Storm Drain Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                      | 2,005,800                                    | 1,299,000                                    | 4,147,000                                                      | 6,135,000                                  | 8,640,000                                   | 22,226,80                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                      |                                              |                                              | .,,                                                            |                                            |                                             |                                                                                                                                 |
| Street Resurfacing: Gravel Streets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                      |                                              |                                              |                                                                |                                            |                                             |                                                                                                                                 |
| ew Street, 2nd to 3rd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Street Fund                                                                                                                                                          | 160,000                                      |                                              |                                                                |                                            |                                             | 160,0                                                                                                                           |
| im Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Street Fund                                                                                                                                                          |                                              | 300,000                                      |                                                                |                                            |                                             | 300,0                                                                                                                           |
| Christiansen Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Street Fund                                                                                                                                                          |                                              |                                              | 185,000                                                        |                                            |                                             | 185,0                                                                                                                           |
| Vilson Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Street Fund                                                                                                                                                          |                                              |                                              |                                                                | 260,000                                    |                                             | 260,0                                                                                                                           |
| Church Street, 1st to 2nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Street Fund                                                                                                                                                          |                                              |                                              |                                                                |                                            | 150,000                                     | 150,0                                                                                                                           |
| Total Gravel Streets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                      | 160,000                                      | 300,000                                      | 185,000                                                        | 260,000                                    | 150,000                                     | 1,055,0                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                      |                                              |                                              |                                                                |                                            |                                             |                                                                                                                                 |
| Water: Water System Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                      |                                              |                                              |                                                                |                                            |                                             |                                                                                                                                 |
| Harrison Street - Settlemier to Front Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Water Fund                                                                                                                                                           |                                              | 450,000                                      |                                                                |                                            |                                             | 450,0                                                                                                                           |
| Lincoln to Hardcastle Loop at Washington School                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Water Fund/Water SDC                                                                                                                                                 |                                              |                                              |                                                                | 225,000                                    |                                             | 225,0                                                                                                                           |
| egion Park Waterline Loop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Water Fund/Water SDC                                                                                                                                                 |                                              |                                              |                                                                |                                            | 200,000                                     | 200,0                                                                                                                           |
| Rehab/Capacity Improvements to existing distribution system                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Water Fund/Water SDC                                                                                                                                                 | 250,000                                      | 250,000                                      | 250,000                                                        | 250,000                                    | 300,000                                     | 1,300,0                                                                                                                         |
| Water System Reconstruction Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                      | 250,000                                      | 700,000                                      | 250,000                                                        | 475,000                                    | 500,000                                     | 2,175,0                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                      |                                              |                                              |                                                                |                                            |                                             |                                                                                                                                 |
| Sewer: Wastewater Treatment Plant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                      |                                              |                                              |                                                                |                                            |                                             |                                                                                                                                 |
| POTW Phase 2A/Natural Treatment System                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sewer Fund                                                                                                                                                           | 5,000,000                                    | 6,000,000                                    | 400,000                                                        |                                            |                                             | 11,400,0                                                                                                                        |
| Storm Water Treatment Final Engr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sewer Fund                                                                                                                                                           | 15,000                                       | 250,000                                      |                                                                |                                            |                                             | 265,0                                                                                                                           |
| leadworks- Screening                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sewer Fund                                                                                                                                                           |                                              |                                              | 380,000                                                        | 1,520,000                                  |                                             | 1,900,0                                                                                                                         |
| Primary Sedimentation • PEPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sewer Fund                                                                                                                                                           |                                              |                                              | 600,000                                                        | 2,400,000                                  |                                             | 3,000,0                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                      |                                              |                                              |                                                                | 340,000                                    | 1,360,000                                   | 1,700,0                                                                                                                         |
| Primary Sedimentation Convert WW Clarifiers                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sewer Fund                                                                                                                                                           |                                              |                                              |                                                                |                                            |                                             |                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sewer Fund<br>Sewer Fund                                                                                                                                             | - :                                          | :                                            |                                                                | 380,000                                    | 1,520,000                                   | 1,900,0                                                                                                                         |
| Filtration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                      |                                              | 60,000                                       | 240,000                                                        | 380,000                                    | 1,520,000                                   |                                                                                                                                 |
| Filtration<br>Septage RV Dump Station Improvements                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sewer Fund                                                                                                                                                           |                                              | 60,000                                       |                                                                |                                            | 1,520,000                                   | 300,0                                                                                                                           |
| Filtration<br>eptage RV Dump Station Improvements<br>Poplar Tree Land Purchase                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sewer Fund<br>Sewer Fund                                                                                                                                             | 350,000                                      | •                                            | 240,000<br>885,000                                             | :                                          | 1,520,000                                   | 300,0<br>885,0                                                                                                                  |
| Filtration<br>eptage RV Dump Station Improvements<br>Poplar Tree Land Purchase<br>Poplar Tree Expansion on Additional Property                                                                                                                                                                                                                                                                                                                                                                                      | Sewer Fund<br>Sewer Fund                                                                                                                                             | 350,000                                      | 60,000                                       | 240,000                                                        |                                            | 1,520,000                                   | 300,0<br>885,0                                                                                                                  |
| Filtration Septage RV Dump Station Improvements Poplar Tree Land Purchase Poplar Tree Expansion on Additional Property Sewer: Sewer Collections System Construction                                                                                                                                                                                                                                                                                                                                                 | Sewer Fund<br>Sewer Fund                                                                                                                                             | 350,000                                      | •                                            | 240,000<br>885,000                                             | :                                          | 1,520,000                                   | 300,0<br>885,0<br>1,428,0                                                                                                       |
| Filtration Septage RV Dump Station Improvements Poplar Tree Land Purchase Poplar Tree Expansion on Additional Property Sewer: Sewer Collections System Construction Replacement Costs-Collection System Piping                                                                                                                                                                                                                                                                                                      | Sewer Fund<br>Sewer Fund<br>Sewer Fund<br>Sewer Fund                                                                                                                 | 250,000                                      | 350,000                                      | 240,000<br>885,000<br>364,000                                  | 364,000                                    | :                                           | 300,0<br>885,0<br>1,428,0<br>2,090,0                                                                                            |
| Filtration  Leptage RV Dump Station Improvements  Poplar Tree Land Purchase  Poplar Tree Expansion on Additional Property  Lewer: Sewer Collections System Construction  Leptacement Costs-Collection System Piping  Lainier, Force & Gravity section                                                                                                                                                                                                                                                               | Sewer Fund Sewer Fund Sewer Fund Sewer Fund Sewer Fund Sewer Fund                                                                                                    | 250,000<br>300,000                           | 350,000                                      | 240,000<br>885,000<br>364,000                                  | 364,000<br>460,000                         | 460,000                                     | 300,0<br>885,0<br>1,428,0<br>2,090,0<br>300,0                                                                                   |
| Filtration  Improvements  Poplar Tree Land Purchase  Poplar Tree Expansion on Additional Property  Improvement Collections System Construction  Replacement Costs-Collection System Piping  Italinier, Force & Gravity section  Indian Stown St. Pump Station                                                                                                                                                                                                                                                       | Sewer Fund<br>Sewer Fund<br>Sewer Fund<br>Sewer Fund                                                                                                                 | 250,000                                      | 350,000<br>460,000                           | 240,000<br>885,000<br>364,000                                  | 364,000<br>460,000                         | 460,000                                     | 300,0<br>885,0<br>1,428,0<br>2,090,0<br>300,0<br>800,0                                                                          |
| Filtration  Improvements  Poplar Tree Land Purchase  Poplar Tree Expansion on Additional Property  Improvement Collections System Construction  Replacement Costs-Collection System Piping  Italinier, Force & Gravity section  South Brown St. Pump Station  -5 Pump Station Project                                                                                                                                                                                                                               | Sewer Fund Sewer Fund/Developer                                                                    | 250,000<br>300,000                           | 350,000<br>460,000                           | 240,000<br>885,000<br>364,000<br>460,000                       | 364,000<br>460,000<br>261,000              | 460,000                                     | 300,0<br>885,0<br>1,428,0<br>2,090,0<br>300,0<br>800,0<br>1,307,0                                                               |
| Eltration ieptage RV Dump Station Improvements oplar Tree Land Purchase Poplar Tree Expansion on Additional Property iewer: Sewer Collections System Construction Replacement Costs-Collection System Piping tainier, Force & Gravity section iouth Brown St. Pump Station -5 Pump Station -5 Force Main Project                                                                                                                                                                                                    | Sewer Fund Sewer Fund/Developer                                                         | 250,000<br>300,000<br>800,000                | 350,000<br>460,000                           | 240,000<br>885,000<br>364,000                                  | 364,000<br>460,000                         | 460,000                                     | 300,0<br>885,0<br>1,428,0<br>2,090,0<br>300,0<br>800,0<br>1,307,0<br>3,093,0                                                    |
| Filtration Septage RV Dump Station Improvements Poplar Tree Land Purchase Poplar Tree Expansion on Additional Property Sewer: Sewer Collections System Construction Replacement Costs-Collection System Piping Rainier, Force & Gravity section Some Brown St. Pump Station -5 Pump Station Project -5 Force Main Project Santiam Pump Station Replacement                                                                                                                                                          | Sewer Fund Sewer Fund Sewer Fund Sewer Fund Sewer Fund Sewer Fund/Developer Sewer Fund Sewer Fund Sewer Fund Sewer Fund Sewer Fund                                   | 250,000<br>300,000<br>800,000<br>•<br>•<br>• | 350,000<br>460,000                           | 240,000<br>885,000<br>364,000<br>460,000                       | 364,000<br>460,000<br>261,000              | 460,000                                     | 300,0<br>885,0<br>1,428,0<br>2,090,0<br>300,0<br>800,0<br>1,307,0<br>3,093,0<br>405,0                                           |
| Filtration Septage RV Dump Station Improvements Poplar Tree Land Purchase Poplar Tree Expansion on Additional Property Sewer: Sewer Collections System Construction Replacement Costs-Collection System Piping Rainier, Force & Gravity section South Brown St. Pump Station -5- Pump Station Project -5- Force Main Project Santiam Pump Station Replacement Front Street Pipeline Project                                                                                                                         | Sewer Fund Sewer Fund Sewer Fund Sewer Fund Sewer Fund Sewer Fund/Developer Sewer Fund  | 250,000<br>300,000<br>800,000                | 350,000<br>460,000                           | 240,000<br>885,000<br>364,000<br>460,000                       | 364,000<br>460,000<br>261,000<br>2,474,000 | 460,000<br>:<br>1,046,000                   | 300,0<br>885,0<br>1,428,0<br>2,090,0<br>300,0<br>800,0<br>1,307,0<br>3,093,0<br>405,0<br>1,040,0                                |
| Filtration  Septage RV Dump Station Improvements  Poplar Tree Expansion on Additional Property  Sewer: Sewer Collections System Construction  Replacement Costs-Collection System Piping  Rainier, Force & Gravity section  South Brown St. Pump Station  -5 Pump Station Project  -5 Force Main Project  Santiam Pump Station Replacement  Front Street Pipeline Project  Progess Way Pipeline Project                                                                                                             | Sewer Fund | 250,000<br>300,000<br>800,000<br>•<br>•<br>• | 350,000<br>460,000                           | 240,000<br>885,000<br>364,000<br>460,000<br>619,000<br>832,000 | 364,000<br>460,000<br>261,000              | 460,000                                     | 300,0<br>885,0<br>1,428,0<br>2,090,0<br>300,0<br>800,0<br>1,307,0<br>3,093,0<br>405,0<br>1,040,0<br>1,347,0                     |
| Primary Sedimentation- Convert WW Clariflers Filtration Septage RV Dump Station Improvements Poplar Tree Land Purchase Poplar Tree Expansion on Additional Property Sewer: Sewer Collections System Construction Replacement Costs-Collection System Piping Rainier, Force & Gravity section South Brown St. Pump Station -5 Pump Station Project -5 Force Main Project Santiam Pump Station Replacement Front Street Pipeline Project Progess Way Pipeline Project Lincoln Street Bryan to Mill Creek, Sewer Rehab | Sewer Fund Sewer Fund Sewer Fund Sewer Fund Sewer Fund Sewer Fund/Developer Sewer Fund  | 250,000<br>300,000<br>800,000                | 350,000<br>460,000<br><br>200,000<br>208,000 | 240,000<br>885,000<br>364,000<br>460,000<br>619,000<br>832,000 | 364,000<br>460,000<br>261,000<br>2,474,000 | 460,000<br>:<br>1,046,000<br>:<br>1,092,000 | 1,900,0<br>300,0<br>885,0<br>1,428,0<br>2,090,0<br>300,0<br>800,0<br>1,307,0<br>3,093,0<br>405,0<br>1,040,0<br>1,347,0<br>500,0 |
| Eltration  ieptage RV Dump Station Improvements  Poplar Tree Land Purchase  Poplar Tree Expansion on Additional Property  iewer: Sewer Collections System Construction  keplacement Costs-Collection System Piping  tainier, Force & Gravity section  iouth Brown St. Pump Station  -5 Pump Station Project  -5 Force Main Project  antiam Pump Station Replacement  Front Street Pipeline Project  Progess Way Pipeline Project                                                                                    | Sewer Fund | 250,000<br>300,000<br>800,000                | 350,000<br>460,000                           | 240,000<br>885,000<br>364,000<br>460,000<br>619,000<br>832,000 | 364,000<br>460,000<br>261,000<br>2,474,000 | 460,000<br>:<br>1,046,000                   | 300,0<br>885,0<br>1,428,0<br>2,090,0<br>300,0<br>800,0<br>1,307,0<br>3,093,0<br>405,0<br>1,040,0<br>1,347,0<br>500,0            |
| Filtration  ieptage RV Dump Station Improvements  Poplar Tree Land Purchase  Poplar Tree Expansion on Additional Property  iewer: Sewer Collections System Construction  Replacement Costs-Collection System Piping  tainier, Force & Gravity section  iouth Brown St. Pump Station  -5 Pump Station Project  -5 Force Main Project  iantiam Pump Station Replacement  iront Street Pipeline Project  irongss Way Pipeline Project  incoln Street Bryan to Mill Creek, Sewer Rehab  Total Sewer Construction        | Sewer Fund | 250,000<br>300,000<br>800,000                | 350,000<br>460,000<br><br>200,000<br>208,000 | 240,000<br>885,000<br>364,000<br>460,000<br>619,000<br>832,000 | 364,000<br>460,000<br>261,000<br>2,474,000 | 460,000<br>:<br>1,046,000<br>:<br>1,092,000 | 300,0<br>885,0<br>1,428,0<br>2,090,0<br>300,0<br>800,0<br>1,307,0<br>3,093,0<br>405,0<br>1,040,0<br>1,347,0                     |
| Eltration ieptage RV Dump Station Improvements opplar Tree Land Purchase Poplar Tree Expansion on Additional Property iewer: Sewer Collections System Construction Replacement Costs-Collection System Piping Rainier, Force & Gravity section iouth Brown St. Pump Station -5 Pump Station Project -5 Force Main Project raintiam Pump Station Replacement Front Street Pipeline Project Progess Way Pipeline Project Incoln Street Bryan to Mill Creek, Sewer Rehab                                               | Sewer Fund | 250,000<br>300,000<br>800,000                | 350,000<br>460,000<br><br>200,000<br>208,000 | 240,000<br>885,000<br>364,000<br>460,000<br>619,000<br>832,000 | 364,000<br>460,000<br>261,000<br>2,474,000 | 460,000<br>:<br>1,046,000<br>:<br>1,092,000 | 300,0<br>885,0<br>1,428,0<br>2,090,0<br>300,0<br>800,0<br>1,307,0<br>3,093,0<br>405,0<br>1,040,0<br>1,347,0<br>500,0            |

# **Woodburn Park Master Plans**

### Woodburn Parks and Recreation Master Plan Update (2009)

The original City of Woodburn Parks and Recreation Master Plan was completed and adopted in October 1999. The stated intent of the plan update, adopted in 2009, was to continue to evaluate and develop a well-planned systemic approach to community parks and recreation needs by building on the community's unique parks and recreation assets and identifying new opportunities.

The plan establishes a clear direction to guide city staff, advisory committees, and elected officials in their efforts to enhance the community's parks system, open space, trails, recreation facilities, programs, and services.

The Plan identifies the need for pedestrian crossings across transportation facilities such as I-5, train tracks, and major roads such as Mt. Hood Highway, as well as the need to work with the City to provide safe and enjoyable sidewalks or side paths as routes to parks.

**Project Relevance:** The TSP update process will review the plan's applicable goals, strategies, and action steps and incorporate them into the Woodburn TSP update.

### Mill Creek Greenway Master Plan (2006)

The Mill Creek Greenway Master Plan encompasses the Mill Creek corridor and tributaries, and includes a trail that runs the length of the city. The trail is multi-use and designed for bicycles, walkers, and light maintenance vehicles. The plan recommends seamlessly integrating the trail into the city's existing roadside bicycle system.

The City's 1999 Parks and Recreation Comprehensive Plan Update includes policies stating that the City will manage the Mill Creek corridor as a public greenway and pathway that includes open space cycling and walking, nature study and recreation, and that that the City will seek dedication of floodplains and creek corridors for natural areas, neighborhood recreation areas, open space, and transportation. Additionally, the City's TSP calls for utilization of the Mill Creek corridor and tributaries for non-motorized transportation, and the Marion County TSP includes a trail route along Mill Creek that would connect Woodburn with Gervais to the south and Hubbard and Aurora to the north through the continuation of Woodburn's Mill Creek Greenway system.

**Project Relevance:** The TSP update process will review the plan's applicable recommendations, consider the direction provided in other planning documents for the Mill Greek Greenway, and will recommend updated policy and projects consistent with City goals of enhancing multimodal access to this area.

### Community Centers Feasibility Study (2007)

The Community Centers Feasibility Study explores the costs and opportunities for developing two community centers, an Arts & Cultural Community Center and a Recreation Center, in the City of Woodburn. Relevant recommendations include the addition of sidewalks along Oak Street during the expansion of the Woodburn Memorial Aquatic Center.

**Project Relevance:** The TSP update process will review the plan's applicable recommendations and will ensure that multimodal access to community centers are planned for and implemented in the updated Woodburn TSP.

### Legion Park & Settlemier Park Master Plans (2003)

Objectives of the Legion Park and Settlemier Park Master Plans included achieving community input and ownership; integrating the city's policies and long-range plans for parks; achieving universal access; balancing the local needs of the neighborhood with the preservation of natural resources; exploring ways to meet normal recreation needs with limited site areas; and addressing problematic management issues, such as maintenance issues and impacts to adjoining property

owners. Relevant recommendations in the plans relate to safety and include the evaluation of traffic speeds along Park Avenue in the Legion Park Master Plan.

**Project Relevance:** The TSP update process will consider multimodal access to Legion Park and Settlemier Park and will reevaluate traffic safety issues in their vicinity. As relevant and necessary, the updated Woodburn TSP will include projects that support and enhance safe and efficient access to these parks.

# City of Woodburn Addendum to the Marion County Natural Hazards Mitigation Plan (2010)

Woodburn developed the addendum to the Marion County Natural Hazards Mitigation Plan in an effort to increase the community's resilience to natural hazards. The addendum focuses on the natural hazards that could affect the city, including drought, flood, earthquake, landslide, volcano, wildfire, wind storm, and severe winter storm. The addendum provides a set of actions that aim to reduce the risks posed by natural hazards through education and outreach programs, the development of partnerships, and the implementation of preventative activities via the comprehensive plan, development code, public facilities plan, transportation system plan, or parks master plan. It includes a section profiling the city's existing transportation system in the context of natural hazards resilience. The addendum also includes a review of the city's existing relevant documents, including the current TSP.

**Project Relevance:** The TSP update process will review the plan's applicable recommended mitigation action items and, where necessary, incorporate them into the Woodburn TSP update. Enhancing resiliency, including the Mitigation Plan actions related to improving transportation facilities, will be reflected in the goals and policies in the updated TSP; proposed projects in the updated TSP should be consistent with the Mitigation Plan's objectives.

# Woodburn Target Industries Analysis (2016)

The Woodburn Target Industries Analysis provides the City with a current independent analysis of Woodburn's economy that identifies the City's economic opportunities and the best use of the Southwest Industrial Reserve Area, as indicated by a target industry analysis. The analysis also considers target industries for three other sites: Stacy Allison Way, Commerce Way/Front Street, and Young Street/Highway 99. Woodburn is compared to Marion County and the Portland region—including Clackamas, Washington, and Multnomah Counties—and opportunities are examined in the context of Marion County's economy. The report cites transportation infrastructure as one of the City's disadvantages for economic development, identifying as barriers to development transportation access, upgrade, and improvement needs.

**Project Relevance:** The TSP update process will consider the identified transportation-related barriers to development in this Analysis, specifically transportation access and improvement needs in association with economic development. Improving access and transportation conditions to important employment areas will be reflected in evaluation criteria and, ultimately, recommended projects in the updated TSP.

# **Woodburn Wastewater Facilities Plan (2010)**

The Woodburn Wastewater Facilities Plan identifies and addresses wastewater system improvements needed to continue reliable service to the area during the planning period. The report is divided into three volumes: Volume 1: Wastewater Treatment, Volume 2: Wastewater Collection and Transmission System, and Volume 3: Wastewater Rate and System Development Charge Study.

**Project Relevance:** The TSP update process will review the plan's relevant analyses and recommendations and incorporate them into the Woodburn TSP update where appropriate.

# Woodburn Development Ordinance (2002, last amended in 2017)

The Woodburn Development Ordinance (WDO) was adopted in 2002 and was most recently amended in January 2017. It is intended to implement the Woodburn Comprehensive Plan in accordance with Oregon's statewide planning goals and statutes, and to regulate development within city limits. The WDO contains several sets of requirements that address the relationship between land use development and transportation system development. A detailed review of WDO is provided in Attachment B.

# Excerpt of Woodburn Comprehensive Plan Goals and Policies related to transportation

# Marion County Coordination Goals and Policies

#### Goal

C-1. To coordinate with Marion County regarding planning issues that extend beyond the boundaries of the City of Woodburn, including population allocations, amendments to acknowledged comprehensive plans and transportation system plans, and achievement of a compact urban growth form, as required by Statewide Planning Goals 2 (Land Use Planning and Coordination), 12 (Transportation) and 14 (Urbanization).

### Residential Land Use Goals and Policies

#### **Policies**

- D-1.1 Residential areas should be designed around a neighborhood concept. Neighborhoods should be an identifiable unit bounded by arterials, non-residential uses, or natural features of the terrain. The neighborhood should provide a focus and identity within the community and should have a community facility, such as a school, park, or privately owned community facility to allow for interaction within the neighborhood.
- D-1.4 Streets in residential areas should be used by residents for access to collectors and arterials. Residential streets should be designed to minimize their use for through traffic. However, whenever possible, dead-end streets and cul-de-sacs should be avoided.
- D-1.8 High traffic generating non-residential uses should not be located in a manner that increases traffic flows on residential streets or residential collectors. However, designated neighborhood commercial centers in Nodal Development areas are exempt from this policy.
- D-1.11 Traffic from high density residential areas should have direct access to collector or arterial streets without having to utilize local reside7ntial streets to reach shopping and job centers.

# Industrial Development Goals and Policies

#### **Policies**

E-1.4 Industrial areas that are located adjacent to arterial streets or to residential areas should be controlled through site plan review and buffer zones to minimize the impact of industrial uses.

### Commercial Lands Goals and Policies

#### **Policies**

F-1.2 Lands for high traffic generating uses (shopping centers, malls, restaurants, etc.) should be located on well improved arterials. The uses should provide the necessary traffic control devices needed to ameliorate their impact on the arterial streets.

- F-1.6 Commercial office and other low traffic generating commercial retail uses can be located on collectors or in close proximity to residential areas if care in architecture and site planning is exercised. The City should ensure by proper regulations that any commercial uses located close to residential areas have the proper architectural and landscaping buffer zones.
- F-1.11 The Highway 99E commercial corridor south of Lincoln should be redeveloped over time with more intense mixed use development. The Mixed Use Village Overlay (MUVO) designates an area that is intended to promote efficient use of land and urban services; create a mixture of land uses that encourages employment and housing options in close proximity to one another; restrict land extensive commercial, storage, and industrial uses; and encourage pedestrian-oriented development.
- F-1.14 The City intends to beautify the Highway 99E commercial corridor through measures such as replacement of overhead power and telephone lines with underground utilities, enhancing street lighting in the corridor, providing for non-conforming sign amortization, providing enhanced streetscape furnishings in key pedestrian areas, and establishing a storefront improvement program. The City will explore options to fund such improvements, including its Capital Improvement Program, formation of a Local Improvement District, and Urban Renewal funds.

# Growth Management Goals and Policies<sup>1</sup>

- G-1.3 The City shall provide an interconnected street system to improve the efficiency of movement by providing direct linkages between origins and destinations.
- G-1.4 The City shall assure the provision of major streets as shown in the Transportation Systems Plan. The City shall hold development accountable for streets within and abutting the development. In addition, the policy of the City is to emphasize development outward in successive steps and phases that avoid unnecessary gaps in the development and improvement of the streets.
- G-1.10 Woodburn will ensure that land is efficiently used within the UGB by requiring master development plans for land within Nodal Development Overlay or Southwest Industrial Reserve overlay designations. Master plans shall address street connectivity and access, efficient provision of public facilities, and retention of large parcels for their intended purpose(s).
- G-1.27 Woodburn recognizes that residential uses present the most adverse conflicts with both agricultural practices and with many industrial uses, especially those that use trucks as part of their regular business practice. Woodburn and Marion County recognize that the land to the west of Butteville Road NE is a critical part of the irreplaceable land base of the region's agricultural industry. Therefore, to minimize conflicts between urban and agricultural uses and to minimize conflicts between the industrial uses in Southwest Industrial Reserve and other urban uses, the City and County will:
  - Ensure that the design of any improvements to the portion of Butteville Road NE serving the Southwest Industrial Reserve not encourage any urban traffic unrelated to the industrial use in the immediate area and unrelated to agricultural uses west of Butteville Road.

<sup>&</sup>lt;sup>1</sup> Note, the policies shown in Growth Management Goals and Policies section reflects the 2016 amendments that resulted from Urban Growth Coordination Agreement. To date, these policies are not found in the Woodburn Comprehensive Plan available online.

As industrial development is planned for in the Southwest Industrial Reserve consideration shall
be given to methods that mitigate impacts from development and adjacent agricultural
activities. This can include buffers or increased setbacks along Butteville Road, provided that any
buffers needed to reduce conflicts between the industrial uses and agricultural activity west of
Butteville Road NE are located inside the UGB.

# Transportation Goals and Policies

Woodburn amended its Transportation System Plan (TSP) in coordination with Marion County, the Department of Land Conservation and Development (DLCD) and the Oregon Department of Transportation (ODOT) as part of its 2005 Periodic review package. The goals and policies listed below have been amended consistent with the 2005 TSP. A new "Marion County Coordination" subsection is added to ensure coordination with the Goals and Policies of the Marion County Growth Management Framework Plan.

#### Goal

H-1. Develop a multimodal transportation system that avoids or reduces reliance on one form of transportation and minimizes energy consumption and air quality impacts.

#### **Policies**

- H-1.1 Develop an expanded intracity bus transit system that provides added service and route coverage to improve the mobility and accessibility of the transportation disadvantaged and to attract traditional auto users to use the system.
- H-1.2 Develop a plan for providing travel options between Woodburn and Portland or Salem, including intercity bus service and potential bus/carpool park-and-ride facilities.
- H-1.3 Develop a bikeway system that provides routes and facilities that allow bicyclists to travel from residential areas to schools, parks, places of employment, and commercial areas. Identify off-street facilities in City greenway and park areas. Ensure all new or improved collector and arterial streets are constructed with bicycle lanes.
- H-1.4 Identify sidewalk and off-street pathway improvements to improve pedestrian mobility within neighborhoods and between residential areas and schools, parks, places of employment, and commercial areas. Ensure all new or improved collector and arterial streets are constructed with sidewalks.

#### Goal

H-2. Develop a street system that will handle projected year 2020 traffic demands in the Woodburn area, and interconnects residential areas with employment centers, schools, parks, churches, and regional transportation facilities.

## **Policies**

H-2.1 Develop an updated roadway functional classification plan for the Woodburn area that reflects the desired function of different roadways, and is consistent with current federal guidelines for the designation of major streets in an urban area.

- H-2.2 Work with ODOT to develop and implement strategies for improving state facilities within the City. Develop a strategy for improving Oregon 219/214 and 211 through Woodburn, including added travel lanes, signalization, and access management. Work with ODOT to implement the Highway 99E Corridor Plan to improve Highway 99E.
- H-2.3 Identify new east-west and north-south collector/minor arterial streets within the City to relieve traffic demands on Oregon 219/214, 211, and 99E and coordinate with Marion County to construct the street connections needed outside of the urban growth boundary (UGB). Where development of new collector/minor arterial streets is not possible within the near future, such as when an alignment runs outside of the UGB, work with property owners during subdivision to provide local street connections to improve connectivity in the interim.
- H-2.4 Develop updated street design standards for arterials, collectors, and local streets H-2.5 Identify a final strategy for paving currently unimproved streets in the City.
- H-2.6 Identify the need for additional public parking provisions in Woodburn, including park-and-ride facilities, as well as a plan to support increased carpooling and transit use in the future.
- H-2.7 Develop a capital improvement program that fulfills the transportation goals established by the community.

## Goal

H-3. Develop transportation improvements that address overall traffic safety in the Woodburn area.

#### **Policies**

H-3.1 Work with ODOT to improve safety on state facilities within the City. Develop access management strategies for Oregon 219/214 and 211 through Woodburn, particularly focusing on the section of Oregon 214 between Interstate 5 (I-5) and Cascade Drive.

Work with ODOT and property owners through the redevelopment process to improve access management on Highway 99E in accordance with the access management strategies identified in the Highway 99E Corridor Plan.

- H-3.2 Develop a plan for improving pedestrian and bicycle safety for travel to and from local schools, commercial areas, and major activity centers.
- H-3.3 Identify street and railroad crossings in need of improvement, as well as those that should be closed or relocated.
- H-3.4 Develop a plan for designated truck routes through the City and a plan to handle truck and rail hazardous cargoes.

#### Goal

H-4. Develop a set of reliable funding sources that can be applied to fund future transportation improvements in the Woodburn area.

#### **Policies**

H-4.1 Evaluate the feasibility of the full range of funding mechanisms for transportation improvements.

- H-4.2 Evaluate the feasibility of instituting an added City gas tax for transportation improvements.
- H-4.3 Identify a traffic impact fee structure for new development in the Woodburn area to fund transportation improvements.

#### Goal

H-5. Develop amendments to City land use standards and ordinances to reduce travel demand and promote use of modes of transportation other than the automobile.

#### **Policies**

- H-5.1 Identify a range of potential Transportation Demand Management (TDM) strategies that can be used to improve the efficiency of the transportation system by shifting single-occupant vehicle trips to other models and reducing automobile reliance at times of peak traffic volumes.
- H-5.2 Identify revisions to the Woodburn Zoning Ordinance for compliance with the TPR.

#### Goal

- H-6. Coordinate with Marion County in planning for a safe and efficient county-wide transportation system by:
  - (a) Encouraging use of alternative modes of transportation including mass transit, bicycling, walking and carpooling; and
  - (b) Addressing transportation needs appropriate to both urban and rural areas throughout the county.

- H-6.1 Woodburn shall jointly plan with the county to meet the transportation needs in the future.
  - (a) The Marion County Transportation System Plan (TSP) will be designed to accommodate the forecast population, housing, and employment identified in the Framework Plan, except where modified by the Woodburn Economic Opportunities Analysis (EOA) and the acknowledged 2005 Woodburn Comprehensive Plan.
  - (b) Woodburn supports Marion County efforts to investigate countywide alternative transportation, such as inter-city transit, vanpooling, and passenger rail service serving the county and the Willamette Valley region.
- H-6.2 Woodburn will implement plans as provided in the Woodburn TSP.
  - (a) Except where topographical conditions or existing development make this standard impractical, new subdivisions and planned developments should have internal connectivity of at least 8 through streets per mile (roughly every 660 feet) for new development, and sufficient collector and arterial systems for local access.
  - (b) The TSP shall include a map depicting future street connections for areas to be urbanized. This is especially important in Nodal Development Overlay and Southwest Industrial Reserve overlay areas.

- (c) When feasible, the County will utilize standards in the Woodburn TSP and Woodburn Development Ordinance for development that occurs on unincorporated lands within the Woodburn Urban Growth Boundary.
- H-6.3 Woodburn will support Marion County efforts to provide transit connections within and between cities. The Woodburn TSP shall include transportation plans for the Woodburn Transit System that is consistent with the population and employment projections in the Woodburn Comprehensive Plan and coordinated with the "preferred alternative" found in the County Framework Plan.
- H-6.4 Woodburn should provide for a complementary mix of land uses and transportation systems by providing for mixed use development in the Downtown Development and Conservation (DDC) District, the Mixed Use Village (MUV), and the Nodal Development Overlay (NDO) districts.
- H-6.5 Woodburn shall consider traffic calming of through traffic in neighborhoods. Woodburn will coordinate with Marion County in making recommendations for methods and procedures for traffic calming that directly affects a county road, developing recommended best practices for methods, locations, and processes for traffic calming in both existing and new developments.
- H-6.6 Woodburn will coordinate with Marion County in planning for freight movement by both rail and truck.
- H-6.7 The Woodburn TSP shall include measures to improve the walking and biking environment by providing sidewalks in all new developments and by providing an interconnecting system of pedestrian connections. Designing for a comfortable and practical pedestrian environment is especially important in Downtown Woodburn and within the Nodal Development Overlay.

#### Goal

- H-7. Coordinate with the Oregon Department of Transportation (ODOT) to maintain highway and intersection capacity, safety and functionality by:
  - (a) Developing and adopting performance standards; and
  - (b) Prohibiting comprehensive plan amendments that do not meet adopted performance standards.

- H-7.1 The Woodburn TSP shall implement an interchange management plan within the UGB based on potential and substantial adverse impacts to the I-5 Interchange.
  - (a) Peak hour trip generation estimates and numerical ceilings based on land uses permitted by the 2005 Woodburn Comprehensive Plan shall be determined for each designated sub-area.
  - (b) The City will coordinate with ODOT in monitoring trip generation impacts for each designated sub-area, considering the cumulative impacts of existing and new development.
  - (c) Transportation impact studies shall be required for subdivisions and planned developments, and for new commercial, industrial, public and multi-family residential development within designated sub-areas.

- (d) Comprehensive Plan amendments that exceed the trip generation ceiling for a designated sub-area shall be prohibited.
- (e) Comprehensive Plan amendments from Industrial to Commercial shall be prohibited, regardless of impact, within the SWIR Overlay.
- (f) Woodburn shall provide ODOT with copies of transportation impact studies upon request, and as part of the Periodic Review process.
- (g) Woodburn shall coordinate with ODOT, DLCD and Marion County to address potential service deficiencies affecting state highway facilities through the Periodic Review process.
- H-7.2 The City shall implement medium-term conservation measures to limit access to Highways 214 and 219. Such measures shall include, but shall not be limited to:
  - (a) Limitations or prohibition on private access within a quarter of mile east and west of interchange ramp terminals;
  - (b) Access controls on, public road approaches; and
  - (c) Raised medians from Woodland to Oregon Way along Highways 219 and 214.
- H-7.3 To ensure safety and long-range mobility on Highway 99E, the City shall be guided by the following access management objectives:
  - (a) Ensure that all properties are provided reasonable access to the public street network, including consideration of the economic development needs of each property.
  - (b) Driveways to commercial businesses on Highway 99E should be designed to allow for safe and comfortable passage, improving existing driveways to comply with ODOT design standards as opportunities arise.
  - (c) Consider locating business signage immediately adjacent to the downstream side of driveways to improve the ability of drivers to locate them.
  - (d) Provide convenient accessways for pedestrians and bicycles between the Highway 99E commercial corridor and neighboring residential areas.
  - (e) Safe and convenient pedestrian walkways should be provided between business entrances and sidewalks along Highway 99E, minimizing conflicts between pedestrians and motor vehicles in parking lots.
  - (f) Consider prohibiting driveways or restricting turning movements to driveways adjacent to turning pockets at intersections where necessary to maintain safe highway operations.
  - (g) Seek opportunities to align driveways on opposite sides of roadways to avoid turning conflicts.
  - (h) Driveways to Highway 99E should maintain adequate intersection sight distance and at a minimum shall maintain safe stopping sight distance along the highway.

- (i) Reduce access points over time to move in the direction of meeting ODOT's adopted access management spacing standards for regional highways.
- (j) Create shared access points to reduce the overall number of driveways along the Highway 99E corridor. Shared driveways must be supported through the establishment of easements allowing for travel between adjacent properties.
- (k) Provide inter-parcel circulation through cross-over easements, frontage or backage roads, or shared parking lots where feasible.
- (I) Utilize easements, frontage/backage roads, and lower classified city streets to allow for secondary access to facilitate large truck and emergency service vehicle circulation.
- (m) Seek opportunities to enhance the connectivity of the local street system surrounding Highway 99E.
- H-7.4 The City will actively participate in developing strategies and solutions to mitigate impacts to property owners that may result from implementing future highway design and planned built improvements.

# Downtown Design Intermediate Term Goals and Policies

- K-4.1 Evaluate alternative circulation patterns for traffic flow. Patterns of pedestrian circulation improved through the repair and/or replacement of sidewalks. A means of providing a sense of place within the downtown accomplished by replacing damaged sections of sidewalk with a decorative brick like pattern of surfacing. Pedestrian safety increased by carrying this surfacing pattern across the streets at each intersection thereby creating a different color and texture over which the automobiles travel.
- K-4.2 Improve vehicular and safety access into and out of Downtown by improving North and South Front Streets.
- K-5.2 Without an adequate system of underground irrigation within the DDCD, plans for landscaping not be as successful. The City will include in its Capital Improvement Programs plans to improve underground irrigation systems along streets and at intersections throughout the DDCD.
- K-5.3 Street lighting can be both ornamental and useful in making the downtown safe and attractive. Cooperation from both private and public interests can result in a street lighting plan that both serves a utility and attracts people to shop in and enjoy the downtown.
- K-8.2 The development standards and guidelines for the DDC district shall also encourage an enhanced street environment by providing building and streetscape designs of interest to pedestrians, such as locating buildings close to the street with parking areas behind or next to the building, limiting blank walls adjacent to the street, and requiring views into active areas of retail spaces.

# Open Space/Parks Goals and Policies

L-1.7 To provide for a continuous public greenway and pathway system, it is the policy of the City to acquire privately-owned segments along Mill Creek, Goose Creek, and Senecal Creek and other stream corridors including the west tributary from Settlemier Park to Parr Road. It is the policy of the City to seek dedication of floodplains and creek corridors for natural areas, neighborhood recreation areas, open space and transportation.

| TPR Requirement                                                                                                                                                                                                                                                                                                                                                               | Woodburn Development Ordinance (WDO) Recommendations                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OAR 660-012-0045                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                    |
| (1) Each local government shall amend its land use regulations to implement the TSP.                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                    |
| (a) The following transportation facilities, services and improvements need not be subject to land use regulations except as necessary to implement the TSP and, under ordinary circumstances do not have a significant impact on land use:                                                                                                                                   | The WDO lists "Rights-of-way, easements and improvements for streets, water, sanitary sewer, gas, oil, electric and communication lines, stormwater facilities and pump stations" as a use in the three primary zones: Residential |
| <ul> <li>(A) Operation, maintenance, and repair of existing transportation facilities<br/>identified in the TSP, such as road, bicycle, pedestrian, port, airport and rail<br/>facilities, and major regional pipelines and terminals;</li> </ul>                                                                                                                             | Zones (Table 2.02A.B12), Commercial Zones (Table 2.03A.A3), Industrial Zones (Table 2.04A.A4). The use is permitted outright, subject to the general development standards of the WDO.                                             |
| (B) Dedication of right-of-way, authorization of construction and the<br>construction of facilities and improvements, where the improvements are<br>consistent with clear and objective dimensional standards;                                                                                                                                                                | Woodburn does not have zones for exclusive farm use, therefore (C) does not apply.                                                                                                                                                 |
| (C) Uses permitted outright under ORS 215.213(1)(m) through (p) and 215.283(1)(k) through (n) <sup>1</sup> , consistent with the provisions of 660-012-0065 <sup>2</sup> ; and                                                                                                                                                                                                | <b>Recommendation:</b> Existing code provisions meet this TPR requirement. No further changes to the code are recommended.                                                                                                         |
| (D) Changes in the frequency of transit, rail and airport services.                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                    |
| (b) To the extent, if any, that a transportation facility, service, or improvement concerns the application of a comprehensive plan provision or land use regulation, it may be allowed without further land use review if it is permitted outright or if it is subject to standards that do not require interpretation or the exercise of factual, policy or legal judgment. |                                                                                                                                                                                                                                    |
| (c) In the event that a transportation facility, service or improvement is determined to have a significant impact on land use or requires interpretation or                                                                                                                                                                                                                  | WDO 4.01.07 (Consolidated Applications) allows applicants to submit required applications for a single development project as part of one submittal packet.                                                                        |

<sup>&</sup>lt;sup>1</sup> (h) Climbing and passing lanes within the right of way existing as of July 1, 1987.

<sup>(</sup>i) Reconstruction or modification of public roads and highways, including the placement of utility facilities overhead and in the subsurface of public roads and highways along the public right of way, but not including the addition of travel lanes, where no removal or displacement of buildings would occur, or no new land parcels result.

<sup>(</sup>j) Temporary public road and highway detours that will be abandoned and restored to original condition or use at such time as no longer needed.

<sup>(</sup>k) Minor betterment of existing public road and highway related facilities such as maintenance yards, weigh stations and rest areas, within right of way existing as of July 1, 1987, and contiguous public-owned property utilized to support the operation and maintenance of public roads and highways.

<sup>&</sup>lt;sup>2</sup> OAR 660-012-0065 (Transportation Improvements on Rural Lands); (1) This rule identifies transportation facilities, services and improvements which may be permitted on rural lands consistent with Goals 3, 4, 11, and 14 without a goal exception.

| TPR Requirement                                                                                                                                                                                                                                                                                                                                        | Woodburn Development Ordinance (WDO) Recommendations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| the exercise of factual, policy or legal judgment, the local government shall provide a review and approval process that is consistent with 660-012-0050. To facilitate implementation of the TSP, each local government shall amend regulations to provide for consolidated review of land use decisions required to permit a transportation project. | WDO 4.01.14 (Public Notice) outlines City public notice requirements. The City is required to notify affected transportation facility and service providers (City, County, and State) at least 20 days before an initial public hearing (Type III & IV) or decision (Type II) when the application requires a Transportation Impact Analysis. Similarly, the City is required to send notice to the County and State at least 20 days before the initial public hearing for legislative decisions (Type V).  Recommendation: Existing code provisions meet the TPR requirement. No further changes to the code are recommended.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (2) Local governments shall adopt land use or subdivision ordinance regulations, consistent with applicable federal and state requirements, to protect transportation facilities corridors and sites for their identified functions. Such regulations shall include:                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (a) Access control measures, for example, driveway and public road spacing, median control and signal spacing standards, which are consistent with the functional classification of roads and consistent with limiting development on rural lands to rural uses and densities;                                                                         | WDO 3.01 (Streets) includes provisions and standards for streets. WDO 3.01.05 (Street Layout) requires blocks to be between 200 and 600 feet in length unless specific requirements are met.  WDO 3.04 (Vehicular Access) provides procedures and standards for granting vehicular access to public streets. WDO 3.04.01 (Applicability and Permit) provides applicability standards, including how access permits are handled for City, County, and State facilities. WDO 3.04.03 (Driveway Guidelines and Standards) regulates the number, spacing, and type of driveways.  Additional driveway standards for the Nodal Overlay District and Southwest Industrial Reserve are provided in WDO 2.05.04 (Nodal Overlay Districts) and WDO 2.05.06 (Southwest Industrial Reserve). WDO 2.05.04 prohibits direct access to public streets and requires access through alleys for anything other than single-family housing. WDO 2.05.06 requires access to be provided consistent with the TSP.  Recommendation: Existing code provisions meet the TPR requirement. No further changes to the code are recommended. |

#### **TPR Requirement**

(b) Standards to protect the future operations of roads, transitways and major transit corridors

## Woodburn Development Ordinance (WDO) Recommendations

WDO 2.05.02 (Interchange Management Overlay District) requires a Traffic Impact Analysis (TIA) for all land use applications within the overlay boundary. The TIA is required to meet City and ODOT requirements for approval. This Section also provides additional requirements that apply to Comprehensive Plan Map or Zoning Map amendments within the Interchange Management Area (IMA) that are intended to protect the nearby collectors and arterials as well as reserve the area for targeted employment opportunities.

WDO 2.05.04 (Nodal Overlay Districts), WDO 2.05.05 (Riparian Corridor and Wetlands Overlay District), and WDO 2.05.06 (Southwest Industrial Reserve) requires amendments for the removal of the applicable overlay to demonstrate compliance with Goal 12 and Woodburn's Comprehensive Plan.

WDO 3.04.05 (Traffic Impact Analysis) requires a TIA when required by the Director for approval of an access permit when 100 or more peak hour trips or 1,000 or more daily trips are estimated to occur within 10 years.

WDO 5.04 (Type IV Quasi-Judicial Decisions) provides decision criteria for various types of land use decisions, including amendments to the Comprehensive Plan – and by extension the TSP, which is an element of the Plan. Amendments that significantly affect a transportation facility are required to ensure the allowed land uses are consistent with the function, capacity, and level of service of the facility as identified in the TSP. It goes on to include methods by which consistency can be accomplished.

WDO 4.01.17 (Types of Decisions) includes a description for Type V Legislative Decisions. It states the Legislative decisions involve "actions where the City Council amends the City's land use regulations, comprehensive plan, Official Zoning Map or some other component of these documents." The description is similar Type IV Decisions, which also involves actions on comprehensive plan amendments and Official Zoning Map amendments. Decision criteria for Type IV Decisions are provided in WDO 5.04 (described above), however the WDO does not include similar decision criteria for Type V Decisions.

| TPR Requirement                                                                                                                                                                                                                                                                                                                                    | Woodburn Development Ordinance (WDO) Recommendations                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                    | <b>Recommendation:</b> The City may want to consider expanding when a TIA is applicable to include all developments that are expected to reach the trip generation threshold, not just for those where access permits are requested.                                                                  |
| (c) Measures to protect public use airports by controlling land uses within airport noise corridors and imaginary surfaces, and by limiting physical hazards to air navigation;                                                                                                                                                                    | Woodburn does not currently have, nor has plans to construct, an airport within the City's UGB. Therefore, this requirement does not apply.                                                                                                                                                           |
| (d) A process for coordinated review of future land use decisions affecting transportation facilities, corridors or sites;                                                                                                                                                                                                                         | See response to -0045(1)(c).                                                                                                                                                                                                                                                                          |
| (e) A process to apply conditions to development proposals in order to minimize impacts and protect transportation facilities, corridors or sites;                                                                                                                                                                                                 | WDO 4.01.06 (Conditions of Approval) gives all City decision-making bodies the authority to impose conditions of approval reasonably related to impacts caused by development for all Type II, III, and IV land use decisions.                                                                        |
|                                                                                                                                                                                                                                                                                                                                                    | <b>Recommendation:</b> Existing code provisions meet the TPR requirement. However, the City should consider identifying transportation-related improvements as potential conditions of approval, including specifically improvements that facilitate pedestrian and bicycle travel (see -0045(3)(c)). |
| (f) Regulations to provide notice to public agencies providing transportation facilities and services, MPOs, and ODOT of:                                                                                                                                                                                                                          | See response to -0045(1)(c).                                                                                                                                                                                                                                                                          |
| (A) Land use applications that require public hearings;                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                       |
| (B) Subdivision and partition applications;                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                       |
| (C)Other applications which affect private access to roads; and                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                       |
| (D)Other applications within airport noise corridor and imaginary surfaces which affect airport operations.                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                       |
| (g) Regulations assuring amendments to land use designations, densities, and design standards are consistent with the functions, capacities and performance standards of facilities identified in the TSP.                                                                                                                                         | See response to -0045(1)(b) and -0060.                                                                                                                                                                                                                                                                |
| (3) Local governments shall adopt land use or subdivision regulations for urban areas and rural communities as set forth below. The purposes of this section are to provide for safe and convenient pedestrian, bicycle and vehicular circulation consistent with access management standards and the function of affected streets, to ensure that |                                                                                                                                                                                                                                                                                                       |

| TPR Requirement                                                                                                                                                                                                                                                                                                                                            | Woodburn Development Ordinance (WDO) Recommendations                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| new development provides on-site streets and accessways that provide reasonably direct routes for pedestrian and bicycle travel in areas where pedestrian and bicycle travel is likely if connections are provided, and which avoids wherever possible levels of automobile traffic which might interfere with or discourage pedestrian or bicycle travel. |                                                                                                                                                                                                                                                                                                                                       |
| (a) Bicycle parking facilities as part of new multi-family residential developments of four units or more, new retail, office and institutional developments, and all transit transfer stations and park-and-ride lots.                                                                                                                                    | WDO 3.05.03 (Off-street Parking) requires all uses that are required to provide 10 or more off-street parking spaces and residential structures with four or more dwelling or living units to provide a bicycle rack within 50 feet of the main entrance. The required amount of bicycle parking is one space per ten vehicle spaces. |
|                                                                                                                                                                                                                                                                                                                                                            | <b>Recommendation:</b> Existing code provisions meet the TPR requirement. However, to encourage bicycle usage, the City should consider additional requirements for covered bicycle parking.                                                                                                                                          |
| (b) On-site facilities shall be provided which accommodate safe and convenient pedestrian and bicycle access from within new subdivisions, multi-family developments, planned developments, shopping centers, and commercial districts to adjacent residential areas and transit stops, and to neighborhood                                                | On-site facilities WDO 2.05.04 (Nodal Overlay Districts), WDO 2.05.06 (Southwest Industrial Reserve) requires new development to create master development plans that include provisions for pedestrian and bicycle connections.                                                                                                      |
| activity centers within one-half mile of the development. Single-family residential developments shall generally include streets and accessways. Pedestrian circulation through parking lots should generally be provided in the form of accessways.                                                                                                       | WDO 3.07.05 (Standards for Medium Density Residential Buildings) includes provisions for pedestrian circulation to connect to other areas of the site and to other building entrances and adjacent streets. The provisions may or may not be required depending on the type of review (Type I, II, or III) chosen by                  |
| <ul><li>(A) "Neighborhood activity centers" includes, but is not limited to, existing or<br/>planned schools, parks, shopping areas, transit stops or employment<br/>centers;</li></ul>                                                                                                                                                                    | the applicant.  WDO 3.07.08 (Mixed Use Village Zone) requires on-site pedestrian                                                                                                                                                                                                                                                      |
| (B) Bikeways shall be required along arterials and major collectors. sidewalks shall be required along arterials, collectors and most local streets in urban areas except that sidewalks are not required along controlled access                                                                                                                          | circulation to connect all building entrances with adjacent sidewalks, on-site parking areas, and adjacent uses.                                                                                                                                                                                                                      |
| roadways, such as freeways;  (C) Cul-de-sacs and other dead-end streets may be used as part of a development plan, consistent with the purposes set forth in this section;                                                                                                                                                                                 | WDO 3.07.09 (Nodal Neighborhood Commercial Zone) requires walkway connections between building entrances and the public street                                                                                                                                                                                                        |
| (D) Local governments shall establish their own standards or criteria for providing streets and accessways consistent with the purposes of this section. Such measures may include but are not limited to: standards for                                                                                                                                   | WDO 3.09.04 (Conceptual Development Plan) requires planned unit developments to include conceptual drawings showing bicycle and pedestrian circulation. WDO 3.09.06 (Development Standards) encourages                                                                                                                                |

## **TPR Requirement**

spacing of streets or accessways; and standards for excessive out-ofdirection travel;

- (E) Streets and accessways need not be required where one or more of the following conditions exist:
  - (i) Physical or topographic conditions make a street or accessway connection impracticable. Such conditions include but are not limited to freeways, railroads, steep slopes, wetlands or other bodies of water where a connection could not reasonably be provided;
  - (ii) Buildings or other existing development on adjacent lands physically preclude a connection now or in the future considering the potential for redevelopment; or
  - (iii) Where streets or accessways would violate provisions of leases, easements, covenants, restrictions or other agreements existing as of May 1, 1995, which preclude a required street or accessway connection.

## **Woodburn Development Ordinance (WDO) Recommendations**

planned unit developments to enhance pedestrian and bicycle networks consistent with the TSP.

#### **Parking Lots**

WDO 3.05.02 (General Provisions) requires off-street parking areas to construct bumper guards or wheel barriers to prevent vehicles from obstructing access ways and rights-of-way. Other specific requirements related to pedestrian facilities in parking lots are not found.

#### **Bikeways and Sidewalks**

WDO 3.01.04 (Street Cross-Sections) provides standards, shown in Figures 3.01B-3.01Q, that indicate what street elements are required for arterials, collectors, and access/commercial streets. Bike lanes are required on arterials and are optional on collectors. Bike lanes are not required on arterials and collectors located within the Historic Settlemier Transportation Corridor. Specific segments of Highway 99E have specific design standards found in Figures 3.010-3.01Q, all of which require bike lanes.

#### Cul-de-sacs

WDO 3.01.05 (Street Layout) limits the maximum length of cul-de-sac streets to 250 feet. The Director may require bikeway and pedestrian facilities to connect from one cul-de-sac to an adjacent cul-de-sac or street.

#### **Exceptions**

WDO 3.01.05 (Street Layout) allows exceptions to the block standards when natural topography, wetlands, significant habitat, bodies of water, or pre-existing development.

WDO 5.02.04 (Exceptions to Street Right of Way and Improvement Requirements) and WDO 5.03.03 (Exceptions to Street Right of Way and Improvement Requirements) provide criteria for granting street design standards for Type II and III reviews.

#### **Recommendation:**

• The City may want to include pedestrian circulation standards that are applicable to larger parking lots in the Off-street Parking and

| TPR Requirement                                                                                                                                                                                                                                                                                                                  | Woodburn Development Ordinance (WDO) Recommendations                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                  | <ul> <li>Loading requirements (WDO 3.05). The standards should be designed to enhance pedestrian safety and comfort.</li> <li>Through the TSP update, the City will consider making bike lanes on collectors required, not optional.</li> </ul>                                                              |
| (c) Off-site road improvements are otherwise required as a condition of development approval, they shall include facilities accommodating convenient pedestrian and bicycle and pedestrian travel, including bicycle ways on arterials and major collectors.                                                                     | See response to -0045(2)(e).                                                                                                                                                                                                                                                                                 |
| [Note: Subsection (d) defines safe and convenient.]                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                              |
| (e) Internal pedestrian circulation within new office parks and commercial developments shall be provided through clustering of buildings, construction of accessways, walkways and similar techniques.                                                                                                                          | WDO 3.04.03 (Driveway Guidelines and Standards) requires all uses on a lot to have a common or interconnected off-street parking and circulation facility.                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                  | WDO 3.07.08 (Mixed Use Village Zone) requires on-site pedestrian circulation for all buildings in the zone. Pedestrian circulation standards require walkway to connect all building entrances with sidewalk, on-site parking areas, and off-site adjacent uses.                                             |
|                                                                                                                                                                                                                                                                                                                                  | WDO 3.07.09 (Nodal Neighborhood Commercial Zone) site design guidelines require walkway connections between a building entrance the public street.                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                  | <b>Recommendation:</b> On-site pedestrian circulation standards only apply to buildings in the Mixed Use Village Zone. The City should consider applying the same or similar standards to other zones that allow for office park and commercial uses such as the Downtown Development and Conservation Zone. |
| (4) To support transit in urban areas containing a population greater than 25,000, where the area is already served by a public transit system or where a determination has been made that a public transit system is feasible, local governments shall adopt land use and subdivision regulations as provided in (a)-(g) below: |                                                                                                                                                                                                                                                                                                              |
| (a) Transit routes and transit facilities shall be designed to support transit use through provision of bus stops, pullouts and shelters, optimum road geometrics,                                                                                                                                                               | The WDO does not currently include standards that specifically support the provision of transit facilities or transit routes. Similarly, the City's current TSP does not identify major stops within the City and therefore does not have                                                                    |

(d) Designated employee parking areas in new developments shall provide

preferential parking for carpools and vanpools;

#### **Woodburn Development Ordinance (WDO) Recommendations TPR Requirement** on-road parking restrictions and similar facilities, as appropriate; related standards in the WDO. (b) New retail, office and institutional buildings at or near major transit stops However, the City's Architectural Design standards provides general shall provide for convenient pedestrian access to transit through the measures requirements or guidelines for building orientation and connectivity that listed in (A) and (B) below. support on-site circulation and connectivity in the following zones: (A) Walkways shall be provided connecting building entrances and streets Non-residential buildings subject to WDO 3.07.06 (Standards for adjoining the site; Non-residential Structures in Residential, Commercial, and (B) Pedestrian connections to adjoining properties shall be provided except Public/Semi-public Zones) where such a connection is impracticable. Pedestrian connections shall All buildings subject to WDO 3.07.08 (Mixed-Use Village Zone) connect the on site circulation system to existing or proposed streets, All buildings subject to WDO 3.07.09 (Nodal Neighborhood walkways, and driveways that abut the property. Where adjacent properties Commercial Zone) are undeveloped or have potential for redevelopment, streets, accessways The design standards for development within the zones listed above and walkways on site shall be laid out or stubbed to allow for extension to promote pedestrian-friendly, human-scaled urban areas and the City does the adjoining property; not intend to designate specific pedestrian districts through the TSP update. (C) In addition to (A) and (B) above, on sites at major transit stops provide Recommendation: The City should add transit supportive standards that the following: apply to all buildings within the specified distance of major transit stops, (i) Either locate buildings within 20 feet of the transit stop, a transit where major transit is identified in the updated TSP. street or an intersecting street or provide a pedestrian plaza at the transit stop or a street intersection; (ii) A reasonably direct pedestrian connection between the transit stop and building entrances on the site; (iii) A transit passenger landing pad accessible to disabled persons; (iv) An easement or dedication for a passenger shelter if requested by the transit provider; and (v) Lighting at the transit stop. (c) Local governments may implement (4)(b)(A) and (B) above through the designation of pedestrian districts and adoption of appropriate implementing measures regulating development within pedestrian districts. Pedestrian districts must comply with the requirement of (4)(b)(C) above; The WDO does not currently include standards for providing carpool or

vanpool designated parking.

**Recommendation:** The City should add standards to WDO 3.05 that specify

| TPR Requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Woodburn Development Ordinance (WDO) Recommendations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | the applicability and design of carpool/vanpool parking.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (e) Existing development shall be allowed to redevelop a portion of existing parking areas for transit-oriented uses, including bus stops and pullouts, bus shelters, park and ride stations, transit-oriented developments, and similar facilities, where appropriate;                                                                                                                                                                                                                                                                                                                                                                                           | The WDO does not currently include standards for converting existing parking areas to transit-oriented uses.  Recommendation: The City may wish to add standards to WDO 3.05 that allow for existing parking areas to be converted to transit-oriented uses.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (f) Road systems for new development shall be provided that can be adequately served by transit, including provision of pedestrian access to existing and identified future transit routes. This shall include, where appropriate, separate accessways to minimize travel distances;                                                                                                                                                                                                                                                                                                                                                                              | The TSP update will identify existing and planned transit routes; the location and design of planned new roadways will be consistent with existing and planned transit service.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (g) Along existing or planned transit routes, designation of types and densities of land uses adequate to support transit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | When updating the transit element of the TSP, the City has the opportunity to review existing land uses and consider land use changes that would support the viability of transit on existing or planned routes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (6) In developing a bicycle and pedestrian circulation plan as required by 660-012-0020(2)(d), local governments shall identify improvements to facilitate bicycle and pedestrian trips to meet local travel needs in developed areas. Appropriate improvements should provide for more direct, convenient and safer bicycle or pedestrian travel within and between residential areas and neighborhood activity centers (i.e., schools, shopping, transit stops). Specific measures include, for example, constructing walkways between cul-de-sacs and adjacent roads, providing walkways between buildings, and providing direct access between adjacent uses. | The TSP update will identify improvements to facilitate bicycle and pedestrian trips. This code audit summarizes bicycle and pedestrian improvements that are required through development review and approval, including the following:  Walkways between cul-de-sacs and adjacent roads – See response and recommendations related to cul-de-sacs, Section -0045(3)(b).  Walkways between buildings – See response and recommendations related to accessways, Section -0045(3)(e).  Access between adjacent uses – See response and recommendations related to accessways, Section -0045(3)(e).  Recommendation: Existing code provisions address this requirement. No changes to the code are recommended. |
| (7) Local governments shall establish standards for local streets and accessways that minimize pavement width and total ROW consistent with the operational needs of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Local street standards for width and right-of-way are found in WDO 3.01.04 (Street Cross-Sections). Figures 3.01B – 3.01Q provide typical street cross-section standards for arterials, collectors, local streets, cul-de-sacs, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

#### **TPR Requirement**

the facility. The intent of this requirement is that local governments consider and reduce excessive standards for local streets and accessways in order to reduce the cost of construction, provide for more efficient use of urban land, provide for emergency vehicle access while discouraging inappropriate traffic volumes and speeds, and which accommodate convenient pedestrian and bicycle circulation. Notwithstanding section (1) or (3) of this rule, local street standards adopted to meet this requirement need not be adopted as land use regulations.

## **Woodburn Development Ordinance (WDO) Recommendations**

alleys.

ROW standards for local streets and cul-de-sacs range between 50-60 feet, depending on if parking is provided on one or both sides. Parking is required on one side, or both side if there is multifamily residential housing. Lane width 20 feet for two-way traffic. Standards for local streets also require sidewalks (5 feet) and planter strips (5.5 feet).

ROW standards for alleys range between 16-20 feet, depending on if emergency access is required. Standards for sidewalks and planter strips are not included for alleys.

Exceptions may be granted for local streets when connecting to existing substandard local streets or when conforming to an approved site development plan which determines it's impractical to connect with existing streets because of a topographical or other existing land conditions. Such site development plans are required to be based on the volume of traffic, capacity for adjoining streets, and need for public convenience or safety.

**Recommendation:** The TSP update process will evaluate the cross-sections established in the 2007 TSP to ensure that right-of-way and pavement dimensions are sufficient to serve the operational needs of each roadway functional classification without requiring excessive paved widths. The street standards should clarify pavement width for each cross-section. Standards should be made consistent between the updated TSP and development code.

#### OAR 660-12-0060

Amendments to functional plans, acknowledged comprehensive plans, and land use regulations that significantly affect an existing or planned transportation facility shall assure that allowed land uses are consistent with the identified function, capacity, and performance standards of the facility.

Amendments to the Comprehensive Plan or Zoning Map are reviewed through a Type IV (quasi-judicial) or a Type V (legislative) decision depending on the scope of the proposed amendment (WDO 4.01.17 – Type of Decisions). A Type IV decision is applicable when the amendments involve closely circumscribed factual circumstances or relatively small number of persons. A Type V decision is applicable when the amendment is "such a size, diversity of ownership or interest as to be legislative in nature under State law."

| TPR Requirement | Woodburn Development Ordinance (WDO) Recommendations                                                                                                                                                                                                                                                          |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | WDO 5.04.02 (Comprehensive Plan Map Change, Owner Initiated) and WDO 5.04.04 (Official Zoning Map Change, Owner Initiated) requires Type IV Comprehensive Plan and land use standard amendments that significantly affect a transportation facility to mitigate for the impacts through prescribed standards. |
|                 | Standards for a Type V amendment to the Comprehensive Plan or Zoning Map are not found in the WDO.                                                                                                                                                                                                            |
|                 | Additional amendment standards that are applicable to specific Overlay zones are found in the respective sections.                                                                                                                                                                                            |
|                 | WDO 2.05.02 (Interchange Management Area Overlay District) provides additional standards for Comprehensive Plan and Zoning Map amendments in the Overlay zone. Comprehensive Plan amendments are prohibited from increasing the net commercial land or defined traffic thresholds within the Overlay zone.    |
|                 | WDO 2.05.04 (Nodal Overlay Districts) and WDO 2.05.06 (Southwest Industrial Reserve) requires amendments to the Comprehensive Plan or Zoning maps that remove the Overlay must demonstrate consistency with local, regional, and state goals and policies.                                                    |
|                 | WDO 2.05.05 (Riparian Corridor and Wetlands Overlay) requires the Oregon Department of State Land be notified of plan and zone amendments that may affect any wetlands, creeks, or waterways.                                                                                                                 |
|                 | <b>Recommendation:</b> Existing code provisions address this requirement. No additional changes to the code are recommended.                                                                                                                                                                                  |



# TECHNICAL MEMORANDUM #2 Goals, Objectives, and Evaluation Criteria

Date: February 23, 2018 Project #: 21071

To: Chris Kerr and Eric Liljequist, City of Woodburn

Dan Fricke, Oregon Department of Transportation

Technical Advisory Committee (TAC)
Citizens Advisory Committee (CAC)

From: Matt Hughart and Molly McCormick, Kittelson & Associates, Inc.

Darci Rudzinski and CJ Doxsee, Angelo Planning Group

Project: Woodburn Transportation System Plan Update

Subject: Tech Memo #2: Goals, Objectives, and Evaluation Criteria

This memorandum presents a draft set of goals and objectives that will be used to review and update Woodburn's Transportation System Plan (TSP). The goals and objectives included in the current Comprehensive Plan and 2005 TSP were used as a basis to develop the goals and objectives with updates that reflect changes in state and local planning requirements as well as changes in demand for active modes of transportation (i.e. walking, biking, and riding transit).

The goals and objectives will be used to guide the development and evaluation of potential solutions to address the needs, selection, and prioritization of preferred solutions for inclusion in the final plan. They will also inform recommendations for policy language that will serve as guidance for future land use decision making, such as approval criteria related zone change and comprehensive plan amendments.

## WOODBURN GOALS AND POLICIES BACKGROUND

Woodburn's existing 2005 TSP includes five goals with several corresponding policies. A review of these goals and policies indicate that they were created to focus on the creation of a multimodal transportation network, ensuring the roadway network is adequately sized to meet future demand, improving the safety of the transportation network, and finding funding sources to support the development of projects.

Woodburn's current Comprehensive Plan includes a copy of the 2005 TSP goals and policies as well as an additional two transportation goals – for a total of seven transportation goals – with corresponding policies. These additional two goals and policies focus on coordinating the transportation network with Marion County and ODOT.

A more detailed review of several of the goals and policies indicates that many were created specifically for the development of the 2005 TSP and were ultimately accomplished when the TSP was adopted or are no longer relevant due to subsequent planning efforts or project implementation. As such, a fresh look at the goals and policies has been performed with suggested new language as summarized in Table 1 below.

Table 1 – Review of Existing 2005 TSP Goals and Policies and Suggestion Revisions/New Language

| Existing 2005 TSP & Comprehensive Plan Goals and Policies                                                                                                                                                                                                                                                                                                                | Proposed TSP Goals and Objectives                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TSP Goal 1 Develop a multimodal transportation system that avoids or reduces a reliance on one form of transportation and minimizes energy consumption and air quality impacts.                                                                                                                                                                                          | Goal 1 – Multimodal Mobility  Provide a multimodal transportation system that avoids or reduces a reliance on one form of transportation and minimizes energy consumption and air quality impacts.                          |
| Policies                                                                                                                                                                                                                                                                                                                                                                 | Objectives                                                                                                                                                                                                                  |
| <ul> <li>Develop an expanded intracity bus transit system that provides<br/>added service and route coverage to improve the mobility and<br/>accessibility of the transportation disadvantaged and to attract<br/>traditional auto users to use the system.</li> </ul>                                                                                                   | ***Keep as currently written for project objective***                                                                                                                                                                       |
| <ul> <li>Develop a plan for providing travel options between Woodburn<br/>and Portland or Salem, including intercity bus service and potential<br/>bus/carpool park-and-ride facilities.</li> </ul>                                                                                                                                                                      | ***Keep as currently written for project objective***                                                                                                                                                                       |
| <ul> <li>Develop a bikeway system that provides routes and facilities that<br/>allow bicyclists to travel from residential areas to schools, parks,<br/>places of employment, and commercial areas. Identify off-street<br/>facilities in City greenway and park areas. Ensure all new collector<br/>and arterial streets are constructed with bicycle lanes.</li> </ul> | Develop a comprehensive low stress network of bicycle lanes and routes that link major activity centers such as residential neighborhoods, schools, parks, commercial areas, and employment centers.                        |
| <ul> <li>Identify sidewalk and off-street pathway improvements to improve<br/>pedestrian mobility within neighborhoods and between residential<br/>areas and schools, parks, places of employment, and commercial<br/>areas. Ensure all new collector and arterial streets are constructed<br/>with sidewalks.</li> </ul>                                                | Develop a comprehensive network of sidewalks and off-street<br>pathways that improve pedestrian mobility within neighborhoods<br>and link residential areas to schools, parks, commercial areas, and<br>employment centers. |
|                                                                                                                                                                                                                                                                                                                                                                          | Maintain adequate intersection and roadway capacity on the key east-west and north-south arterials.                                                                                                                         |
| TSP Goal 2 Develop a street system which will handle projected year 2020 traffic demands in the Woodburn area, and interconnects residential areas with employment centers, schools, parks, churches, and regional transportation facilities.                                                                                                                            | Goal 2 - Connectivity  Provide an interconnected street system that is adequately sized to accommodate existing and projected traffic demands in the Woodburn area.                                                         |
| Policies                                                                                                                                                                                                                                                                                                                                                                 | Objectives                                                                                                                                                                                                                  |
| Develop an updated roadway functional classification plan for the<br>Woodburn area that reflects the desired function of different<br>roadways, and is consistent with current federal guidelines for the<br>designation of major streets in an urban area.                                                                                                              | ***This is not necessary as a project objective as the 2005 TSP functional classification plan has essentially accomplished this.***                                                                                        |
| Develop a strategy for improving Oregon 219/214, 211, and 99E through Woodburn, including added travel lanes, signalization, and access management.                                                                                                                                                                                                                      | Verify and Incorporate the relevant strategies and infrastructure projects from the existing TSP, I-5/OR 214 IAMP, and 99E Refinement Plan.                                                                                 |
| <ul> <li>Identify new east-west and north-south collector/minor arterial<br/>streets within the City to relieve traffic demands on Oregon<br/>219/214, 211, and 99E, and coordinate with Marion County to<br/>construct the street connections needed outside of the urban<br/>growth boundary (UGB).</li> </ul>                                                         | ***Keep as currently written for project objective***                                                                                                                                                                       |
| Develop updated street design standards for arterials, collectors, and local streets.                                                                                                                                                                                                                                                                                    | ***Keep as currently written for project objective***                                                                                                                                                                       |
| Identify a final strategy for paving currently unimproved streets in the City.                                                                                                                                                                                                                                                                                           | ***Keep as currently written for project objective***                                                                                                                                                                       |

| Existing 2005 TSP & Comprehensive Plan Goals and Policies                                                                                                                                                                                                                                                               | Proposed TSP Goals and Objectives                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TSP Goal 3  Develop transportation improvements that address overall traffic safety in the Woodburn area.                                                                                                                                                                                                               | Goal 3 - Safety  Provide a transportation system that enhances the safety and security of all transportation modes in the Woodburn area.                                                                                                                                                       |
| Policies                                                                                                                                                                                                                                                                                                                | Objectives                                                                                                                                                                                                                                                                                     |
| Develop access management strategies for Oregon 219/214, 211, and 99E through Woodburn, particularly focusing on the section of Oregon 214 between Interstate 5 (I-5) and Cascade Drive, and Oregon 99E south of Lincoln Avenue.                                                                                        | ***This is not necessary as a project objective as the recent I-5 IAMP and Highway 99E Corridor Plan developed access management improvements.***                                                                                                                                              |
| Develop a plan for improving pedestrian and bicycle safety for<br>travel to and from local schools, commercial areas, and major<br>activity centers.                                                                                                                                                                    | <ul> <li>Address existing and potential future safety issues by identifying<br/>high collision locations and locations near schools or with a history<br/>of fatal, severe injury, and/or pedestrian/bicycle-related crashes<br/>and developing strategies to address those issues.</li> </ul> |
| Identify street and railroad crossings in need of improvement, as well as those that should be closed or relocated.                                                                                                                                                                                                     | ***Keep as currently written for project objective***                                                                                                                                                                                                                                          |
| Develop a plan for designated truck routes through the City, and a<br>plan to handle truck and rail hazardous cargoes                                                                                                                                                                                                   | ***Keep as currently written for project objective***                                                                                                                                                                                                                                          |
| TSP Goal 4  Develop a set of reliable funding sources that can be applied to fund future transportation improvements in the Woodburn area.                                                                                                                                                                              | Goal 4 – Strategic Investment Provide a financially sustainable transportation system through responsible stewardship of assets and financial resources.                                                                                                                                       |
| Polices                                                                                                                                                                                                                                                                                                                 | Objectives                                                                                                                                                                                                                                                                                     |
| Evaluate the feasibility of the full range of funding mechanisms for transportation improvements.                                                                                                                                                                                                                       | Identify new and innovative funding sources for transportation improvements                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                         | Preserve and maintain the existing transportation system assets to extend their useful life.                                                                                                                                                                                                   |
| TSP Goal 5  Develop amendments to City land use standards and ordinances to reduce travel demand and promote use of modes of transportation other than the automobile.                                                                                                                                                  | Goal 5 – Land Use and Transportation Integration Review and update land use standards and ordinances to create a balanced built environment where existing and planned land uses are supported by an efficient multi-modal transportation system.                                              |
| Polices                                                                                                                                                                                                                                                                                                                 | Objectives                                                                                                                                                                                                                                                                                     |
| <ul> <li>Identify a range of potential Transportation Demand Management<br/>(TDM) strategies that can be used to improve the efficiency of the<br/>transportation system by shifting single-occupant vehicle trips to<br/>other modes and reducing automobile reliance at times of peak<br/>traffic volumes.</li> </ul> | ***Keep as currently written for project objective***                                                                                                                                                                                                                                          |
| Identify revisions to the Woodburn Zoning Ordinance for compliance with the Transportation Planning Rule                                                                                                                                                                                                                | ***Keep as currently written for project objective***                                                                                                                                                                                                                                          |
| Comprehensive Plan Goal H-6 Coordinate with Marion County in planning for a safe and efficient county-wide transportation system by:                                                                                                                                                                                    | Goal 6                                                                                                                                                                                                                                                                                         |
| <ul><li>(a) Encouraging use of alternative modes of transportation<br/>including mass transit, bicycling, walking and carpooling; and</li><li>(b) Addressing transportation needs appropriate to both urban and<br/>rural areas throughout the county.</li></ul>                                                        | Develop a transportation system that is consistent with the City's adopted comprehensive plan and adopted plans of state, regional, and other local jurisdictions.                                                                                                                             |
| Polices                                                                                                                                                                                                                                                                                                                 | Objectives                                                                                                                                                                                                                                                                                     |
| H-6.2 Woodburn will implement plans as provided in the Woodburn TSP.  (a) Except where topographical conditions or existing development                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                |
| make this standard impractical, new subdivisions and planned developments should have internal connectivity of at least 8 through streets per mile (roughly every 660 feet) for new development, and sufficient collector and arterial systems for local                                                                | Ensure consistency with State, regional, and local planning rules and regulations.                                                                                                                                                                                                             |
| access. (b) The TSP shall include a map depicting future street connections for areas to be urbanized. This is especially important in Nodal Development Overlay and Southwest Industrial Reserve overlay areas.                                                                                                        | Incorporate projects identified in other state, regional, or local plans  Coordinate land use, financial, and environmental planning to prioritize strategic transportation investments                                                                                                        |
| (c) When feasible, the County will utilize standards in the Woodburn TSP and Woodburn Development Ordinance for                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                |

| Existing 2005 TSP & Comprehensive Plan Goals and Policies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Proposed TSP Goals and Objectives                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| development that occurs on unincorporated lands within the Woodburn Urban Growth Boundary.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                   |
| H-6.3 Woodburn will support Marion County efforts to provide transit connections within and between cities. The Woodburn TSP shall include transportation plans for the Woodburn Transit System that is consistent with the population and employment projections in the Woodburn Comprehensive Plan and coordinated with the "preferred alternative" found in the County Framework Plan.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ***Keep as currently written for project objective***                                                                                             |
| H-6.4 Woodburn should provide for a complementary mix of land uses and transportation systems by providing for mixed use development in the Downtown Development and Conservation (DDC) District, the Mixed Use Village (MUV), and the Nodal Development Overlay (NDO) districts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ***This is not necessary as a project objective as existing Woodburn planning documents have been updated to reflect this information.***         |
| H-6.5 Woodburn shall consider traffic calming of through traffic in neighborhoods. Woodburn will coordinate with Marion County in making recommendations for methods and procedures for traffic calming that directly affects a county road, developing recommended best practices for methods, locations, and processes for traffic calming in both existing and new developments.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | *** See objective under Goal 5.***                                                                                                                |
| H-6.6 Woodburn will coordinate with Marion County in planning for freight movement by both rail and truck.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ***Keep as currently written for project objective***                                                                                             |
| H-6.7 The Woodburn TSP shall include measures to improve the walking and biking environment by providing sidewalks in all new developments and by providing an interconnecting system of pedestrian connections. Designing for a comfortable and practical pedestrian environment is especially important in Downtown Woodburn and within the Nodal Development Overlay.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ***This is not necessary as a project objective as existing Woodburn planning documents have been updated to reflect this information.***         |
| Coordinate with the Oregon Department of Transportation (ODOT) to maintain highway and intersection capacity, safety and functionality by:  (a) Developing and adopting performance standards; and (b) Prohibiting comprehensive plan amendments that do not meet adopted performance standards.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | See Goal 6                                                                                                                                        |
| H-7.1 The Woodburn TSP shall implement an interchange management plan within the UGB based on potential and substantial adverse impacts to the I-5 Interchange.  (a) Peak hour trip generation estimates and numerical ceilings based on land uses permitted by the 2005 Woodburn Comprehensive Plan shall be determined for each designated subarea.  (b) The City will coordinate with ODOT in monitoring trip generation impacts for each designated sub-area, considering the cumulative impacts of existing and new development.  (c) Transportation impact studies shall be required for subdivisions and planned developments, and for new commercial, industrial, public and multi-family residential development within designated sub-areas.  (d) Comprehensive Plan amendments that exceed the trip generation ceiling for a designated sub-area shall be prohibited.  (e) Comprehensive Plan amendments from Industrial to Commercial shall be prohibited, regardless of impact, within the SWIR Overlay.  (f) Woodburn shall provide ODOT with copies of transportation impact studies upon request, and as part of the Periodic Review process.  (g) Woodburn shall coordinate with ODOT, DLCD and Marion County to address potential service deficiencies affecting state highway facilities through the Periodic Review process.  H-7.2 The City shall implement medium-term conservation measures to limit access to Highways 214 and 219. Such measures shall include, but shall not be limited to: | ***This is not necessary as a project objective as the recent I-5 IAMP and Highway 99E Corridor Plan developed access management improvements.*** |

#### Existing 2005 TSP & Comprehensive Plan Goals and Policies **Proposed TSP Goals and Objectives** (a) Limitations or prohibition on private access within a quarter of mile east and west of interchange ramp terminals; (b) Access controls on, public road approaches; and (c) Raised medians from Woodland to Oregon Way along Highways 219 and 214. H-7.3 To ensure safety and long-range mobility on Highway 99E, the City shall be guided by the following access management objectives: (a) Ensure that all properties are provided reasonable access to the public street network, including consideration of the economic development needs of each property. (b) Driveways to commercial businesses on Highway 99E should be designed to allow for safe and comfortable passage, improving existing driveways to comply with ODOT design standards as opportunities arise. (c) Consider locating business signage immediately adjacent to the downstream side of driveways to improve the ability of drivers to locate them. (d) Provide convenient accessways for pedestrians and bicycles between the Highway 99E commercial corridor and neighboring residential areas. (e) Safe and convenient pedestrian walkways should be provided between business entrances and sidewalks along Highway 99E, minimizing conflicts between pedestrians and motor vehicles in parking lots. (f) Consider prohibiting driveways or restricting turning movements to driveways adjacent to turning pockets at intersections where necessary to maintain safe highway operations. (g) Seek opportunities to align driveways on opposite sides of roadways to avoid turning conflicts. (h) Driveways to Highway 99E should maintain adequate intersection sight distance and at a minimum shall maintain safe stopping sight distance along the highway. (i) Reduce access points over time to move in the direction of meeting ODOT's adopted access management spacing standards for regional highways. (j) Create shared access points to reduce the overall number of driveways along the Highway 99E corridor. Shared driveways must be supported through the establishment of easements allowing for travel between adjacent properties. (k) Provide inter-parcel circulation through cross-over easements, frontage or backage roads, or shared parking lots where feasible. (I) Utilize easements, frontage/backage roads, and lower classified city streets to allow for secondary access to facilitate large truck and emergency service vehicle circulation. (m) Seek opportunities to enhance the connectivity of the local street system surrounding Highway 99E. H-7.4 The City will actively participate in developing strategies and solutions to mitigate impacts to property owners that may result from implementing future highway design and planned built improvements.

## PROPOSED EVALUATION CRITERIA

The proposed evaluation criteria are based on the proposed goals and policies. A qualitative process using the evaluation criteria will be used to evaluate potential modal solutions and prioritize projects developed through the TSP update. The rating method used to evaluate the alternatives is described below.

- Most Desirable: The concept addresses the criterion and/or makes substantial improvements in the criteria category. (+1)
- No Effect: The criterion does not apply to the concept or the concept has no influence on the criteria. (0)
- Least Desirable: The concept does not support the intent of and/or negatively impacts the criteria category. (-1)

At this level of screening, the criteria will not be weighted; the ratings will be used to inform discussions about the benefits and tradeoffs of each alternative. Table 1 presents the evaluation criteria that will be used to qualitatively evaluate the solutions developed through the TSP update.

| Objective                                                                                   | Evaluation Criteria                                                             | Evaluation Score    |
|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------|
| Goal 1  Provide a multimodal transportation system tha air quality impacts.                 | t avoids or reduces a reliance on one form of transportation and minimizes ener | rgy consumption and |
|                                                                                             | Project will expand and improve the bus transit system                          | +1                  |
| Develop an expanded intracity bus transit system                                            | Project will have no impact to the bus transit system                           | 0                   |
|                                                                                             | Project will negatively impact the bus transit system                           | -1                  |
|                                                                                             | Project will contribute to a comprehensive bicycle system                       | +1                  |
| Develop a comprehensive system of bicycle facilities                                        | Project will not contribute to a comprehensive bicycle system                   | 0                   |
|                                                                                             | Project will impede a comprehensive bicycle system                              | -1                  |
|                                                                                             | Project will contribute to a comprehensive pedestrian system                    | +1                  |
| Develop a comprehensive system of pedestrian facilities                                     | Project will not contribute to a comprehensive pedestrian system                | 0                   |
| pedestrial ruemees                                                                          | Project will impede a comprehensive pedestrian system                           | -1                  |
| <b>Goal 2</b> Provide an interconnected street system that is a                             | adequately sized to accommodate existing and projected traffic demands in the   | Woodburn area.      |
| Develop new east-west and/or north-south collector/minor arterial streets within the City   | Project will result in new east-west and/or north-south connections             | +1                  |
|                                                                                             | Project will have no impact on east-west and/or north-south connections         | 0                   |
|                                                                                             | Project will result in increased traffic demands on OR 219/214 and 99E          | -1                  |
| <b>Goal 3</b> Provide a transportation system that enhances to                              | he safety and security of all transportation modes in the Woodburn area.        |                     |
| Address existing and potential future safety issues.                                        | Project will address existing or potential future safety issue                  | +1                  |
|                                                                                             | Project will have no impact on an existing or potential future safety issue     | 0                   |
|                                                                                             | Project will worsen existing or potential future safety issue                   | -1                  |
| Identify street and railroad crossings in need of improvement, as well as those that should | Project will lead to the improvement, closure, or relocation of a rail crossing | +1                  |
| be closed or relocated.                                                                     | Project will have no impact on rail crossings                                   | 0                   |
|                                                                                             | Project will not improve rail crossings or will result in a new rail crossing   | -1                  |
| Develop a plan for designated truck routes                                                  | Project will enhance truck and freight movements                                | +1                  |
| through the City, and a plan to handle truck and rail hazardous cargoes                     | Project will have no impact on truck and freight movements                      | 0                   |
| and ran nazardous cargoes                                                                   | Project will worsen truck and freight movements                                 | -1                  |

| Identify new and innovative funding sources for transportation improvements    | Project is eligible for new and/or innovative funding                     | +1 |
|--------------------------------------------------------------------------------|---------------------------------------------------------------------------|----|
|                                                                                | Project may not be eligible for new and/or innovative funding             | 0  |
|                                                                                | Project is not eligible for new and/or innovative funding                 | -1 |
|                                                                                | Project will preserve and maintain the existing transportation system     | +1 |
| Preserve and maintain the existing ransportation system assets to extend their | Project will not impact the existing transportation system                | 0  |
| useful life                                                                    | Project will have a negative impact on the existing transportation system | -1 |

# **TECHNICAL MEMORANDUM #3**

**Existing Conditions Inventory and Analysis** 



Date: March 29, 2019 Project #: 21071.3

To: Chris Kerr & Eric Liljequist, City of Woodburn

Dan Fricke, Oregon Department of Transportation, Region 2

Technical Advisory Committee and Community Advisory Committee

From: Matt Hughart and Molly McCormick, Kittleson & Associates, Inc.

Darci Rudzinski and Clinton "CJ" Doxsee, Angelo Planning Group

Subject: Technical Memo #3: Existing Conditions Inventory and Analysis (Subtask 2.3)

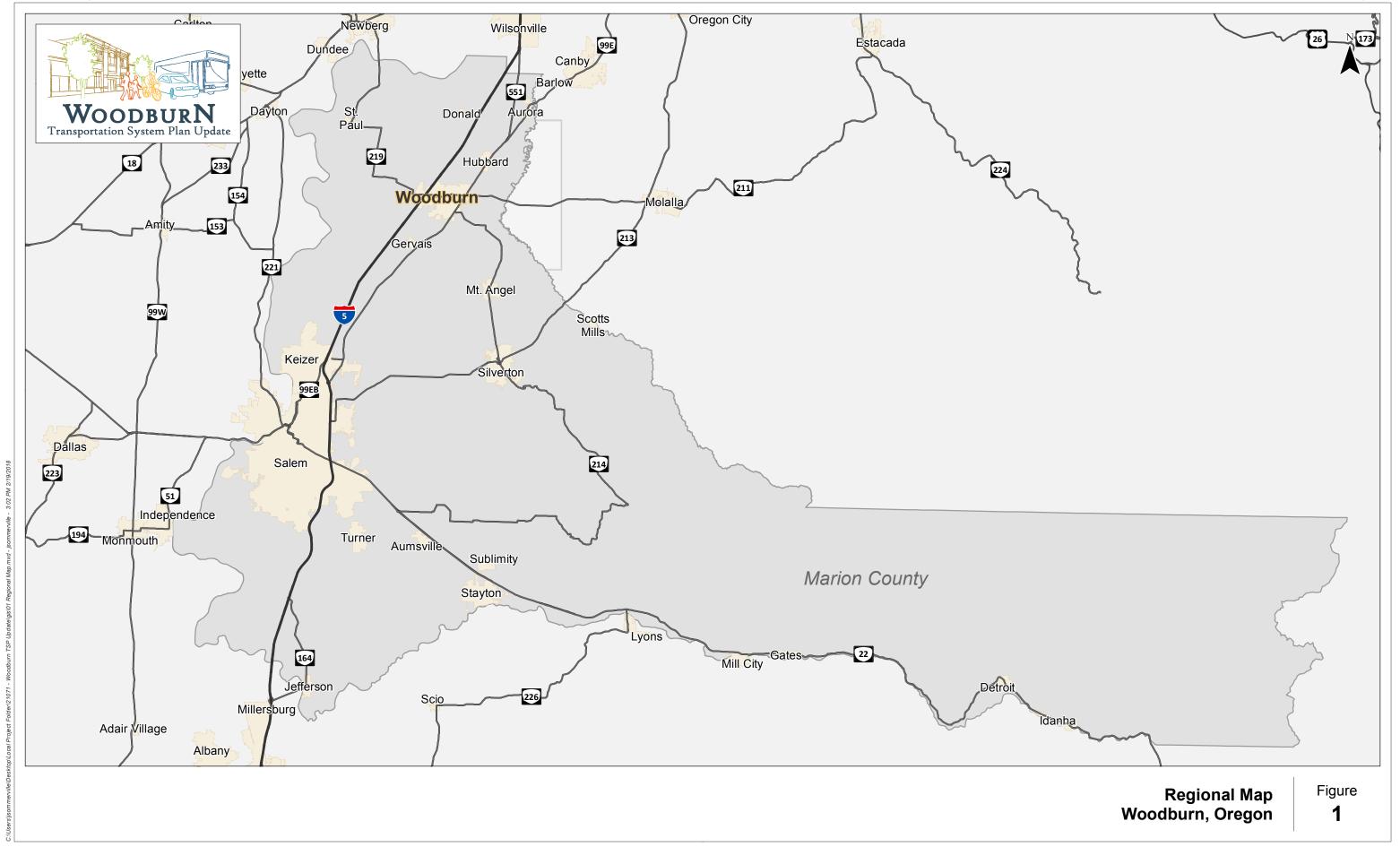
This memorandum documents the existing transportation network within the City of Woodburn and its urban growth boundary. Figure 1 illustrates the city boundary. The information presented in this memorandum will serve as a baseline for evaluating transportation system needs and identifying potential solutions for the Transportation System Plan (TSP) update. The information is based on an inventory of existing transportation facilities, discussions with City and Oregon Department of Transportation (ODOT) staff, and input from the project advisory committees and the general public.

Consistent with Oregon Administrative Rule (OAR) 660-012-0020, this inventory summarizes the characteristics, usage, performance, gaps, and deficiencies of the following transportation modes serving the City of Woodburn:

- Air System
- Bicycle System
- Marine System
- Pedestrian System
- Pipeline System
- Rail System
- Roadway System
- Transit System
- Truck Freight System
- Transportation System Management and Operations (TSMO)
- Transportation Demand Management (TDM)

## CITY BACKGROUND AND HISTORY

The City of Woodburn lies in the Willamette Valley in Marion County, approximately 30 miles south of Portland and approximately 20 miles north of Salem. As seen in Figure 1, several regional highways provide connections to other parts of the state, including Interstate-5, OR 211, OR 214, OR 219, and OR99E. Initially starting as land purchased for a tree nursery, construction of the railroad led to rapid development and incorporation as a city in 1889. Further growth occurred as additional tracks and I-5 were constructed. Based on information from the Portland State University Population Research Center (PRC), Woodburn has an estimated 2016 population of 24,795 people, comprising 7.4% of Marion County's 333,950 residents.


The community is known for its tourism, local events, and young and diverse population. Big attractions include the Woodburn Premium Outlets, several golf courses, Tulip Festival, Fiesta Mexicana, and the Woodburn Dragstrip with over 4.5 million visitors to the area each year.

## LANDS AND POPULATION CHARACTERISTICS

Planning for a transportation system that meets the city's goals and objectives requires a comprehensive understanding of land uses, population characteristics, and activity centers/destinations (such as schools, the library, City Hall, Community Center, parks, shopping centers, and other attractions). Information about Woodburn's lands and population inventory has been included in *Attachment A* with a focus on the following specific information:

- Comprehensive Plan and Zoning summary
  - Comprehensive Plan Map
  - Zoning Map
  - Overlay Districts Map
- Vacant and Redevelopable Land summary
  - Vacant and Redevelopable Land Map
  - Opportunity Sites Map (Woodburn Target Industry Analysis, ECONorthwest, 2016)
- Natural Resource and Environmental Barriers summary
  - Riparian Corridor and Wetlands Map
- Activity Centers Summary
  - Activity Centers Map
- Historic and Projected Population Growth
- Environmental Justice summary

Woodburn TSP Update
February 2018



## WOODBURN'S EXISTING TRANSPORTATION INFRASTRUCTURE

## Air System

There are no airports located within the city limits. The closest airports include the Aurora State Airport (classified as a Urban General Aviation Airport) located approximately 8 miles to the north via OR 99E and OR 551 and the Mulino Airport located approximately 14 miles to the northeast via OR 211 and OR 213.

## **Bicycle System**

The bicycle system within Woodburn consists of on-street bike lanes and shared roadways as well as a select number of multi-use pathways. These facilities provide local residents with the ability to access transit as well as local retail, commercial, recreational, and other land uses within Woodburn and neighboring cities by bike.

In order to assess the adequacy of bicycle facilities in Woodburn, a Geographic Information System (GIS) data inventory was created to reflect recent aerial imagery of bike lanes and other bicycle facilities along the city's major arterial, minor arterial, service collector, and access streets. Essential destinations and activity centers were identified in *Attachment A* to determine possible bicycle trip generators and to help prioritize potential improvements to the bicycle system. Figure 2 shows the existing bicycle facilities within Woodburn.

## **Bicycle Facilities**

#### Bike lanes

Bike lanes are dedicated portions of the roadway that are striped and allocated for bicycle travel. Onstreet bike lanes are currently provided along several major arterial, minor arterial, service collector, and access streets within the city including segments of OR 219/OR 214, Evergreen Road, Stacy Allison Way, Center Street, Country Club Road, Boones Ferry Road/Settlemier Avenue, Young Street, OR 99E, and Hardcastle Avenue.

#### Separated Bike Path

Separated bike lanes are bike lanes that have a buffer between the travel lane and the bike lane, which can include treatments such as planters, landscape strips, and striping. An off-street separated bike lane is provided along the south side of Parr Road, connecting Settlemier Avenue to Heritage Elementary School and Valor Middle School.

Woodburn TSP Update February 2018 CROSBY RD WOODBURN
Transportation System Plan Update CARL RD WOODLAND AV DECONINCK RD OATS ST PARR RD Enhanced Crossing Bike Lane JENSEN RD 1,000 2,000 3,000 Feet Multi-Use Pathway City Boundary Existing Bicycle Facilities Woodburn, Oregon Figure Urban Growth Boundary

## Bicycle Activity

Bicycle counts were conducted at the study intersections in September and October 2017. 16-hour counts were conducted on a typical mid-week day when school was in session. All of the counts include the total number of bicyclists that entered the intersections in 15-minute intervals. The bicycle counts show a relatively low level of bicycle activity at the study intersections in general. It should be noted that while the peak hour for vehicular traffic typically occurs between 4:00 to 6:00 p.m., the peak hour for bicycle activity near schools and other activity centers typically occurs earlier in the day. The bicycle count data is shown in Table 1.

**Table 1: Bicycle Crossing Volumes at Study Intersections** 

| Map<br>ID | Intersection                                 | North/South Bicycle<br>Volume | East/West Bicycle<br>Volume | Bicycle Peak Hour        |
|-----------|----------------------------------------------|-------------------------------|-----------------------------|--------------------------|
| 1         | Butteville Road/OR 219                       | 2                             | 0                           | 1:00 to 2:00 p.m.        |
| 2         | OR 219/Woodland Avenue                       | 0                             | 1                           | 6:00 to 7:00 p.m.        |
| 3         | OR 214/I-5 Southbound Ramp                   | 0                             | 1                           | 4:30 to 5:30 p.m.        |
| 4         | OR 214/I-5 Northbound Ramp                   | 0                             | 1                           | 4:30 to 5:30 p.m.        |
| 5         | OR 214/Evergreen Road                        | 0                             | 4                           | 5:00 to 6:00 p.m.        |
| 6         | OR 214/Oregon Way/Country Club Road          | 0                             | 2                           | 10:30 to 11:30 a.m.      |
| 7         | Cascade Drive/OR 214                         | 1                             | 1                           | 10:00 to 11:00 a.m.      |
| 8         | OR 214/Boones Ferry Road NE                  | 3                             | 1                           | 3:15 to 4:15 p.m.        |
| 9         | OR 214/Meridian Drive/5 <sup>th</sup> Street | 3                             | 1                           | 12:45 to 1:45 p.m.       |
| 10        | Front Street/OR 214                          | 1                             | 1                           | 5:15 to 6:15 p.m.        |
| 11        | Park Avenue/OR 214                           | 1                             | 5                           | 2:15 to 3:15 p.m.        |
| 12        | OR 214/OR 211/OR 99E                         | 1                             | 0                           | 4:00 to 5:00 p.m.        |
| 13        | Boones Ferry Road NE/Crosby Road             | 2                             | 0                           | 10:15 to 11:15 a.m.      |
| 14        | Hardcastle Avenue/Front Street               | 4                             | 3                           | 12:30 to 1:30 p.m.       |
| 15        | Lincoln Street/Front Street                  | 2                             | 5                           | 2:00 to 3:00 p.m.        |
| 16        | Garfield Street/Young Street/Front Street    | 5                             | 0                           | 4:30 to 5:30 p.m.        |
| 17        | Cleveland Street/Front Street                | 5                             | 1                           | 12:15 to 1:15 p.m.       |
| 18        | Parr Road/Settlemier Avenue                  | 4                             | 2                           | 11:45 a.m. to 12:45 p.m. |
| 19        | OR 99E/Hardcastle Avenue                     | 3                             | 1                           | 2:00 to 3:00 p.m.        |
| 20        | OR 99E/Lincoln Street                        | 3                             | 1                           | 2:30 to 3:30 p.m.        |
| 21        | OR 99E/Young Street                          | 0                             | 5                           | 11:45 a.m. to 12:45 p.m. |
| 22        | OR 99E/Cleveland Street                      | 4                             | 0                           | 1:45 to 2:45 p.m.        |

As shown in Table 1, the highest bicycle crossing volumes were observed at intersections located along Front Street near retail and commercial land uses.

## Bicycle Level of Traffic Stress Analysis

The bicycle facilities located along the city's major arterial, minor arterial, service collector, and access streets were evaluated in an effort to identify potential issues that could be addressed as part of the TSP update. The Oregon Department of Transportation (ODOT) Analysis Procedures Manual (APM) provides a methodology for evaluating bicycle facilities within urban and rural environments called

Bicycle Level of Traffic Stress (BLTS). As applied by ODOT, this methodology classifies four levels of traffic stress that a bicyclist can experience on the roadway, ranging from BLTS 1 (little traffic stress) to BLTS 4 (high traffic stress). A road segment that is rated BLTS 1 generally has low traffic volumes and travel speeds and is suitable for all cyclists, including children. A road segment that is rated BLTS 4 generally has high traffic volumes and travel speeds and is perceived as unsafe by most cyclists. Per the APM, BLTS 2 is considered a reasonable target for bicycle facilities due to its acceptability with the majority of cyclists.

The BLTS score is determined based on the speed of the roadway, the number of travel lanes per direction, the presence and width of an on-street bicycle lane and/or adjacent parking lane, and several other factors. Figure 3 illustrates the results of the BLTS analysis for Woodburn's major arterial, minor arterial, service collector, and access streets. The BLTS calculations are summarized in *Attachment B*.

A majority of the segments rated BLTS 3 have striped bicycle lanes; however, the bike lanes are too narrow for roadways conditions. In order for these segments to be rated BLTS 2, the striped bicycle lanes would need to be widened/buffered to 7 feet and/or the posted speed limits would need to be as low as 30 mph. Other segments rated BLTS 3 were evaluated as shared roadways. In order for these segments to be rated BLTS 2, the speed would need to be as low as 25 mph.

A majority of the segments rated BLTS 4 occur on segments without bike lanes and which were analyzed as shared roadways. In order for these segments to be rated BLTS 2, the speed would need to be as low as 25 mph. Several segments with striped bike lanes were rated BLTS 4; all of which are located on OR 99E. In order for these segments to be rated BLTS 2, the striped bicycle lanes would need to be widened/buffered to 7 feet and/or the posted speed limits would need to be as low as 30 mph. Enhanced facilities, such as separated bike facilities or multi-use paths, may also be needed in some areas where traffic volumes and/or travel speeds are high.

It should also be noted that a majority of the shared roadway segments that were rated BLTS 2 could include signage and potentially striping to remind motorists to share the road. The signing and striping can also provide important wayfinding for cyclists to inform them of the preferred bicycle routes.

## **Existing Gaps and Deficiencies**

Streets with no bike lanes or intermittent bike lanes force bicyclists to share the travel lane with motor vehicles or use the shoulder if available. In many cases, this is not a desirable option for bicyclists due to narrow lane widths or uneven pavement conditions. Adequate bicycle facilities should be provided to allow for safe travel between neighborhoods and essential destinations. The following provides a summary of the existing gaps and deficiencies on the City's major arterial, minor arterial, and service collector streets:

- OR 219 from Butteville Road to Willow Avenue
- OR 214 from Progress Way to OR 99E
- OR 211 from east of OR 99E to east UGB limits
- Butteville Road from south UGB limits to north UGB limits
- Stacy Allison Way from Center Street to Evergreen Road
- Evergreen Road from Hayes Street to OR 214
- Hayes Street from Evergreen Road to Settlemier Avenue
- Parr Road from east UGB limits to Settlemier Avenue
- Boones Ferry Road from Hazelnut Drive to north UGB limits
- Settlemier Avenue from south UGB limits Harrison Street (with an exception with a short segment of striped bike lanes just south of the railroad crossing)
- Harrison Street from Settlemier Avenue to Front Street
- Lincoln Street from Settlemier Avenue to east UGB limits
- Cleveland Street from Settlemier Avenue to OR 99E
- Front Street from Settlemier Avenue to north UGB limits
- Progress Way from OR 214 to Industrial Avenue
- Industrial Avenue from Progress way to OR 99E
- Cooley Road from Hardcastle Avenue to OR 211
- Hardcastle Avenue from Front Street to Cooley Road
- Young Street from OR 99E to east UGB limits
- Brown Street from end of road to Cleveland Street
- OR 99E from south UGB limits to Lincoln Road

## **ROADWAY SYSTEM**

The roadway system within Woodburn includes private streets, city streets, state highways, and an interstate freeway. These types of facilities provide residents with the ability to access retail, commercial, recreational, and other land uses within Woodburn and neighboring cities by vehicle. This section describes how the system has been developed to date and provides a more detailed review of how it is used and operated.

#### Jurisdiction

Streets within Woodburn are owned and operated by the City of Woodburn, Marion County, and ODOT. Each jurisdiction is responsible for determining the functional classification of the streets, defining major design and multimodal features, and approving construction and access permits. Coordination is required among the jurisdictions to ensure that the streets are planned, operated, maintained, and improved to safely meet public needs. Figure 4 illustrates the jurisdiction (ownership and maintenance responsibilities) of streets within Woodburn. As shown, I-5, OR 219, OR 214, OR 211, and OR 99E are under the jurisdiction of ODOT along with the I-5 on- and off-ramps. All remaining streets within the city limits are under the jurisdiction of the City of Woodburn. With the exception of those streets that are under ODOT jurisdiction, Marion County has jurisdiction over streets that are outside the city limits but within the UGB.

### **Functional Classification**

A street's functional classification defines its role in the transportation system and reflects desired operational and design characteristics such as right-of-way requirements, pavement widths, pedestrian and bicycle features, and driveway (access) spacing standards.

Figure 5 illustrates the functional classification of streets within Woodburn, which includes the following designations as defined by the current Woodburn TSP:

- Freeways The primary function of the interstate is mobility, because freeways connect major cities, regions within Oregon, and other states, and serve as major freight routes. The freeway should provide "safe and efficient high-speed continuous flow." The freeway has full access control with access limited to the interchange. Only motorized vehicle traffic is served.
- Major Arterials Primary functions are to serve local and through traffic as it enters and leaves the urban area, connect Woodburn with other urban centers and regions, and provide connections to major activity centers within eh UGB. Emphasis should be on traffic flow, pedestrian and bicycle movements. On-street bicycle lanes and sidewalks should be provided.

Woodburn TSP Update February 2018 GOUDY GARDENS LN WOODBURN
Transportation System Plan Update MT HOOD AV STAFNEY LN WOODLAND AV DECONINCK RD LE BRUN RD LAUREL AV OATS ST PARR RD KOENER **Roadway Jurisdiction** WILCO HY 214 ODOT BELLE PASSI RD Marion County City of Woodburn 1,000 2,00<mark>0</mark> 3,000 Feet Private City Boundary **Roadway Jurisdiction** Figure Urban Growth Boundary Woodburn, Oregon

Woodburn TSP Update February 2018 WOODBURN
Transportation System Plan Update WOODLAND AV DECONINCK RD Freeway Major Arterial Minor Arterial Service Collector Access Street 1,000 2,000 3,000 Feet Local Street City Boundary **Functional Roadway Classification** Figure Urban Growth Boundary Woodburn, Oregon

- Minor Arterials Primary functions are to connection major activity centers and neighborhoods within the UGB and to support the major arterial system. Minor arterials should have a higher degree of access, shorter trip lengths, lesser traffic volumes, and lower travel speeds than major arterials. Like major arterials, emphasis should be on traffic flow, pedestrian and bicycle movements. On-street bicycle lanes and sidewalks should be provided.
- Service Collector Primary function is to provide connections between neighborhoods and major activity centers and the arterial street system. Some degree of access is provided to adjacent properties, while maintaining circulation and mobility for all users. Service collectors carry lower traffic volumes at slower speeds than major and minor arterials. Onstreet bicycle lanes and sidewalks should be provided.
- Access Streets Primary function is to connect residential neighborhoods with service collectors or arterials. On-street parking and access to adjacent properties is prevalent. Slower speeds should be provided to ensure community livability and safety for pedestrians and cyclists. In many cases, cyclists can "Share the road" with motor vehicles because of low traffic volumes and speeds. Sidewalks or pathways should be provided for pedestrians.
- Local Streets Primary function is to provide direct access to adjacent land uses. Short roadway distances, slow speeds, and low traffic volumes characterize local streets. Cyclists can share the road with motor vehicles. Sidewalks or pathways should be provided for pedestrians.

Table 2 summarizes the functional classifications of the major arterial, minor arterial, and service collector streets within Woodburn and identifies the overlapping ownership/maintenance and jurisdictional relationships that exist.

The functional classifications used in local TSPs should be consistent with other regional planning efforts. As shown in Table 2, there are several streets that currently have conflicting classifications.

## National Highway System (NHS)

The National Highway System (NHS)is designated by the US Department of Transportation Federal Highway Administration and includes roadways that are "important to the nation's economy, defense, and mobility."<sup>1</sup> Within Woodburn, I-5 is part of the Eisenhower Interstate System and OR 219, OR 214, and OR 99E are classified as MAP-21 NHS Principal Arterials.

\_

<sup>&</sup>lt;sup>1</sup> https://www.fhwa.dot.gov/planning/national highway system/

**Table 2: Functional Classification Comparison by Jurisdiction** 

|                                                          |              | F                 | unctional Classification | on                 | Consistent             |
|----------------------------------------------------------|--------------|-------------------|--------------------------|--------------------|------------------------|
| Roadway                                                  | Jurisdiction | Woodburn          | Marion County            | Federal            | between Jurisdictions? |
| Butteville Road<br>(north of OR 219 and south of OR 219) | County       | Minor Arterial    | Major Collector          | Major Collector    | No                     |
| Butteville Road<br>(segment where aligned with OR 219)   | ODOT         | Minor Arterial    |                          | Minor Arterial     | Yes                    |
| OR 219 (Butteville Road to Woodland Avenue)              | ODOT         | Major Arterial    |                          | Minor Arterial     | No                     |
| OR 219 (Woodland Avenue to I-5)                          | ODOT         | Major Arterial    |                          | Principal Arterial | No                     |
| Woodland Avenue                                          | City         | Access Street     |                          | Major Collector    | No                     |
| Arney Road                                               | City/Private | Service Collector |                          | Major Collector    | No                     |
| I-5                                                      | ODOT         | Freeway           |                          | Interstate         | Yes                    |
| OR 214 (I-5 to OR 99E)                                   | ODOT         | Major Arterial    |                          | Principal Arterial | Yes                    |
| OR 214 (OR 99E to UGB east limits)                       | ODOT         | Major Arterial    |                          | Minor Arterial     | No                     |
| Stacy Allison Way                                        | City         | Service Collector |                          | Local              | No                     |
| Center Street                                            | City         | Service Collector |                          | Local              | No                     |
| Evergreen Road (OR 219 to Boean Lane)                    | City         | Minor Arterial    |                          | Major Collector    | No                     |
| Evergreen Road (Boean Lane to end of road)               | City         | Minor Arterial    |                          | Local              | No                     |
| Harvard Drive                                            | City         | Access Street     |                          | Local              | No                     |
| Stubb Road                                               | County       | Access Street     | No Designation           | Local              | No                     |
| Parr Road                                                | County/City  | Service Collector | Major Collector          | Major Collector    | No                     |
| Hayes Street                                             | City         | Service Collector |                          | Major Collector    | No                     |
| Oregon Way                                               | City         | Access Street     |                          | Major Collector    | No                     |
| Astor Way                                                | City         | Access Street     |                          | Major Collector    | No                     |
| Country Club Road                                        | City         | Access Street     |                          | Major Collector    | No                     |
| Boones Ferry Road/Settlemier Avenue (north of Parr Road) | County/City  | Minor Arterial    | Arterial                 | Minor Arterial     | Yes                    |
| Boones Ferry Road/Settlemier Avenue (south of Parr Road) | County/City  | Minor Arterial    | Major Collector          | Minor Arterial     | Yes                    |
| Tukwila Drive                                            | City         | Access Street     |                          | Major Collector    | No                     |
| Hazelnut Drive                                           | City         | Access Street     |                          | Major Collector    | No                     |
| 5 <sup>th</sup> Street                                   | City         | Access Street     |                          | Major Collector    | No                     |
| Harrison Street                                          | City         | Service Collector |                          | Major Collector    | No                     |
| Lincoln Street                                           | County/City  | Service Collector | Local                    | Major Collector    | No                     |
| Garfield Street                                          | City         | Minor Arterial    |                          | Minor Arterial     | Yes                    |
| Young Street                                             | City         | Minor Arterial    |                          | Minor Arterial     | Yes                    |
| Cleveland Street                                         | City         | Service Collector |                          | Major Collector    | No                     |
| Front Street                                             | City         | Minor Arterial    |                          | Minor Arterial     | Yes                    |
| Industrial Avenue                                        | City         | Service Collector |                          | Major Collector    | No                     |
| Progress Way                                             | City         | Service Collector |                          | Major Collector    | No                     |
| OR 211                                                   | ODOT         | Minor Arterial    |                          | Minor Arterial     | Yes                    |
| Park Avenue                                              | City         | Access Street     |                          | Major Collector    | No                     |
| Hardcastle Avenue                                        | County/City  | Service Collector | No Designation           | Major Collector    | No                     |
| Gatch Street                                             | City         | Access Street     |                          | Major Collector    | No                     |
| Brown Street                                             | City         | Service Collector |                          | Major Collector    | No                     |
| OR 99E<br>(north of OR 214 and south of Young Street)    | ODOT         | Major Arterial    |                          | Minor Arterial     | No                     |
| OR 99E (segment where aligned with OR 214)               | ODOT         | Major Arterial    |                          | Principal Arterial | No                     |
| Cooley Road                                              | County       | Service Collector | Local                    | Major Collector    | No                     |

Woodburn, Oregon

# **Roadway Characteristics**

The characteristics of arterial and collector streets are summarized in Table 3. The data includes posted speed limits, number of lanes, on-street bike lanes, and on-street parking. These characteristics define roadway capacity and operating speeds through the street system, which affects travel path choices for drivers in Woodburn. Subsequent sections provide additional information on traffic volumes at select study intersections.

**Table 3: Existing Study Area Roadway Characteristics by Functional Classification** 

| Corridor                            | Posted Speed<br>[MPH] | Number of Lanes | On-street Bike<br>Lanes | On-street Parking |
|-------------------------------------|-----------------------|-----------------|-------------------------|-------------------|
| Corridor                            |                       |                 | Laties                  | On-street Farking |
| OR 219/OR 214                       | lviaj                 | or Arterial     |                         | T                 |
| (west UGB limits to OR 99E)         | 35/55                 | 2-5             | Partial                 | No                |
| OR 211<br>(east of OR 99E)          | 35                    | 2               | No                      | No                |
| OR 99E                              | 35/45/55              | 2/5             | Partial                 | No                |
| OR 214<br>(east of OR 99E)          | 35                    | 2               | No                      | No                |
|                                     | Mine                  | or Arterial     |                         |                   |
| Butteville Road                     | 45/55                 | 2               | No                      | No                |
| Evergreen Road                      | 25                    | 2               | Partial                 | Partial           |
| Boones Ferry Road/Settlemier Avenue | 25/35/45              | 2/3             | Partial                 | No                |
| Front Street                        | 25/30                 | 2               | No                      | Partial           |
| Garfield Street                     | 25                    | 2               | No                      | Partial           |
| Young Street                        | 35                    | 2               | Yes                     | No                |
|                                     | Servi                 | ce Collector    |                         |                   |
| Arney Road                          | 25/30                 | 2               | Yes                     | No                |
| Stacy Allison Way                   | 25                    | 2               | Partial                 | No                |
| Center Street                       | 25                    | 2               | Yes                     | No                |
| Hayes Street                        | 25                    | 2               | No                      | No                |
| Parr Road                           | 25                    | 2               | No                      | No                |
| Harrison Street                     | 25                    | 2               | No                      | Partial           |
| Lincoln Street                      | 25/30                 | 2               | No                      | Partial           |
| Cleveland Street                    | 25/30                 | 2               | No                      | Partial           |
| Progress Way                        | 25                    | 2               | No                      | Yes               |
| Industrial Avenue                   | 25                    | 2               | No                      | Yes               |
| Hardcastle Avenue                   | 25                    | 2               | Partial                 | No                |
| Brown Street                        | 25                    | 2               | No                      | No                |
| Cooley Road                         | 40                    | 2               | No                      | No                |
|                                     | Acc                   | ess Street      |                         |                   |
| Woodland Avenue                     | 25                    | 2/Unmarked      | No                      | Partial           |
| Harvard Drive                       | 25                    | 2               | No                      | Yes               |
| Stubb Road                          | 25                    | Unmarked        | No                      | No                |
| Oregon Way                          | 25                    | 2               | No                      | Partial           |
| Country Club Road                   | 25                    | 2               | Partial                 | Partial           |
| Astor Way                           | 25                    | Unmarked        | No                      | Yes               |
| Tukwila Drive                       | 25                    | 2               | No                      | No                |

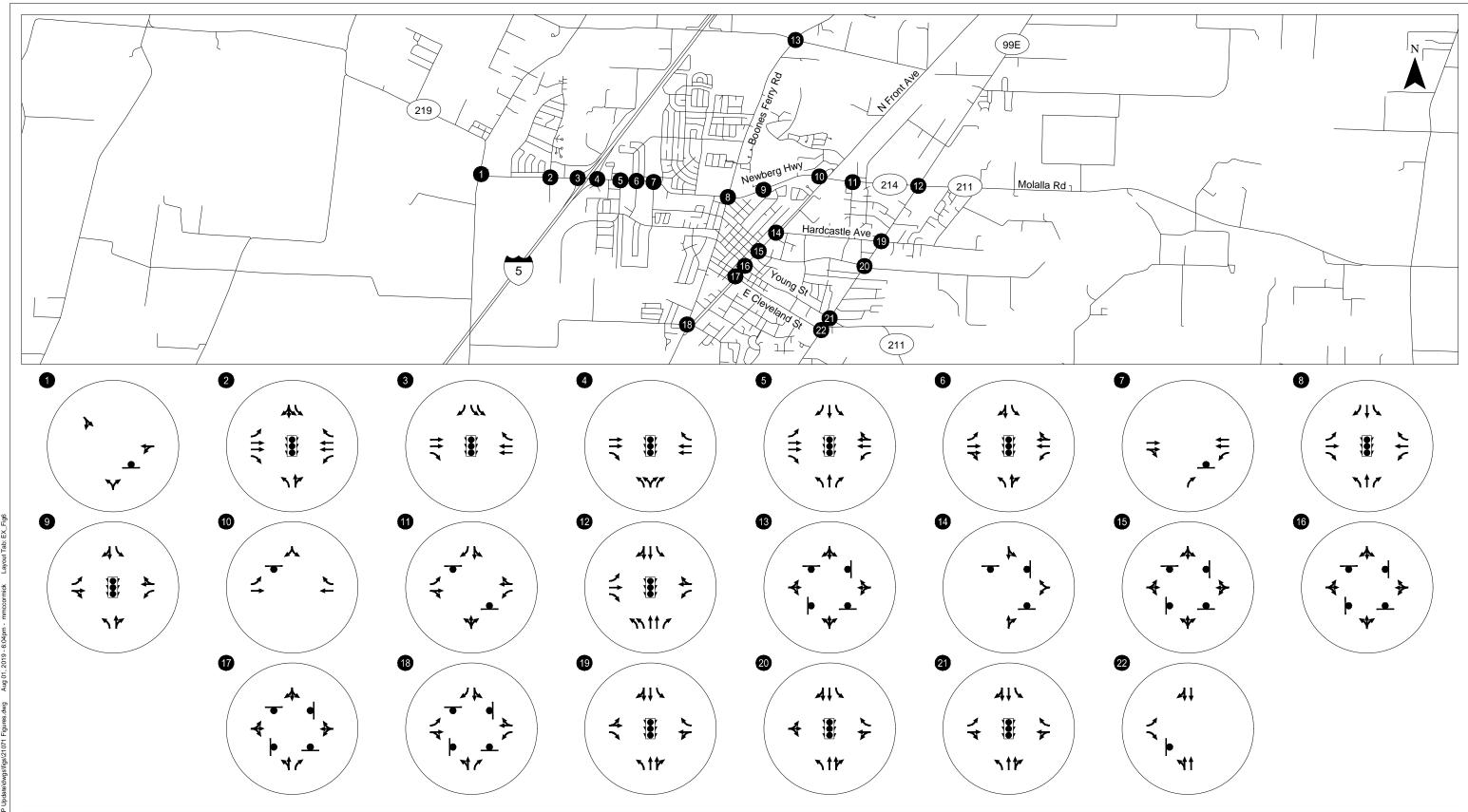
| Corridor               | Posted Speed<br>[MPH] | Number of Lanes | On-street Bike<br>Lanes | On-street Parking |
|------------------------|-----------------------|-----------------|-------------------------|-------------------|
| Hazelnut Drive         | 25                    | 2               | Yes                     | No                |
| 5 <sup>th</sup> Street | 25                    | 2               | No                      | Partial           |
| Gatch Street           | 25                    | 2               | No                      | Partial           |
| Park Avenue            | 25                    | 2               | No                      | Yes               |

## **Pavement Condition**

Woodburn evaluates the pavement condition of all City maintained streets on a rolling basis. A total of 62.20 miles were evaluated in between March 2009 and August 2015 and assigned a Pavement Conditions Index (PCI) value of 0 to 100 based on the pavement condition. A higher PCI value allows for more cost-effective treatments, such as slurry seals and thin overlays while a lower PCI (<50) may require more expensive treatments, such as thick overlays and full reconstruction. Attachment C contains historical PCI data and statistics that were provided by City staff.

## **Traffic Operations**

Traffic operations were evaluated at 22 study intersections in accordance with the assumptions and methodologies identified in the methodology memo provided in *Attachment D*. Figure 6illustrates the location of the study intersections and the existing lane configurations.


#### Traffic Volumes and Peak Hour Operations

Manual turning movement counts were conducted at the study intersections in September and October 2017 by ODOT. The counts were conducted on a typical mid-week day during the evening (4:00 to 6:00 p.m.) peak time period. The system-wide peak hour for the study intersections was identified as 4:30 to 5:30 p.m. Figure 6 provides a summary off the turning movement counts at the study intersections.

The turning movement counts on ODOT facilities were seasonally adjusted to 30<sup>th</sup> highest hour volumes (30HV) in accordance with the methodology memo. Figure 7 and Table 4 summarizes the results of the traffic operations analysis at the study intersection under existing traffic conditions. *Attachment E* contains the year 2017 existing traffic conditions worksheets.

Woodburn Transportation System Plan Update

March 2019



## - STUDY INTERSECTIONS

- STOP SIGN

- TRAFFIC SIGNAL

Existing Lane Configurations and Traffic Control Devices Woodburn, Oregon

Figure 6



Woodburn Transportation System Plan Update

March 2019



Existing Traffic Operations Woodburn, Oregon

Figure **7** 



(TWSC)

VOLUME-TO-CAPACITY RATIO
TWC = TWO-WAY STOP CONTROL

**Table 4: Weekday PM Peak Hour Intersection Operations** 

| Dan :                    |                                              | Level of<br>Service | Dalan            | Volume/           | Mobility<br>Operation |                    | MOE  |
|--------------------------|----------------------------------------------|---------------------|------------------|-------------------|-----------------------|--------------------|------|
| Map<br>ID                | Intersection                                 | (LOS)               | Delay<br>(Sec)   | Capacity<br>(V/C) | Agency                | Maximum            | Met? |
| Signalized Intersections |                                              |                     |                  |                   |                       |                    |      |
| 2                        | OR 219/Woodland Avenue                       | В                   | 19.4             | 0.48              | ODOT                  | v/c 0.95           | Yes  |
| 3                        | OR 214/I-5 Southbound Ramp                   | В                   | 14.0             | 0.55              | ODOT                  | v/c 0.85           | Yes  |
| 4                        | OR 214/I-5 Northbound Ramp                   | В                   | 16.7             | 0.55              | ODOT                  | v/c 0.85           | Yes  |
| 5                        | OR 214/Evergreen Road                        | D                   | 37.7             | 0.80              | ODOT                  | v/c 0.95           | Yes  |
| 6                        | OR 214/Oregon Way/Country Club Road          | В                   | 14.6             | 0.59              | ODOT                  | v/c 0.95           | Yes  |
| 8                        | OR 214/Boones Ferry Road NE                  | F                   | >80              | 0.99              | ODOT                  | v/c 0.95           | No   |
| 9                        | OR 214/Meridian Drive/5 <sup>th</sup> Street | В                   | 13.5             | 0.70              | ODOT                  | v/c 0.95           | Yes  |
| 12                       | OR 214/OR 211/OR 99E                         | E                   | 70.3             | 0.94              | ODOT                  | v/c 0.95           | Yes  |
| 19                       | OR 99E/Hardcastle Avenue                     | С                   | 22.9             | 0.79              | ODOT                  | v/c 0.90           | Yes  |
| 20                       | OR 99E/Lincoln Street                        | В                   | 13.4             | 0.77              | ODOT                  | v/c 0.90           | Yes  |
| 21                       | OR 99E/Young Street                          | С                   | 32.8             | 0.69              | ODOT v/c 0.90         |                    | Yes  |
|                          |                                              | Unsignalize         | ed Intersections |                   |                       | •                  |      |
| 1                        | Butteville Road/OR 219                       | С                   | 19.2             | 0.39              | ODOT                  | v/c 0.90           | Yes  |
| 7                        | Cascade Drive/OR 214                         | В                   | 14.2             | 0.09              | ODOT                  | v/c 0.95           | Yes  |
| 10                       | Front Street/OR 214                          | F                   | >50              | >1.0              | ODOT                  | v/c 0.95           | No   |
| 11                       | Park Avenue/OR 214                           | F                   | >50              | 0.96              | ODOT                  | v/c 0.95           | No   |
| 13                       | Boones Ferry Road NE/Crosby Road             | В                   | 12.0             | -                 | County                | LOS D and v/c 0.85 | Yes  |
| 14                       | Hardcastle Avenue/Front Street               | В                   | 11.6             | -                 | City                  | v/c 0.90           | Yes  |
| 15                       | Lincoln Street/Front Street                  | В                   | 14.2             | -                 | City                  | v/c 0.90           | Yes  |
| 16                       | Garfield Street/Young Street/Front Street    | В                   | 11.9             | -                 | City                  | v/c 0.90           | Yes  |
| 17                       | Cleveland Street/Front Street                | В                   | 11.0             | -                 | City                  | v/c 0.90           | Yes  |
| 18                       | Parr Road/Settlemier Avenue                  | В                   | 11.5             | -                 | City                  | v/c 0.90           | Yes  |
| 22                       | OR 99E/Cleveland Street                      | F                   | >50              | >1.0              | ODOT                  | v/c 0.90           | No   |

## Notes:

LOS = Intersection Level of Service (Signal), Critical Movement Level of Service (TWSC).

Delay = Intersection Average vehicle delay (Signal), critical movement vehicle delay (TWSC).

V/C = Intersection V/C (Signal) critical movement V/C (TWSC).

MOE = Measure of Effectiveness

As shown in Table 4, four of the study intersections currently do not operate acceptably per their respective mobility targets/operations standards. Additional information about the operations issues identified at these intersections is provided below.

## OR 214/Boones Ferry Road NE

OR 214/Boones Ferry Road NE currently operates at LOS F with a v/c ratio of 0.99, which exceeds the ODOT mobility target for the intersection. This is primarily due to high through volumes on OR 214 and high northbound and southbound left-turn volumes.

## Front Street/OR 214

Front Street/OR 214 currently operates at LOS F with a v/c ratio of 1.27 for the critical southbound movements, which exceeds the ODOT mobility target for the intersection. This is primarily due to high through volumes on OR 214 that limit the gaps where the left-turn and right-turn volumes can turn from a shared lane.

#### Park Avenue/OR 214

Park Avenue/OR 214 currently operates at LOS F with a v/c ratio of 0.95 for the critical southbound movement, which exceeds the ODOT mobility target for the intersection. This is primarily due to high through volumes on OR 214 that limit the gaps where southbound vehicles may enter the intersection.

## OR 99E/Cleveland Street

OR 99E/Cleveland Street currently operates at LOS F with a v/c ratio of 1.16 for the critical eastbound movement, which exceeds the ODOT mobility target for the intersection. This primarily due to high through volumes on OR 99E that limit the gaps where the left-turn from Cleveland may enter the intersection.

## Queueing

A queuing analysis was conducted at the signalized study intersections. Table 5 summarizes the 95<sup>th</sup> percentile queues during the weekday p.m. peak hour under existing traffic conditions. The vehicle queue and storage lengths were rounded to the nearest 25-feet. The storage lengths reflect the striped storage for each movement at the intersections.

**Table 5: Weekday PM Peak Hour Queuing** 

| Map<br>ID | Intersection                  | Movement | 95 <sup>th</sup> Percentile<br>Queue | Storage Length<br>(feet) | Adequate? |
|-----------|-------------------------------|----------|--------------------------------------|--------------------------|-----------|
|           |                               | EBL      | 50                                   | 225                      | Yes       |
|           |                               | EBR      | <25                                  | 150                      | Yes       |
| 2         | OR 219/Woodland Avenue        | WBL      | 50                                   | 225                      | Yes       |
| 2         | OK 219/ Woodiand Avenue       | WBR      | <25                                  | 100                      | Yes       |
|           |                               | NBL      | <25                                  | 100                      | Yes       |
|           |                               | SBL      | 225                                  | 350                      | Yes       |
|           |                               | EBR      | <25                                  | 275                      | Yes       |
| 3         | OR 214/I-5 Southbound Ramp    | WBR      | <25                                  | 525                      | Yes       |
| 3         | OK 214/1-3 30utilboullu kamp  | SBL      | 200                                  | 650                      | Yes       |
|           |                               | SBR      | 125                                  | 425                      | Yes       |
|           |                               | EBR      | <25                                  | 575                      | Yes       |
| 4         | OR 214/I-5 Northbound Ramp    | WBR      | m<25                                 | 400                      | Yes       |
| 4         | OK 214/1-3 NOTHIDOUTIU KAITIP | NBL      | 200                                  | 600                      | Yes       |
|           |                               | NBR      | 175                                  | 275                      | Yes       |
| 5         | OR 214/Evergreen Road         | EBL      | m75                                  | 175                      | Yes       |

| Map<br>ID | Intersection                                 | Movement | 95 <sup>th</sup> Percentile<br>Queue | Storage Length<br>(feet) | Adequate? |
|-----------|----------------------------------------------|----------|--------------------------------------|--------------------------|-----------|
|           |                                              | EBR      | 50                                   | 300                      | Yes       |
|           |                                              | WBL      | #200                                 | 375                      | Yes       |
|           |                                              | NBL      | #350                                 | 325                      | No        |
|           |                                              | NBR      | 50                                   | 325                      | Yes       |
|           |                                              | SBL      | 25                                   | 75                       | Yes       |
|           |                                              | SBR      | <25                                  | 75                       | Yes       |
|           |                                              | EBL      | m<25                                 | 300                      | Yes       |
|           | OP 314/Orogon Wood Country Club Dood         | WBL      | <25                                  | 175                      | Yes       |
| 6         | OR 214/Oregon Way/Country Club Road          | NBL      | 25                                   | 150                      | Yes       |
|           |                                              | SBL      | 75                                   | 50                       | No        |
|           |                                              | EBL      | 150                                  | 250                      | Yes       |
|           |                                              | EBR      | 100                                  | 200                      | Yes       |
|           |                                              | WBL      | 175                                  | 225                      | Yes       |
| _         |                                              | WBR      | 50                                   | 150                      | Yes       |
| 8         | OR 214/Boones Ferry Road NE                  | NBL      | #450                                 | 275                      | No        |
|           |                                              | NBR      | 50                                   | 100                      | Yes       |
|           |                                              | SBL      | 175                                  | 175                      | No        |
|           |                                              | SBR      | 75                                   | 775                      | Yes       |
|           |                                              | EBL      | <25                                  | 100                      | Yes       |
|           |                                              | WBL      | <25                                  | 150                      | Yes       |
| 9         | OR 214/Meridian Drive/5 <sup>th</sup> Street | NBL      | 50                                   | 150                      | Yes       |
|           |                                              | SBL      | 50                                   | 50                       | Yes       |
|           |                                              | EBL      | 200                                  | 250                      | Yes       |
|           |                                              | WBL      | #300                                 | 225                      | No        |
| 12        | OR 214/OR 211/OR 99E                         | NBL      | 125                                  | 250                      | Yes       |
|           |                                              | NBR      | m<25                                 | 200                      | Yes       |
|           |                                              | SBL      | #300                                 | 225                      | No        |
|           |                                              | EBR      | <25                                  | 50                       | Yes       |
| 4.0       | OR OOF / Landard Land                        | WBR      | <25                                  | 75                       | Yes       |
| 19        | OR 99E/Hardcastle Avenue                     | NBL      | m<25                                 | 75                       | Yes       |
|           |                                              | SBL      | m<25                                 | 75                       | Yes       |
|           |                                              | WBR      | <25                                  | 50                       | Yes       |
| 20        | OR 99E/Lincoln Street                        | NBL      | m<25                                 | 75                       | Yes       |
|           |                                              | SBL      | m<25                                 | 100                      | Yes       |
|           |                                              | EBL      | #200                                 | 25                       | No        |
|           | 00.005 %                                     | WBR      | 175                                  | 50                       | No        |
| 21        | OR 99E/Young Street                          | NBL      | 25                                   | 50                       | Yes       |
|           |                                              | SBL      | m150                                 | 50                       | No        |

Where WB = Westbound, SB = Southbound, EB = Eastbound, NB = Northbound, L = Left, R = Right  $\#: 95^{th}$  percentile volume exceeds capacity, queue may be longer.

As shown in Table 5, five study intersections currently have 95<sup>th</sup> percentile queues that exceed the stripped storage for the movements.

m: Volume for 95<sup>th</sup> percentile queue is metered by upstream signal.

## **Traffic Safety**

#### **Intersection Crashes**

The crash history of the study intersections was reviewed in an effort to identify any potential safety issues that could be addressed as part of the TSP update. ODOT provided crash records for the five-year period from January 1, 2011 through December 31, 2015 for the 22 study intersections. The data provided by ODOT is summarized in Table 6.

Table 6: Intersection Crash Summary (January 1, 2011 to December 31, 2015)

|           |                                              | C     | rash Severi | ash Severity Crash Type |              |         |       |     |                    |                  |
|-----------|----------------------------------------------|-------|-------------|-------------------------|--------------|---------|-------|-----|--------------------|------------------|
| Map<br>ID | Intersection                                 | Fatal | Injury      | PDO <sup>1</sup>        | Rear-<br>end | Turning | Angle | Ped | Other <sup>2</sup> | Total<br>Crashes |
| 1         | Butteville Road/OR 219                       | 0     | 1           | 7                       | 4            | 1       | 0     | 0   | 3                  | 8                |
| 2         | OR 219/Woodland Avenue                       | 0     | 0           | 2                       | 0            | 1       | 1     | 0   | 0                  | 2                |
| 3         | OR 214/I-5 Southbound Ramp                   | 0     | 10          | 11                      | 18           | 0       | 0     | 0   | 3                  | 21               |
| 4         | OR 214/I-5 Northbound Ramp                   | 0     | 6           | 3                       | 3            | 4       | 0     | 0   | 2                  | 9                |
| 5         | OR 214/Evergreen Road                        | 0     | 22          | 20                      | 16           | 20      | 3     | 1   | 2                  | 42               |
| 6         | OR 214/Oregon Way/Country<br>Club Road       | 0     | 10          | 5                       | 8            | 5       | 1     | 1   | 0                  | 15               |
| 7         | Cascade Drive/OR 214                         | 0     | 3           | 1                       | 1            | 2       | 0     | 0   | 1                  | 4                |
| 8         | OR 214/Boones Ferry Road NE                  | 0     | 4           | 3                       | 2            | 3       | 1     | 0   | 1                  | 7                |
| 9         | OR 214/Meridian Drive/5 <sup>th</sup> Street | 0     | 5           | 4                       | 7            | 2       | 0     | 0   | 0                  | 9                |
| 10        | Front Street/OR 214                          | 0     | 2           | 5                       | 2            | 3       | 0     | 0   | 2                  | 7                |
| 11        | Park Avenue/OR 214                           | 0     | 7           | 9                       | 9            | 2       | 4     | 0   | 0                  | 16               |
| 12        | OR 214/OR 211/OR 99E                         | 0     | 16          | 19                      | 25           | 5       | 1     | 2   | 2                  | 35               |
| 13        | Boones Ferry Road NE/Crosby<br>Road          | 0     | 0           | 0                       | 0            | 0       | 0     | 0   | 0                  | 0                |
| 14        | Hardcastle Avenue/Front Street               | 0     | 2           | 2                       | 0            | 3       | 1     | 0   | 0                  | 4                |
| 15        | Lincoln Street/Front Street                  | 0     | 3           | 2                       | 1            | 0       | 4     | 0   | 0                  | 5                |
| 16        | Garfield Street/Young<br>Street/Front Street | 0     | 3           | 4                       | 0            | 4       | 3     | 0   | 0                  | 7                |
| 17        | Cleveland Street/Front Street                | 0     | 2           | 0                       | 0            | 0       | 2     | 0   | 0                  | 2                |
| 18        | Parr Road/Settlemier Avenue                  | 0     | 2           | 0                       | 0            | 1       | 1     | 0   | 0                  | 2                |
| 19        | OR 99E/Hardcastle Avenue                     | 0     | 8           | 6                       | 4            | 6       | 2     | 1   | 1                  | 14               |
| 20        | OR 99E/Lincoln Street                        | 0     | 5           | 5                       | 5            | 4       | 0     | 1   | 0                  | 10               |
| 21        | OR 99E/Young Street                          | 0     | 18          | 18                      | 5            | 16      | 11    | 1   | 3                  | 36               |
| 22        | OR 99E/Cleveland Street                      | 0     | 12          | 9                       | 4            | 13      | 3     | 0   | 1                  | 21               |

<sup>&</sup>lt;sup>1</sup>Property Damage Only

Critical crash rates were calculated for each of the study intersections following the analysis methodology presented in ODOT's SPR 667 Assessment of Statewide Intersection Safety Performance. SPR 667 provides average crash rates at a variety of intersection configurations in Oregon based on number of approaches and traffic control types. The average crash rate represents the approximate number of crashes that are "expected" at a study intersection. The intersection critical crash rate

<sup>&</sup>lt;sup>2</sup>Other includes head-on, sideswipe, no collision, and fixed object

<sup>&</sup>lt;sup>3</sup>From ODOT Critical Crash Rate Calculator

assessment for the study intersections is summarized in Table 7. Attachment C contains the crash data provided by ODOT and the critical crash rate worksheet.

**Table 7: Intersection Critical Crash Rate Assessment** 

| Map<br>ID | Intersection                                 | Total Crashes | Critical Crash<br>Rate by<br>Intersection | Critical Crash<br>Rate by<br>Volume | Observed<br>Crash Rate at<br>Intersection | Observed<br>Crash<br>Rate>Critical<br>Crash Rate? |
|-----------|----------------------------------------------|---------------|-------------------------------------------|-------------------------------------|-------------------------------------------|---------------------------------------------------|
| 1         | Butteville Road/OR 219                       | 8             | 0.30                                      | 0.41                                | 0.46                                      | Yes                                               |
| 2         | OR 219/Woodland Avenue                       | 2             | 0.72                                      | 0.37                                | 0.08                                      | No                                                |
| 3         | OR 214/I-5 Southbound Ramp                   | 21            | 0.65                                      | 0.56                                | 0.41                                      | No                                                |
| 4         | OR 214/I-5 Northbound Ramp                   | 9             | 0.64                                      | 0.55                                | 0.17                                      | No                                                |
| 5         | OR 214/Evergreen Road                        | 42            | 0.65                                      | 0.56                                | 0.88                                      | Yes                                               |
| 6         | OR 214/Oregon Way/Country Club Road          | 15            | 0.67                                      | 0.43                                | 0.37                                      | No                                                |
| 7         | Cascade Drive/OR 214                         | 4             | 0.24                                      | 0.44                                | 0.11                                      | No                                                |
| 8         | OR 214/Boones Ferry Road NE                  | 7             | 0.65                                      | 0.56                                | 0.14                                      | No                                                |
| 9         | OR 214/Meridian Drive/5 <sup>th</sup> Street | 9             | 0.70                                      | 0.45                                | 0.29                                      | No                                                |
| 10        | Front Street/OR 214                          | 7             | 0.25                                      | 0.45                                | 0.21                                      | No                                                |
| 11        | Park Avenue/OR 214                           | 1             | 0.34                                      | 0.45                                | 0.47                                      | Yes                                               |
| 12        | OR 214/OR 211/99E                            | 35            | 0.64                                      | 0.55                                | 0.64                                      | Yes                                               |
| 13        | Boones Ferry Road NE/Crosby Road             | 0             | 0.43                                      | 0.35                                | 0.00                                      | No                                                |
| 14        | Hardcastle Avenue/Front Street               | 4             | 0.34                                      | 0.36                                | 0.32                                      | No                                                |
| 15        | Lincoln Street/Front Street                  | 5             | 0.44                                      | 0.35                                | 0.39                                      | Yes                                               |
| 16        | Garfield Street/Young Street/Front Street    | 7             | 0.43                                      | 0.44                                | 0.51                                      | Yes                                               |
| 17        | Cleveland Street/Front Street                | 2             | 0.47                                      | 0.38                                | 0.19                                      | No                                                |
| 18        | Parr Road/Settlemier Avenue                  | 2             | 0.44                                      | 0.35                                | 0.15                                      | No                                                |
| 19        | OR 99E/Hardcastle Avenue                     | 14            | 0.65                                      | 0.56                                | 0.29                                      | No                                                |
| 20        | OR 99E/Lincoln Street                        | 10            | 0.66                                      | 0.56                                | 0.22                                      | No                                                |
| 21        | OR 99E/Young Street                          | 36            | 0.65                                      | 0.56                                | 0.73                                      | Yes                                               |
| 22        | OR 99E/Cleveland Street                      | 21            | 0.25                                      | 0.44                                | 0.62                                      | Yes                                               |

As shown in Table 7, the observed crash rate at eight of the study intersections exceeds the critical crash rate by intersection type, by volume, or by both.

## Butteville Road/OR 219

The crash data summarized in Table 6 shows a high percentage of rear-end crashes at the intersection. Of the four rear-end crashes observed in the five years of data, all four occurred on the south leg of the intersection as vehicles were exiting Butteville Road. Three of the crashes were caused by a driver following too closely.

## OR 214/Evergreen Road

While there are a high number of reported crashes at the OR 214/Evergreen Road intersection, it should be noted that this intersection was upgraded as part of the I-5/OR 214 interchange

reconstruction project which was completed in 2016. All of the reported crash data precedes these improvements.

### Park Avenue/OR 214

The crash data summarized in Table 6 shows a higher percentage of rear-end crashes at the intersection. Of the nine rear-end crashes observed in the five years of data, five occurred on the west leg of the intersection and four occurred on the east leg. Seven of the rear-end crashes were caused by a driver following too closely.

## OR 214/OR 211/OR 99E

The crash data summarized in Table 6 shows a higher percentage of rear-end crashes at the intersection. Of the 25 rear-end crashes observed in the five years of data, seven occurred on both the east and west legs of the intersection, and 18 of the crashes were caused by a driver following too closely.

## Lincoln Street/Front Street

The crash data summarized in Table 6 shows a higher percentage of angle crashes at the intersection. Of the four angle crashes observed in the five years of data, three of the crashes were caused by a driver not yielding the right-of-way.

## Garfield Street/Young Street/Front Street

The crash data summarized in Table 6 shows a higher percentage of turning movement crashes at the intersection. Of the four turning movement crashes observed in the five years of data, all four involved vehicles traveling westbound from Young Street.

### OR 99E/Young Street

The crash data summarized in Table 6 shows a higher percentage of turning movement crashes at the intersection. Of the 16 rear-end crashes observed in the five years of data, six of the crashes involved eastbound through movements and six involved southbound left-turn movements. 12 of the crashes were caused by a driver not yielding the right-of-way.

### OR 99E/Cleveland Street

The crash data summarized in Table 6 shows a higher percentage of turning movement crashes at the intersection. Of the 13 turning movement crashes observed in the five years of data, all 13 involved southbound through movements on OR 99E. All 13 turning movement crashes were caused by a driver failing to yield the right-of-way.

## Study Area Crashes

The crash history of the overall study area was also reviewed in an effort to identify any potential systemic safety issues or issues with pedestrian and bicycle safety that could be addressed as part of the TSP update. Crash records were obtained from ODOT for the five-year period from January 1, 2011 through December 31, 2015 for the overall study area. Figure 8 illustrates the location, severity, and type of crashes that occurred within the study area over the five-year period. Based on the data, a total of 1,096 crashes occurred within Woodburn, of which one resulted in a fatality, 529 resulted in injuries, and 566 resulted in property-damage-only. The fatal, severe injury, pedestrian, and bicycle crashes are described below.

## Fatal Injury Crashes

One fatal injury crash occurred within the city over the last five-year period. The crash involved a pedestrian and is described below under the pedestrian crashes section.

### Severe Injury Crashes

A total of 18 severe injury crashes (identified as crashes with type A injuries) occurred within the city over the last five-year period. Of the 18 severe injury crashes, seven involved a pedestrian. The pedestrian crashes are described below. The remaining 11 crashes occurred along I-5, OR 99E, Evergreen Road, Front Street, and Vanderbeck Lane. Five of the remaining crashes were caused by motorists not yielding right-of-way, two by motorists that passed a stop sign or flasher, two by motorists following too closely, one by driving faster than conditions allowed, and one made an improper turn.

#### Pedestrian Crashes

A total of 32 pedestrian-involved crashes occurred within Woodburn over the last five-year period. 15 of the crashes occurred along OR 99E, five along Evergreen Road, three along OR 214, two along Gatch Street, two along Cleveland Street, and one each on I-205, Arney Road, Astor Way, Harrison Street, and Brown Street. Of the five on Evergreen Road, three crashes occurred at the intersection with Stacy Allison Way. 22 crashes were caused by the motorist failing to yield the right-of-way, eight were caused by the non-motorist illegally present in the roadway, one motorist disregarded a traffic signal, and one non-motorist wore clothing that was not visible. All 32 pedestrian crashes involved at least one injury or fatality.

## Bicycle Crashes

A total of 12 bicycle-related crashes occurred within the city of the last five-year period. Five of the crashed occurred along OR 214, three along Settlemier Avenue, two along OR 99E, and one each on Parr Road, Vanderbeck Lane, and Bridglewood Lane. Eight of the crashes were caused by the motorist not yielding the right-of-way, three by the non-motorist present illegally in the roadway, and one by the motorist driving too fast for the conditions.

Woodburn TSP Update February 2018 CROSBY RD WOODBURN
Transportation System Plan Update WOODLAND AV DECONINCK RD PARR RD PARR RD Fatal Crash Fatal Crash Ped Involved Fatal Crash Bike Involved Injury Crash Injury Crash Bike Involved Injury Crash Ped Involved PDO Bike Involved 1,000 2,000 3,000 Feet PDO Ped Involved City Boundary **Reported Crashes from 2011 to 2015** Figure Urban Growth Boundary Woodburn, Oregon

11 of the bicycle crashes involved at least one injury. The one fatal crash involved a cyclist near the intersection of OR 99E/Mount Jefferson Avenue. Conditions were reported as dark and rainy. The motorist did not yield the right-of-way and the non-motorist was also illegally in the roadway and wearing non-visible clothing.

## Safety Priority Index System

The ODOT Statewide Priority Index System (SPIS) identifies sites along state highways where safety issues warrant further investigation. The SPIS is a method developed by ODOT for identifying hazardous locations on state highways through consideration of crash frequency, crash rate, and crash severity. Sites identified within the top 5 percent are investigated by ODOT staff and reported to the Federal Highway Administration (FHWA). Per the most recent SPIS list, the OR 214/Evergreen Road intersection is identified by ODOT as within the top five percent of crash sites over the last five-year period. Several other locations within Woodburn are identified as within the top 10 percent of crash sites over the last five-year period including:

- I-5 from milepost 271.63 to milepost 271.76, including the interchange with OR 214
- OR 99E/Tomlin Avenue
- OR 214 from milepost 36.77 to 36.95, including the I-5 interchange
- OR 214/Oregon Way
- OR 214 from milepost 39.15 to 39.26, close to OR 99E

### PEDESTRIAN SYSTEM

The pedestrian system within Woodburn consists of sidewalks and trails as well as marked and unmarked, signalized and unsignalized pedestrian crossings. These facilities provide local residents with the ability to access transit as well as local retail, commercial, recreational, and other land uses by foot. Safe and convenient pedestrian facilities are essential to a vibrant community and economy within the city.

#### **Pedestrian Facilities**

In order to assess the adequacy of bicycle facilities in Woodburn, a GIS data inventory was created to reflect of the presence of sidewalks and other pedestrian facilities along the city's major arterial, minor arterial, service collector, access streets, and local streets. Figure 9 shows the existing pedestrian facilities within Woodburn. The following provides a summary of the facilities, including existing gaps and deficiencies.

#### Sidewalks

Sidewalks are currently provided along a majority of arterial and collector streets within the city as well as many local streets. However, there are gaps on some roadways such as the southern sections of 99E, a small segment of Evergreen Road (between Hayes Street and Stacy Allison Way), Hardcastle Avenue, Hayes Street, Settlemier Avenue (south of Front Street), and undeveloped portions of Boones Ferry Road. Sidewalks are provided in newer commercial and residential areas, while some older neighborhoods were developed without sidewalks.

#### Crosswalks

The majority of crosswalks throughout the city are located at intersections. At improved intersections, the crosswalks generally provide ADA-compliant curb ramps and are in acceptable conditions. Some crosswalk locations throughout the city need new striping.

#### Shared-use Paths and Trails

There are several shared-use paths and trails located in Woodburn as noted below.

• Mill Creek Greenway Trail – A portion of the Mill Creek Greenway trail has been constructed in the southern part of Woodburn as shown in Figure 9. This completed segment of trail currently connects Hermanson Street and the adjacent residential neighborhood to Cleveland Street along the Mill Creek. Future extensions of this trail are envisioned as part of the Mill Creek Greenway Master Plan. Woodburn TSP Update February 2018 CROSBY RD WOODBURN
Transportation System Plan Update CARL RD WOODLAND AV DECONINCK RD **Enhanced Crossing** Sidewalks JENSEN RD 1,000 2,000 3,000 Feet Multi-Use Pathway

City Boundary

Urban Growth Boundary

Figure

**Existing Pedestrian Facilities** 

Woodburn, Oregon

- Senior Estates Park A gravel trail exists within Senior Estates Park that is primarily used for recreation. However, it was included in this inventory as the trail has multiple connections to the adjacent residential neighborhood.
- Parr Road A segment of Parr Road between Settlemier Avenue and Heritage Elementary School currently has a separated multi-use travelway. The travelway is located on the south side of Parr Road and is essentially a wide sidewalk that is set back from the older adjacent Parr Road sidewalk. It has been included in this inventory as a shared-use pathway given the number of students who use it to access Heritage Elementary School.

## Safe Routes to School

Woodburn does not have a city-wide Safe Routes to School (SRTS) program, which is a program designed to encourage students to walk to school by improving infrastructure along streets that provide access to local schools as well as providing education programs, driver enforcement programs, and more. This TSP update will serve as a catalyst to begin discussions and implementation of a SRTS program in the city and identify infrastructure projects that will provide better access to local schools.

## **Pedestrian Activity**

Pedestrian counts were conducted at the study intersections in September and October 2017. 16-hour counts were conducted on a typical mid-week day when school was in session. All of the counts include the total number of pedestrians that entered the intersections in 15-minute intervals. The pedestrian counts show a relatively low level of pedestrian activity at the study intersections in general. It should be noted that while the peak hour for vehicular traffic typically occurs between 4:00 to 6:00 p.m., the peak hour for pedestrian activity near schools and other activity centers typically occurs earlier in the day. The pedestrian count data is shown in Table 8.

**Table 8: PM Peak Hour Pedestrian Crossing Volumes at Study Intersections** 

| Map<br>ID | Intersection                                 | North/South Pedestrian<br>Volume | East/West Pedestrian<br>Volume | Pedestrian Peak Hour     |
|-----------|----------------------------------------------|----------------------------------|--------------------------------|--------------------------|
| 1         | Butteville Road/OR 219                       | 2                                | 0                              | 1:00 to 2:00 p.m.        |
| 2         | OR 219/Woodland Avenue                       | 0                                | 1                              | 6:00 to 7:00 p.m.        |
| 3         | OR 214/I-5 Southbound Ramp                   | 0                                | 1                              | 4:30 to 5:30 p.m.        |
| 4         | OR 214/I-5 Northbound Ramp                   | 0                                | 1                              | 4:30 to 5:30 p.m.        |
| 5         | OR 214/Evergreen Road                        | 0                                | 4                              | 5:00 to 6:00 p.m.        |
| 6         | OR 214/Oregon Way/Country Club Road          | 0                                | 2                              | 10:30 to 11:30 a.m.      |
| 7         | Cascade Drive/OR 214                         | 1                                | 1                              | 10:00 to 11:00 a.m.      |
| 8         | OR 214/Boones Ferry Road NE                  | 3                                | 1                              | 3:15 to 4:15 p.m.        |
| 9         | OR 214/Meridian Drive/5 <sup>th</sup> Street | 3                                | 1                              | 12:45 to 1:45 p.m.       |
| 10        | Front Street/OR 214                          | 1                                | 1                              | 5:15 to 6:15 p.m.        |
| 11        | Park Avenue/OR 214                           | 1                                | 5                              | 2:15 to 3:15 p.m.        |
| 12        | OR 214/OR 211/OR 99E                         | 1                                | 0                              | 4:00 to 5:00 p.m.        |
| 13        | Boones Ferry Road NE/Crosby Road             | 2                                | 0                              | 10:15 to 11:15 a.m.      |
| 14        | Hardcastle Avenue/Front Street               | 4                                | 3                              | 12:30 to 1:30 p.m.       |
| 15        | Lincoln Street/Front Street                  | 2                                | 5                              | 2:00 to 3:00 p.m.        |
| 16        | Garfield Street/Young Street/Front Street    | 5                                | 0                              | 4:30 to 5:30 p.m.        |
| 17        | Cleveland Street/Front Street                | 5                                | 1                              | 12:15 to 1:15 p.m.       |
| 18        | Parr Road/Settlemier Avenue                  | 4                                | 2                              | 11:45 a.m. to 12:45 p.m. |
| 19        | OR 99E/Hardcastle Avenue                     | 3                                | 1                              | 2:00 to 3:00 p.m.        |
| 20        | OR 99E/Lincoln Street                        | 3                                | 1                              | 2:30 to 3:30 p.m.        |
| 21        | OR 99E/Young Street                          | 0                                | 5                              | 11:45 a.m. to 12:45 p.m. |
| 22        | OR 99E/Cleveland Street                      | 4                                | 0                              | 1:45 to 2:45 p.m.        |

## Pedestrian Level of Traffic Stress Analysis

The pedestrian facilities located along the city's major arterial, minor arterial, service collector, and access streets were evaluated in an effort to identify potential issues that could be addressed as part of the TSP update. The APM provides a methodology for evaluating pedestrian facilities within urban and rural environments called Pedestrian Level of Traffic Stress (PLTS). As applied by ODOT, this methodology classifies four levels of traffic stress that a pedestrian can experience on the roadway, ranging from PLTS 1 (little traffic stress) to PLTS 4 (high traffic stress). A road segment that is rated PLTS 1 generally has low traffic volumes and travel speeds and has a sidewalk that is separated from vehicular traffic. These segments are generally suitable for all users, including children. A road segment that is rated PLTS 4 generally has high traffic volumes and travel speeds and is perceived as unsafe by most adults. Road segments rated PLTS 4 also include those with no sidewalks or other pedestrian facilities. Per the APM, PLTS 2 is considered a reasonable target for most pedestrian facilities due to its acceptability with the majority of people.

The PLTS score is based on four criteria, including sidewalk condition, physical buffer type, total buffering width, and general land use. All four criteria are scored from 1 to 4 and the highest score

determines the overall score for the road segment. Figure 10 illustrates the results of the PLTS analysis for Woodburn's major arterial, minor arterial, service collector, and access streets.

Several road segments are rated PLTS 3 due to having curb-tight sidewalks on roadways with speeds of 30 mph or higher. In order for these segments to be rated LTS 2, the speeds would need to be reduced to 25 mph or a buffer would need to be installed between the sidewalk and vehicle travel lane. A majority of the segments rated PLTS 4 have no sidewalks or other pedestrian facilities to accommodate pedestrians. In order for these segments to be rated PLTS 2, sidewalks with appropriate sidewalk and buffer widths would need to be installed along the full length of the roadway. The PLTS calculations are summarized in *Attachment B*.

## **Existing Gaps and Deficiencies**

Streets with no sidewalks or intermittent sidewalks force pedestrians to walk along the edge of the travel lane or use the shoulder if available. In many cases, this is not a desirable option for pedestrians due to narrow lane widths or uneven pavement conditions. Similarly, streets with no crosswalks or limited crosswalks force pedestrians to make unsafe or illegal crossings. Adequate pedestrian facilities should be provided to allow for safe travel between neighborhoods and essential destinations. The following provides a summary of the existing gaps and deficiencies in the existing pedestrian system:

- There are several major and minor arterial streets that currently do not have sidewalks along one or two sides of the roadway. These streets include:
  - OR 99E intermittent gaps between Hardcastle Avenue and Young Street
  - OR 211 east of June Way to east city limits
  - OR 214 east of 993 to east city limits
  - OR 219 west of Willow Street to west city limits
  - Butteville Road south of OR 219 to south city limits
  - Evergreen Road Stacy Allison Way to Hayes Street
  - Settlemier Avenue Parr Road to Oak Street (east side)
  - Young Street intermittent gaps between Front Street and 99E (south side)
  - Front Street just north of Hazelnut Drive to north city limits (west side)
  - Boones Ferry Road Hazelnut Drive to north city limits
- There are multiple gaps in the sidewalk network along the Service Collector facilities. Significant gaps include:
  - Hayes Street Evergreen Road to Settlemier Avenue (north side)
  - Parr Road Centennial Park to west city limits (north and south side)
  - Lincoln Street Gatch Street to 99E (south side)

Woodburn TSP Update February 2018 WOODBURN
Transportation System Plan Update EAGLE DR STAFNEY LN CASCADE W LINCOLN ST DECONINCK RD LE BRUN RD RYE ST BARLEY ST & OATS ST PARR RD PLTS 1 PLTS 2 PLTS 3 1,000 2,000 3,000 Feet PLTS 4 City Boundary **Existing Pedestrian Level of Traffic Stress** Figure Urban Growth Boundary 10 Woodburn, Oregon

- Hardcastle Avenue Gatch Street to Park Street (south side)
- Progress Way
- Industrial Avenue
- There are also multiple local streets that currently do not have sidewalks along one or two sides of the roadway. These are primarily in the residential neighborhood located north of OR 214 and west of Astor Way. Other neighborhoods with intermittent sidewalks are located south of Cleveland Street and east of Ogle Street.

#### PIPELINE SYSTEM

There are no major pipeline transport facilities within the Woodburn UGB.

## RAIL SYSTEM

## Freight Rail

Union Pacific Railroad operates a Class I rail line through Woodburn. These tracks parallel the east side of Front Street. A total of five at-grade crossings and one grade separated crossing exist along the rail line. Willamette Valley Railway operates a Shortline Railroad track that parallels the north side of Cleveland Street in the south side of town. A total of five public at-grade crossings exist along this rail line. In addition to these crossings, the rail line serves multiple local businesses along the corridor.

## Passenger Rail

There are currently no passenger rail terminals in Woodburn. The closest passenger rail terminal is located in Salem, approximately 20 miles to the south. The Amtrak station in Salem operates from 6:30 AM to 4:30 PM.

## TRANSIT SYSTEM

The public transit system within Woodburn consists of fixed-route and paratransit services as well as school and shuttle bus service.

#### Woodburn Transit Service - Fixed-Route Service

Woodburn Transit Service operates a fixed-route bus line in Woodburn, providing connections throughout town as shown in Figure 11. As shown, fixed-route transit service is provided along the major east-west corridors linking neighborhoods to all major retail and commercial areas. The route also connects to the Woodburn Memorial Transit Facility located off of OR 214. Service is provided from 7:00 AM to 7:00 PM at approximately 1-hour headways.

Woodburn TSP Update February 2018 CROSBY RD WOODBURN
Transportation System Plan Update 219 WOODLAND AV HARDCASTLE AV DECONINCK RD EAST HARDCASTLE RD LE BRUN RD PARR RD Woodburn Transit Stops Woodburn City Transit Loop Canby Area Transit (CAT) Stops Canby Area Transit (CAT) Routes Cherriots Transit Stops **Cherriots Tranist Routes** 1,000 2,000 3,000 Feet Park N' Ride Lots City Boundary **Existing Transit Routes and Facilities** Figure Urban Growth Boundary

Woodburn, Oregon

11

#### Dial-A-Ride Service

Woodburn provides Dial-A-Ride service for people with disabilities and the elderly living within Woodburn who are not able to utilize the fixed route bus. The service operates Monday - Friday from 7:00 AM - 7:00 PM and utilizes a fully accessible van. The van provides door to door service for any purpose to any location within the Woodburn City limits.

The Dial-A-Ride program also arranges for volunteer drivers to take elderly Woodburn residents and those with disabilities to medical appointments in all areas between Portland and Salem. Requests for service must be made at least one day in advance.

## **Cherriots Regional**

Cherriots Regional operates the *10X Woodburn/Salem Express* bus line that provides weekday service between Salem and Woodburn along the 99E corridor. Stops are located along Front Street, OR 214, Settlemier Avenue and Downtown Woodburn. Cherriots Regional also operates the 20X *N. Marion Co./Salem Express* bus line that provides weekday services between Salem, Silverton, and Woodburn. Stops are located along OR 214 and 99E. The service operates Monday – Friday from 7:30 AM – 7:00 PM with 2 to 2.5 hour headways.

## **Canby Area Transit**

Canby Area Transit (CAT) operates the *Route 99* bus line which provides daily bus service between Woodburn and Canby along the 99E corridor. The Woodburn stop is located near the 99E/OR 214 intersection. The service operates Monday – Friday from 6:30 AM – 8:00 PM with headways that range from 1 to 2.5 hours.

### Greyhound

The Greyhound bus service provides a regional transportation option, with buses to Portland from Woodburn three times per day. The station is located on Front Street and is open from 9 a.m. to 8 p.m. everyday.

#### Park-and-Rides

The Woodburn Memorial Transit Facility (Park& Ride) is located off of Evergreen Road north of OR 214. Woodburn Transit Service regularly stops at the park & ride facility. The Cascades POINT bus service, operated by MTR Western in partnership with ODOT, makes 2 daily northbound stops and 2 daily southbound stops at the new transit facility. Riders can buy tickets to go as far as Eugene to the south, and Portland to the north. Schedule and ticket information is available at the website and the Amtrak Cascades site.

## Qualitative (Multimodal) Assessment for Transit Modes

A transit qualitative multimodal assessment was conducted in accordance with the methodology described in ODOT's APM. Transit factors that should be considered are frequency and on-time reliability, schedule speed/travel times, transit stop amenities, and connecting pedestrian/bicycle network. This methodology applies a rating system similar to that used for pavement conditions; excellent, good, fair, poor.

## Frequency and On-time Reliability

From the user's perspective, frequency determines how many times an hour a user has access to transit service, assuming that service is provided within acceptable walking distance and at the times the user wishes to travel. Frequency also helps determine the convenience of transit service to riders and is one component of overall transit trip time (helping to determine the wait time at a stop). Table 9 summarizes the ratings for frequency and on-time reliability for the three transit routes serving Woodburn.

**Table 9: Frequency and On-time Reliability Rating** 

| Provider Routes          |                            | Service Frequency               | Rating |
|--------------------------|----------------------------|---------------------------------|--------|
| Woodburn Transit Service | City Loop                  | 60 minutes <sup>1</sup>         | Fair   |
| Cherriots Regional       | 10X Woodburn/Salem Express | 120 to 150 minutes <sup>1</sup> | Poor   |
| Canby Area Transit       | 99                         | 60 to 150 minutes <sup>1</sup>  | Poor   |

<sup>1.</sup> No service is provided on Saturday or Sunday.

All three routes that provide service to Woodburn operate on long headways that can create extended wait times at stops if users do not accurately time their travel.

## Schedule Speed/Travel Times

Schedule speed and travel time refer to the time it takes to complete a transit route in full and the length of time between stops. Table 10 summarizes the ratings for schedule speed and travel time.

Table 10: Schedule Speed/Travel Times Rating

| Provider                 | Routes                     | Number of Stops    | Route Travel Time | Rating |
|--------------------------|----------------------------|--------------------|-------------------|--------|
| Woodburn Transit Service | City Loop                  | 53 (loop)          | 60 minutes        | Fair   |
| Cherriots Regional       | 10X Woodburn/Salem Express | 7 (there and back) | 50 minutes        | Fair   |
| Canby Area Transit       | 99                         | 9 (there and back) | 45 minutes        | Fair   |

Woodburn Transit Service provides a loop route that goes to 53 stops in approximately 60 minutes. Cherriots Regional provides a bus route that goes out to Salem and back to Woodburn. In one direction, the route goes to 7 stops in approximately 50 minutes. Canby Area Transit provides a bus route that goes out to Oregon City Transit Center and back to Woodburn. In one direction, the route goes to 9 stops in approximately 45 minutes.

## **Transit Stop Amenities**

Amenities at transit stops, such as bus benches and bus shelters enhance a transit system and make it more user-friendly. Steps that can make this mode as comfortable and accommodating as possible may help encourage ridership. The Woodburn system as a whole has a mix of bus shelters and bus stops signs used to mark stops. Shelters are provided at locations such as the intersection of OR 214/OR 99E, Country Club Road near Astor Way, and at the Woodburn Premium Outlets. The rating for the system is fair.

## Connecting Pedestrian/Bicycle Network

Pedestrian facilities are provided along all transit routes in Woodburn with the exception of Willow Avenue, a portion of County Club Road, and Princeton Road. There is a stop with a shelter near to the enhanced pedestrian crossing at the OR 214/Park Avenue intersection. Less of the transit route network is coordinated with the bike lane network, with the best connections provided along OR 214, Arney Road, and portions of Boones Ferry Road and OR 99E. Filling gaps existing bicycle networks would help create more of a network to support the transit system as well. The overall rating of the connection of the transit system to the pedestrian and bicycle network is fair.

## TRUCK FREIGHT SYSTEM

Efficient truck movement plays a vital role in the economical movement of raw materials and finished products. The designation of freight routes provides for this efficient movement while at the same time maintaining neighborhood livability, public safety, and minimizing maintenance costs of the roadway system. Per the Oregon Highway Plan (OHP), the only designated freight route in Woodburn is I-5. In addition, OR 214 is designated a National Network Truck Route per ODOT TransGIS information online. Lastly, the current TSP identifies several freight routes and freight ways throughout Woodburn to facilitate the movement of freight in the city. Freight routes are shown on Figure 12.

Woodburn TSP Update February 2018 CROSBY RD WOODBURN
Transportation System Plan Update ARLINGTON-AV WOODLAND AV CASCADE W LINCOLN ST HARDCASTLE AV DECONINCK RD EAST HARDCASTLE RD LINCOLN ST LE BRUN RD PARR RD **ODOT Routes** Freight Route National Network Truck Route BELLE PASSI RD **City of Woodburn Routes** Truck Route 1,000 2,000 3,000 Feet Truck Way City Boundary **Freight Routes** Figure Urban Growth Boundary **12** Woodburn, Oregon

## TRANSPORTATION SYSTEM MANAGEMENT AND OPERATIONS

Transportation System Management and Operations (TSMO) measures are designed to increase the efficiency and safety of the transportation system without physically increasing roadway capacity. Typical TSMO measures include Intelligent Transportation System (ITS) solutions, real-time traveler information, and services that respond quickly to traffic incidents. Based on discussions with City staff, there are no TSMO measures currently being employed in Woodburn.

## TRANSPORTATION DEMAND MANAGEMENT

The TPR requires all cities with populations greater than 25,000 people to develop a Transportation Demand Management (TDM) plan. TDM measures are designed to change travel behavior in order to reduce the need for more road capacity and improve performance of the road system. The TDM programs and strategies in Woodburn are primarily implemented though Woodburn Development Ordinance and include designating overlay districts that have vehicle trip budgets are specific areas in the city.

## **REVIEW OF EXISTING FUNDING**

This section summarizes the existing transportation revenue sources and expenditure history for the City of Woodburn.

#### Revenue

The City of Woodburn has historically relied upon multiple revenue sources to fund the maintenance of its transportation network and make capital improvements. These local gas tax revenue, intergovernmental (primarily state gas tax revenue), franchise fees, and other miscellaneous revenue. Table 11 displays the total revenue by source used to fund transportation projects within Woodburn over the most recent seven years that comprehensive data was available.

**Table 11: City of Woodburn Revenue History** 

| Revenue<br>Source       | FY 2016-<br>2017 | FY 2015-<br>2016 | FY 2014-<br>2015 | FY 2013-<br>2014 | FY 2012-<br>2013 | FY 2011-<br>2012 | FY 2010-<br>2011 | Average     |
|-------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|-------------|
| Taxes                   | \$129,412        | \$115,692        | \$102,517        | \$101,761        | \$106,537        | \$182,109        | \$121,196        | \$122,746   |
| Inter-<br>Government    | \$1,480,082      | \$1,454,076      | \$1,409,311      | \$1,384,277      | \$1,597,518      | \$1,312,024      | \$1,116,011      | \$1,393,328 |
| Franchise               | \$359,820        | \$357,983        | \$336,707        | \$360,046        | \$353,381        | \$326,713        | \$347,621        | \$348,896   |
| Transportation SDC Fees | \$33,396         | \$183,698        | \$440,595        | \$521,933        | \$411,527        | \$400,172        | \$153,268        | \$306,370   |
| Other                   | \$69,856         | \$59,518         | \$49,532         | \$319,086        | \$49,457         | \$88,767         | \$27,147         | \$94,766    |
| Revenue Total           | \$2,072,566      | \$2,170,967      | \$2,338,662      | \$2,687,103      | \$2,518,420      | \$2,309,785      | \$1,765,243      | \$2,266,107 |

Taxes = Local Gas Tax revenue

Inter-Government = State Gas Tax, State Fund Exchange

Other = Misc. revenue, interest income

Based on the information shown in Table 11, the City of Woodburn has generated an average of approximately \$2,266,107 per year in total revenue for transportation-related maintenance/projects.

## Expenditures

Table 12 displays the total expenditures on transportation related projects within the City of Woodburn over the last seven years.

**Table 12: City of Woodburn Expenditure History** 

| Revenue Source                 | FY 2016-<br>2017 | FY 2015-<br>2016 | FY 2014-<br>2015 | FY 2013-<br>2014 | FY 2012-<br>2013 | FY 2011-<br>2012 | FY 2010-<br>2011 | Average     |
|--------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|-------------|
| Personnel Services             | \$540,373        | \$415,289        | \$394,646        | \$410,316        | \$424,937        | \$455,991        | \$447,503        | \$441,294   |
| Materials & Services           | \$509,435        | \$561,004        | \$641,713        | \$524,962        | \$501,421        | \$738,200        | \$649,795        | \$589,504   |
| Debt Service                   | \$33,770         | \$35,020         | \$36,268         | \$37,520         | \$33,519         | \$34,278         | \$35,520         | \$35,128    |
| Maintenance                    | \$42,839         | \$38,282         | \$56,387         | \$57,485         | \$64,336         | \$75,613         | \$62,051         | \$56,713    |
| Street Construction/<br>Repair | \$397,429        | \$602,933        | \$5,089,965      | \$1,215,767      | \$1,210,247      | \$950,375        | \$1,048,338      | \$1,502,151 |
| Expenditure Total              | \$1,523,846      | \$1,652,528      | \$6,218,979      | \$2,246,050      | \$2,234,460      | \$2,254,457      | \$2,243,207      | \$2,624,790 |

Maintenance = road materials, signs, striping

Street Construction/Repair = major repairs and construction

Debt Service = Woodland Avenue/OR 219 Improvements

Based on the information shown in Table 12, the City of Woodburn has spent an average of \$2,624,790 per year on roadway related personnel/materials/debt service/maintenance/street construction/repair. The information shown in Table 11 and Table 12 were used to project the availability of future funding for transportation improvement projects as described below.

# **Projected Transportation Funding**

Table 13 provides a summary of the potential future project funding (in year 2017 dollars) over the next five, ten, and twenty years based on historical average funding levels.

**Table 13: Future Transportation Funding Projections** 

| Average Annual | 5-Year Forecast | 10—Year Forecast | 20-Year Forecast |
|----------------|-----------------|------------------|------------------|
| \$2,624,790    | \$13,123,950    | \$26,247,900     | \$52,495,800     |

As shown in Table 13, it is anticipated that approximately \$52,495,800 will be available for transportation roadway funding over the next 20 years using historical funding trends. It is anticipated that approximately half of this amount will be allocated for personnel costs, materials, debt service and maintenance of the system.

# **Potential Funding Sources**

The projected transportation funding analysis shows that the City of Woodburn will have a limited source of funds that can solely dedicated to transportation-related capital improvement projects over the next twenty years. As such, Woodburn will likely need to seek additional funds via transportation improvement grants, partnerships with regional and state agencies, and other funding sources to help implement future transportation-related improvements.

Table 14 identifies a list of potential Grant sources and Partnering Opportunities to consider during the course of the 20-year planning horizon. Following Table 14, Table 15 identifies a list of potential new funding sources for Woodburn to consider in an effort to bolster funds for additional capital improvement projects.

**Table 14: Potential Grant Sources and Partnering Opportunities** 

| Funding Source                                            | Description                                                                                                                                                                                                                                                                                                       | Potential Facility Benefit                           | Opportunities                                                                                                                                                                                               |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Statewide Transportation<br>Improvement Program<br>(STIP) | The Statewide Transportation Improvement Program (STIP) is Oregon's 4-year capital improvement program for major state and regional transportation facilities. This scheduling and funding document is updated every two years. Projects included on the STIP are allocated into the five different ODOT regions. | - Streets<br>- Sidewalks<br>- Bike lanes<br>- Trails | The next STIP (2018-2021) will be organized into two different categories that focus on projects that will fix/preserve the existing transportation network and enhance/improve the transportation network. |
| Federal Funding                                           | Large trails or trail networks with a transportation purpose can compete for TIGER grant awards. Additional significant federal funding sources include TAP, STP and CMAQ. Depending upon the location and purpose, trails can also be funded by HUD CDBG funds, USDA rural development programs, or EPA funding. | - Multi-Use Trails                                   | Projects in urban areas have traditionally been funded at a minimum of \$10,000,000 and rural trails of lower project costs are considered for TIGER funding.                                               |
| Oregon Bicycle and<br>Pedestrian Program                  | The Oregon Pedestrian and Bicycle Grant program ended as a standalone solicitation process in 2012. Grant monies are now distributed through the "Enhance" process in the STIP program noted above.                                                                                                               | See STIP above                                       | See STIP above.                                                                                                                                                                                             |
| ATV Grant Program                                         | Operation and maintenance, law enforcement, emergency medical services, land acquisition, leases, planning, development and safety education in Oregon's OHV (off-highway vehicle recreation areas).                                                                                                              | - Multi-Use Trails                                   | http://www.oregon.gov/oprd/ATV/pages/grants.aspx                                                                                                                                                            |

Table 15: Potential New Funding Sources for Consideration by the City of Woodburn

| Funding Source                              | Description                                                                                                                                                                                                                                                                                                                                      | Potential Facility Benefit                                                                                                                                 | Opportunities                                                                                                                                                                                                                                                                              |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| User Fees                                   | Fees tacked onto a monthly utility bill or tied to the annual registration of a vehicle to pay for improvements, expansion, and maintenance to the street system. This may be a more equitable assessment given the varying fuel efficiency of vehicles. Regardless of fuel efficiency, passenger vehicles do equal damage to the street system. | Primarily Street Improvements                                                                                                                              | The cost of implementing such a system could be prohibitive given the need to track the number of vehicle miles traveled in every vehicle. Additionally, a user fee specific to a single jurisdiction does not account for the street use from vehicles registered in other jurisdictions. |
| Street Utility Fees/Road<br>Maintenance Fee | The fee is based on the number of trips a particular land use generates and is usually collected through a regular utility bill. For the communities in Oregon that have adopted this approach, it provides a stable source of revenue to pay for street maintenance allowing for safe and efficient movement of people, goods, and services.    | Preservation, restoration, and reconstruction of existing paved residential streets. Includes sidewalks, ramps, curbs and gutters, and utility relocation. | Other cities have adopted street maintenance utility fees at varying amounts charged to residential meters. Woodburn could consider a similar program.                                                                                                                                     |
| Optional Tax                                | A tax that is paid at the option of the taxpayer to fund improvements. Usually not a legislative requirement to pay the tax and paid at the time other taxes are collected, optional taxes are usually less controversial and easily collected since they require the taxpayer to decide whether or not to pay the additional tax.               | - Streets<br>- Sidewalks<br>- Bike lanes<br>- Multi-Use Trails<br>- Transit                                                                                | The voluntary nature of the tax limits the reliability and stableness of the funding source.                                                                                                                                                                                               |
| Sponsorship                                 | Financial backing of a project by a private corporation or public interest group, as a means of enhancing its corporate image.                                                                                                                                                                                                                   | - Multi-Use Trails                                                                                                                                         | Sponsorship has primarily been used by transit providers to help offset the cost of providing transit services and maintaining transit related improvements.                                                                                                                               |
| Federal Funding                             | Trails with a transportation purpose can compete for TIGER grant awards. Depending upon the location and purpose, trails can also be funded by HUD, CDBG funds, USDA rural development programs, or EPA funding.                                                                                                                                 | - Trails                                                                                                                                                   | Projects in urban areas have traditionally been funded at a minimum of \$10,000,000 and rural trails of lower project costs are considered for TIGER funding.                                                                                                                              |

Attachment A

Land & Population
Inventory to Support Tech
Memo #3



MEMORANDUM

# Lands & Population Inventory to Support Tech Memo #3 (DRAFT) Woodburn TSP

DATE February 15, 2018

TO Woodburn TSP Advisory Committee

Darci Rudzinski, Clinton "CJ" Doxsee, Angelo Planning Group

Matt Hughart, Molly McCormick - Kittelson & Associates, Inc.

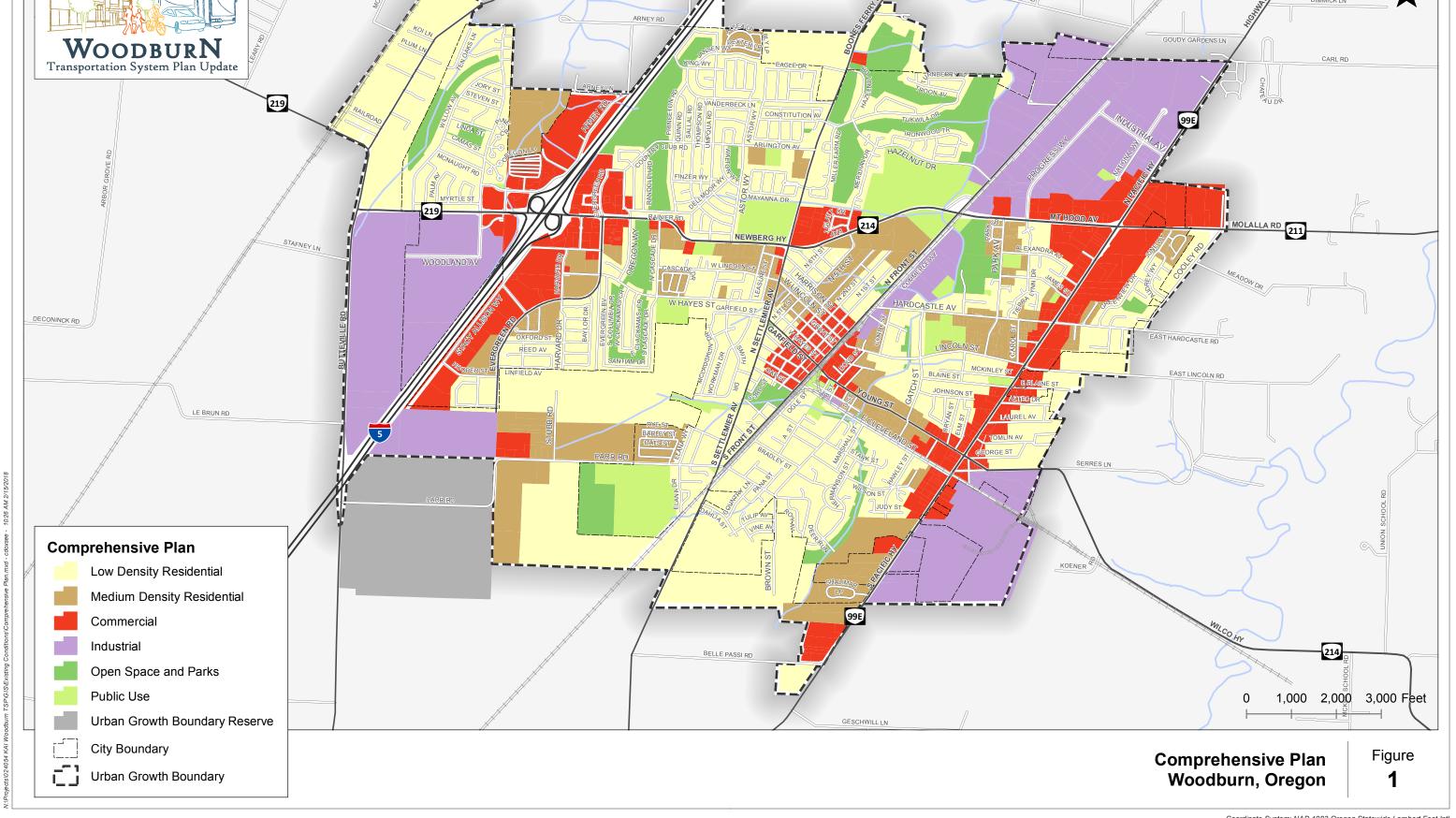
## INTRODUCTION

This memorandum provides lands and population inventory information to be included in Technical Memorandum #3: Existing Conditions for the 2017 Woodburn Transportation System Plan (TSP) update. This following information for the City of Woodburn is included:

- Comprehensive Plan and Zoning
- Vacant Land
- Natural Resource and Environmental Barriers
- Activity Centers
- Historic and Project Population Growth

## **COMPREHENSIVE PLAN AND ZONING**

Land within the City of Woodburn Urban Growth Boundary (UGB) and within city limits is subject to the City's land use and development regulations. Land use regulations are implemented through the Woodburn Development Ordinance (WDO). The following is a summary of the permitted land uses in the city and the associated requirements that govern development and redevelopment. This overview is intended to provide an indication of the type and intensity of land uses that can be expected within the planning horizon, which in turn will have an impact on future traffic generation. The number of trips specific uses generate, and where those uses are located within the community, will have a bearing on planning for appropriate types of transportation solutions.


# **Comprehensive Plan**

The Comprehensive Plan provides a long-term guide for where and how future development will occur. Figure 1 shows the Comprehensive Plan land use designations. The Comprehensive Plan

designations inform which zoning districts can be applied to an area. There are six principal Comprehensive Plan map designations within the existing UGB; Low Density Residential, Medium Density Residential, Industrial, Commercial, Open Space and Parks, and Public Use (see Figure 1).

The City's UGB is larger than the city limits; there are large areas on the periphery of the current city limits that have Comprehensive Plan land use designations that will allow for future urban expansion. The designated Urban Growth Boundary Reserve located outside the UGB near Interstate 5. The UGB reserve area will be considered a high priority area for when expansion of the UGB is necessary.

Woodburn TSP Update February 2018 CROSBY RD WOODBURN
Transportation System Plan Update WOODLAND AV DECONINCK RD LE BRUN RD



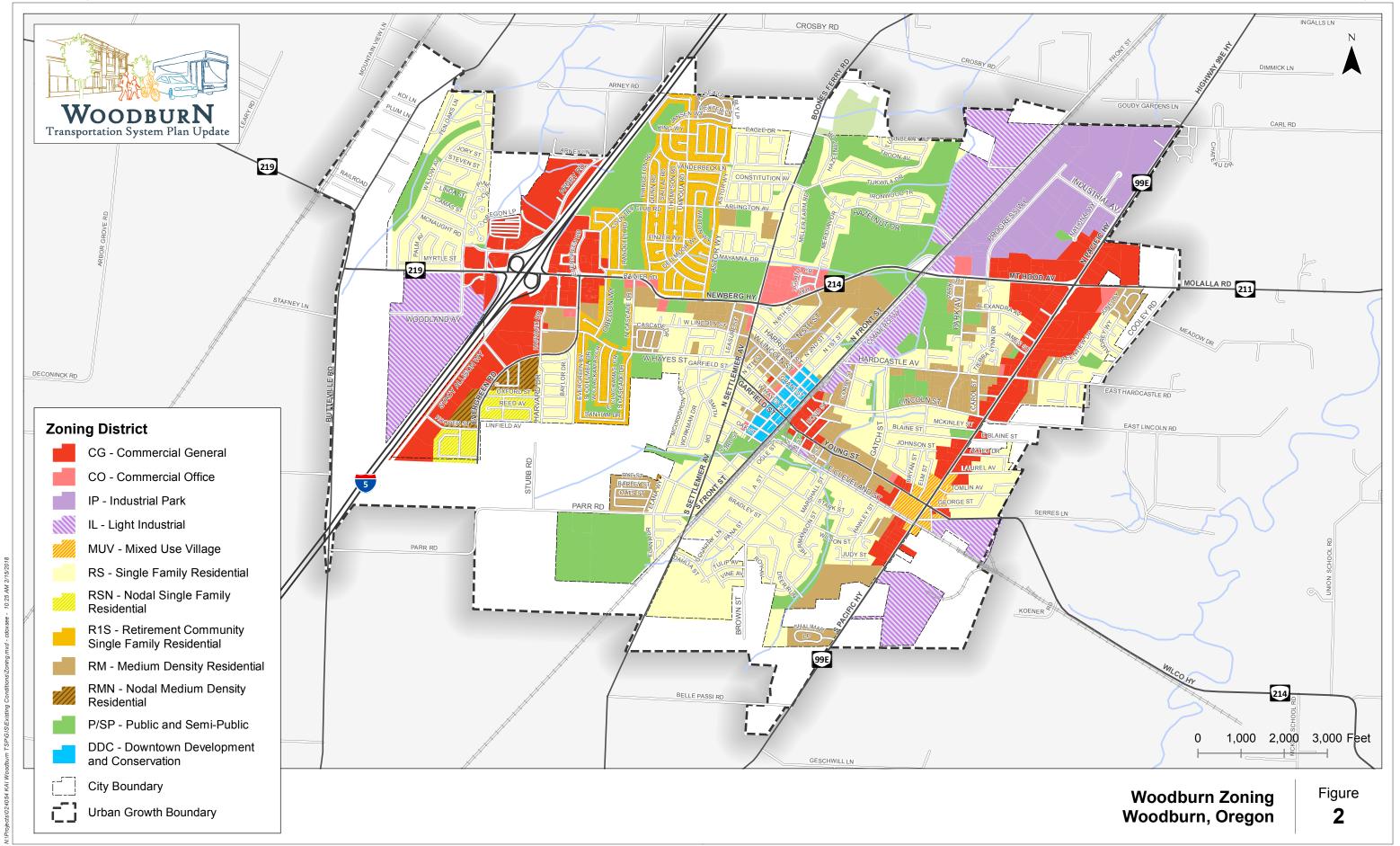
### Zoning

Figure 2 shows the location of zoning districts within the city limits. The City has 12 zones, including several commercial, industrial, and residential zoning districts. The City's zoning requirements provide the allowed uses and associated development regulations. Allowed uses and development regulations for each of the City's zones are provided for in the WDO and are summarized in Table 1.

The City's zoning is informed by the Comprehensive Plan designations; in the case of residential, commercial and industrial, multiple zones implement a single land use designation. Within the existing city limits, zoning is consistent with the Comprehensive Plan designations. As with the Comprehensive Plan map, commercial uses are focused around major and minor arterials, industrial uses are separated on the edges of city limits and residential uses are dispersed throughout the city.

Areas outside of the city limits but within the UGB will not be zoned for urban uses until they are annexed.

Table 1: Zoning Summary


|     | ZONE                                           | DESCRIPTION                                                                                                                                              |
|-----|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| RS  | Single Family Residential                      | Standard density single-family residential development (typically 6,000 square foot lots).                                                               |
| RSN | Nodal Single Family<br>Residential             | Row houses (attached single-family homes) and detached single-family homes on smaller lots (typically 4,000 square foot lots).                           |
| R1S | Retirement Community Single Family Residential | Small lot residential development for seniors, allowing single-family homes on lots as small as 3,600 square feet.                                       |
| RM  | Medium Density<br>Residential                  | Multi-family dwellings and care facilities up to 16 units per net acre.                                                                                  |
| RMN | Nodal Multi-Family<br>Residential              | Row houses, multi-family dwellings, and care facilities at higher densities than non-nodal zones.                                                        |
| DDC | Downtown Development<br>Conservation           | The community's retail core, providing for unique retail and convenient shopping.                                                                        |
| CG  | Commercial General                             | Primary commercial area, providing for businesses required extensive land intensive outdoor storage and display of merchandise, equipment, or inventory. |
| СО  | Commercial Office                              | Office type development with limited retail activity.                                                                                                    |
| MUV | Mixed Use Village                              | Provides efficient use of land that promotes employment and housing through pedestrian-oriented development.                                             |

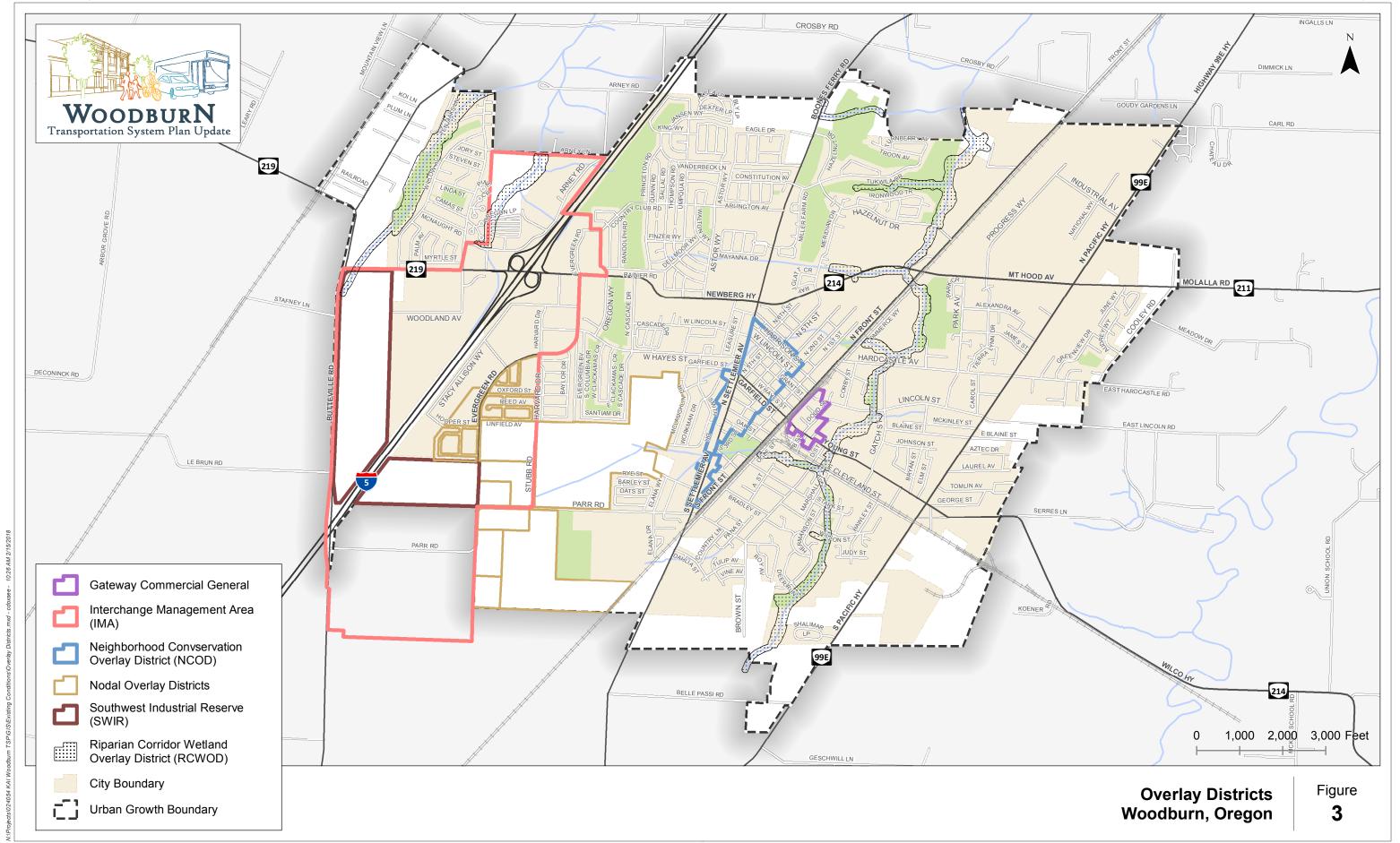
|      | ZONE                             | DESCRIPTION                                                                               |
|------|----------------------------------|-------------------------------------------------------------------------------------------|
| NNC  | Neighborhood Nodal<br>Commercial | Provides areas to meet shopping needs of nearby residents in compact commercial setting.* |
| IL   | Light Industrial                 | Industrial activities that include land-intensive activities.                             |
| IP   | Industrial Park                  | Light industrial activities in a park-like setting.                                       |
| P/SP | Public and Semi-Public           | Public uses, parks, schools, and cemeteries.                                              |
| SWIR | Southwest Industrial<br>Reserve  | High technology and research development activities.**                                    |

<sup>\*</sup> Standards for Neighborhood Nodal Commercial (NNC) can be found in the WDO, however, there are currently no parcels within City limits that are zoned NNC.

<sup>\*\*</sup> Standards for Southwest Industrial Reserve can be found in the WDO. However, the zoning designation will be applied to parcels identified as Southwest Industrial Reserve as shown in Figure 3 below once the area is within City limits.

Woodburn TSP Update
February 2018




### **Overlays**

The WDO includes provisions for six different overlay districts that may apply to any portion of an existing underlying zoning district. Overlay districts provide regulations that are in addition to, or that modify existing zoning. Similar to how the zoning districts are organized, development regulations for each of the City's overlay districts are provided in the WDO. The six overlay districts are summarized in Table 2.

Table 2: Overlay Summary

| OVERLAY                                               | DESCRIPTION                                                                                                                                                                                                                    |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gateway Commercial<br>General Overlay<br>District     | Allows for multi-family residential development in the CG zone.  Prohibits specific uses and limits others.                                                                                                                    |
| Interchange<br>Management Overlay<br>District         | Intended to preserve the long-term capacity of the I-5/Highway 214 Interchange. Complements provisions of the SWIR zone. Vehicle trip budget identifies the maximums amount of peak hour trips for each parcel within the IMA. |
| Neighborhood<br>Conservation Overlay<br>District      | Intended to conserve the visual character and heritage of Woodburn's oldest and most central neighborhood.                                                                                                                     |
| Nodal Overlay District                                | Allows for a mix of residential developments with limited commercial development and accessible parks with a pedestrian focus.                                                                                                 |
| Riparian Corridor and<br>Wetlands Overlay<br>District | Intended to conserve, protect, and enhance significant riparian corridors, wetlands, and undeveloped floodplains. More information is provided in the Natural Resources and Environmental Barriers section below.              |
| Southwest Industrial<br>Reserve                       | Intended to protect suitable industrial sites in Southwest Woodburn, near I-5, for the exclusive use of targeted industries.                                                                                                   |

Woodburn TSP Update
February 2018



#### VACANT AND REDEVLOPABLE LAND

Figure 4 shows vacant and redevelopable land within the UGB and City limits, by Comprehensive Plan Designation. All the land within the UGB and outside of City limits, except for areas subject to the City's RCWOD overlay, is considered vacant or redevelopable over the planning horizon. Land within City limits is considered vacant as determined by Marion County's tax assessment records. Figure 4 does not show redevelopable parcels within City limits.

As shown, most of the vacant commercial areas are concentrated near I-5; the largest parcels of which are located on Stacy Allison Way. Other vacant commercial areas found adjacent to or near Highway 99E in the eastern portion of the city. There are large areas outside of City Limits, within the UGB, that are designated for Industrial uses. The redevelopable Industrial areas near I-5 are subject to the Southwest Industrial Reserve (SWIR) Overlay which regulate the amount and type of development that can occur. Within City limits, most of the vacant areas designated for industrial uses are located adjacent to Front Street or Highway 99E. As described in more detail below, vacant commercial and industrial parcels tend to be relatively large in size – generally larger than one acre – and have been studied in detail as part of the City's *Woodburn Target Industry Analysis*. <sup>1</sup>

Vacant land designated Low Density Residential (LDR) or Medium Density Residential (HDR) vary greatly in size and are distributed throughout the UGB. Most of the vacant or redevelopable LDR and HDR areas are located outside of City limits in the southern portion of the UGB near Settlemier Avenue and in southwestern portion of the UGB near Evergreen Road and Parr Road. The majority of these areas are subject to the City's Nodal Overlay Districts, which requires a master planning effort prior to annexation into City limits. Similarly, there is a large vacant LDR area near Settlemier Avenue and a vacant HDR area adjacent to Highway 99E, both in the southern part Woodburn's City boundary.

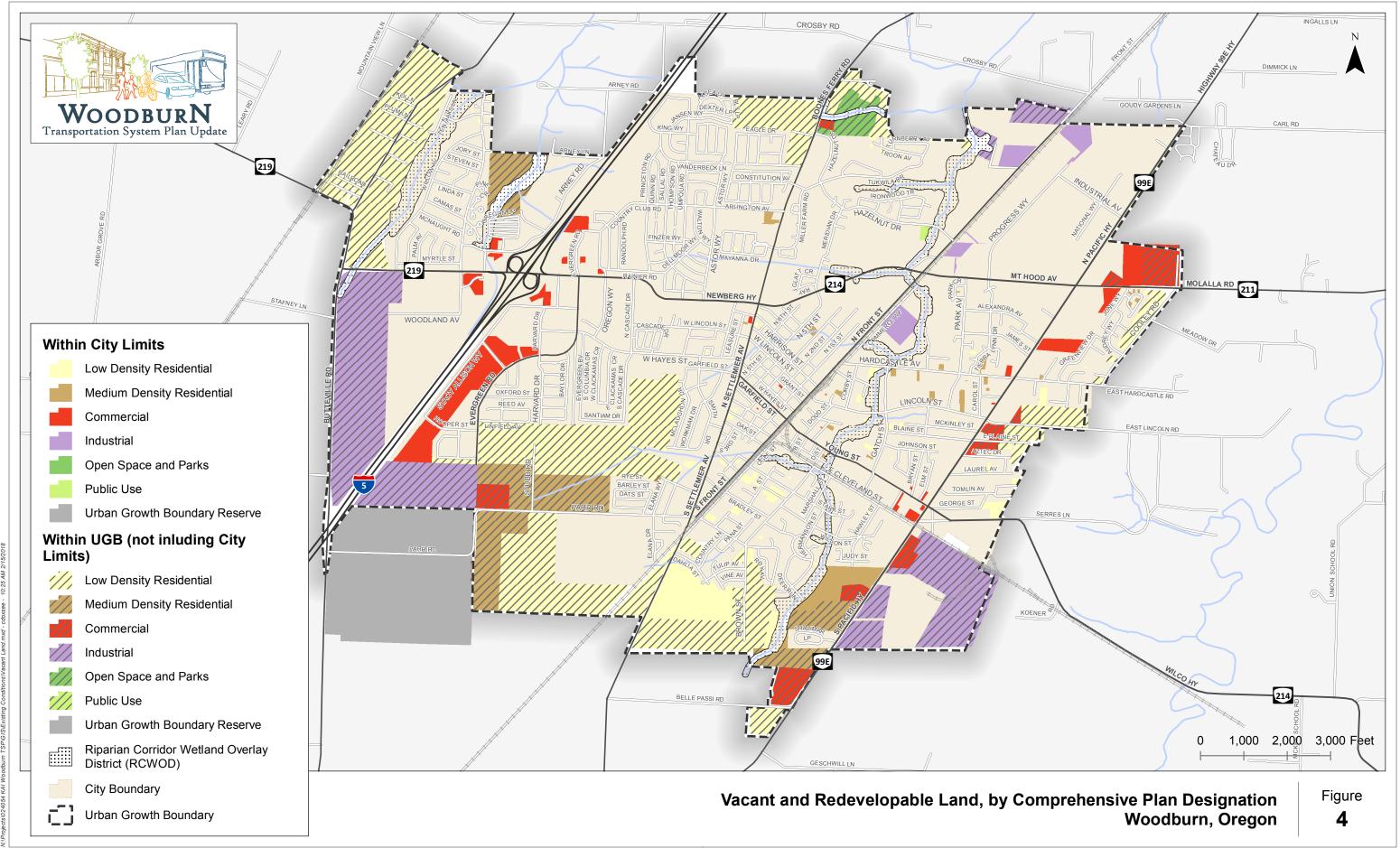
Table 3 provides a gross estimate of vacant or redevelopable land within the UGB and City limits. The amount of vacant land is potentially overestimated as deductions for public rights-of-way, private streets, and public utility easements have not been factored.<sup>2</sup> As shown, the majority of vacant or redevelopable land within the UGB and City limits is designated for residential uses (641.6 acres of LDR areas and 180.2 acres for HDR areas). There is also a large amount of vacant or redevelopable areas designated for Industrial use; approximately 193 of the 307.6 acres is subject to the SWIR, which, as noted above, regulates the amount and type of development that can occur.

<sup>&</sup>lt;sup>1</sup> ECONorthwest, 2016

<sup>&</sup>lt;sup>2</sup> Portions of vacant or redevelopable parcels with the RCWOD Overlay were removed from the totals and were, overall, fairly minimal in size.

Table 3: Vacant Land by Comprehensive Plan Designation

| COMPREHENSIVE PLAN DESIGNATION | HENSIVE PLAN DESIGNATION VACANT LAND (ACRE |         | CRES)   |
|--------------------------------|--------------------------------------------|---------|---------|
|                                | City Limits                                | UGB     | Total   |
| Low Density Residential        | 70.0                                       | 571.6*  | 641.6   |
| Medium Density Residential     | 30.7                                       | 149.5*  | 180.2   |
| Commercial                     | 84.2                                       | 65.4    | 149.6   |
| Industrial                     | 28.6                                       | 307.7   | 336.3   |
| TOTAL                          | 213.5                                      | 1,094.2 | 1,307.7 |


<sup>\*</sup> Vacant land includes Nodal and non-Nodal Designations combined.

The Woodburn Target Industry Analysis confirms that there are four Opportunity Sites – two commercial areas and two industrial areas – that are targeted for future development: Southwest Industrial Reserve Area, Stacy Allison Way, Commerce Way/Front Street Area, and Highway 99 and Young Street Commercial. Table 4 includes a summary description of these areas; Figure 5 illustrates their location.

Table 4: Opportunity Sites

| OPPORTUNITY SITES                             | SUMMARY                                                                                                                                                                                                                                              |
|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Southwest Industrial<br>Reserve Area          | The area is a 188-acre site in five parcels. It is currently outside of the city limits. The site is highly visible from I-5 and is within one-quarter mile of the I-5 interchange. It will be zoned Industrial once it is brought into City limits. |
| Stacy Allison Way Area                        | The area is a 47-acre site in eight parcels. The site is near I-5, being within one-quarter mile of the I-5 interchange. It is currently within City limits and zoned for Commercial General (CG).                                                   |
| Commerce Way/Front<br>Street Industrial Area  | The area is a 20-acre site in four parcels. The site adjacent to Highway 214 and approximately 1.7 miles from I-5. It is within City limits and zoned for Light Industrial (IL).                                                                     |
| Hwy 99 and Young<br>Street Commercial<br>Area | The area is a 10-acre site in nine parcels. The site is visible from Highway 99. It is within City limits and zoned as Mixed-Use Village (MUV).                                                                                                      |

Woodburn TSP Update February 2018



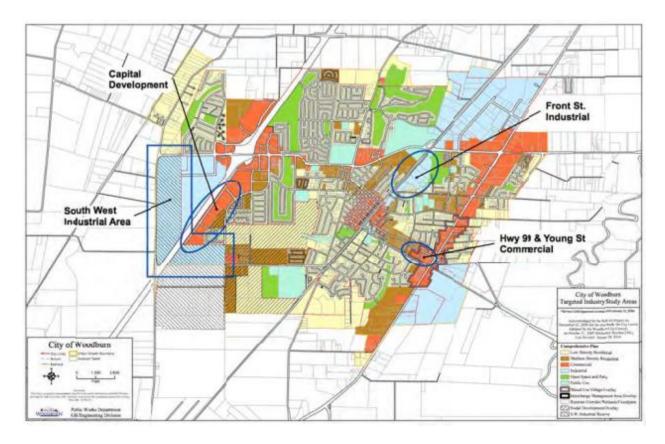



Figure 5: Opportunity Sites (Woodburn Target Industry Analysis, ECONorthwest, 2016)

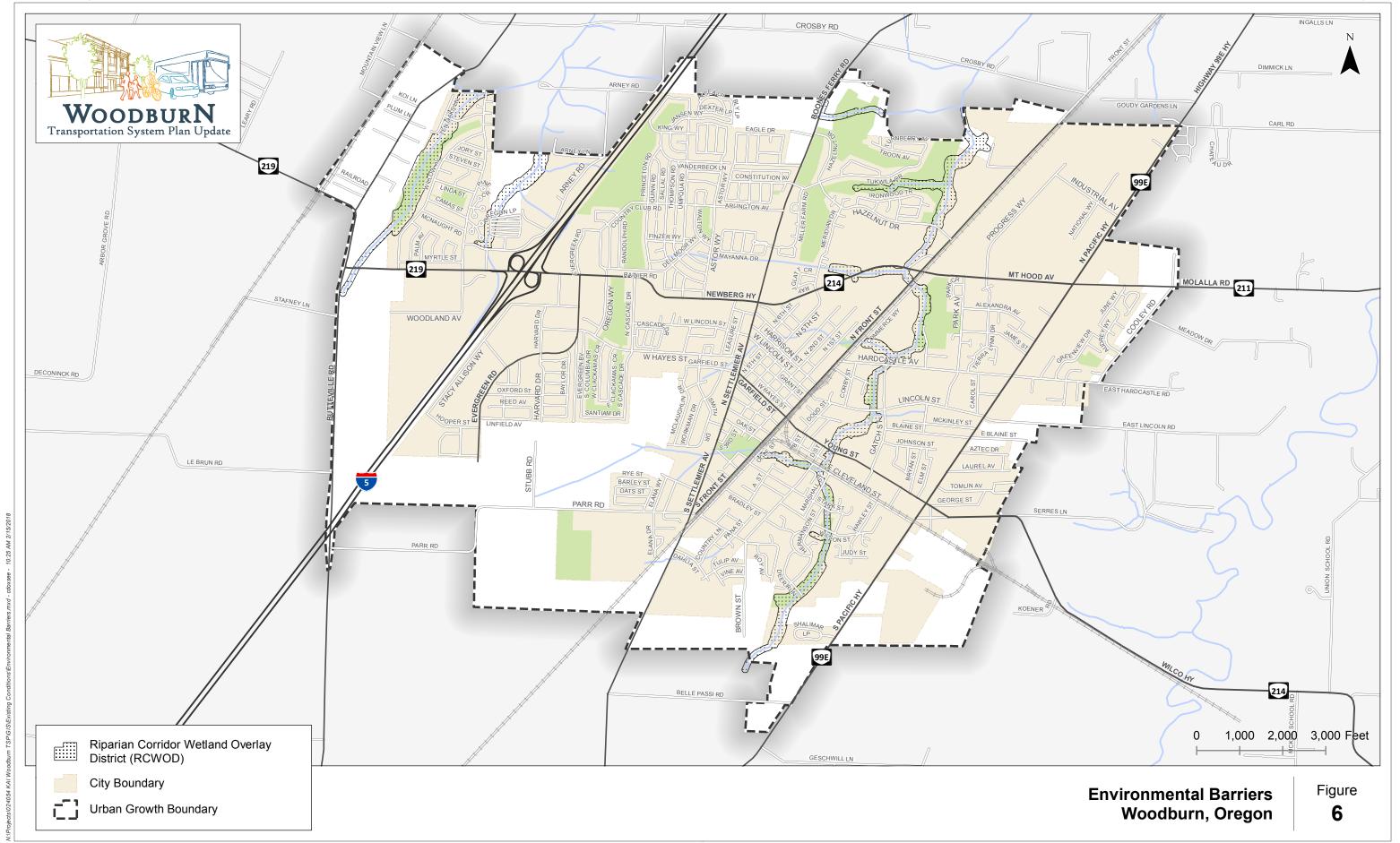
#### NATURAL RESOURCES AND ENVIRONMENTAL BARRIERS

Existing natural resources and environmental features influence the siting, construction, and cost of transportation improvements. The following sections illustrate and describe areas within Woodburn that may pose barriers to providing transportation access or improvements. The inventory is based on available Geographic Information System (GIS) maps, previous reports, and known resource sites.

#### **Riparian Corridor and Wetlands Overlay**

Riparian Corridors and Wetlands in Woodburn are regulated by the Riparian Corridor and Wetlands Overlay District (RCWOD), as shown in Figure 6. The purpose of the RCWOD is to conserve, protect, and enhance significant riparian corridors, wetlands, and undeveloped floodplains, as well as protect and enhance water quality, prevent property damage, and limit activity.

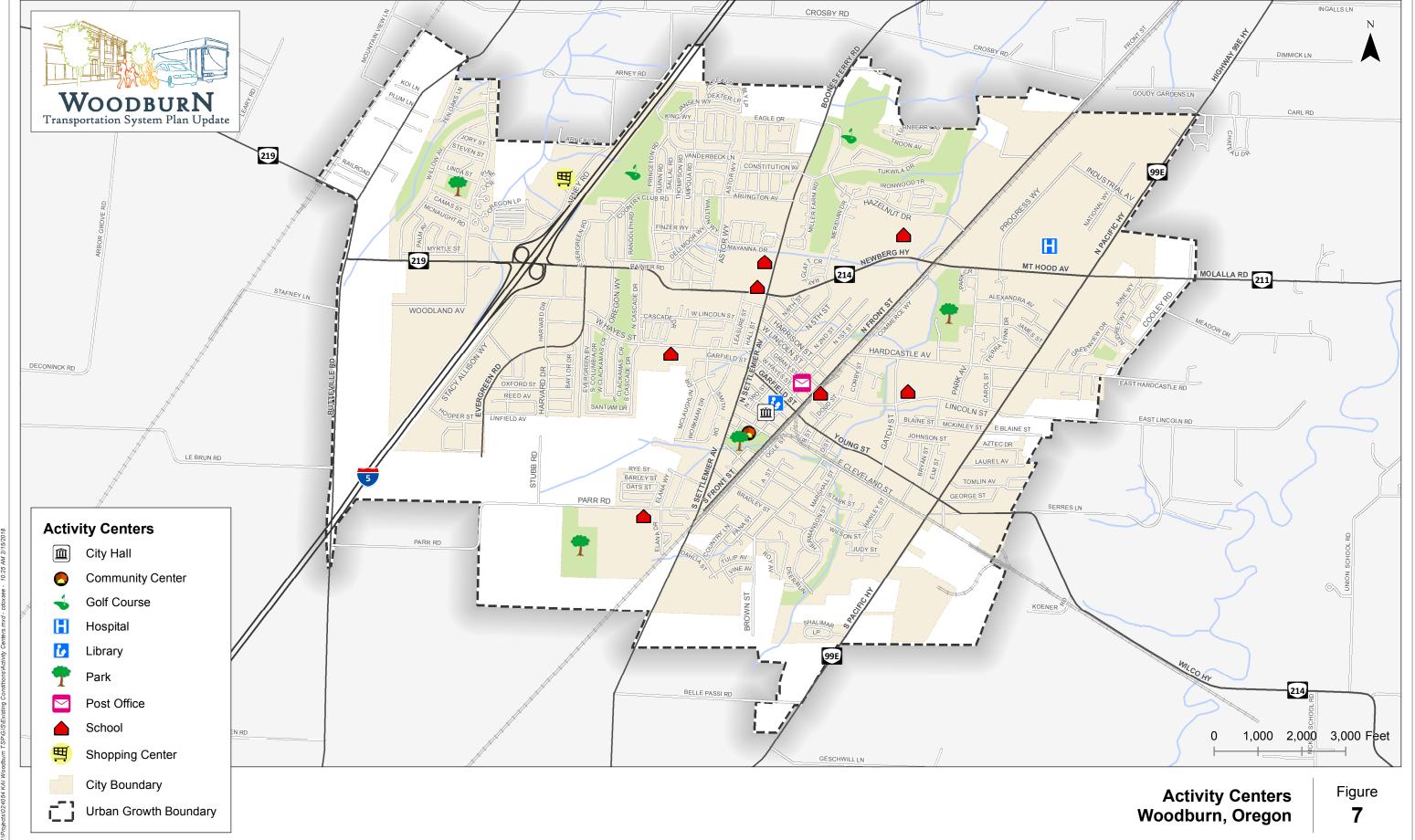
The RCWOD is a combination of three different environmental constraints: riparian corridors, significant wetlands, and the 100-year floodplain. These are described as follows:


- Riparian corridors extend approximately 50 feet from the top of the bank of the main stem
  of Senecal Creek and Mill Creek and those reaches of their tributaries identified as fishbearing perennial streams on the Woodburn Wetlands Inventory Map.
- Significant wetlands are those that have been identified on the Woodburn Wetlands Inventory Map.
- The 100-year floodplain on properties identified as vacant or partly vacant on the 2005 Woodburn Buildable Land Inventory

#### **ACTIVITY CENTERS**

Within Woodburn city limits, land uses adjacent to Arterials and Collectors are generally automobile-oriented in nature, and include mostly industrial and commercial uses. Beyond the commercial areas, the designated land uses change to residential. Since the residential areas are segregated from the commercial areas, walking and bicycling to these locations becomes less convenient.

Connecting residents and workers to services they use on a daily basis can be accomplished by well-considered land use planning. Activity centers where the transportation network should support multi-modal and accessible public transportation are shown in Figure 7. Key civic institutions such as Woodburn City Hall, the public library, and the U.S. Post Office, as well as the Woodburn Aquatic Center, are centrally located one block away from Front Street, a critical city arterial. Shopping centers, medical services, and schools and parks are generally dispersed throughout the city.


Woodburn TSP Update
February 2018



Woodburn TSP Update

CROSBY RD

INGALLS LN



#### HISTORIC AND PROJECTED POPULATION GROWTH

Historic and projected population information is from the Portland State University Population Research Center (PRC).<sup>3</sup> The PRC publishes an annual Oregon Population Report that presents the population estimates for Oregon and its counties and incorporated cities. The most recent report provides population estimates up to the year 2016.<sup>4</sup>

#### **Historic Population**

As shown in Table 5, the population in Woodburn has grown by approximately 710 people between 2010 and 2016 – approximately 3% growth over that time. By comparison, Marion County and Oregon have grown at a faster pace during the same period - approximately 4.7% and 6.2% growth respectively.

Table 5: Population Research Center Annual Population Estimates

|               | 2016      | 2015      | 2014      | 2013      | 2012      | 2011      | 2010 (REV) |
|---------------|-----------|-----------|-----------|-----------|-----------|-----------|------------|
| Oregon        | 4,076,350 | 4,013,845 | 3,962,710 | 3,919,020 | 3,883,735 | 3,857,625 | 3,837,300  |
| Marion County | 333,950   | 329,770   | 326,150   | 322,880   | 320,495   | 318,150   | 315,900    |
| Woodburn      | 24,795    | 24,670    | 24,455    | 24,330    | 24,090    | 24,090    | 24,085     |

Older historical data is available through U.S. Census Population counts.<sup>5</sup> As shown in Table 6, the population of Woodburn has grown by 10,676 people between 1990 and 2010 – approximately 80% growth. By comparison, Woodburn growth outpaced Marion County (38%) and Oregon (35%) by a wide margin over the same period of time.

Table 6: U.S. Census Population

|          | 2010      | 2000      | 1990      |
|----------|-----------|-----------|-----------|
| Oregon   | 3,831,074 | 3,421,436 | 2,842,321 |
| Marion   | 315,335   | 284,838   | 228,483   |
| Woodburn | 24,080    | 20,100    | 13,404    |

<sup>3</sup> https://www.pdx.edu/prc/home

<sup>&</sup>lt;sup>4</sup> https://www.pdx.edu/prc/sites/www.pdx.edu.prc/files/Marion Report 2017 Final.pdf

<sup>&</sup>lt;sup>5</sup> Ibid.

#### **Projected Population**

Projected population is one of the primary tools for developing planning policies as well as determining future urban growth boundary expansions. PRC develops projected population forecasts based on historic and current trends, as well as assuming the likelihood of future events. Historically, Oregon law required counties to prepare coordinated population forecasts. In recent years, responsibility for coordinated population forecasting has been assigned to the PRC at Portland State University.<sup>6</sup>

Total population in Marion County and in Woodburn will likely grow at a slightly faster pace in the near-term (2017 to 2035) compared to the long term. An aging population largely drives the tapering growth rates – a demographic trend which is expected to contribute to diminishing natural increase (more births than deaths). Even so, Woodburn's total population is projected to increase by more than 7,976 over the next 18 years (2017-2035) and by more than 20,051 over the entire 50-year forecast period (2017-2067).

Table 7: Projected Population and Average Annual Growth Rate (AAGR)

|                   | 2017    | 2035    | 2040    | 2067    | SHARE OF<br>COUNTY<br>2017 | SHARE OF<br>COUNTY<br>2035 | SHARE OF<br>COUNTY<br>2040 | SHARE OF<br>COUNTY<br>2067 |
|-------------------|---------|---------|---------|---------|----------------------------|----------------------------|----------------------------|----------------------------|
| Marion<br>County  | 337,773 | 405,352 | 421,508 | 513,142 | 100%                       | 100%                       | 100%                       | 100%                       |
| Woodburn<br>(UGB) | 26,211  | 34,187  | 36,322  | 46,262  | 7.7%                       | 8.2%                       | 8.6%                       | 8.0%                       |

ODOT's Transportation Planning Analysis Unit (TPAU) also develops forecast models which project population by transportation analysis zone (TAZ). The previous transportation model – base year 2000 and future year of 2035 – is in the process of being updated with an interim year scenario for 2015 and a future year 2040 scenario to support the TSP update effort. Updates to the model are informed by PRC's population forecasts; however, areas analyzed for purposes of trip generation analysis are not coterminous with the City's UGB.

<sup>&</sup>lt;sup>6</sup> Oregon House of Representatives and Senate approved HB 2253, requiring the PRC to issue population forecasts for land use planning.

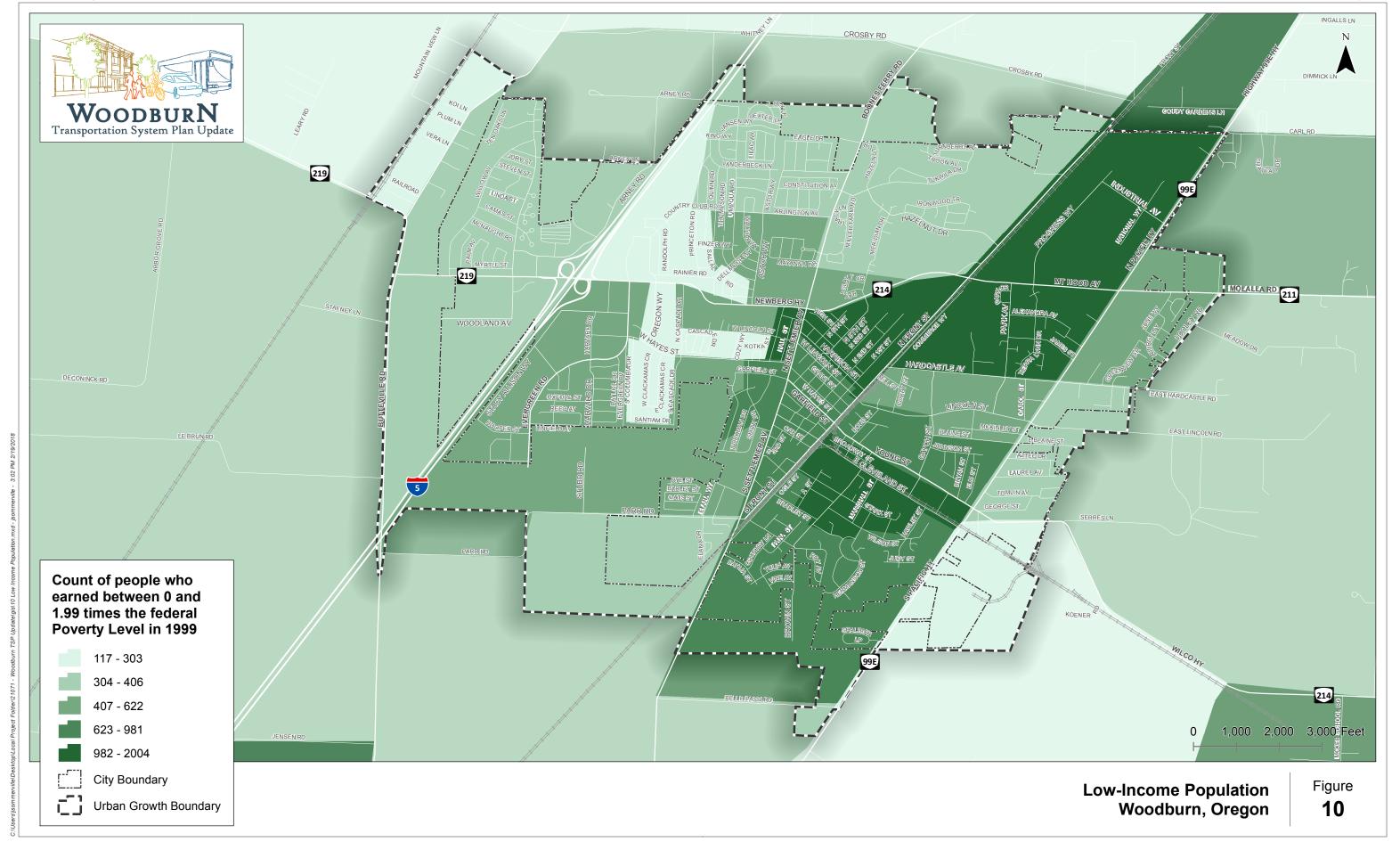
Table 8: TPAU Forecast: Total of TAZ's

| TPAU FORECAST | 2035   | 2040   |
|---------------|--------|--------|
| Population    | 46,309 | XX     |
| Households    | 16,014 | 15,416 |

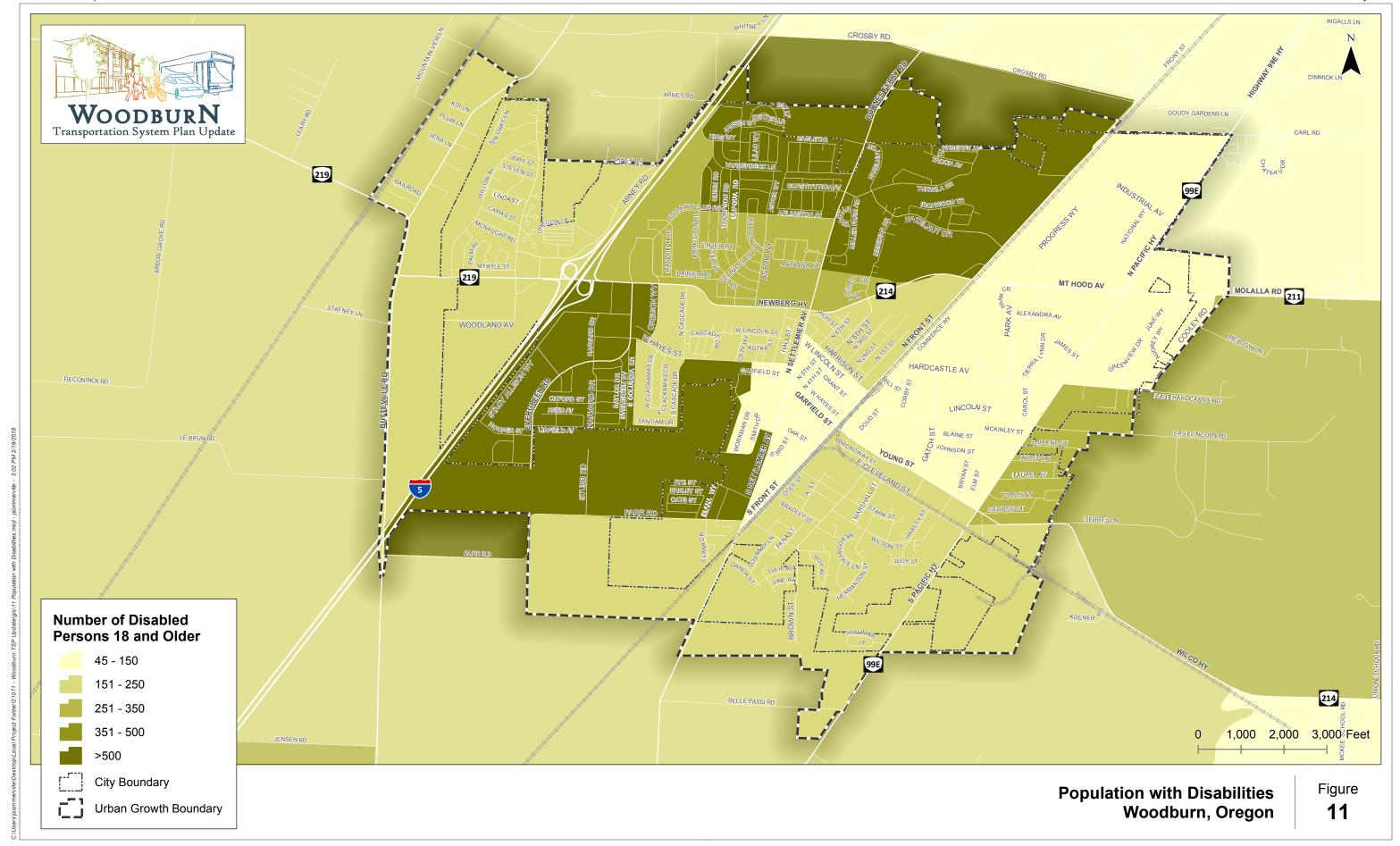
#### **Environmental Justice Analysis**

The socio-economically sensitive populations within Woodburn consist of minorities, elderly people (people 65 years of age or older), people with low-income (people who earn 0 to 1.99 times the federal poverty level), and people with disabilities. 2010 census data for minorities and elderly people was collected at the census block level and shows the concentrations of these populations on an individual basis. Data for people with low income and people with disabilities was collected at the census block group level and shows the concentration of these populations as a percentage of the overall population. The data was combined with a general understanding of local conditions to ensure that the existing transportation system meets the needs of these individuals. Figure 8 through Figure 11 illustrate the populations within Woodburn.

The socioeconomic conditions within the city will be considered in the development of the TSP update to ensure that the future transportation system meets the needs of the entire city while not creating adverse conditions for select population segments.


Woodburn TSP Update
February 2018




Woodburn TSP Update
February 2018



Woodburn TSP Update February 2018



Woodburn TSP Update
February 2018



Attachment B
Bicycle and Pedestrian
Level of Traffic Stress
Methodology

#### BICYCLE LEVEL OF TRAFFIC STRESS

The Oregon Department of Transportation (ODOT) Analysis Procedures Manual (APM) provides a methodology for evaluating bicycle facilities within urban and rural environments called Bicycle Level of Traffic Stress (BLTS). As applied by ODOT, this methodology classifies four levels of traffic stress that a bicyclist can experience on the roadway, ranging from BLTS 1 (little traffic stress) to BLTS 4 (high traffic stress). A road segment that is rated BLTS 1 generally has low traffic volumes and travel speeds and is suitable for all cyclists, including children. A road segment that is rated BLTS 4 generally has high traffic volumes and travel speeds and is perceived as unsafe by most cyclists. Per the APM, BLTS 2 is considered a reasonable target for bicycle facilities due to its acceptability with the majority of cyclists.

The BLTS score is determined based on the speed of the roadway, the number of travel lanes per direction, the presence and width of an on-street bicycle lane and/or adjacent parking lane, and several other factors. For the analysis conducted in Woodburn, an initial inventory was supplemented with base assumptions to determine the BLTS values for roadways segments throughout the city.

- Bike lanes on major and minor arterials assumed to be six-feet-wide
- Bike lanes on arterials assumed to be five-feet-wide
- Parking lanes assumed to be five-feet-wide

With the above widths defined and the presence of bike lanes and parking lanes noted via an inventory of the city's roadways, BLTS values were determined for all major arterial, minor arterial, service collector, and access street in Woodburn.

#### PEDESTRIAN LEVEL OF TRAFFIC STRESS

The APM provides a methodology for evaluating pedestrian facilities within urban and rural environments called Pedestrian Level of Traffic Stress (PLTS). As applied by ODOT, this methodology classifies four levels of traffic stress that a pedestrian can experience on the roadway, ranging from PLTS 1 (little traffic stress) to PLTS 4 (high traffic stress). A road segment that is rated PLTS 1 generally has low traffic volumes and travel speeds and has a sidewalk that is separated from vehicular traffic. These segments are generally suitable for all users, including children. A road segment that is rated PLTS 4 generally has high traffic volumes and travel speeds and is perceived as unsafe by most adults. Road segments rated PLTS 4 also include those with no sidewalks or other pedestrian facilities. Per the APM, PLTS 2 is considered a reasonable target for most pedestrian facilities due to its acceptability with the majority of people.

The PLTS score is based on four criteria, including sidewalk condition, physical buffer type, total buffering width, and general land use. All four criteria are scored from 1 to 4 and the highest score determines the overall score for the road segment. For the analysis conducted in Woodburn, an initial inventory was supplemented with base assumptions to determine the PLTS values for roadways segments throughout the city.

- Sidewalk condition was assumed to be fair unless a different condition was clearly visible via aerial imagery
- Sidewalks assumed to be six-feet-wide
- Landscape strips assumed to be six-feet-wide
- Striped shoulders assumed to be four-feet-wide
- Non-striped shoulders assumed to be zero-feet-wide

With the above widths defined and an inventory of the city's existing pedestrian facilities, PLTS values were determined for all major arterial, minor arterial, service collector, and access street in Woodburn.

Attachment C Historical PCI Data and Statistics



# **Network Summary Statistics**

Printed: 02/09/2018


|                                | Total Sections | Total Center Miles | Total Lane Miles   | PCI        |
|--------------------------------|----------------|--------------------|--------------------|------------|
| Collecto                       | r 48           | 9.35               | 21.06              | 62         |
| Residential/Loca               | l 355          | 43.85              | 87.63              | 60         |
| Othe                           | r 27           | 4.96               | 9.91               | 59         |
| Urban Minor Arterial (4        | ) 25           | 6.04               | 14.71              | 71         |
| Tota                           | I 455          | 64.20              | 133.30             |            |
|                                |                | Overall Network Po | CI as of 2/9/2018: | 61         |
| **Combined<br>Residential/Loca |                | 1.55<br>0.12       | 3.04<br>0.24       | N/A<br>N/A |
| Grave                          |                | 1.43               | 2.80               | N/A        |

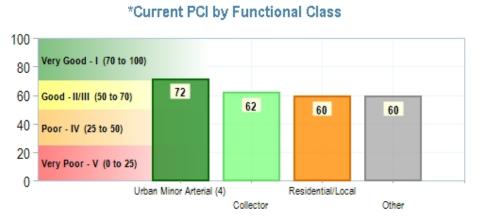
<sup>\*\*</sup> Combined Sections are excluded from totals. These Sections do not have a PCI Date - they have not been inspected or had a Treatment applied.

# City of Woodburn, OR

Run Date: 12/31/2017

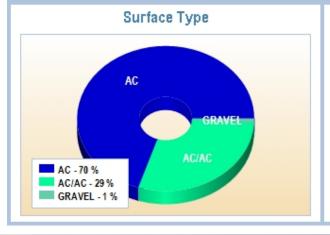




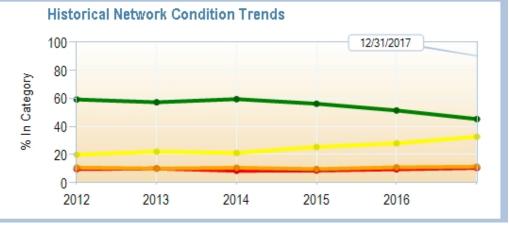

### **Network Inventory**

Pavement Area: 0.4

Miles: 65.8


Lane Miles: 136.3

Sections: 477
















# **PCI History**

| 01 15       | <b>6</b> () := | 01 111    |                     | -                                  |            | <b>D</b> 01 |
|-------------|----------------|-----------|---------------------|------------------------------------|------------|-------------|
| Street ID   | Section ID     | Street Na |                     | La                                 | st Updated | PCI         |
| ACACIA      | 319            | ACACIA A  | /E                  |                                    | 06/13/2011 | 80          |
|             | Date Updated   | PCI Hist  | PCI from Inspection | Comments                           |            |             |
|             | 06/13/2011     | 80        | No                  |                                    |            |             |
|             | 03/13/2009     | 82        | Yes                 |                                    |            |             |
|             | 06/23/2003     | 95        | Yes                 |                                    |            |             |
|             | 01/01/2001     | 100       | No                  |                                    |            |             |
|             | 07/01/1997     | 48        | Yes                 |                                    |            |             |
| AKSENI      | 412            | AKSENIA S | ST                  |                                    | 07/14/2014 | 80          |
|             | Date Updated   | PCI Hist  | PCI from Inspection | Comments                           |            |             |
|             | 07/14/2014     | 80        | No                  |                                    |            |             |
|             | 07/01/2014     | 79        | No                  |                                    |            |             |
|             | 06/22/2011     | 80        | No                  |                                    |            |             |
|             | 03/13/2009     | 81        | Yes                 |                                    |            |             |
|             | 06/23/2004     | 86        | Yes                 |                                    |            |             |
|             | 00/23/2004     | ου        | 162                 |                                    |            |             |
| ALDERL      | 306            | ALDER LA  | NE                  |                                    | 03/13/2009 | 16          |
|             | Date Updated   | PCI Hist  | PCI from Inspection | Comments                           |            |             |
|             | 03/13/2009     | 16        | Yes                 |                                    |            |             |
|             | 06/23/2003     | 35        | Yes                 |                                    |            |             |
|             | 07/01/1997     | 56        | Yes                 |                                    |            |             |
| ALETHA      | 362            | ALETHA S  | Т                   |                                    | 03/13/2009 | 72          |
|             | Date Updated   | PCI Hist  | PCI from Inspection | Comments                           |            |             |
|             | 03/13/2009     | 72        | Yes                 | Comments                           |            |             |
|             |                |           |                     |                                    |            |             |
|             | 06/09/2003     | 89        | Yes                 |                                    |            |             |
|             | 07/01/1997     | 85        | Yes                 |                                    |            |             |
| ALEXAN      | 119A           | ALEXANDI  | RA AVE              |                                    | 07/01/2015 | 100         |
|             | Date Updated   | PCI Hist  | PCI from Inspection | Comments                           |            |             |
|             | 07/01/2015     | 100       | No                  | 2001 CITY MEASURE                  | EAD ADT    |             |
|             | 03/13/2009     | 18        | Yes                 | 2001 CITY MEASURE                  | EAD ADT    |             |
|             | 06/09/2003     | 46        | Yes                 | 2001 CITY MEASURE                  | EAD ADT    |             |
|             | 07/01/1997     | 76        | Yes                 | 2001 CITY MEASURE                  | EAD ADT    |             |
| ALEXAN      | 119B           | ALEXANDI  | RA AVE              |                                    | 07/01/2015 | 100         |
|             | Date Updated   | PCI Hist  | PCI from Inspection | Comments                           |            |             |
|             | 07/01/2015     | 100       | No                  | ADT ON 4/7/2010                    |            |             |
|             | 03/13/2009     | 22        | Yes                 | ADT ON 4/7/2010<br>ADT ON 4/7/2010 |            |             |
|             | 06/09/2003     | 31        | Yes                 | ADT ON 4/7/2010<br>ADT ON 4/7/2010 |            |             |
|             |                | 57        |                     |                                    |            |             |
|             | 07/01/1997     | 5/        | Yes                 | ADT ON 4/7/2010                    |            |             |
| ALEXAN      | 119C           | ALEXANDI  | RA AVE              |                                    | 06/02/2015 | 100         |
|             | Date Updated   | PCI Hist  | •                   | Comments                           |            |             |
|             | 06/02/2015     | 100       | No                  |                                    |            |             |
| A1 = V A A1 | 121            | ALEXANDI  | RA CT               |                                    | 06/02/2015 | 100         |
| ALEXAN      |                |           |                     |                                    |            |             |
| ALEXAN      | Date Updated   | PCI Hist  | PCI from Inspection | Comments                           |            |             |



# **PCI History**

| Street ID | Section ID   | Street Na | me                  | L                | ast Updated | PCI |
|-----------|--------------|-----------|---------------------|------------------|-------------|-----|
| ALEXAN    | 121          | ALEXAND   | RA CT               |                  | 06/02/2015  | 100 |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments         |             |     |
|           | 03/13/2009   | 24        | Yes                 |                  |             |     |
|           | 06/09/2003   | 54        | Yes                 |                  |             |     |
|           | 07/01/1997   | 77        | Yes                 |                  |             |     |
| AMITYC    | 172          | AMITY CT  |                     |                  | 03/13/2009  | 51  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments         |             |     |
|           | 03/13/2009   | 51        | Yes                 |                  |             |     |
|           | 06/23/2003   | 67        | Yes                 |                  |             |     |
|           | 07/01/1997   | 62        | Yes                 |                  |             |     |
| AMYCT     | 123          | AMY CT    |                     |                  | 03/13/2009  | 86  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments         |             |     |
|           | 03/13/2009   | 86        | Yes                 |                  |             |     |
|           | 06/09/2003   | 95        | Yes                 |                  |             |     |
|           | 01/01/2000   | 100       | No                  |                  |             |     |
|           | 07/01/1997   | 64        | Yes                 |                  |             |     |
|           |              |           |                     |                  |             |     |
| ANDREA    | 419          | ANDREA'S  | СТ                  |                  | 03/13/2009  | 90  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments         |             |     |
|           | 03/13/2009   | 90        | Yes                 |                  |             |     |
|           | 06/23/2004   | 90        | Yes                 |                  |             |     |
| ANNAST    | 359          | ANNA ST   |                     |                  | 03/13/2009  | 73  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments         |             |     |
|           | 03/13/2009   | 73        | Yes                 |                  |             |     |
|           | 04/16/2008   | 80        | No                  |                  |             |     |
|           | 06/09/2003   | 84        | Yes                 |                  |             |     |
|           | 07/01/1997   | 92        | Yes                 |                  |             |     |
| ARLING    | 426          | ARLINGTO  | N AVE               |                  | 06/01/2009  | 76  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments         |             |     |
|           | 06/01/2009   | 76        | No                  | ADT ON 9/3/2000  |             |     |
|           | 03/13/2009   | 75        | Yes                 | ADT ON 9/3/2000  |             |     |
|           | 06/23/2004   | 89        | Yes                 | ADT ON 9/3/2000  |             |     |
| ARNEYL    | 431          | ARNEY LN  |                     |                  | 08/04/2015  | 73  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments         |             |     |
|           | 08/04/2015   | 73        | No                  |                  |             |     |
|           | 03/13/2009   | 85        | Yes                 |                  |             |     |
| ARNEYR    | 429A         | ARNEY RD  | 1                   |                  | 09/04/2015  | 27  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments         |             |     |
|           | 09/04/2015   | 27        | No                  | ADT ON 7/31/2008 |             |     |
|           | 03/13/2009   | 54        | Yes                 | ADT ON 7/31/2008 |             |     |



# **PCI History**

|        | Section ID               | Street Na | me                  | La                | ast Updated | PCI   |
|--------|--------------------------|-----------|---------------------|-------------------|-------------|-------|
| ARNEYR | 429B                     | ARNEY RD  |                     |                   | 08/04/2015  | 95    |
|        | Date Updated             | PCI Hist  | PCI from Inspection | Comments          |             |       |
|        | 08/04/2015               | 95        | No                  | ADT ON 6/2/2009   |             |       |
|        | 06/01/2014               | 100       | No                  | ADT ON 6/2/2009   |             |       |
|        | 03/13/2009               | 65        | Yes                 | ADT ON 6/2/2009   |             |       |
| ARNEYR | 429C                     | ARNEY RD  |                     |                   | 08/04/2015  | 95    |
|        | Date Updated             | PCI Hist  | PCI from Inspection | Comments          |             |       |
|        | 08/04/2015               | 95        | No                  | ADT ON 11/21/2012 |             |       |
|        | 06/01/2014               | 100       | No                  | ADT ON 11/21/2012 |             |       |
|        | 03/13/2009               | 63        | Yes                 | ADT ON 11/21/2012 |             |       |
| ARTHUR | 221A                     | ARTHUR S  | Т                   |                   | 03/13/2009  | 10    |
|        | Date Updated             | PCI Hist  | PCI from Inspection | Comments          |             |       |
|        | 03/13/2009               | 10        | Yes                 |                   |             |       |
|        | 06/23/2003               | 20        | Yes                 |                   |             |       |
|        | 08/01/1997               | 12        | Yes                 |                   |             |       |
| ARTHUR | 221B                     | ARTHUR S  | T                   |                   | 06/10/2014  | 100   |
|        |                          |           |                     | Commonts          | ,           | - 3 - |
|        | Date Updated             |           | PCI from Inspection | Comments          |             |       |
|        | 06/10/2014               | 100       | No                  |                   |             |       |
| ARTHUR | 221C                     | ARTHUR S  | Т                   |                   | 07/14/2014  | 44    |
|        | Date Updated             | PCI Hist  | PCI from Inspection | Comments          |             |       |
|        | 07/14/2014               | 44        | No                  |                   |             |       |
|        | 03/13/2009               | 34        | Yes                 |                   |             |       |
|        | 06/23/2003               | 67        | Yes                 |                   |             |       |
|        | 08/01/1997               | 68        | Yes                 |                   |             |       |
| AST    | 153A                     | A ST      |                     |                   | 03/13/2009  | 90    |
|        | Date Updated             | PCI Hist  | PCI from Inspection | Comments          |             |       |
|        | 03/13/2009               | 90        | Yes                 |                   |             |       |
|        | 06/23/2004               | 90        | Yes                 |                   |             |       |
| AST    | 153B                     | A ST      |                     |                   | 03/13/2009  | 13    |
|        | Date Updated             | PCI Hist  | PCI from Inspection | Comments          |             |       |
|        | 03/13/2009               | 13        | Yes                 |                   |             |       |
|        | 06/23/2003               | 30        | Yes                 |                   |             |       |
|        | 07/01/1997               | 27        | Yes                 |                   |             |       |
| ASTORC | 341                      | ASTOR CT  |                     |                   | 06/15/2011  | 79    |
|        | Date Updated             | PCI Hist  | PCI from Inspection | Comments          |             |       |
|        | 06/15/2011               | 79        | No                  | Commonto          |             |       |
|        |                          | 7 0       | 110                 |                   |             |       |
|        |                          | 70        | Vac                 |                   |             |       |
|        | 03/13/2009<br>06/09/2003 | 79<br>88  | Yes<br>Yes          |                   |             |       |



# **PCI History**

| Street ID | Section ID                                                                                                                                     | Street Na                                                                  | me                                                                                                           | Last Updated                                                                                                            | PCI |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----|
| ASTORW    | 343A                                                                                                                                           | ASTOR WA                                                                   |                                                                                                              | 07/14/2014                                                                                                              | 77  |
| AOTOKW    |                                                                                                                                                |                                                                            |                                                                                                              |                                                                                                                         | .,  |
|           | Date Updated 07/14/2014                                                                                                                        | 77                                                                         | PCI from Inspection<br>No                                                                                    | Comments  ADT ON 9/10/2010 = 1239  ADT ON 1/12/2012 = 1396  No PSL -Residental 25 MPH  Type Court & gutter              |     |
|           | 06/04/2014                                                                                                                                     | 68                                                                         | No                                                                                                           | Type C curb & gutter  ADT ON 9/10/2010 = 1239  ADT ON 1/12/2012 = 1396  No PSL -Residental 25 MPH  Type C curb & gutter |     |
|           | 03/13/2009                                                                                                                                     | 69                                                                         | Yes                                                                                                          | ADT ON 9/10/2010 = 1239<br>ADT ON 1/12/2012 = 1396<br>No PSL -Residental 25 MPH<br>Type C curb & gutter                 |     |
|           | 06/09/2003                                                                                                                                     | 85                                                                         | Yes                                                                                                          | ADT ON 9/10/2010 = 1239<br>ADT ON 1/12/2012 = 1396<br>No PSL -Residental 25 MPH<br>Type C curb & gutter                 |     |
|           | 07/01/1997                                                                                                                                     | 83                                                                         | Yes                                                                                                          | ADT ON 9/10/2010 = 1239<br>ADT ON 1/12/2012 = 1396<br>No PSL -Residental 25 MPH<br>Type C curb & gutter                 |     |
|           | 01/01/1990                                                                                                                                     | 100                                                                        | No                                                                                                           | ADT ON 9/10/2010 = 1239<br>ADT ON 1/12/2012 = 1396<br>No PSL -Residental 25 MPH<br>Type C curb & gutter                 |     |
| ASTORW    | 343B                                                                                                                                           | ASTOR WA                                                                   | 4Y                                                                                                           | 03/13/2009                                                                                                              | 71  |
|           | Date Updated                                                                                                                                   | PCI Hist                                                                   | PCI from Inspection                                                                                          | Comments                                                                                                                |     |
|           | 03/13/2009                                                                                                                                     | 71                                                                         | Yes                                                                                                          |                                                                                                                         |     |
|           | 06/09/2003                                                                                                                                     | 85                                                                         | Yes                                                                                                          |                                                                                                                         |     |
|           | 07/01/1997                                                                                                                                     | 86                                                                         | Yes                                                                                                          |                                                                                                                         |     |
|           | 01/01/1990                                                                                                                                     | 100                                                                        | No                                                                                                           |                                                                                                                         |     |
|           |                                                                                                                                                |                                                                            |                                                                                                              |                                                                                                                         |     |
| ASTORW    | 343C                                                                                                                                           |                                                                            |                                                                                                              |                                                                                                                         |     |
|           |                                                                                                                                                | ASTOR WA                                                                   | AY .                                                                                                         | 06/24/2010                                                                                                              | 80  |
|           | Date Updated                                                                                                                                   | PCI Hist                                                                   | PCI from Inspection                                                                                          | <b>06/24/2010</b> Comments                                                                                              | 80  |
|           | 06/24/2010                                                                                                                                     | PCI Hist<br>80                                                             | PCI from Inspection<br>No                                                                                    |                                                                                                                         | 80  |
|           | 06/24/2010<br>03/13/2009                                                                                                                       | PCI Hist<br>80<br>63                                                       | PCI from Inspection No Yes                                                                                   |                                                                                                                         | 80  |
|           | 06/24/2010<br>03/13/2009<br>06/09/2003                                                                                                         | PCI Hist<br>80<br>63<br>80                                                 | PCI from Inspection No Yes Yes                                                                               |                                                                                                                         | 80  |
|           | 06/24/2010<br>03/13/2009<br>06/09/2003<br>07/01/1997                                                                                           | PCI Hist<br>80<br>63<br>80<br>74                                           | PCI from Inspection No Yes Yes Yes Yes                                                                       | Comments                                                                                                                |     |
| AUDREY    | 06/24/2010<br>03/13/2009<br>06/09/2003<br>07/01/1997                                                                                           | PCI Hist<br>80<br>63<br>80<br>74                                           | PCI from Inspection No Yes Yes Yes Yes                                                                       |                                                                                                                         | 80  |
| AUDREY    | 06/24/2010<br>03/13/2009<br>06/09/2003<br>07/01/1997                                                                                           | PCI Hist<br>80<br>63<br>80<br>74                                           | PCI from Inspection No Yes Yes Yes Yes                                                                       | Comments                                                                                                                |     |
| AUDREY    | 06/24/2010<br>03/13/2009<br>06/09/2003<br>07/01/1997<br><b>100A</b><br>Date Updated<br>03/13/2009                                              | PCI Hist<br>80<br>63<br>80<br>74                                           | PCI from Inspection No Yes Yes Yes Yes                                                                       | Comments 03/13/2009                                                                                                     |     |
| AUDREY    | 06/24/2010<br>03/13/2009<br>06/09/2003<br>07/01/1997<br>100A<br>Date Updated                                                                   | PCI Hist<br>80<br>63<br>80<br>74<br>AUDREY V                               | PCI from Inspection No Yes Yes Yes Yes PCI from Inspection                                                   | Comments 03/13/2009                                                                                                     |     |
| AUDREY    | 06/24/2010<br>03/13/2009<br>06/09/2003<br>07/01/1997<br><b>100A</b><br>Date Updated<br>03/13/2009                                              | PCI Hist<br>80<br>63<br>80<br>74<br>AUDREY V                               | PCI from Inspection No Yes Yes Yes Yes  VAY  PCI from Inspection Yes                                         | Comments 03/13/2009                                                                                                     |     |
|           | 06/24/2010<br>03/13/2009<br>06/09/2003<br>07/01/1997<br><b>100A</b><br>Date Updated<br>03/13/2009<br>06/09/2003                                | PCI Hist<br>80<br>63<br>80<br>74<br>AUDREY V<br>PCI Hist<br>86<br>76       | PCI from Inspection No Yes Yes Yes Yes  VAY  PCI from Inspection Yes Yes Yes Yes                             | Comments 03/13/2009                                                                                                     |     |
| AUDREY    | 06/24/2010<br>03/13/2009<br>06/09/2003<br>07/01/1997<br>100A<br>Date Updated<br>03/13/2009<br>06/09/2003<br>07/01/1997                         | PCI Hist<br>80<br>63<br>80<br>74<br>AUDREY V<br>PCI Hist<br>86<br>76<br>69 | PCI from Inspection No Yes Yes Yes Yes  VAY  PCI from Inspection Yes Yes Yes Yes                             | Comments  03/13/2009  Comments                                                                                          | 86  |
|           | 06/24/2010<br>03/13/2009<br>06/09/2003<br>07/01/1997<br>100A<br>Date Updated<br>03/13/2009<br>06/09/2003<br>07/01/1997<br>100B<br>Date Updated | PCI Hist 80 63 80 74  AUDREY V  PCI Hist 86 76 69  AUDREY V                | PCI from Inspection No Yes Yes Yes Yes  VAY  PCI from Inspection Yes Yes Yes Yes Yes Yes PCI from Inspection | O3/13/2009  Comments  06/01/2009                                                                                        | 86  |
|           | 06/24/2010<br>03/13/2009<br>06/09/2003<br>07/01/1997<br>100A<br>Date Updated<br>03/13/2009<br>06/09/2003<br>07/01/1997                         | PCI Hist<br>80<br>63<br>80<br>74<br>AUDREY V<br>PCI Hist<br>86<br>76<br>69 | PCI from Inspection No Yes Yes Yes Yes  VAY  PCI from Inspection Yes Yes Yes Yes                             | O3/13/2009  Comments  06/01/2009                                                                                        | 86  |



# **PCI History**

| Street ID | Section ID   | Street Na | me                  |          | Last Updated | PCI |
|-----------|--------------|-----------|---------------------|----------|--------------|-----|
| AUSTIN    | 242          | AUSTIN A  | /E                  |          | 06/01/2009   | 81  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments |              |     |
|           | 06/01/2009   | 81        | No .                |          |              |     |
|           | 03/13/2009   | 79        | Yes                 |          |              |     |
|           | 06/09/2003   | 36        | Yes                 |          |              |     |
|           | 07/01/1997   | 55        | Yes                 |          |              |     |
| AZTECD    | 111          | AZTEC DR  | <u> </u>            |          | 03/13/2009   | 66  |
|           | Date Updated |           | PCI from Inspection | Comments |              |     |
|           |              |           |                     | Comments |              |     |
|           | 03/13/2009   | 66        | Yes                 |          |              |     |
|           | 06/23/2003   | 87        | Yes                 |          |              |     |
|           | 07/01/1997   | 81        | Yes                 |          |              |     |
| BARNST    | 101          | BARN ST   |                     |          | 03/13/2009   | 87  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments |              |     |
|           | 03/13/2009   | 87        | Yes                 |          |              |     |
|           | 06/09/2003   | 71        | Yes                 |          |              |     |
|           | 07/01/1997   | 65        | Yes                 |          |              |     |
| BAYLOR    | 404A         | BAYLOR S  | ST .                |          | 07/10/2012   | 81  |
|           |              |           |                     | Comments |              |     |
|           | Date Updated |           | PCI from Inspection | Comments |              |     |
|           | 07/10/2012   | 81        | No                  |          |              |     |
|           | 06/17/2011   | 81        | No                  |          |              |     |
|           | 03/13/2009   | 81        | Yes                 |          |              |     |
|           | 06/23/2004   | 95        | Yes                 |          |              |     |
| BAYLOR    | 404B         | BAYLOR S  | т                   |          | 07/10/2012   | 78  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments |              |     |
|           | 07/10/2012   | 78        | No                  |          |              |     |
|           | 06/17/2011   | 77        | No                  |          |              |     |
|           | 03/13/2009   | 78        | Yes                 |          |              |     |
|           | 06/23/2004   | 91        | Yes                 |          |              |     |
| BENBRO    | 207A         | BEN BRO   | WN LANE             |          | 03/13/2009   | 73  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments |              |     |
|           | 03/13/2009   | 73        | Yes                 | J        |              |     |
|           | 06/23/2003   | 83        | Yes                 |          |              |     |
|           | 07/01/1997   | 86        | Yes                 |          |              |     |
| BENBRO    | 207B         | BEN BRO   |                     |          | 03/13/2009   | 96  |
| PLIADIO   |              |           |                     |          | 03/13/2003   | 30  |
|           | Date Updated |           | PCI from Inspection | Comments |              |     |
|           | 03/13/2009   | 96        | Yes                 |          |              |     |
|           | 06/23/2003   | 75        | Yes                 |          |              |     |
|           | 07/01/1997   | 65        | Yes                 |          |              |     |
| BERNAR    | 365          | BERNARD   | DR                  |          | 06/24/2010   | 73  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments |              |     |
|           |              |           | No                  |          |              |     |
|           | 06/24/2010   | 73        | INO                 |          |              |     |



# **PCI History**

| Street ID | Section ID   | Street Na | me                  | La               | ast Updated | PCI |
|-----------|--------------|-----------|---------------------|------------------|-------------|-----|
| BERNAR    | 365          | BERNARD   | DR                  |                  | 06/24/2010  | 73  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments         |             |     |
|           | 04/16/2008   | 81        | No                  |                  |             |     |
|           | 06/09/2003   | 85        | Yes                 |                  |             |     |
|           | 07/01/1997   | 92        | Yes                 |                  |             |     |
| BIRDSE    | 117          | BIRDS EY  | E AVE               |                  | 03/13/2009  | 29  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments         |             |     |
|           | 03/13/2009   | 29        | Yes                 | Commonto         |             |     |
|           | 06/23/2003   | 28        | Yes                 |                  |             |     |
|           | 07/01/1997   | 43        | Yes                 |                  |             |     |
|           | 0170171991   |           | 163                 |                  |             |     |
| BLAINE    | 145          | BLAINE ST | <b>T</b>            |                  | 07/06/2011  | 81  |
|           | Date Updated |           | PCI from Inspection | Comments         |             |     |
|           | 07/06/2011   | 81        | No                  | ADT ON 9/25/2000 |             |     |
|           | 03/13/2009   | 83        | Yes                 | ADT ON 9/25/2000 |             |     |
|           | 06/05/2006   | 100       | No                  | ADT ON 9/25/2000 |             |     |
|           | 06/23/2003   | 39        | Yes                 | ADT ON 9/25/2000 |             |     |
|           | 07/01/1997   | 59        | Yes                 | ADT ON 9/25/2000 |             |     |
| BOEAN     | 440          | BOEAN LN  | I                   |                  | 03/13/2009  | 95  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments         |             |     |
|           | 03/13/2009   | 95        | Yes                 |                  |             |     |
| BOGIEC    | 400          | BOGIE CT  |                     |                  | 03/13/2009  | 68  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments         |             |     |
|           | 03/13/2009   | 68        | Yes                 | Comments         |             |     |
|           | 06/23/2004   | 75        | Yes                 |                  |             |     |
|           | 00/23/2004   | 75        | 165                 |                  |             |     |
| BOONES    | 379C         | N BOONES  | S FERRY RD          |                  | 08/04/2015  | 72  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments         |             |     |
|           | 08/04/2015   | 72        | No                  |                  |             |     |
|           | 03/13/2009   | 83        | Yes                 |                  |             |     |
| BOSTON    | 424          | BOSTON S  | т                   |                  | 06/01/2009  | 80  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments         |             |     |
|           | 06/01/2009   | 80        | No                  |                  |             |     |
|           | 03/13/2009   | 78        | Yes                 |                  |             |     |
|           | 06/23/2004   | 89        | Yes                 |                  |             |     |
| BRADLE    | 177          | BRADLEY   | ST                  |                  | 06/21/2011  | 79  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments         |             |     |
|           | 06/21/2011   | 79        | No                  | ADT ON 5/8/2009  |             |     |
|           | 03/13/2009   | 81        | Yes                 | ADT ON 5/8/2009  |             |     |
|           | 06/23/2003   | 80        | Yes                 | ADT ON 5/8/2009  |             |     |
|           |              |           |                     |                  |             |     |



# **PCI History**

| Street ID | Section ID   | Street Na | me                  | La               | ast Updated | PCI |
|-----------|--------------|-----------|---------------------|------------------|-------------|-----|
| BRANDY    | 203          | BRANDYW   |                     |                  | 03/13/2009  | 96  |
| D.MID I   |              |           |                     |                  | 30/10/2003  | 30  |
|           | Date Updated |           | PCI from Inspection | Comments         |             |     |
|           | 03/13/2009   | 96        | Yes                 |                  |             |     |
|           | 06/23/2003   | 68        | Yes                 |                  |             |     |
|           | 07/01/1997   | 73        | Yes                 |                  |             |     |
| BRIDLE    | 410A         | BRIDLEW   | OOD LN              |                  | 07/14/2014  | 76  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments         |             |     |
|           | 07/14/2014   | 76        | No                  |                  |             |     |
|           | 06/01/2009   | 80        | No                  |                  |             |     |
|           | 03/13/2009   | 79        | Yes                 |                  |             |     |
|           | 04/16/2008   | 87        | No                  |                  |             |     |
|           | 06/23/2004   | 90        | Yes                 |                  |             |     |
|           | 04/06/2004   | 83        | No                  |                  |             |     |
|           | 04/00/2004   | 03        | INU                 |                  |             |     |
| BRIDLE    | 410B         | BRIDLEW   | OOD LN              |                  | 07/14/2014  | 77  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments         |             |     |
|           | 07/14/2014   | 77        | No .                | ADT ON 1/27/2002 |             |     |
|           | 03/13/2009   | 81        | Yes                 | ADT ON 1/27/2002 |             |     |
|           | 04/16/2008   | 85        | No                  | ADT ON 1/27/2002 |             |     |
|           | 06/23/2004   | 88        | Yes                 | ADT ON 1/27/2002 |             |     |
|           | 04/06/2004   | 83        | No                  | ADT ON 1/27/2002 |             |     |
|           |              | DD04D44   | 005 DI              |                  | 00/40/0000  |     |
| BROADM    | 389          | BROADMO   | DORE PL             |                  | 03/13/2009  | 81  |
|           | Date Updated |           | PCI from Inspection | Comments         |             |     |
|           | 03/13/2009   | 81        | Yes                 |                  |             |     |
|           | 06/23/2004   | 92        | Yes                 |                  |             |     |
| BROADW    | 152A         | BROADWA   | AY ST               |                  | 03/13/2009  | 20  |
|           | Date Updated | DCI Hiet  | PCI from Inspection | Comments         |             |     |
|           | 03/13/2009   | 20        | Yes                 | Comments         |             |     |
|           | 06/23/2009   | 20        | Yes                 |                  |             |     |
|           | 06/23/2003   | 20<br>25  | Yes                 |                  |             |     |
|           | 07/01/1997   | 20        | 162                 |                  |             |     |
| BROADW    | 152B         | BROADWA   | AY ST               |                  | 03/13/2009  | 43  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments         |             |     |
|           | 03/13/2009   | 43        | Yes                 |                  |             |     |
|           | 06/23/2003   | 78        | Yes                 |                  |             |     |
|           | 07/01/1997   | 74        | Yes                 |                  |             |     |
| BROUGH    | 340          | BROUGHT   | ON WAY              |                  | 03/13/2009  | 89  |
|           | Date Updated |           | PCI from Inspection | Comments         |             |     |
|           | 03/13/2009   | 89        | Yes                 | Comments         |             |     |
|           |              | 100       | No                  |                  |             |     |
|           |              |           | INO                 |                  |             |     |
|           | 06/12/2006   |           |                     |                  |             |     |
|           | 06/09/2003   | 21        | Yes                 |                  |             |     |
|           |              |           |                     |                  |             |     |



# **PCI History**

| Street ID | Section ID               | Street Na       | me                     | La               | ast Updated | PCI |
|-----------|--------------------------|-----------------|------------------------|------------------|-------------|-----|
| BROWN     | 176A                     | BROWN S         | Т                      |                  | 02/17/2010  | 100 |
|           |                          |                 | -                      | Comments         |             |     |
|           | Date Updated             |                 | PCI from Inspection    | Comments         |             |     |
|           | 02/17/2010               | 100             | No                     |                  |             |     |
|           | 03/13/2009<br>06/23/2003 | 53<br>56        | Yes<br>Yes             |                  |             |     |
|           |                          |                 |                        |                  |             |     |
|           | 07/01/1997               | 68              | Yes                    |                  |             |     |
| BROWN     | 176B                     | BROWN S         | Т                      |                  | 02/17/2010  | 100 |
|           | Date Updated             | PCI Hist        | PCI from Inspection    | Comments         |             |     |
|           | 02/17/2010               | 100             | No                     |                  |             |     |
|           | 03/13/2009               | 55              | Yes                    |                  |             |     |
|           | 06/23/2003               | 64              | Yes                    |                  |             |     |
|           | 07/01/1997               | 28              | Yes                    |                  |             |     |
| BROWN     | 176C                     | BROWN S         | Т                      |                  | 02/17/2010  | 100 |
|           | Data Undated             | DCI Lliet       | DCI from Inopostion    | Commonto         |             |     |
|           | Date Updated 02/17/2010  | PCI Hist<br>100 | PCI from Inspection No | Comments         |             |     |
|           | 03/13/2009               |                 |                        |                  |             |     |
|           |                          | 68              | Yes                    |                  |             |     |
|           | 06/23/2004               | 90              | Yes                    |                  |             |     |
| BROWN     | 176D                     | BROWN S         | Т                      |                  | 02/17/2010  | 100 |
|           | Date Updated             | PCI Hist        | PCI from Inspection    | Comments         |             |     |
|           | 02/17/2010               | 100             | No.                    |                  |             |     |
|           | 03/13/2009               | 95              | Yes                    |                  |             |     |
| BROWNC    | 164                      | BROWN C         | Т                      |                  | 03/13/2009  | 96  |
|           | Data Undated             | DCI Lliet       | DCI from Inopostion    | Commonto         |             |     |
|           | Date Updated             |                 | PCI from Inspection    | Comments         |             |     |
|           | 03/13/2009               | 96              | Yes                    |                  |             |     |
|           | 06/23/2003               | 44              | Yes                    |                  |             |     |
|           | 07/01/1997               | 31              | Yes                    |                  |             |     |
| BRYANS    | 144A                     | BRYAN ST        |                        |                  | 06/28/2011  | 81  |
|           | Date Updated             | PCI Hist        | PCI from Inspection    | Comments         |             |     |
|           | 06/28/2011               | 81              | No                     | ADT ON 4/27/2009 |             |     |
|           | 03/13/2009               | 82              | Yes                    | ADT ON 4/27/2009 |             |     |
|           | 06/23/2003               | 90              | Yes                    | ADT ON 4/27/2009 |             |     |
|           | 01/01/1998               | 100             | No                     | ADT ON 4/27/2009 |             |     |
|           | 07/01/1997               | 75              | Yes                    | ADT ON 4/27/2009 |             |     |
| BRYANS    | 144B                     | BRYAN ST        |                        |                  | 07/06/2011  | 81  |
|           | Date Updated             | PCI Hist        |                        | Comments         |             |     |
|           | 07/06/2011               | 81              | No                     | ADT ON 4/29/1999 |             |     |
|           | 03/13/2009               | 83              | Yes                    | ADT ON 4/29/1999 |             |     |
|           | 06/05/2006               | 100             | No                     | ADT ON 4/29/1999 |             |     |
|           | 06/23/2003               | 43              | Yes                    | ADT ON 4/29/1999 |             |     |
|           | 07/01/1997               | 31              | Yes                    | ADT ON 4/29/1999 |             |     |
|           | 0110111991               | 31              | 169                    | 701 ON 4/28/1888 |             |     |



# **PCI History**

| Street ID | Section ID                 | Street Na | me                     | L                | ast Updated | PCI |
|-----------|----------------------------|-----------|------------------------|------------------|-------------|-----|
| BST       | 154                        | B ST      |                        |                  | 03/13/2009  | 36  |
|           | Date Updated               | PCI Hist  | PCI from Inspection    | Comments         |             |     |
|           | 03/13/2009                 | 36        | Yes                    | ADT ON 7/23/2003 |             |     |
|           | 06/23/2003                 | 77        | Yes                    | ADT ON 7/23/2003 |             |     |
|           | 07/01/1997                 | 81        | Yes                    | ADT ON 7/23/2003 |             |     |
| BUNKER    | 398                        | BUNKER A  | WE                     |                  | 06/01/2009  | 80  |
| DUNKEK    |                            |           |                        | _                | 06/01/2009  | 80  |
|           | Date Updated               |           | PCI from Inspection    | Comments         |             |     |
|           | 06/01/2009                 | 80        | No                     |                  |             |     |
|           | 03/13/2009                 | 79        | Yes                    |                  |             |     |
|           | 06/23/2004                 | 90        | Yes                    |                  |             |     |
| CAHILL    | 339                        | CAHILL W  | AY                     |                  | 03/13/2009  | 90  |
|           | Date Updated               | PCI Hist  | PCI from Inspection    | Comments         |             |     |
|           | 03/13/2009                 | 90        | Yes                    |                  |             |     |
|           | 06/12/2006                 | 100       | No                     |                  |             |     |
|           | 06/09/2003                 | 30        | Yes                    |                  |             |     |
|           | 07/01/1997                 | 24        | Yes                    |                  |             |     |
| CAMAS     | 303                        | CAMAS ST  | •                      |                  | 06/13/2011  | 80  |
|           |                            |           |                        | Comments         |             |     |
|           | Date Updated<br>06/13/2011 | 80        | PCI from Inspection No | Comments         |             |     |
|           | 03/13/2011                 | 80<br>80  | Yes                    |                  |             |     |
|           | 06/23/2003                 |           | Yes                    |                  |             |     |
|           | 06/23/2003<br>07/01/1997   | 84<br>84  | Yes<br>Yes             |                  |             |     |
|           | 07/01/1997                 |           |                        |                  |             |     |
| CAMELL    | 347                        | CAMELLIA  | WAY                    |                  | 03/13/2009  | 74  |
|           | Date Updated               |           | PCI from Inspection    | Comments         |             |     |
|           | 03/13/2009                 | 74        | Yes                    |                  |             |     |
|           | 06/09/2003                 | 84        | Yes                    |                  |             |     |
|           | 07/01/1997                 | 84        | Yes                    |                  |             |     |
| CAROLS    | 132A                       | CAROL ST  | •                      |                  | 03/13/2009  | 18  |
|           | Date Updated               | PCI Hist  | PCI from Inspection    | Comments         |             |     |
|           | 03/13/2009                 | 18        | Yes                    |                  |             |     |
|           | 06/09/2003                 | 47        | Yes                    |                  |             |     |
|           | 07/01/1997                 | 58        | Yes                    |                  |             |     |
| CAROLS    | 132B                       | CAROL ST  |                        |                  | 03/13/2009  | 90  |
|           | Date Updated               |           | PCI from Inspection    | Comments         |             |     |
|           | 03/13/2009                 | 90        | Yes                    | WIDTH VARIES     |             |     |
| CEDADA    | 249                        | CEDAR AV  | ·-                     |                  | 06/04/2000  | 77  |
| CEDARA    | 318                        |           |                        |                  | 06/01/2009  | 77  |
|           | Date Updated               | PCI Hist  | •                      | Comments         |             |     |
|           | 06/01/2009                 | 77        | No                     |                  |             |     |
|           | 03/13/2009                 | 75        | Yes                    |                  |             |     |
|           | 06/23/2003                 | 95        | Yes                    |                  |             |     |
|           | 01/01/2001                 | 100       | No                     |                  |             |     |
|           | 07/01/1997                 | 69        | Yes                    |                  |             |     |



# **PCI History**

| 044 ID    | 04! ID       | 04 4 N -  |                     |          | 1 4 11 4 - 4 - 4 | DOL |
|-----------|--------------|-----------|---------------------|----------|------------------|-----|
| Street ID | Section ID   | Street Na | me                  |          | Last Updated     | PCI |
| CENTEN    | 108          | CENTENN   | AL DR               |          | 06/23/2011       | 83  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments |                  |     |
|           | 06/23/2011   | 83        | No                  |          |                  |     |
|           | 03/13/2009   | 84        | Yes                 |          |                  |     |
|           | 06/09/2003   | 89        | Yes                 |          |                  |     |
|           | 07/01/1997   | 98        | Yes                 |          |                  |     |
| CENTER    | 446          | CENTER S  | Т                   |          | 08/16/2012       | 92  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments |                  |     |
|           | 08/16/2012   | 92        | No                  |          |                  |     |
|           | 03/13/2009   | 96        | Yes                 |          |                  |     |
| СНАМРІ    | 396          | CHAMPIO   | NSHIP DR            |          | 03/13/2009       | 73  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments |                  |     |
|           | 03/13/2009   | 73        | Yes                 |          |                  |     |
|           | 06/23/2004   | 90        | Yes                 |          |                  |     |
| CHARLE    | 138          | CHARLES   | ST                  |          | 06/08/2015       | 45  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments |                  |     |
|           | 06/08/2015   | 45        | No                  | Commonto |                  |     |
|           | 03/13/2009   | 21        | Yes                 |          |                  |     |
|           | 06/09/2003   | 32        | Yes                 |          |                  |     |
|           | 07/01/1997   | 64        | Yes                 |          |                  |     |
| CHURCH    | 227A         | CHURCH S  | ST .                |          | 03/13/2009       | 20  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments |                  |     |
|           | 03/13/2009   | 20        | Yes                 | Comments |                  |     |
|           | 06/23/2003   | 45        | Yes                 |          |                  |     |
|           | 08/01/1997   | 38        | Yes                 |          |                  |     |
|           | 00/01/1997   | 30        | 1 65                |          |                  |     |
| CHURCH    | 227B         | CHURCH S  | ST                  |          | 03/13/2009       | 23  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments |                  |     |
|           | 03/13/2009   | 23        | Yes                 |          |                  |     |
|           | 06/23/2003   | 33        | Yes                 |          |                  |     |
|           | 08/01/1997   | 48        | Yes                 |          |                  |     |
| CHURCH    | 227C         | CHURCH S  | ST                  |          | 03/13/2009       | 64  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments |                  |     |
|           | 03/13/2009   | 64        | Yes                 |          |                  |     |
|           | 06/23/2003   | 78        | Yes                 |          |                  |     |
|           | 07/01/1997   | 79        | Yes                 |          |                  |     |
| CITADE    | 408          | CITADEL S | ST .                |          | 07/10/2012       | 84  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments |                  |     |
|           | 07/10/2012   | 84        | No                  |          |                  |     |
|           | 06/20/2011   | 83        | No                  |          |                  |     |
|           | 03/13/2009   | 84        | Yes                 |          |                  |     |
|           |              |           |                     |          |                  |     |



# **PCI History**

| Street ID | Section ID   | Street Na | me                  | Last Updated                                       | PCI |
|-----------|--------------|-----------|---------------------|----------------------------------------------------|-----|
| CLACKA    | 251          | CLACKAM   | AS CIRCLE           | 03/13/2009                                         | 84  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                           |     |
|           | 03/13/2009   | 84        | Yes                 |                                                    |     |
|           | 06/23/2003   | 96        | Yes                 |                                                    |     |
|           | 01/01/2002   | 100       | No                  |                                                    |     |
|           | 07/01/1997   | 27        | Yes                 |                                                    |     |
| CLEMSO    | 434          | CLEMSON   | ST                  | 03/13/2009                                         | 100 |
|           |              |           |                     |                                                    |     |
|           | Date Updated |           | PCI from Inspection | Comments                                           |     |
|           | 03/13/2009   | 100       | Yes                 |                                                    |     |
| CLEVEL    | 158A         | CLEVELAN  | ND ST               | 08/04/2015                                         | 61  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                           |     |
|           | 08/04/2015   | 61        | No .                |                                                    |     |
|           | 06/24/2010   | 71        | No                  |                                                    |     |
|           | 03/13/2009   | 71        | Yes                 |                                                    |     |
|           | 06/23/2003   | 83        | Yes                 |                                                    |     |
|           |              |           |                     |                                                    |     |
|           | 07/01/1997   | 87        | Yes                 |                                                    |     |
|           | 01/01/1990   | 100       | No                  |                                                    |     |
| CLEVEL    | 158B         | CLEVELA   | ID ST               | 08/04/2015                                         | 68  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                           |     |
|           | 08/04/2015   | 68        | No                  | ADT ON 9/9/2000 - 3,732<br>ADT ON 3/4/2001 - 1,285 |     |
|           | 06/01/2009   | 79        | No                  | ADT ON 9/9/2000 - 3,732<br>ADT ON 3/4/2001 - 1,285 |     |
|           | 03/13/2009   | 77        | Yes                 | ADT ON 9/9/2000 - 3,732<br>ADT ON 3/4/2001 - 1,285 |     |
|           | 06/23/2003   | 81        | Yes                 | ADT ON 9/9/2000 - 3,732<br>ADT ON 3/4/2001 - 1,285 |     |
|           | 07/01/1997   | 86        | Yes                 | ADT ON 9/9/2000 - 3,732<br>ADT ON 3/4/2001 - 1,285 |     |
|           | 01/01/1990   | 100       | No                  | ADT ON 9/9/2000 - 3,732<br>ADT ON 3/4/2001 - 1,285 |     |
| CLEVEL    | 219A         | CLEVELAN  | ND ST               | 08/04/2015                                         | 85  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                           |     |
|           | 08/04/2015   | 85        | No                  |                                                    |     |
|           | 08/11/2010   | 100       | No                  |                                                    |     |
|           | 03/13/2009   | 68        | Yes                 |                                                    |     |
|           | 06/28/2006   | 100       | No                  |                                                    |     |
|           |              | 24        | Yes                 |                                                    |     |
|           | 06/23/2003   |           |                     |                                                    |     |
|           | 08/01/1997   | 19        | Yes                 |                                                    |     |
| CLEVEL    | 219B         | CLEVELAN  | ND ST               | 08/04/2015                                         | 85  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                           |     |
|           | 08/04/2015   | 85        | No .                |                                                    |     |
|           | 08/11/2010   | 100       | No                  |                                                    |     |
|           |              |           | -                   |                                                    |     |
|           | 03/13/2009   | 29        | Yes                 |                                                    |     |



# **PCI History**

| Street ID | Section ID                  | Street Na             | me                         | La               | ast Updated | PCI |
|-----------|-----------------------------|-----------------------|----------------------------|------------------|-------------|-----|
| CLEVEL    | 219B                        | CLEVELAN              | ND ST                      |                  | 08/04/2015  | 85  |
|           | Date Updated                | PCI Hist              | PCI from Inspection        | Comments         |             |     |
|           | 08/01/1997                  | 40                    | Yes                        |                  |             |     |
|           |                             |                       |                            |                  |             |     |
| CLEVEL    | 219C                        | CLEVELAN              | ND ST                      |                  | 08/04/2015  | 85  |
|           | Date Updated                | PCI Hist              | PCI from Inspection        | Comments         |             |     |
|           | 08/04/2015                  | 85                    | No                         | ADT ON 9/12/2003 |             |     |
|           | 08/11/2010                  | 100                   | No                         | ADT ON 9/12/2003 |             |     |
|           | 03/13/2009                  | 38                    | Yes                        | ADT ON 9/12/2003 |             |     |
|           | 06/23/2003                  | 77                    | Yes                        | ADT ON 9/12/2003 |             |     |
|           | 08/01/1997                  | 73                    | Yes                        | ADT ON 9/12/2003 |             |     |
| COLEWO    | 391                         | COLEWOO               | DD DR                      |                  | 06/01/2009  | 77  |
|           | Date Updated                | PCI Hist              | PCI from Inspection        | Comments         |             |     |
|           | 06/01/2009                  | 77                    | No                         |                  |             |     |
|           | 03/13/2009                  | 75                    | Yes                        |                  |             |     |
|           | 06/23/2004                  | 92                    | Yes                        |                  |             |     |
|           | 00/20/2004                  | 32                    | 163                        |                  |             |     |
| COLONY    | 355                         | COLONY                | ST                         |                  | 03/13/2009  | 84  |
|           | Date Updated                | PCI Hist              | PCI from Inspection        | Comments         |             |     |
|           | 03/13/2009                  | 84                    | Yes                        |                  |             |     |
|           | 06/09/2003                  | 90                    | Yes                        |                  |             |     |
|           | 07/01/1997                  | 90                    | Yes                        |                  |             |     |
| COLUMB    | 250                         | COLUMBIA              | A DR                       |                  | 06/24/2010  | 72  |
|           | Date Updated                | PCI Hist              | PCI from Inspection        | Comments         |             |     |
|           | 06/24/2010                  | 72                    | No.                        |                  |             |     |
|           | 03/13/2009                  | 72                    | Yes                        |                  |             |     |
|           | 06/09/2003                  | 95                    | Yes                        |                  |             |     |
|           | 01/01/2001                  | 100                   | No                         |                  |             |     |
|           | 07/01/1997                  | 24                    | Yes                        |                  |             |     |
| COMMER    | 179                         | COMMERC               | E WAY                      |                  | 03/13/2009  | 66  |
| COMMEK    |                             |                       |                            |                  | 03/13/2009  | 00  |
|           | Date Updated 03/13/2009     | PCI Hist<br>66        | PCI from Inspection<br>Yes | Comments         |             |     |
|           |                             |                       |                            |                  |             |     |
|           | 06/09/2003                  | 89<br>87              | Yes                        |                  |             |     |
|           | 07/01/1997                  | 87                    | Yes                        |                  |             |     |
| сомѕто    | 414                         | COMSTOC               | K AVE                      |                  | 06/22/2011  | 81  |
|           | Date Updated                | PCI Hist              | PCI from Inspection        | Comments         |             |     |
|           | 06/22/2011                  | 81                    | No                         |                  |             |     |
|           |                             | 82                    | Yes                        |                  |             |     |
|           | 03/13/2009                  | 02                    |                            |                  |             |     |
|           | 03/13/2009<br>06/23/2004    | 92                    | Yes                        |                  |             |     |
| COMSTW    |                             |                       |                            |                  | 06/22/2011  | 80  |
| COMSTW    | 06/23/2004<br><b>415</b>    | 92<br>COMSTOC         | K WY                       | Comments         | 06/22/2011  | 80  |
| COMSTW    | 06/23/2004                  | 92                    | K WY                       | Comments         | 06/22/2011  | 80  |
| COMSTW    | 06/23/2004 415 Date Updated | 92  COMSTOC  PCI Hist | PCI from Inspection        | Comments         | 06/22/2011  | 80  |



# **PCI History**

| Street ID | Section ID   | Street Na | me                  | La                                   | ast Updated | PCI |
|-----------|--------------|-----------|---------------------|--------------------------------------|-------------|-----|
| CONCOR    | 423          | CONCORE   | ST                  |                                      | 06/01/2009  | 80  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                             |             |     |
|           | 06/01/2009   | 80        | No .                |                                      |             |     |
|           | 03/13/2009   | 78        | Yes                 |                                      |             |     |
|           | 06/23/2004   | 85        | Yes                 |                                      |             |     |
| CONSTI    | 356          | CONSTITU  | ITION AVE           |                                      | 03/13/2009  | 80  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                             |             |     |
|           | 03/13/2009   | 80        | Yes                 |                                      |             |     |
|           | 06/09/2003   | 89        | Yes                 |                                      |             |     |
|           | 07/01/1997   | 89        | Yes                 |                                      |             |     |
| CONSTI    | 356B         | CONSTITU  | ITION AVE           |                                      | 03/13/2009  | 82  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                             |             |     |
|           | 03/13/2009   | 82        | Yes                 |                                      |             |     |
|           | 04/16/2008   | 83        | No                  |                                      |             |     |
|           | 06/23/2004   | 87        | Yes                 |                                      |             |     |
| COOLEY    | 463          | COOLEY    | т                   |                                      | 03/13/2009  | 92  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                             |             |     |
|           | 03/13/2009   | 92        | Yes                 |                                      |             |     |
| CORBYS    | 136          | CORBY ST  | T                   |                                      | 07/06/2011  | 79  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                             |             |     |
|           | 07/06/2011   | 79        | No                  |                                      |             |     |
|           | 03/13/2009   | 80        | Yes                 |                                      |             |     |
|           | 06/09/2003   | 89        | Yes                 |                                      |             |     |
|           | 07/01/1997   | 92        | Yes                 |                                      |             |     |
|           | 01/01/1995   | 100       | No                  |                                      |             |     |
| COUNTR    | 322          | COUNTRY   | CLUB RD             |                                      | 06/02/2015  | 60  |
|           | Date Updated |           |                     | Comments                             |             |     |
|           | 06/02/2015   |           | PCI from Inspection | ADT ON 8/30/2012                     |             |     |
|           | 03/13/2009   | 60<br>63  | No<br>Yes           | ADT ON 8/30/2012<br>ADT ON 8/30/2012 |             |     |
|           |              |           |                     |                                      |             |     |
|           | 06/09/2003   | 76        | Yes                 | ADT ON 8/30/2012                     |             |     |
|           | 07/01/1997   | 71        | Yes                 | ADT ON 8/30/2012                     |             |     |
| COUNTR    | 322A         | COUNTRY   | CLUB RD             |                                      | 03/13/2009  | 47  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                             |             |     |
|           | 03/13/2009   | 47        | Yes                 |                                      |             |     |
|           | 06/09/2003   | 76        | Yes                 |                                      |             |     |
|           | 07/01/1997   | 84        | Yes                 |                                      |             |     |
| COUNTR    | 322B         | COUNTRY   | CLUB RD             |                                      | 03/13/2009  | 63  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                             |             |     |
|           | 03/13/2009   | 63        | Yes                 |                                      |             |     |
|           | 06/09/2003   | 79        | Yes                 |                                      |             |     |
|           | 07/01/1997   | 71        | Yes                 |                                      |             |     |



# **PCI History**

| Street ID | Section ID   | Street Na | me                  | Last                                                                  | Updated   | PCI |
|-----------|--------------|-----------|---------------------|-----------------------------------------------------------------------|-----------|-----|
| COUNTR    | 322C         | COUNTRY   | CLUB RD             | 0                                                                     | 3/13/2009 | 89  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                                              |           |     |
|           | 03/13/2009   | 89        | Yes                 |                                                                       |           |     |
|           | 06/09/2003   | 65        | Yes                 |                                                                       |           |     |
| COUNTR    | 322D         | COUNTRY   | CLUB RD             | 0                                                                     | 3/13/2009 | 89  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                                              |           |     |
|           | 03/13/2009   | 89        | Yes                 |                                                                       |           |     |
|           | 06/09/2003   | 35        | Yes                 |                                                                       |           |     |
| COUNTR    | 323          | COUNTRY   | CLUB TERRACE        | 0                                                                     | 3/13/2009 | 84  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                                              |           |     |
|           | 03/13/2009   | 84        | Yes                 |                                                                       |           |     |
|           | 06/09/2003   | 96        | Yes                 |                                                                       |           |     |
|           | 01/01/2002   | 100       | No                  |                                                                       |           |     |
|           | 07/01/1997   | 51        | Yes                 |                                                                       |           |     |
| COUNTR    | 324          | COUNTRY   | CLUB CT             | 0                                                                     | 7/01/2014 | 100 |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                                              |           |     |
|           | 07/01/2014   | 100       | No                  | No PSL - Residental 25 No Type A curb & gutter                        | МРН       |     |
|           | 03/13/2009   | 35        | Yes                 | No PSL - Residental 25 No PSL - Residental 25 No Type A curb & gutter | MPH       |     |
|           | 06/09/2003   | 29        | Yes                 | No PSL - Residental 25 No Type A curb & gutter                        | MPH       |     |
|           | 07/01/1997   | 18        | Yes                 | No PSL - Residental 25 No Type A curb & gutter                        | MPH       |     |
| COUNTR    | 342          | COUNTRY   | CLUB CIRCLE         | 0                                                                     | 3/13/2009 | 34  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                                              |           |     |
|           | 03/13/2009   | 34        | Yes                 |                                                                       |           |     |
|           | 06/09/2003   | 77        | Yes                 |                                                                       |           |     |
|           | 07/01/1997   | 76        | Yes                 |                                                                       |           |     |
| COUNTR    | 428A         | COUNTRY   | LN                  | 0                                                                     | 7/01/2014 | 86  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                                              |           |     |
|           | 07/01/2014   | 86        | No                  | ADT ON 8/25/2005                                                      |           |     |
|           | 03/13/2009   | 89        | Yes                 | ADT ON 8/25/2005                                                      |           |     |
|           | 06/23/2004   | 92        | Yes                 | ADT ON 8/25/2005                                                      |           |     |
| COUNTR    | 428B         | COUNTRY   | LN                  | 0                                                                     | 7/01/2014 | 85  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                                              |           |     |
|           | 07/01/2014   | 85        | No                  | ADT ON 8/25/2005 - 186<br>ADT ON 4/20/2009- 844                       |           |     |
|           | 03/13/2009   | 95        | Yes                 | ADT ON 8/25/2005 - 186<br>ADT ON 4/20/2009- 844                       | i         |     |



# **PCI History**

| Street ID | Section ID               | Street Na | me                  | Li               | ast Updated | PCI |
|-----------|--------------------------|-----------|---------------------|------------------|-------------|-----|
| COZYWA    | 260A                     | COZY WA   | 1                   |                  | 06/01/2009  | 79  |
|           | Date Updated             | PCI Hist  | PCI from Inspection | Comments         |             |     |
|           | 06/01/2009               | 79        | No                  |                  |             |     |
|           | 03/13/2009               | 77        | Yes                 |                  |             |     |
|           | 06/09/2003               | 86        | Yes                 |                  |             |     |
|           |                          | 96        | Yes                 |                  |             |     |
|           | 08/01/1997               | 96        | Yes                 |                  |             |     |
| COZYWA    | 260B                     | COZY WA   | 1                   |                  | 03/13/2009  | 84  |
|           | Date Updated             | PCI Hist  | PCI from Inspection | Comments         |             |     |
|           | 03/13/2009               | 84        | Yes                 |                  |             |     |
| CREIGH    | 405                      | CREIGHT   | ON ST               |                  | 08/16/2012  | 82  |
|           | Data Hadatad             |           |                     | Comercial        |             |     |
|           | Date Updated             |           | PCI from Inspection | Comments         |             |     |
|           | 08/16/2012               | 82        | No                  |                  |             |     |
|           | 07/10/2012               | 80        | No                  |                  |             |     |
|           | 03/13/2009               | 83        | Yes                 |                  |             |     |
|           | 06/23/2004               | 87        | Yes                 |                  |             |     |
| CST       | 155                      | C ST      |                     |                  | 06/21/2011  | 81  |
|           | Date Updated             | PCI Hist  | PCI from Inspection | Comments         |             |     |
|           | 06/21/2011               | 81        | No                  | Commonto         |             |     |
|           |                          |           |                     |                  |             |     |
|           | 03/13/2009               | 81        | Yes                 |                  |             |     |
|           | 06/23/2003               | 82        | Yes                 |                  |             |     |
|           | 07/01/1997               | 87        | Yes                 |                  |             |     |
| DAHLIA    | 462                      | DAHLIA S  | Г                   |                  | 07/01/2014  | 86  |
|           | Date Updated             | PCI Hist  | PCI from Inspection | Comments         |             |     |
|           | 07/01/2014               | 86        | No                  | ADT ON 4/20/2009 |             |     |
|           | 03/13/2009               | 92        | Yes                 | ADT ON 4/20/2009 |             |     |
|           |                          |           |                     |                  |             |     |
| DEERRU    | 171A                     | DEER RUN  | IST                 |                  | 03/13/2009  | 39  |
|           | Date Updated             | PCI Hist  | PCI from Inspection | Comments         |             |     |
|           | 03/13/2009               | 39        | Yes                 |                  |             |     |
|           | 06/23/2003               | 73        | Yes                 |                  |             |     |
|           | 07/01/1997               | 69        | Yes                 |                  |             |     |
| DEERRU    | 171B                     | DEER RUN  | IST                 |                  | 06/01/2009  | 78  |
|           |                          |           |                     | Commont-         |             | . 3 |
|           | Date Updated             | PCI Hist  | PCI from Inspection | Comments         |             |     |
|           | 06/01/2009               | 78        | No                  |                  |             |     |
|           | 03/13/2009               | 76        | Yes                 |                  |             |     |
|           | 06/23/2003               | 87        | Yes                 |                  |             |     |
|           | 07/01/1997               | 90        | Yes                 |                  |             |     |
| DELLMO    | 328A                     | DELLMOO   | R WAY               |                  | 03/13/2009  | 87  |
|           | Date Updated             | PCI Hist  | PCI from Inspection | Comments         |             |     |
|           | 03/13/2009               | 87        | Yes                 |                  |             |     |
|           | 04/16/2008               | 91        | No                  |                  |             |     |
|           |                          |           | No<br>No            |                  |             |     |
|           |                          |           | NO                  |                  |             |     |
|           | 06/12/2006<br>06/09/2003 | 100<br>33 | Yes                 |                  |             |     |



# **PCI History**

| 2004         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    |                                                          |                                                          |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| 328A         | DELLMOO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R WAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                    | 03/13/2009                                               | 87                                                       |
| Date Updated | PCI Hist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PCI from Inspection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Comments                                           |                                                          |                                                          |
| 07/01/1997   | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    |                                                          |                                                          |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    |                                                          |                                                          |
| 328B         | DELLMOO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R WAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                    | 03/13/2009                                               | 87                                                       |
| Date Updated | PCI Hist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PCI from Inspection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Comments                                           |                                                          |                                                          |
| 03/13/2009   | 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    |                                                          |                                                          |
| 04/16/2008   | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                          |                                                          |
| 06/12/2006   | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                          |                                                          |
| 06/09/2003   | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    |                                                          |                                                          |
| 07/01/1997   | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    |                                                          |                                                          |
| 258          | DESANTIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    | 06/21/2011                                               | 82                                                       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>^</b>                                           | 00/21/2011                                               | <b>02</b>                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Comments                                           |                                                          |                                                          |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    |                                                          |                                                          |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    |                                                          |                                                          |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    |                                                          |                                                          |
| 07/01/1997   | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    |                                                          |                                                          |
| 348          | DOGWOO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D DR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    | 06/24/2010                                               | 76                                                       |
| Date Updated | PCI Hist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PCI from Inspection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Comments                                           |                                                          |                                                          |
| 06/24/2010   | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                          |                                                          |
| 03/13/2009   | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    |                                                          |                                                          |
| 06/09/2003   | 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    |                                                          |                                                          |
| 07/01/1997   | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    |                                                          |                                                          |
| 140          | DOUD ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    | 03/13/2009                                               | 42                                                       |
| Date Undated | PCI Hist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PCI from Inspection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Comments                                           |                                                          |                                                          |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Comments                                           |                                                          |                                                          |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    |                                                          |                                                          |
| 07/01/1997   | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    |                                                          |                                                          |
| 156          | n et                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    | 03/13/2000                                               | 64                                                       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    | 03/13/2003                                               | 04                                                       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Comments                                           |                                                          |                                                          |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    |                                                          |                                                          |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    |                                                          |                                                          |
| 07/01/1997   | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    |                                                          |                                                          |
| 406          | DUKE ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    | 08/16/2012                                               | 76                                                       |
| Date Updated | PCI Hist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PCI from Inspection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Comments                                           |                                                          |                                                          |
| 08/16/2012   | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    |                                                          |                                                          |
| 07/10/2012   | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                          |                                                          |
| 03/13/2009   | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    |                                                          |                                                          |
| 06/23/2004   | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    |                                                          |                                                          |
| 394          | DUNN CT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    | 03/13/2009                                               | 20                                                       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PCI from Inspection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Comments                                           |                                                          |                                                          |
| 03/13/2009   | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Johnnerita                                         |                                                          |                                                          |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    |                                                          |                                                          |
|              | 328B  Date Updated 03/13/2009 04/16/2008 06/12/2006 06/09/2003 07/01/1997  258  Date Updated 06/21/2011 03/13/2009 06/09/2003 07/01/1997  348  Date Updated 06/24/2010 03/13/2009 06/09/2003 07/01/1997  140  Date Updated 03/13/2009 06/09/2003 07/01/1997  146  Date Updated 03/13/2009 06/23/2003 07/01/1997  156  Date Updated 03/13/2009 06/23/2003 07/01/1997  406  Date Updated 03/13/2009 06/23/2003 07/01/1997  406  Date Updated 03/13/2009 06/23/2003 07/01/1997  406  Date Updated 08/16/2012 07/10/2012 03/13/2009 06/23/2004  394  Date Updated | 07/01/1997         51           328B         DELLMOO           Date Updated 03/13/2009         PCI Hist 03/13/2009           04/16/2008         91           06/12/2006         100           06/09/2003         40           07/01/1997         34           258         DESANTIS           Date Updated 06/21/2011         82           03/13/2009         83           06/09/2003         92           07/01/1997         90           348         DOGWOOI           Date Updated PCI Hist 06/24/2010         76           03/13/2009         75           06/09/2003         86           07/01/1997         68           140         DOUD ST           Date Updated PCI Hist 03/13/2009         42           06/23/2003         64           07/01/1997         82           156         D ST           Date Updated PCI Hist 03/13/2009         64           06/23/2003         78           07/01/1997         77           406         DUKE ST           Date Updated PCI Hist 08/16/2012         76           07/10/2012         74           03/13/2009 | Date Updated   PCI Hist   PCI from Inspection   No | Date Updated   PCI Hist   PCI from Inspection   Comments | Date Updated   PCI Hist   PCI from Inspection   Comments |



# **PCI History**

| Street ID | Section ID                 | Street Na | me                         |          | Last Updated | PCI |
|-----------|----------------------------|-----------|----------------------------|----------|--------------|-----|
| EAGLED    | 397A                       | EAGLE DR  |                            |          | 03/13/2009   | 72  |
|           |                            |           |                            | Commonts | 55. 10.2000  | . = |
|           | Date Updated<br>03/13/2009 | 72        | PCI from Inspection<br>Yes | Comments |              |     |
|           |                            |           |                            |          |              |     |
|           | 06/23/2004                 | 92        | Yes                        |          |              |     |
| EAGLED    | 397B                       | EAGLE DR  |                            |          | 03/13/2009   | 74  |
|           | Date Updated               | PCI Hist  | PCI from Inspection        | Comments |              |     |
|           | 03/13/2009                 | 74        | Yes                        |          |              |     |
|           | 06/23/2004                 | 89        | Yes                        |          |              |     |
| ECOLAW    | 337                        | ECOLA WA  | AY                         |          | 03/13/2009   | 88  |
|           | Date Updated               | PCI Hist  | PCI from Inspection        | Comments |              |     |
|           | 03/13/2009                 | 88        | Yes                        |          |              |     |
|           | 06/12/2006                 | 100       | No                         |          |              |     |
|           | 06/09/2003                 | 35        | Yes                        |          |              |     |
|           | 07/01/1997                 | 56        | Yes                        |          |              |     |
|           | 0.70171007                 |           | 100                        |          |              |     |
| EDGEWA    | 385                        | EDGEWAT   | ER DR                      |          | 07/08/2011   | 79  |
|           | Date Updated               | PCI Hist  | PCI from Inspection        | Comments |              |     |
|           | 07/08/2011                 | 79        | No                         |          |              |     |
|           | 03/13/2009                 | 79        | Yes                        |          |              |     |
|           | 06/23/2004                 | 92        | Yes                        |          |              |     |
| ELANAD    | 202A                       | ELANA DR  |                            |          | 06/21/2011   | 75  |
|           | Date Updated               | PCI Hist  | PCI from Inspection        | Comments |              |     |
|           | 06/21/2011                 | 75        | No                         | Comments |              |     |
|           | 03/13/2009                 | 73<br>77  | Yes                        |          |              |     |
|           | 03/13/2009                 | 7.7       | 165                        |          |              |     |
| ELANAD    | 202B                       | ELANA DR  |                            |          | 03/13/2009   | 96  |
|           | Date Updated               | PCI Hist  | PCI from Inspection        | Comments |              |     |
|           | 03/13/2009                 | 96        | Yes                        |          |              |     |
|           | 06/23/2003                 | 76        | Yes                        |          |              |     |
|           | 07/01/1997                 | 82        | Yes                        |          |              |     |
| ELANAW    | 206                        | ELANA WA  | ΑΥ                         |          | 03/13/2009   | 96  |
|           | Date Updated               | PCI Hist  | PCI from Inspection        | Comments |              |     |
|           | 03/13/2009                 | 96        | Yes                        | 20       |              |     |
|           | 06/23/2003                 | 35        | Yes                        |          |              |     |
|           | 07/01/1997                 | 54        | Yes                        |          |              |     |
| ELINC     | 110A                       | E LINCOLN |                            |          | 07/01/2014   | 61  |
| LLIIIO    |                            |           |                            |          | 07/01/2014   | U1  |
|           | Date Updated               | PCI Hist  | PCI from Inspection        | Comments |              |     |
|           | 07/01/2014                 | 61        | No                         |          |              |     |
|           | 06/09/2014                 | 46        | No                         |          |              |     |
|           | 03/13/2009                 | 50        | Yes                        |          |              |     |
|           | 06/09/2003                 | 89        | Yes                        |          |              |     |
|           | 07/01/1997                 | 33        | Yes                        |          |              |     |



# **PCI History**

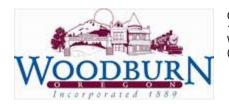
| Street ID | Section ID   | Street Na | me                  |                                | Last Updated | PCI |
|-----------|--------------|-----------|---------------------|--------------------------------|--------------|-----|
| ELINC     | 110B         | E LINCOL  | NST                 |                                | 07/01/2014   | 74  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                       |              |     |
|           | 07/01/2014   | 74        | No                  | PSL 25 MPH<br>Type C curb      |              |     |
|           | 06/09/2014   | 64        | No                  | PSL 25 MPH<br>Type C curb      |              |     |
|           | 03/13/2009   | 67        | Yes                 | PSL 25 MPH<br>Type C curb      |              |     |
|           | 04/16/2008   | 82        | No                  | PSL 25 MPH<br>Type C curb      |              |     |
|           | 06/09/2003   | 86        | Yes                 | PSL 25 MPH<br>Type C curb      |              |     |
|           | 07/01/1997   | 43        | Yes                 | PSL 25 MPH<br>Type C curb      |              |     |
|           | 01/01/1997   | 100       | No                  | PSL 25 MPH<br>Type C curb      |              |     |
| ELINC     | 110C         | E LINCOLI | N ST                |                                | 07/01/2014   | 79  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                       |              |     |
|           | 07/01/2014   | 79        | No                  | PSL 20 MPH - Sc<br>Type C Curb | hool Zone    |     |
|           | 06/09/2014   | 70        | No                  | PSL 20 MPH - Sc<br>Type C Curb | hool Zone    |     |
|           | 07/08/2011   | 70        | No                  | PSL 20 MPH - Sc<br>Type C Curb | hool Zone    |     |
|           | 03/13/2009   | 71        | Yes                 | PSL 20 MPH - Sc<br>Type C Curb | hool Zone    |     |
|           | 04/16/2008   | 82        | No                  | PSL 20 MPH - Sc<br>Type C Curb | hool Zone    |     |
|           | 06/09/2003   | 86        | Yes                 | PSL 20 MPH - Sc<br>Type C Curb | hool Zone    |     |
|           | 07/01/1997   | 33        | Yes                 | PSL 20 MPH - Sc<br>Type C Curb | hool Zone    |     |
|           | 01/01/1997   | 100       | No                  | PSL 20 MPH - Sc<br>Type C Curb | hool Zone    |     |
| ELINC     | 110D         | E LINCOL  | N ST                |                                | 07/01/2014   | 74  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                       |              |     |
|           | 07/01/2014   | 74        | No                  | PSL 25 MPH<br>Type C curb      |              |     |
|           | 06/09/2014   | 64        | No                  | PSL 25 MPH<br>Type C curb      |              |     |
|           | 03/13/2009   | 67        | Yes                 | PSL 25 MPH<br>Type C curb      |              |     |
|           | 04/16/2008   | 82        | No                  | PSL 25 MPH<br>Type C curb      |              |     |
|           | 06/09/2003   | 86        | Yes                 | PSL 25 MPH<br>Type C curb      |              |     |
|           | 07/01/1997   | 25        | Yes                 | PSL 25 MPH<br>Type C curb      |              |     |
|           | 01/01/1997   | 100       | No                  | PSL 25 MPH<br>Type C curb      |              |     |



# **PCI History**

| Street ID | Section ID   | Street Na | me                  | L               | ast Updated | PCI |
|-----------|--------------|-----------|---------------------|-----------------|-------------|-----|
| ELMST     | 148          | ELM ST    |                     |                 | 03/13/2009  | 35  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments        |             |     |
|           | 03/13/2009   | 35        | Yes                 | 501111101110    |             |     |
|           | 06/23/2003   | 69        | Yes                 |                 |             |     |
|           | 07/01/1997   | 73        | Yes                 |                 |             |     |
|           | 0170111001   | 70        | 100                 |                 |             |     |
| EVERGR    | 253A         | EVERGRE   | EN RD               |                 | 08/14/2012  | 89  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments        |             |     |
|           | 08/14/2012   | 89        | No                  |                 |             |     |
|           | 07/10/2012   | 88        | No                  |                 |             |     |
|           | 03/13/2009   | 92        | Yes                 |                 |             |     |
| EVERGR    | 253B         | EVERGRE   | FN RD               |                 | 08/14/2012  | 87  |
| EVERGR    |              |           |                     |                 | 00/14/2012  | O1  |
|           | Date Updated |           | PCI from Inspection | Comments        |             |     |
|           | 08/14/2012   | 87        | No                  |                 |             |     |
|           | 07/10/2012   | 86        | No                  |                 |             |     |
|           | 03/13/2009   | 90        | Yes                 |                 |             |     |
| EVERGR    | 253C         | EVERGRE   | EN RD               |                 | 08/14/2012  | 73  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments        |             |     |
|           | 08/14/2012   | 73        | No                  |                 |             |     |
|           | 06/01/2009   | 75        | No                  |                 |             |     |
|           | 03/13/2009   | 73        | Yes                 |                 |             |     |
|           | 06/23/2004   | 90        | Yes                 |                 |             |     |
| EVEDOD.   |              |           |                     |                 | 00/40/0000  |     |
| EVERGR    | 253D         | EVERGRE   | EN KU               |                 | 03/13/2009  | 66  |
|           | Date Updated |           | PCI from Inspection | Comments        |             |     |
|           | 03/13/2009   | 66        | Yes                 |                 |             |     |
|           | 04/16/2008   | 88        | No                  |                 |             |     |
|           | 06/09/2003   | 92        | Yes                 |                 |             |     |
|           | 01/01/2000   | 100       | No                  |                 |             |     |
|           | 07/01/1997   | 25        | Yes                 |                 |             |     |
| EVERGR    | 253E         | EVERGRE   | EN RD               |                 | 06/24/2015  | 52  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments        |             |     |
|           | 06/24/2015   | 52        | No                  | ADT ON 9/5/2008 |             |     |
|           | 06/23/2015   | 49        | No                  | ADT ON 9/5/2008 |             |     |
|           | 08/09/2012   | 44        | No                  | ADT ON 9/5/2008 |             |     |
|           | 03/13/2009   | 22        | Yes                 | ADT ON 9/5/2008 |             |     |
|           | 04/16/2008   | 65        | No                  | ADT ON 9/5/2008 |             |     |
|           | 06/09/2003   | 71        | Yes                 | ADT ON 9/5/2008 |             |     |
|           | 01/01/2000   | 100       | No                  | ADT ON 9/5/2008 |             |     |
|           | 07/01/1997   | 51        | Yes                 | ADT ON 9/5/2008 |             |     |
|           | 01/01/1991   | 100       | No                  | ADT ON 9/5/2008 |             |     |
| EVERGR    | 253F         | EVERGRE   | EN RD               |                 | 06/02/2014  | 100 |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments        |             |     |
|           | 06/02/2014   | 100       | No                  | Comments        |             |     |
|           |              |           |                     |                 |             |     |
|           | 03/13/2009   | 62        | Yes                 |                 |             |     |




# **PCI History**

| Street ID | Section ID   | Street Na | me                  |          | Last Updated | PCI |
|-----------|--------------|-----------|---------------------|----------|--------------|-----|
| EVERGR    | 253F         | EVERGRE   | EN RD               |          | 06/02/2014   | 100 |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments |              |     |
|           | 06/09/2003   | 86        | Yes                 | 00       |              |     |
|           | 08/01/1997   | 86        | Yes                 |          |              |     |
|           | 00/01/130/   | 00        | 103                 |          |              |     |
| FAIRWA    | 399          | FAIRWAY   | ST                  |          | 06/01/2009   | 81  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments |              |     |
|           | 06/01/2009   | 81        | No                  |          |              |     |
|           | 03/13/2009   | 79        | Yes                 |          |              |     |
|           | 06/23/2004   | 90        | Yes                 |          |              |     |
| FAIRWO    | 393A         | FAIRWOO   | D CRESCENT          |          | 06/01/2009   | 82  |
|           | Date Updated | DCI Hist  | PCI from Inspection | Comments |              |     |
|           | 06/01/2009   | 82        | No No               | Comments |              |     |
|           |              |           |                     |          |              |     |
|           | 03/13/2009   | 80        | Yes                 |          |              |     |
|           | 06/23/2004   | 92        | Yes                 |          |              |     |
| FAIRWO    | 393B         | FAIRWOO   | D CRESCENT          |          | 06/16/2011   | 81  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments |              |     |
|           | 06/16/2011   | 81        | No                  |          |              |     |
|           | 03/13/2009   | 82        | Yes                 |          |              |     |
|           | 06/23/2004   | 95        | Yes                 |          |              |     |
| FIFTHS    | 235A         | FIFTH ST  |                     |          | 06/24/2010   | 71  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments |              |     |
|           | 06/24/2010   | 71        | No                  | Commonto |              |     |
|           | 03/13/2009   | 70        | Yes                 |          |              |     |
|           | 06/23/2003   | 16        |                     |          |              |     |
|           |              |           | Yes                 |          |              |     |
|           | 08/01/1997   | 19        | Yes                 |          |              |     |
| FIFTHS    | 235B         | FIFTH ST  |                     |          | 03/13/2009   | 74  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments |              |     |
|           | 03/13/2009   | 74        | Yes                 |          |              |     |
|           | 06/23/2003   | 14        | Yes                 |          |              |     |
|           | 08/01/1997   | 15        | Yes                 |          |              |     |
| FIFTHS    | 235C         | FIFTH ST  |                     |          | 07/15/2011   | 100 |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments |              |     |
|           | 07/15/2011   | 100       | No                  | Commonto |              |     |
|           | 03/13/2009   | 32        | Yes                 |          |              |     |
|           | 06/23/2003   | 32<br>15  | Yes                 |          |              |     |
|           |              | 20        |                     |          |              |     |
|           | 08/01/1997   | 20        | Yes                 |          |              |     |
| FIFTHS    | 235D         | FIFTH ST  |                     |          | 07/15/2011   | 100 |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments |              |     |
|           | 07/15/2011   | 100       | No                  |          |              |     |
|           | 0171072011   |           |                     |          |              |     |
|           | 03/13/2009   | 7         | Yes                 |          |              |     |
|           |              | 7<br>24   | Yes<br>Yes          |          |              |     |



# **PCI History**

| Street ID | Section ID   | Street Na | me                  |                                | Last Updated | PCI |
|-----------|--------------|-----------|---------------------|--------------------------------|--------------|-----|
| FIFTHS    | 235E         | FIFTH ST  |                     |                                | 07/15/2011   | 100 |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                       |              |     |
|           | 07/15/2011   | 100       | No                  |                                |              |     |
|           | 03/13/2009   | 18        | Yes                 |                                |              |     |
|           | 06/23/2003   | 79        | Yes                 |                                |              |     |
|           | 07/01/1997   | 69        | Yes                 |                                |              |     |
| FILBER    | 151          | FILBERT S | ST                  |                                | 06/28/2011   | 85  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                       |              |     |
|           | 06/28/2011   | 85        | No                  |                                |              |     |
|           | 03/13/2009   | 86        | Yes                 |                                |              |     |
|           | 06/23/2003   | 90        | Yes                 |                                |              |     |
|           | 01/01/1998   | 100       | No                  |                                |              |     |
|           | 07/01/1997   | 39        | Yes                 |                                |              |     |
|           |              |           |                     |                                |              |     |
| FINZER    | 338          | FINZER W  | AY                  |                                | 03/13/2009   | 29  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                       |              |     |
|           | 03/13/2009   | 29        | Yes                 |                                |              |     |
|           | 06/09/2003   | 48        | Yes                 |                                |              |     |
|           | 07/01/1997   | 48        | Yes                 |                                |              |     |
| FIR       | 0004         | FID OT    |                     |                                | 00/40/0000   | •   |
| FIR       | 229A         | FIR ST    |                     |                                | 03/13/2009   | 3   |
|           | Date Updated |           | PCI from Inspection | Comments                       |              |     |
|           | 03/13/2009   | 3         | Yes                 |                                |              |     |
|           | 06/23/2003   | 15        | Yes                 |                                |              |     |
|           | 08/01/1997   | 18        | Yes                 |                                |              |     |
| FOURTH    | 234          | FOURTH S  | т                   |                                | 06/21/2011   | 81  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                       |              |     |
|           | 06/21/2011   | 81        | No                  | Commonto                       |              |     |
|           | 03/13/2009   | 82        | Yes                 |                                |              |     |
|           | 06/23/2003   | 30        | Yes                 |                                |              |     |
|           | 08/01/1997   | 67        | Yes                 |                                |              |     |
| FOXGLO    | 461          | FOXGLOV   |                     |                                | 07/01/2014   | 91  |
| . 3,020   |              |           |                     | Comments                       | 01/01/2017   | VI  |
|           | Date Updated |           | PCI from Inspection | Comments                       | 1000 400     |     |
|           | 07/01/2014   | 91        | No                  | ADT ON 4/15/2<br>ADT ON 12/15/ |              |     |
|           | 03/13/2009   | 95        | Yes                 | ADT ON 4/15/2<br>ADT ON 12/15/ |              |     |
|           |              |           |                     | ADI ON IZI IOI                 | 2010 - 100   |     |
| GARDEN    | 373          | GARDEN V  | VAY                 |                                | 06/24/2010   | 69  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                       |              |     |
|           | 06/24/2010   | 69        | No                  |                                |              |     |
|           | 03/13/2009   | 68        | Yes                 |                                |              |     |
|           | 06/09/2003   | 76        | Yes                 |                                |              |     |
|           | 07/01/1997   | 72        | Yes                 |                                |              |     |



# **PCI History**

| Street ID | Section ID                             | Street Na | me                  |          | Last Updated | PCI |
|-----------|----------------------------------------|-----------|---------------------|----------|--------------|-----|
| GARFIE    | 222                                    | GARFIELD  | ST                  |          | 08/02/2010   | 100 |
|           | Date Updated                           | PCI Hist  | PCI from Inspection | Comments |              |     |
|           | 08/02/2010                             | 100       | No                  |          |              |     |
|           | 03/13/2009                             | 38        | Yes                 |          |              |     |
|           | 06/09/2003                             | 76        | Yes                 |          |              |     |
|           | 08/01/1997                             | 57        | Yes                 |          |              |     |
| GARFIE    | 222B                                   | GARFIELD  | ST                  |          | 08/02/2010   | 100 |
|           | Date Updated                           | PCI Hist  | PCI from Inspection | Comments |              |     |
|           | 08/02/2010                             | 100       | No                  | Commonto |              |     |
|           | 03/13/2009                             | 52        | Yes                 |          |              |     |
|           | 06/09/2003                             | 85        | Yes                 |          |              |     |
|           | 01/01/2000                             | 100       | No                  |          |              |     |
|           | 08/01/1997                             | 84        | Yes                 |          |              |     |
| GARFIE    | 222C                                   | GARFIELD  |                     |          | 08/02/2010   | 100 |
| GARFIE    |                                        |           |                     | _        | 00/02/2010   | 100 |
|           | Date Updated                           |           | PCI from Inspection | Comments |              |     |
|           | 08/02/2010                             | 100       | No                  |          |              |     |
|           | 03/13/2009                             | 26        | Yes                 |          |              |     |
|           | 06/09/2003                             | 69        | Yes                 |          |              |     |
|           | 08/01/1997                             | 83        | Yes                 |          |              |     |
| GARFIE    | 222D                                   | GARFIELD  | ST                  |          | 06/20/2011   | 83  |
|           | Date Updated                           | PCI Hist  | PCI from Inspection | Comments |              |     |
|           | 06/20/2011                             | 83        | No                  |          |              |     |
|           | 03/13/2009                             | 84        | Yes                 |          |              |     |
|           | 06/09/2003                             | 27        | Yes                 |          |              |     |
|           | 08/01/1997                             | 53        | Yes                 |          |              |     |
| GARFIE    | 222E                                   | GARFIELD  | ST                  |          | 06/20/2011   | 77  |
|           |                                        | DCI Uint  | DCI from Inopostion | Comments |              |     |
|           | Date Updated                           |           | PCI from Inspection | Comments |              |     |
|           | 06/20/2011                             | 77<br>70  | No<br>You           |          |              |     |
|           | 03/13/2009                             | 78        | Yes                 |          |              |     |
|           | 06/09/2003                             | 90        | Yes                 |          |              |     |
|           | 08/01/1997                             | 89        | Yes                 |          |              |     |
| GATCHS    | 135A                                   | GATCH ST  |                     |          | 03/13/2009   | 49  |
|           | Date Updated                           | PCI Hist  | PCI from Inspection | Comments |              |     |
|           | 03/13/2009                             | 49        | Yes                 |          |              |     |
|           | 06/26/2003                             | 76        | Yes                 |          |              |     |
|           | 07/01/1997                             | 79        | Yes                 |          |              |     |
| GATCHS    | 135B                                   | GATCH ST  |                     |          | 06/11/2015   | 44  |
|           | Date Updated                           | PCI Hist  | PCI from Inspection | Comments |              |     |
|           | 06/11/2015                             | 44        | No                  |          |              |     |
|           |                                        | 43        | No                  |          |              |     |
|           | ()6/()9/2014                           |           |                     |          |              |     |
|           | 06/09/2014<br>03/13/2009               |           |                     |          |              |     |
|           | 06/09/2014<br>03/13/2009<br>06/23/2003 | 31<br>66  | Yes<br>Yes          |          |              |     |



# **PCI History**

| Street ID | Section ID   | Street Na | me                  | L               | ast Updated | PCI |
|-----------|--------------|-----------|---------------------|-----------------|-------------|-----|
| GATCHS    | 135C         | GATCH ST  |                     |                 | 06/11/2015  | 46  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments        |             |     |
|           | 06/11/2015   | 46        | No                  |                 |             |     |
|           | 06/09/2014   | 45        | No                  |                 |             |     |
|           | 03/13/2009   | 39        | Yes                 |                 |             |     |
|           | 06/23/2003   | 70        | Yes                 |                 |             |     |
|           | 07/01/1997   | 66        | Yes                 |                 |             |     |
| GATCHS    | 135D         | GATCH ST  |                     |                 | 06/11/2015  | 70  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments        |             |     |
|           | 06/11/2015   | 70        | No                  |                 |             |     |
|           | 03/13/2009   | 74        | Yes                 |                 |             |     |
|           | 06/09/2003   | 95        | Yes                 |                 |             |     |
|           | 01/01/2002   | 100       | No                  |                 |             |     |
|           | 07/01/1997   | 35        | Yes                 |                 |             |     |
| GEORGE    | 116          | GEORGE S  | ST                  |                 | 03/13/2009  | 91  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments        |             |     |
|           | 03/13/2009   | 91        | Yes                 |                 |             |     |
|           | 06/05/2006   | 100       | No                  |                 |             |     |
|           | 06/23/2003   | 64        | Yes                 |                 |             |     |
|           | 07/01/1997   | 64        | Yes                 |                 |             |     |
| GLATTC    | 372          | GLATT CIR | CLE                 |                 | 06/28/2013  | 53  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments        |             |     |
|           | 06/28/2013   | 53        | No                  | ADT ON 9/7/2005 |             |     |
|           | 03/13/2009   | 39        | Yes                 | ADT ON 9/7/2005 |             |     |
|           | 06/23/2003   | 76        | Yes                 | ADT ON 9/7/2005 |             |     |
|           | 07/01/1997   | 73        | Yes                 | ADT ON 9/7/2005 |             |     |
| GOOSEC    | 366          | GOOSE CF  | REEK RD             |                 | 06/01/2009  | 77  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments        |             |     |
|           | 06/01/2009   | 77        | No                  |                 |             |     |
|           | 03/13/2009   | 75        | Yes                 |                 |             |     |
|           | 06/09/2003   | 90        | Yes                 |                 |             |     |
|           | 07/01/1997   | 92        | Yes                 |                 |             |     |
| GOOSEH    | 454          | GOOSE HO  | DLLOW CT            |                 | 03/13/2009  | 89  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments        |             |     |
|           | 03/13/2009   | 89        | Yes                 |                 |             |     |
| GRANTS    | 224A         | GRANT ST  |                     |                 | 03/13/2009  | 19  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments        |             |     |
|           | 03/13/2009   | 19        | Yes                 |                 |             |     |
|           | 06/23/2003   | 66        | Yes                 |                 |             |     |
|           | 00/20/2000   |           |                     |                 |             |     |



# **PCI History**

| Section ID               | Street Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | Last Undated | PCI                                                |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|----------------------------------------------------|
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | <u>-</u>     | 100                                                |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | 07/01/2014   | 100                                                |
| Date Updated             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Comments     |              |                                                    |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |              |                                                    |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |              |                                                    |
| 03/13/2009               | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |              |                                                    |
| 06/23/2003               | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |              |                                                    |
| 08/01/1997               | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |              |                                                    |
| 388                      | GRAYSTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NE DR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | 07/08/2011   | 79                                                 |
| Date Updated             | PCI Hist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PCI from Inspection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Comments     |              |                                                    |
| 07/08/2011               | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | No .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |              |                                                    |
| 03/13/2009               | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |              |                                                    |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |              |                                                    |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |              |                                                    |
| 103A                     | GREENVIE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | W DR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | 03/13/2009   | 86                                                 |
| Date Updated             | PCI Hist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PCI from Inspection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Comments     |              |                                                    |
| 03/13/2009               | 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |              |                                                    |
| 06/09/2003               | 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |              |                                                    |
| 07/01/1997               | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |              |                                                    |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |              |                                                    |
| 103B                     | GREENVIE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | W DR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | 03/13/2009   | 85                                                 |
| Date Updated             | PCI Hist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PCI from Inspection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Comments     |              |                                                    |
| 03/13/2009               | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |              |                                                    |
| 06/09/2003               | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |              |                                                    |
| 07/01/1997               | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |              |                                                    |
| 104                      | GREENVIE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | W CT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | 03/13/2009   | 86                                                 |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _            | 00/10/2000   |                                                    |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Comments     |              |                                                    |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |              |                                                    |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |              |                                                    |
| 07/01/1997               | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |              |                                                    |
| 244                      | HALL ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | 03/13/2009   | 66                                                 |
| Date Updated             | PCI Hist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PCI from Inspection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Comments     |              |                                                    |
| 03/13/2009               | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |              |                                                    |
| 06/23/2003               | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |              |                                                    |
| 07/01/1997               | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |              |                                                    |
| 354                      | HAMPTON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | 06/02/2015   | 81                                                 |
| Data Undatad             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Camanaanta   |              |                                                    |
| · ·                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Comments     |              |                                                    |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |              |                                                    |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |              |                                                    |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |              |                                                    |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |              |                                                    |
| 06/09/2003<br>07/01/1997 | 18<br>32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Yes<br>Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |              |                                                    |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |              |                                                    |
|                          | 07/01/2014 06/16/2014 06/16/2014 03/13/2009 06/23/2003 08/01/1997  388  Date Updated 07/08/2011 03/13/2009 06/23/2004  103A  Date Updated 03/13/2009 06/09/2003 07/01/1997  103B  Date Updated 03/13/2009 06/09/2003 07/01/1997  104  Date Updated 03/13/2009 06/09/2003 07/01/1997  244  Date Updated 03/13/2009 06/09/2003 07/01/1997  354  Date Updated 03/13/2009 06/23/2003 07/01/1997  354  Date Updated 03/13/2009 06/23/2003 07/01/1997  354  Date Updated 06/02/2015 06/24/2010 03/13/2009 06/12/2006 06/09/2003 | 224B         GRANT ST           Date Updated 07/01/2014         PCI Hist 100 06/16/2014         100 06/16/2014         100 03/13/2009 67 06/23/2003 80 08/01/1997 79           388         GRAYSTO         GRAYSTO         GRAYSTO         GRAYSTO           Date Updated 07/08/2011 79 03/13/2009 79 06/23/2004 92         PCI Hist 03/13/2009 86 06/09/2003 81 07/01/1997 82         PCI Hist 03/13/2009 86 06/09/2003 81 07/01/1997 82         PCI Hist 03/13/2009 85 06/09/2003 68 07/01/1997 55         PCI Hist 03/13/2009 85 06/09/2003 68 07/01/1997 68         PCI Hist 03/13/2009 86 06/09/2003 73 07/01/1997 68         PCI Hist 03/13/2009 86 06/09/2003 73 07/01/1997 78         PCI Hist 03/13/2009 66 06/23/2003 76 07/01/1997 78         PCI Hist 03/13/2009 86 06/09/2003 76 07/01/1997 78         PCI Hist 06/02/2015 81 06/02/2015 81 06/02/2015 81 06/02/2015 81 06/02/2015 81 06/02/2016 100 06/09/2003 18 | Date Updated | Date Updated | Date Updated   PCI Hist   PCI from Inspection   No |



# **PCI History**

| Street ID | Section ID   | Street Na | me                  | La                                                             | st Updated | PCI |
|-----------|--------------|-----------|---------------------|----------------------------------------------------------------|------------|-----|
| HARDCA    | 134A         | HARDCAS   | TLE AVE             |                                                                | 03/13/2009 | 82  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                                       |            |     |
|           | 03/13/2009   | 82        | Yes                 |                                                                |            |     |
|           | 06/09/2003   | 98        | Yes                 |                                                                |            |     |
|           | 01/01/2000   | 100       | No                  |                                                                |            |     |
|           |              | 38        | Yes                 |                                                                |            |     |
|           | 07/01/1997   | 30        | 162                 |                                                                |            |     |
| HARDCA    | 134B         | HARDCAS   | TLE AVE             |                                                                | 03/13/2009 | 82  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                                       |            |     |
|           | 03/13/2009   | 82        | Yes                 |                                                                |            |     |
|           | 06/09/2003   | 98        | Yes                 |                                                                |            |     |
|           | 01/01/2000   | 100       | No                  |                                                                |            |     |
|           | 07/01/1997   | 58        | Yes                 |                                                                |            |     |
| HARDCA    | 4240         | HADDOAG   | TI E AVE            |                                                                | 02/42/2000 | 04  |
| HARDCA    | 134C         | HARDCAS   | ILE AVE             |                                                                | 03/13/2009 | 81  |
|           | Date Updated | PCI Hist  | •                   | Comments                                                       |            |     |
|           | 03/13/2009   | 81        | Yes                 |                                                                |            |     |
|           | 06/09/2003   | 98        | Yes                 |                                                                |            |     |
|           | 01/01/2000   | 100       | No                  |                                                                |            |     |
|           | 07/01/1997   | 84        | Yes                 |                                                                |            |     |
| HARDCA    | 134D         | HARDCAS   | TLE AVE             |                                                                | 06/04/2015 | 68  |
|           |              |           |                     | Comments                                                       |            |     |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                                       |            |     |
|           | 06/04/2015   | 68        | No                  |                                                                |            |     |
|           | 06/03/2015   | 65        | No                  |                                                                |            |     |
|           | 06/09/2014   | 60        | No                  |                                                                |            |     |
|           | 03/13/2009   | 64        | Yes                 |                                                                |            |     |
|           | 06/09/2003   | 85        | Yes                 |                                                                |            |     |
|           | 01/01/2000   | 100       | No                  |                                                                |            |     |
|           | 07/01/1997   | 85        | Yes                 |                                                                |            |     |
| HARDCA    | 134E         | HARDCAS   | TLE AVE             |                                                                | 06/11/2015 | 31  |
|           | Data Undated | DCI Hist  | PCI from Inspection | Comments                                                       |            |     |
|           | Date Updated |           |                     | ADT ON 1/25/1997                                               |            |     |
|           | 06/11/2015   | 31        | No                  |                                                                |            |     |
|           | 03/13/2009   | 56        | Yes                 | ADT ON 1/25/1997                                               |            |     |
|           | 06/09/2003   | 89        | Yes                 | ADT ON 1/25/1997                                               |            |     |
|           | 07/01/1997   | 82        | Yes                 | ADT ON 1/25/1997                                               |            |     |
|           | 01/01/1993   | 100       | No                  | ADT ON 1/25/1997                                               |            |     |
| HARDCA    | 134F         | HARDCAS   | TLE AVE             |                                                                | 06/11/2015 | 41  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                                       |            |     |
|           | 06/11/2015   | 41        | No                  | ADT ON 7/10/2008 - 3                                           | 3.724      |     |
|           |              |           |                     | ADT ON 10/20/2008 -<br>ADT ON 2/4/2009                         | •          |     |
|           | 06/09/2014   | 43        | No                  | ADT ON 7/10/2008 - 3<br>ADT ON 10/20/2008 -<br>ADT ON 2/4/2009 |            |     |
|           | 03/13/2009   | 44        | Yes                 | ADT ON 7/10/2008 - 3<br>ADT ON 10/20/2008 -<br>ADT ON 2/4/2009 | ,          |     |



# **PCI History**

| Street ID | Section ID              | Street Na | me                  | Last Updated                                                             | PCI |
|-----------|-------------------------|-----------|---------------------|--------------------------------------------------------------------------|-----|
| HARDCA    | 134F                    | HARDCAS   | TLE AVE             | 06/11/2015                                                               | 41  |
|           |                         |           |                     |                                                                          |     |
|           | Date Updated 06/09/2003 | 74        | PCI from Inspection | Comments                                                                 |     |
|           | 06/09/2003              | 74        | Yes                 | ADT ON 7/10/2008 - 3,724<br>ADT ON 10/20/2008 - 3,867<br>ADT ON 2/4/2009 |     |
|           | 07/01/1997              | 82        | Yes                 |                                                                          |     |
|           | 01/01/1993              | 100       | No                  |                                                                          |     |
| HARRIS    | 226A                    | HARRISON  | I ST                | 08/04/2010                                                               | 100 |
|           | Date Updated            | PCI Hist  | PCI from Inspection | Comments                                                                 |     |
|           | 08/04/2010              | 100       | No                  |                                                                          |     |
|           | 03/13/2009              | 23        | Yes                 |                                                                          |     |
|           | 06/23/2003              | 57        | Yes                 |                                                                          |     |
|           | 08/01/1997              | 41        | Yes                 |                                                                          |     |
| HARRIS    | 226B                    | HARRISON  | N ST                | 08/15/2010                                                               | 100 |
|           |                         |           |                     |                                                                          |     |
|           | Date Updated            | PCI Hist  | •                   | Comments                                                                 |     |
|           | 08/15/2010              | 100       | No                  |                                                                          |     |
|           | 03/13/2009              | 31        | Yes                 |                                                                          |     |
|           | 06/23/2003              | 45        | Yes                 |                                                                          |     |
|           | 08/01/1997              | 60        | Yes                 |                                                                          |     |
| HARRIS    | 226C                    | HARRISON  | I ST                | 08/04/2010                                                               | 100 |
|           | Date Updated            | PCI Hist  | PCI from Inspection | Comments                                                                 |     |
|           | 08/04/2010              | 100       | No                  |                                                                          |     |
|           | 03/13/2009              | 43        | Yes                 |                                                                          |     |
|           | 06/23/2003              | 21        | Yes                 |                                                                          |     |
|           | 08/01/1997              | 57        | Yes                 |                                                                          |     |
| HARVAR    | 402A                    | HARVARD   | DR                  | 08/16/2012                                                               | 79  |
|           |                         |           |                     |                                                                          |     |
|           | Date Updated            |           | PCI from Inspection | Comments                                                                 |     |
|           | 08/16/2012              | 79        | No                  |                                                                          |     |
|           | 07/10/2012              | 77        | No                  |                                                                          |     |
|           | 03/13/2009              | 81        | Yes                 |                                                                          |     |
|           | 06/23/2004              | 95        | Yes                 |                                                                          |     |
| HARVAR    | 402B                    | HARVARD   | DR                  | 08/16/2012                                                               | 80  |
|           | Date Updated            | PCI Hist  | PCI from Inspection | Comments                                                                 |     |
|           | 08/16/2012              | 80        | No .                |                                                                          |     |
|           | 07/10/2012              | 79        | No                  |                                                                          |     |
|           | 06/01/2009              | 81        | No                  |                                                                          |     |
|           | 03/13/2009              | 80        | Yes                 |                                                                          |     |
|           | 06/23/2004              | 90        | Yes                 |                                                                          |     |
| HARVAR    | 402C                    | HARVARD   | DR                  | 06/20/2011                                                               | 44  |
|           | Date Updated            | PCI Hist  | PCI from Inspection | Comments                                                                 |     |
|           |                         |           |                     | Comments                                                                 |     |
|           | 06/20/2011              | 44        | No                  |                                                                          |     |
|           | 03/13/2009              | 46        | Yes                 |                                                                          |     |
|           | 06/23/2004              | 91        | Yes                 |                                                                          |     |



# **PCI History**

| Street ID | Section ID   | Street Na            | me                  |          | Last Updated | PCI |
|-----------|--------------|----------------------|---------------------|----------|--------------|-----|
| HAWLEY    | 175A         | HAWLEY S             | ST                  |          | 03/13/2009   | 37  |
|           | Date Updated | PCI Hist             | PCI from Inspection | Comments |              |     |
|           | 03/13/2009   | 37                   | Yes                 |          |              |     |
|           | 06/23/2003   | 70                   | Yes                 |          |              |     |
|           | 07/01/1997   | 55                   | Yes                 |          |              |     |
| HAWLEY    | 175B         | HAWLEY S             | ST                  |          | 06/22/2011   | 83  |
|           | Date Updated | PCI Hist             | PCI from Inspection | Comments |              |     |
|           | 06/22/2011   | 83                   | No                  |          |              |     |
|           | 03/13/2009   | 84                   | Yes                 |          |              |     |
|           | 06/23/2003   | 96                   | Yes                 |          |              |     |
|           | 01/01/2002   | 100                  | No                  |          |              |     |
|           | 07/01/1997   | 54                   | Yes                 |          |              |     |
|           | 0770171997   | 34                   | 163                 |          |              |     |
| HAWTHO    | 311          | HAWTHOR              | NE CIRCLE           |          | 03/13/2009   | 25  |
|           | Date Updated | PCI Hist             | PCI from Inspection | Comments |              |     |
|           | 03/13/2009   | 25                   | Yes                 |          |              |     |
|           | 06/23/2003   | 67                   | Yes                 |          |              |     |
|           | 07/01/1997   | 79                   | Yes                 |          |              |     |
| HAZELN    | 370          | HAZELNU <sup>*</sup> | Γ DR                |          | 08/23/2012   | 61  |
|           |              |                      |                     | •        | 00.20.20.2   | •   |
|           | Date Updated | PCI Hist             | PCI from Inspection | Comments |              |     |
|           | 08/23/2012   | 61                   | No                  |          |              |     |
|           | 08/16/2012   | 45                   | No                  |          |              |     |
|           | 03/13/2009   | 18                   | Yes                 |          |              |     |
|           | 06/23/2004   | 59                   | Yes                 |          |              |     |
| HAZELN    | 370A         | HAZELNU <sup>-</sup> | ΓDR                 |          | 03/13/2009   | 82  |
|           | Date Updated | PCI Hist             | PCI from Inspection | Comments |              |     |
|           | 03/13/2009   | 82                   | Yes                 |          |              |     |
|           | 06/23/2004   | 86                   | Yes                 |          |              |     |
| HAZELN    | 370B         | HAZELNU              | Γ DR                |          | 08/16/2012   | 66  |
|           | Date Updated | PCI Hist             | PCI from Inspection | Comments |              |     |
|           | 08/16/2012   | 66                   | No                  | 2 2      |              |     |
|           | 08/09/2012   | 54                   | No                  |          |              |     |
|           | 03/13/2009   | 42                   | Yes                 |          |              |     |
|           | 06/09/2003   | 84                   | Yes                 |          |              |     |
|           | 07/01/1997   | 90                   | Yes                 |          |              |     |
| UEATUE    |              |                      |                     |          | 06/45/0044   | 70  |
| HEATHE    | 345          | HEATHER              |                     |          | 06/15/2011   | 78  |
|           | Date Updated | PCI Hist             | PCI from Inspection | Comments |              |     |
|           | 06/15/2011   | 78                   | No                  |          |              |     |
|           | 03/13/2009   | 78                   | Yes                 |          |              |     |
|           | 06/09/2003   | 86                   | Yes                 |          |              |     |
|           | 07/01/1997   | 87                   | Yes                 |          |              |     |



# **PCI History**

| Street ID | Section ID   | Street Na | me                  |            | Last Updated | PCI |
|-----------|--------------|-----------|---------------------|------------|--------------|-----|
| HENRYS    | 363A         | HENRYS E  | LVD                 |            | 06/16/2011   | 77  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments   |              |     |
|           | 06/16/2011   | 77        | No .                |            |              |     |
|           | 06/01/2009   | 77        | No                  |            |              |     |
|           | 03/13/2009   | 75        | Yes                 |            |              |     |
|           | 06/09/2003   | 82        | Yes                 |            |              |     |
|           | 07/01/1997   | 86        | Yes                 |            |              |     |
| HENRYS    | 363B         | HENRYS E  | u VD                |            | 06/16/2011   | 77  |
| ILITATIO  |              |           |                     |            | 00/10/2011   | ••• |
|           | Date Updated | PCI Hist  | •                   | Comments   |              |     |
|           | 06/16/2011   | 77        | No                  |            |              |     |
|           | 03/13/2009   | 78        | Yes                 |            |              |     |
|           | 06/09/2003   | 89        | Yes                 |            |              |     |
|           | 07/01/1997   | 84        | Yes                 |            |              |     |
| HERITA    | 109          | HERITAGE  | AVE                 |            | 06/23/2011   | 78  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments   |              |     |
|           | 06/23/2011   | 78        | No                  | Johnnerits |              |     |
|           |              |           |                     |            |              |     |
|           | 03/13/2009   | 78        | Yes                 |            |              |     |
|           | 06/09/2003   | 84        | Yes                 |            |              |     |
|           | 07/01/1997   | 85        | Yes                 |            |              |     |
| HERMAN    | 167A         | HERMANS   | ON ST               | 03/13/2009 | 56           |     |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments   |              |     |
|           | 03/13/2009   | 56        | Yes                 |            |              |     |
|           | 06/23/2003   | 72        | Yes                 |            |              |     |
|           | 07/01/1997   | 74        | Yes                 |            |              |     |
|           |              |           | . 55                |            |              |     |
| HERMAN    | 167B         | HERMANS   | ON ST               |            | 03/13/2009   | 43  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments   |              |     |
|           | 03/13/2009   | 43        | Yes                 |            |              |     |
|           | 06/23/2003   | 65        | Yes                 |            |              |     |
|           | 07/01/1997   | 73        | Yes                 |            |              |     |
| HERMAN    | 167C         | HERMANS   | ON ST               |            | 06/22/2011   | 79  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments   |              |     |
|           | 06/22/2011   | 79        | No                  |            |              |     |
|           | 03/13/2009   | 80        | Yes                 |            |              |     |
|           | 06/23/2003   | 85        | Yes                 |            |              |     |
|           | 07/01/1997   | 90        | Yes                 |            |              |     |
| HEROND    | 392          | HERON DE  |                     |            | 06/16/2011   | 81  |
| ILKOND    |              |           |                     | O          | 00/10/2011   | 01  |
|           | Date Updated | PCI Hist  | ·                   | Comments   |              |     |
|           | 06/16/2011   | 81        | No                  |            |              |     |
|           | 03/13/2009   | 82        | Yes                 |            |              |     |
|           | 06/23/2004   | 92        | Yes                 |            |              |     |



# **PCI History**

| Street ID | Section ID   | Street Na | me                  | ı               | ast Updated | PCI |
|-----------|--------------|-----------|---------------------|-----------------|-------------|-----|
| HIGHST    | 228A         | HIGH ST   |                     | -               | 03/13/2009  | 52  |
| півпот    |              |           |                     |                 | 03/13/2009  | 52  |
|           | Date Updated |           | PCI from Inspection | Comments        |             |     |
|           | 03/13/2009   | 52        | Yes                 |                 |             |     |
|           | 06/23/2003   | 50        | Yes                 |                 |             |     |
|           | 08/01/1997   | 58        | Yes                 |                 |             |     |
| HIGHST    | 228B         | HIGH ST   |                     |                 | 03/13/2009  | 22  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments        |             |     |
|           | 03/13/2009   | 22        | Yes                 |                 |             |     |
|           | 06/23/2003   | 29        | Yes                 |                 |             |     |
|           | 08/01/1997   | 61        | Yes                 |                 |             |     |
| HILLYE    | 433          | HILLYER L | .N                  |                 | 03/13/2009  | 66  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments        |             |     |
|           | 03/13/2009   | 66        | Yes                 |                 |             |     |
| HOOPER    | 441          | HOOPER S  | ST                  |                 | 08/16/2012  | 92  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments        |             |     |
|           | 08/16/2012   | 92        | No                  |                 |             |     |
|           | 03/13/2009   | 95        | Yes                 |                 |             |     |
|           |              |           |                     |                 |             |     |
| INDEPE    | 381          | INDEPEND  | ENCE ST             |                 | 03/13/2009  | 80  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments        |             |     |
|           | 03/13/2009   | 80        | Yes                 |                 |             |     |
|           | 06/09/2003   | 90        | Yes                 |                 |             |     |
|           | 07/01/1997   | 90        | Yes                 |                 |             |     |
| INDEPE    | 381B         | INDEPEND  | ENCE ST             |                 | 03/13/2009  | 82  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments        |             |     |
|           | 03/13/2009   | 82        | Yes                 |                 |             |     |
|           | 06/23/2004   | 90        | Yes                 |                 |             |     |
| INDEPE    | 382          | INDEPEND  | ENCE CT             |                 | 03/13/2009  | 80  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments        |             |     |
|           | 03/13/2009   | 80        | Yes                 |                 |             |     |
|           | 06/09/2003   | 90        | Yes                 |                 |             |     |
|           | 07/01/1997   | 90        | Yes                 |                 |             |     |
| NDUST     | 376          | INDUSTRIA | AL AVE              |                 | 08/04/2015  | 77  |
|           | Date Updated |           | PCI from Inspection | Comments        |             |     |
|           | 08/04/2015   | 77        | No .                | ADT ON 5/9/2012 |             |     |
|           | 03/13/2009   | 83        | Yes                 | ADT ON 5/9/2012 |             |     |
|           | 06/09/2003   | 92        | Yes                 | ADT ON 5/9/2012 |             |     |
|           |              |           |                     |                 |             |     |
|           | 01/01/1999   | 100       | No                  | ADT ON 5/9/2012 |             |     |



# **PCI History**

| Street ID | Section ID   | Street Na | me                  |           | Last Updated | PCI |
|-----------|--------------|-----------|---------------------|-----------|--------------|-----|
| INGLEW    | 387          | INGLEWO   |                     |           | 07/08/2011   | 81  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments  |              |     |
|           | 07/08/2011   | 81        | No No               | Johnnends |              |     |
|           | 03/13/2009   | 82        | Yes                 |           |              |     |
|           | 06/23/2004   | 90        | Yes                 |           |              |     |
|           | 00/20/2004   | 30        | 1 63                |           |              |     |
| IRONWO    | 390          | IRONWOO   | D TER               |           | 06/16/2011   | 78  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments  |              |     |
|           | 06/16/2011   | 78        | No                  |           |              |     |
|           | 03/13/2009   | 78        | Yes                 |           |              |     |
|           | 06/23/2004   | 91        | Yes                 |           |              |     |
| JACOBS    | 361          | JACOB ST  |                     |           | 06/01/2009   | 79  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments  |              |     |
|           | 06/01/2009   | 79        | No                  |           |              |     |
|           | 03/13/2009   | 77        | Yes                 |           |              |     |
|           | 06/09/2003   | 89        | Yes                 |           |              |     |
|           | 07/01/1997   | 90        | Yes                 |           |              |     |
|           |              |           |                     |           |              |     |
| JAMESS    | 122A         | JAMES ST  |                     |           | 06/24/2010   | 58  |
|           | Date Updated |           | PCI from Inspection | Comments  |              |     |
|           | 06/24/2010   | 58        | No                  |           |              |     |
|           | 03/13/2009   | 57        | Yes                 |           |              |     |
|           | 04/16/2008   | 87        | No                  |           |              |     |
|           | 06/09/2003   | 91        | Yes                 |           |              |     |
|           | 01/01/2000   | 100       | No                  |           |              |     |
|           | 07/01/1997   | 63        | Yes                 |           |              |     |
| JAMESS    | 122B         | JAMES ST  |                     |           | 06/24/2010   | 70  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments  |              |     |
|           | 06/24/2010   | 70        | No .                |           |              |     |
|           | 03/13/2009   | 69        | Yes                 |           |              |     |
|           | 06/09/2003   | 95        | Yes                 |           |              |     |
|           | 01/01/2000   | 100       | No                  |           |              |     |
|           | 07/01/1997   | 19        | Yes                 |           |              |     |
| JAMEST    | 357          | JAMESTO   | WN ST               |           | 03/13/2009   | 73  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments  |              |     |
|           | 03/13/2009   | 73        | Yes                 |           |              |     |
|           | 06/09/2003   | 86        | Yes                 |           |              |     |
|           | 07/01/1997   | 90        | Yes                 |           |              |     |
| JANAAV    | 166          | JANA AVE  |                     |           | 03/13/2009   | 82  |
|           |              |           |                     | •         | 55. 10/2000  | V-  |
|           | Date Updated | PCI Hist  | •                   | Comments  |              |     |
|           | 03/13/2009   | 82        | Yes                 |           |              |     |
|           | 04/16/2008   | 87        | No                  |           |              |     |
|           | 04/06/2004   | 93        | No                  |           |              |     |
|           | 06/23/2003   | 96        | Yes                 |           |              |     |
|           | 01/01/2002   | 100       | No                  |           |              |     |



# **PCI History**

| Street ID | Section ID   | Street Na | me                  |            | Last Updated | PCI |
|-----------|--------------|-----------|---------------------|------------|--------------|-----|
| JANAAV    | 166          | JANA AVE  |                     |            | 03/13/2009   | 81  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments   |              |     |
|           | 07/01/1997   | 61        | Yes                 |            |              |     |
| JANACT    | 160          | JANA CT   |                     |            | 06/01/2009   | 81  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments   |              |     |
|           | 06/01/2009   | 81        | No                  |            |              |     |
|           | 03/13/2009   | 79        | Yes                 |            |              |     |
|           | 04/16/2008   | 87        | No                  |            |              |     |
|           | 04/12/2004   | 93        | No                  |            |              |     |
|           | 06/23/2003   | 96        | Yes                 |            |              |     |
|           | 01/01/2002   | 100       | No                  |            |              |     |
|           | 07/01/1997   | 56        | Yes                 |            |              |     |
|           | 07/01/1997   | 50        | res                 |            |              |     |
| JANSEN    | 350          | JANSEN W  | /AY                 |            | 03/13/2009   | 81  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments   |              |     |
|           | 03/13/2009   | 81        | Yes                 |            |              |     |
|           | 06/09/2003   | 90        | Yes                 |            |              |     |
|           | 07/01/1997   | 91        | Yes                 |            |              |     |
|           | 01/01/1995   | 100       | No                  |            |              |     |
| JOHNSO    | 147A         | JOHNSON   | ST                  |            | 03/13/2009   | 87  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments   |              |     |
|           | 03/13/2009   | 87        | Yes                 |            |              |     |
|           | 06/23/2003   | 90        | Yes                 |            |              |     |
|           | 01/01/1998   | 100       | No                  |            |              |     |
|           | 07/01/1997   | 71        | Yes                 |            |              |     |
| JOHNSO    | 147B         | JOHNSON   | ST                  |            | 03/13/2009   | 86  |
|           | Date Updated |           | PCI from Inspection | Comments   |              |     |
|           | 03/13/2009   | 86        | Yes                 | Comments   |              |     |
|           | 06/23/2003   | 90        | Yes                 |            |              |     |
|           | 01/01/1998   | 100       | nes<br>No           |            |              |     |
|           | 07/01/1998   | 41        | Yes                 |            |              |     |
|           |              |           | 100                 |            |              |     |
| JONAHP    | 438          | JONAH PL  |                     |            | 03/13/2009   | 95  |
|           | Date Updated |           | PCI from Inspection | Comments   |              |     |
|           | 03/13/2009   | 95        | Yes                 |            |              |     |
| JORYST    | 307          | JORY ST   |                     |            | 06/13/2011   | 77  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments   |              |     |
|           | 06/13/2011   | 77        | No .                |            |              |     |
|           | 03/13/2009   | 77        | Yes                 |            |              |     |
|           | 06/23/2003   | 83        | Yes                 |            |              |     |
|           | 07/01/1997   | 86        | Yes                 |            |              |     |
| JOYCES    | 149          | JOYCE ST  |                     |            | 03/13/2009   | 86  |
|           | Date Updated | PCI Hist  |                     | Comments   |              |     |
|           | 03/13/2009   | 86        | Yes                 | Johnnerits |              |     |



# **PCI History**

| Street ID         | Section ID                 | Street Na | me                         |            | Last Updated | PCI       |
|-------------------|----------------------------|-----------|----------------------------|------------|--------------|-----------|
| JOYCES            | 149                        | JOYCE ST  |                            |            | 03/13/2009   | 86        |
|                   | Date Updated               | PCI Hist  | PCI from Inspection        | Comments   |              |           |
|                   | 06/23/2003                 | 90        | Yes                        | Johnnerita |              |           |
|                   | 01/01/1998                 | 100       | No                         |            |              |           |
|                   | 07/01/1997                 | 76        | Yes                        |            |              |           |
|                   | 0770171007                 | 70        | 100                        |            |              |           |
| JUDYST            | 174A                       | JUDY ST   |                            |            | 03/13/2009   | 89        |
|                   | Date Updated               | PCI Hist  | PCI from Inspection        | Comments   |              |           |
|                   | 03/13/2009                 | 89        | Yes                        |            |              |           |
|                   | 06/23/2003                 | 96        | Yes                        |            |              |           |
|                   | 01/01/2002                 | 100       | No                         |            |              |           |
|                   | 07/01/1997                 | 55        | Yes                        |            |              |           |
| JUDYST            | 174B                       | JUDY ST   |                            |            | 03/13/2009   | 88        |
|                   | Data Undated               | PCI Hist  | DCI from Inspection        | Comments   |              |           |
|                   | Date Updated<br>03/13/2009 | 88        | PCI from Inspection<br>Yes | Comments   |              |           |
|                   | 06/23/2003                 | 96        | Yes                        |            |              |           |
|                   | 01/01/2002                 | 100       | No                         |            |              |           |
|                   | 07/01/1997                 | 80        | Yes                        |            |              |           |
|                   | 0110111331                 | 00        | 1 53                       |            |              |           |
| JULIEC            | 173                        | JULIE CT  |                            |            | 03/13/2009   | 86        |
|                   | Date Updated               | PCI Hist  | PCI from Inspection        | Comments   |              |           |
|                   | 03/13/2009                 | 86        | Yes                        |            |              |           |
|                   | 06/23/2003                 | 96        | Yes                        |            |              |           |
|                   | 01/01/2002                 | 100       | No                         |            |              |           |
|                   | 07/01/1997                 | 72        | Yes                        |            |              |           |
| JUNEWA            | 102A                       | JUNE WAY  | •                          |            | 06/23/2011   | 84        |
|                   | Date Updated               | PCI Hist  | PCI from Inspection        | Comments   |              |           |
|                   | 06/23/2011                 | 84        | No                         | Comments   |              |           |
|                   | 03/13/2009                 | 85        | Yes                        |            |              |           |
|                   | 06/09/2003                 | 76        | Yes                        |            |              |           |
|                   | 07/01/1997                 | 80        | Yes                        |            |              |           |
| 11 15 15 15 15 15 |                            |           |                            |            | 00/00/0044   | 70        |
| JUNEWA            | 102B                       | JUNE WAY  |                            |            | 06/23/2011   | 79        |
|                   | Date Updated               | PCI Hist  |                            | Comments   |              |           |
|                   | 06/23/2011                 | 79        | No                         |            |              |           |
|                   | 03/13/2009                 | 79        | Yes                        |            |              |           |
|                   | 06/23/2004                 | 92        | Yes                        |            |              |           |
| KELOWN            | 204                        | KELOWNA   | CT                         |            | 03/13/2009   | 96        |
|                   | Date Updated               | PCI Hist  | PCI from Inspection        | Comments   |              |           |
|                   | 03/13/2009                 | 96        | Yes                        |            |              |           |
|                   | 06/23/2003                 | 70        | Yes                        |            |              |           |
|                   | 07/01/1997                 | 75        | Yes                        |            |              |           |
| KELOWN            | 205                        | KELOWNA   | ST                         |            | 03/13/2009   | 96        |
|                   |                            |           |                            |            | 30/10/2003   | <b>30</b> |
|                   | Date Updated               | PCI Hist  |                            | Comments   |              |           |
|                   | 03/13/2009                 | 96        | Yes                        |            |              |           |



# **PCI History**

| Street ID | Section ID   | Street Na | me                  |          | Last Updated | PCI |
|-----------|--------------|-----------|---------------------|----------|--------------|-----|
| KELOWN    | 205          | KELOWNA   | ST                  |          | 03/13/2009   | 96  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments |              |     |
|           | 06/23/2003   | 49        | Yes                 |          |              |     |
|           | 07/01/1997   | 59        | Yes                 |          |              |     |
| KEVINC    | 124          | KEVIN CT  |                     |          | 03/13/2009   | 89  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments |              |     |
|           | 03/13/2009   | 89        | Yes                 |          |              |     |
|           | 06/09/2003   | 95        | Yes                 |          |              |     |
|           | 01/01/2000   | 100       | No                  |          |              |     |
|           | 07/01/1997   | 73        | Yes                 |          |              |     |
| KINGWA    | 352A         | KING WAY  |                     |          | 06/01/2009   | 78  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments |              |     |
|           | 06/01/2009   | 78        | No                  |          |              |     |
|           | 03/13/2009   | 76        | Yes                 |          |              |     |
|           | 06/09/2003   | 89        | Yes                 |          |              |     |
|           | 07/01/1997   | 86        | Yes                 |          |              |     |
|           | 01/01/1992   | 100       | No                  |          |              |     |
| KINGWA    | 352B         | KING WAY  |                     |          | 03/13/2009   | 36  |
| KINGWA    |              |           |                     |          | 03/13/2009   | 36  |
|           | Date Updated | PCI Hist  |                     | Comments |              |     |
|           | 03/13/2009   | 36        | Yes                 |          |              |     |
|           | 06/09/2003   | 88        | Yes                 |          |              |     |
|           | 07/01/1997   | 84        | Yes                 |          |              |     |
| KINGWA    | 352C         | KING WAY  |                     |          | 06/24/2010   | 70  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments |              |     |
|           | 06/24/2010   | 70        | No                  |          |              |     |
|           | 03/13/2009   | 69        | Yes                 |          |              |     |
|           | 06/09/2003   | 85        | Yes                 |          |              |     |
|           | 07/01/1997   | 87        | Yes                 |          |              |     |
| KINGWA    | 352D         | KING WAY  |                     |          | 03/13/2009   | 73  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments |              |     |
|           | 03/13/2009   | 73        | Yes                 |          |              |     |
|           | 06/09/2003   | 95        | Yes                 |          |              |     |
|           | 01/01/1999   | 100       | No                  |          |              |     |
|           | 07/01/1997   | 15        | Yes                 |          |              |     |
| KOFFLE    | 131          | KOFFLER   | AVE                 |          | 03/13/2009   | 44  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments |              |     |
|           | 03/13/2009   | 44        | Yes                 |          |              |     |
|           | 06/09/2003   | 69        | Yes                 |          |              |     |
|           | 07/01/1997   | 76        | Yes                 |          |              |     |
| KOTKAS    | 247          | KOTKA ST  |                     |          | 03/13/2009   | 50  |
| TOTKAS    | Date Updated | PCI Hist  | PCI from Inspection | Comments |              |     |
|           |              |           |                     |          |              |     |



# **PCI History**

| Street ID | Section ID   | Street Na | me                  | Last                                           | Updated    | PCI |
|-----------|--------------|-----------|---------------------|------------------------------------------------|------------|-----|
| KOTKAS    | 247          | KOTKA ST  | •                   | 0                                              | 3/13/2009  | 50  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                       |            |     |
|           | 06/23/2003   | 62        | Yes                 |                                                |            |     |
|           | 07/01/1997   | 78        | Yes                 |                                                |            |     |
| LANDAU    | 115A         | LANDAU D  | R                   | O                                              | 3/13/2009  | 90  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                       |            |     |
|           | 03/13/2009   | 90        | Yes                 |                                                |            |     |
|           | 06/05/2006   | 100       | No                  |                                                |            |     |
|           | 06/23/2003   | 77        | Yes                 |                                                |            |     |
|           | 07/01/1997   | 73        | Yes                 |                                                |            |     |
| LANDAU    | 115B         | LANDAU D  | R                   | O                                              | 06/23/2011 | 82  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                       |            |     |
|           | 06/23/2011   | 82        | No                  |                                                |            |     |
|           | 03/13/2009   | 85        | Yes                 |                                                |            |     |
|           | 06/05/2006   | 100       | No                  |                                                |            |     |
|           | 06/23/2003   | 71        | Yes                 |                                                |            |     |
|           | 07/01/1997   | 71        | Yes                 |                                                |            |     |
| LAUREL    | 112          | LAUREL A  | VE                  | O                                              | 3/13/2009  | 20  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                       |            |     |
|           | 03/13/2009   | 20        | Yes                 |                                                |            |     |
|           | 06/23/2003   | 39        | Yes                 |                                                |            |     |
|           | 07/01/1997   | 50        | Yes                 |                                                |            |     |
| LAWSON    | 256          | LAWSON    | AVE                 | C                                              | 3/13/2009  | 96  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                       |            |     |
|           | 03/13/2009   | 96        | Yes                 |                                                |            |     |
|           | 06/09/2003   | 26        | Yes                 |                                                |            |     |
|           | 07/01/1997   | 65        | Yes                 |                                                |            |     |
| LEISUR    | 245          | LEASURE   | ST                  | O                                              | 7/01/2014  | 73  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                       |            |     |
|           | 07/01/2014   | 73        | No                  | ADT ON 7/30/2002                               |            |     |
|           |              |           |                     | No PSL - Residental 25                         | MPH        |     |
|           | 06/04/0040   | 00        | NI.                 | Type A curb & gutter                           |            |     |
|           | 06/24/2010   | 69        | No                  | ADT ON 7/30/2002<br>No PSL - Residental 25     | MPH        |     |
|           |              |           |                     | Type A curb & gutter                           |            |     |
|           | 03/13/2009   | 68        | Yes                 | ADT ON 7/30/2002                               |            |     |
|           |              |           |                     | No PSL - Residental 25<br>Type A curb & gutter | MPH        |     |
|           | 06/23/2003   | 81        | Yes                 | ADT ON 7/30/2002<br>No PSL - Residental 25     | MPH        |     |
|           | 07/01/1997   | 81        | Yes                 | Type A curb & gutter ADT ON 7/30/2002          | MDU        |     |
|           |              |           |                     | No PSL - Residental 25                         | N/III      |     |



# **PCI History**

| Street ID | Section ID   | Street Na | me                  |          | Last Updated | PCI |
|-----------|--------------|-----------|---------------------|----------|--------------|-----|
| LEXING    | 358          | LEXINGTO  | N CT                |          | 03/13/2009   | 82  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments |              |     |
|           | 03/13/2009   | 82        | Yes                 |          |              |     |
|           | 06/09/2003   | 90        | Yes                 |          |              |     |
|           | 07/01/1997   | 92        | Yes                 |          |              |     |
| LILACW    | 346          | LILAC WA  | Υ                   |          | 06/24/2010   | 70  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments |              |     |
|           | 06/24/2010   | 70        | No                  |          |              |     |
|           | 03/13/2009   | 69        | Yes                 |          |              |     |
|           | 06/09/2003   | 81        | Yes                 |          |              |     |
|           | 07/01/1997   | 80        | Yes                 |          |              |     |
| LINDAS    | 304          | LINDA ST  |                     |          | 03/13/2009   | 18  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments |              |     |
|           | 03/13/2009   | 18        | Yes                 |          |              |     |
|           | 06/23/2003   | 59        | Yes                 |          |              |     |
|           | 07/01/1997   | 52        | Yes                 |          |              |     |
| LINFIE    | 437          | LINFIELD  | AVE                 |          | 03/13/2009   | 100 |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments |              |     |
|           | 03/13/2009   | 100       | Yes                 | Johnnong |              |     |
| LUBAST    | 411          | LUBA ST   |                     |          | 07/01/2014   | 81  |
|           | Date Updated | DCI Hiet  | PCI from Inspection | Comments |              |     |
|           | 07/01/2014   | 81        | No                  | Comments |              |     |
|           | 06/22/2011   | 83        | No                  |          |              |     |
|           | 03/13/2009   | 84        | Yes                 |          |              |     |
|           | 06/23/2004   | 90        | Yes                 |          |              |     |
| MAPLES    | 238          | MAPLE ST  | -                   |          | 06/20/2011   | 80  |
|           |              |           |                     | •        | 00/20/2011   |     |
|           | Date Updated | PCI Hist  | •                   | Comments |              |     |
|           | 06/20/2011   | 80        | No                  |          |              |     |
|           | 03/13/2009   | 81        | Yes                 |          |              |     |
|           | 06/09/2003   | 95        | Yes                 |          |              |     |
|           | 08/01/1997   | 40        | Yes                 |          |              |     |
| MAPLEW    | 447          | MAPLEWO   | OOD CT              |          | 03/13/2009   | 78  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments |              |     |
|           | 03/13/2009   | 78        | Yes                 |          |              |     |
| MARCEL    | 125          | MAR CEL   | DR                  |          | 03/13/2009   | 48  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments |              |     |
|           | 03/13/2009   | 48        | Yes                 |          |              |     |
|           | 04/16/2008   | 76        | No                  |          |              |     |
|           | 06/09/2003   | 79        | Yes                 |          |              |     |
|           |              |           |                     |          |              |     |



# **PCI History**

| Street ID | Section ID   | Street Na | me                  | l a                                           | st Updated | PCI |
|-----------|--------------|-----------|---------------------|-----------------------------------------------|------------|-----|
| MARCEL    | 180          | MAR CEL   |                     | La                                            | 03/13/2009 | 52  |
| WARGEL    |              |           |                     |                                               | 03/13/2009 | 52  |
|           | Date Updated |           | PCI from Inspection | Comments                                      |            |     |
|           | 03/13/2009   | 52        | Yes                 |                                               |            |     |
|           | 04/16/2008   | 66        | No                  |                                               |            |     |
|           | 06/09/2003   | 71        | Yes                 |                                               |            |     |
|           | 07/01/1997   | 54        | Yes                 |                                               |            |     |
| MARION    | 150A         | MARION S  | т                   |                                               | 03/13/2009 | 88  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                      |            |     |
|           | 03/13/2009   | 88        | Yes                 |                                               |            |     |
|           | 06/23/2003   | 90        | Yes                 |                                               |            |     |
|           | 01/01/1998   | 100       | No                  |                                               |            |     |
|           | 07/01/1997   | 72        | Yes                 |                                               |            |     |
| MARION    | 150B         | MARION S  | т                   |                                               | 06/28/2011 | 84  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                      |            |     |
|           | 06/28/2011   | 84        | No                  |                                               |            |     |
|           | 03/13/2009   | 85        | Yes                 |                                               |            |     |
|           | 06/23/2003   | 90        | Yes                 |                                               |            |     |
|           | 01/01/1998   | 100       | No                  |                                               |            |     |
|           | 07/01/1997   | 33        | Yes                 |                                               |            |     |
| MARSHA    | 162          | MARSHAL   | L ST                |                                               | 06/24/2010 | 77  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                      |            |     |
|           | 06/24/2010   | 77        | No                  |                                               |            |     |
|           | 06/01/2009   | 76        | No                  |                                               |            |     |
|           | 03/13/2009   | 74        | Yes                 |                                               |            |     |
|           | 06/23/2003   | 74        | Yes                 |                                               |            |     |
|           | 07/01/1997   | 82        | Yes                 |                                               |            |     |
| MADVLV    | 440          | MADVLVA   | AL MAYAN            |                                               | 00/04/0044 | 0.4 |
| MARYLY    | 449          | MARYLYN   |                     |                                               | 06/21/2011 | 84  |
|           | Date Updated | PCI Hist  |                     | Comments                                      |            |     |
|           | 06/21/2011   | 84        | No                  |                                               |            |     |
|           | 03/13/2009   | 86        | Yes                 |                                               |            |     |
| MAYANN    | 364          | MAYANNA   | DR                  |                                               | 07/01/2014 | 78  |
|           | Date Updated |           | PCI from Inspection | Comments                                      |            |     |
|           | 07/01/2014   | 78        | No                  | No PSL - Residental 2<br>Type A curb & gutter | 5 MPH      |     |
|           | 06/09/2014   | 68        | No                  | No PSL - Residental 2<br>Type A curb & gutter | 5 MPH      |     |
|           | 06/24/2010   | 70        | No                  | No PSL - Residental 2<br>Type A curb & gutter | 5 MPH      |     |
|           | 03/13/2009   | 69        | Yes                 | No PSL - Residental 2<br>Type A curb & gutter | 5 MPH      |     |
|           | 04/16/2008   | 80        | No                  | No PSL - Residental 2<br>Type A curb & gutter | 5 MPH      |     |
|           | 06/09/2003   | 84        | Yes                 | No PSL - Residental 2                         | 5 MPH      |     |
|           | 00/03/2003   |           |                     | Type A curb & gutter                          |            |     |



# **PCI History**

| Street ID | Section ID               | Street Na      | me                  | La               | ast Updated | PCI |
|-----------|--------------------------|----------------|---------------------|------------------|-------------|-----|
| MCKINL    | 146                      | MCKINLE        | 'ST                 |                  | 06/03/2015  | 78  |
|           | Date Updated             | PCI Hist       | PCI from Inspection | Comments         |             |     |
|           | 06/03/2015               | 78             | No                  | ADT ON 4/29/1999 |             |     |
|           | 07/06/2011               | 82             | No                  | ADT ON 4/29/1999 |             |     |
|           | 03/13/2009               | 85             | Yes                 | ADT ON 4/29/1999 |             |     |
|           | 06/05/2006               | 100            | No                  | ADT ON 4/29/1999 |             |     |
|           | 06/23/2003               | 46             | Yes                 | ADT ON 4/29/1999 |             |     |
|           | 07/01/1997               | 54             | Yes                 | ADT ON 4/29/1999 |             |     |
| MCLAUG    | 241A                     | MCLAUGH        | LIN DR              |                  | 03/13/2009  | 85  |
|           | Date Updated             | PCI Hist       | PCI from Inspection | Comments         |             |     |
|           | 03/13/2009               | 85             | Yes                 |                  |             |     |
|           | 06/09/2003               | 64             | Yes                 |                  |             |     |
|           | 07/01/1997               | 73             | Yes                 |                  |             |     |
| MCLAUG    | 241B                     | MCLAUGH        | LIN DR              |                  | 03/13/2009  | 66  |
|           | Date Updated             | PCI Hist       | PCI from Inspection | Comments         |             |     |
|           | 03/13/2009               | 66             | Yes                 |                  |             |     |
|           | 04/16/2008               | 77             | No                  |                  |             |     |
|           | 06/09/2003               | 80             | Yes                 |                  |             |     |
|           | 07/01/1997               | 75             | Yes                 |                  |             |     |
| MCLAUG    | 241C                     | MCLAUGH        | LIN DR              |                  | 06/21/2011  | 77  |
|           | Date Updated             | PCI Hist       | PCI from Inspection | Comments         |             |     |
|           | 06/21/2011               | 77             | No                  |                  |             |     |
|           | 06/01/2009               | 78             | No                  |                  |             |     |
|           | 03/13/2009               | 76             | Yes                 |                  |             |     |
|           | 06/09/2003               | 90             | Yes                 |                  |             |     |
|           | 07/01/1997               | 89             | Yes                 |                  |             |     |
| MCNAUG    | 302                      | MCNAUGH        | IT ST               |                  | 06/13/2011  | 79  |
|           | Date Updated             | PCI Hist       | PCI from Inspection | Comments         |             |     |
|           | 06/13/2011               | 79             | No                  |                  |             |     |
|           | 03/13/2009               | 79             | Yes                 |                  |             |     |
|           | 06/23/2003               | 82             | Yes                 |                  |             |     |
|           | 07/01/1997               | 85             | Yes                 |                  |             |     |
| MEADOW    | 170                      | MEADOW         | /ALE LANE           |                  | 03/13/2009  | 55  |
|           | Date Updated             | PCI Hist       | PCI from Inspection | Comments         |             |     |
|           | 03/13/2009               | 55             | Yes                 |                  |             |     |
|           | 06/23/2003               | 74             | Yes                 |                  |             |     |
|           | 00, 20, 2000             |                | Yes                 |                  |             |     |
|           | 07/01/1997               | 69             | 163                 |                  |             |     |
| MERICT    | 07/01/1997<br><b>455</b> | 69<br>MERIDIAN |                     |                  | 03/13/2009  | 89  |
| MERICT    |                          | MERIDIAN       |                     | Comments         | 03/13/2009  | 89  |



# **PCI History**

| Street ID | Section ID                 | Street Na | me                  | l as              | t Updated   | PCI |
|-----------|----------------------------|-----------|---------------------|-------------------|-------------|-----|
| MERIDI    | 371A                       | MERIDIAN  |                     |                   | 08/05/2012  | 87  |
| MERIDI    |                            |           |                     |                   | 00/03/2012  | 67  |
|           | Date Updated               |           | PCI from Inspection | Comments          |             |     |
|           | 08/05/2012                 | 87        | No                  |                   |             |     |
|           | 06/01/2009                 | 86        | No                  |                   |             |     |
|           | 03/13/2009                 | 86        | Yes                 |                   |             |     |
| MERIDI    | 371B                       | MERIDIAN  | DR                  |                   | 08/05/2012  | 60  |
|           | Date Updated               | PCI Hist  | PCI from Inspection | Comments          |             |     |
|           | 08/05/2012                 | 60        | No                  |                   |             |     |
|           | 08/02/2012                 | 45        | No                  |                   |             |     |
|           | 03/13/2009                 | 37        | Yes                 |                   |             |     |
|           | 06/23/2003                 | 68        | Yes                 |                   |             |     |
|           | 07/01/1997                 | 74        | Yes                 |                   |             |     |
| MILLER    | 367                        | MILLER FA | ARM RD              |                   | 06/01/2009  | 72  |
|           | Date Updated               | PCI Hist  | PCI from Inspection | Comments          |             |     |
|           | 06/01/2009                 | 72        | No                  |                   |             |     |
|           | 03/13/2009                 | 69        | Yes                 |                   |             |     |
|           | 04/16/2008                 | 85        | No                  |                   |             |     |
|           | 06/09/2003                 | 88        | Yes                 |                   |             |     |
|           | 07/01/1997                 | 88        | Yes                 |                   |             |     |
| MILLER    | 369                        | MILLER C  | <u>-</u>            |                   | 06/16/2011  | 77  |
| WILLER    |                            |           |                     |                   | 00/10/2011  | ••  |
|           | Date Updated               |           | PCI from Inspection | Comments          |             |     |
|           | 06/16/2011                 | 77        | No                  |                   |             |     |
|           | 03/13/2009                 | 78        | Yes                 |                   |             |     |
|           | 06/09/2003                 | 90        | Yes                 |                   |             |     |
|           | 07/01/1997                 | 87        | Yes                 |                   |             |     |
| MILLST    | 137                        | CHARLES   | СТ                  |                   | 03/13/2009  | 69  |
|           | Date Updated               | PCI Hist  | PCI from Inspection | Comments          |             |     |
|           | 03/13/2009                 | 69        | Yes                 | WIDTH VARIES FROM | 26 TO 48 FT |     |
|           | 06/09/2003                 | 87        | Yes                 | WIDTH VARIES FROM | 26 TO 48 FT |     |
|           | 07/01/1997                 | 90        | Yes                 | WIDTH VARIES FROM | 26 TO 48 FT |     |
| MONTGO    | 221A                       | MONTGON   | IERY ST             |                   | 06/03/2015  | 52  |
|           | Date Updated               | PCI Hist  | PCI from Inspection | Comments          |             |     |
|           | 06/03/2015                 | 52        | No                  |                   |             |     |
|           | 03/13/2009                 | 54        | Yes                 |                   |             |     |
|           | 06/23/2003                 | 59        | Yes                 |                   |             |     |
|           | 08/01/1997                 | 87        | Yes                 |                   |             |     |
| MONTGO    | 221B                       | MONTGON   | MERY ST             |                   | 06/21/2011  | 79  |
|           |                            | PCI Hist  |                     | Comments          |             |     |
|           | Date Updated<br>06/21/2011 | 79        | No No               | Comments          |             |     |
|           |                            |           |                     |                   |             |     |
|           | 03/13/2009                 | 80        | Yes                 |                   |             |     |
|           | 06/23/2003                 | 31        | Yes                 |                   |             |     |
|           | 08/01/1997                 | 70        | Yes                 |                   |             |     |



# **PCI History**

| Street ID | Section ID   | Street Na | me                  |          | Last Updated | PCI |
|-----------|--------------|-----------|---------------------|----------|--------------|-----|
| MTJEFF    | 117          |           | RSON AVE            |          | 03/13/2009   | 29  |
| MIJEFF    |              |           |                     |          | 03/13/2009   | 23  |
|           | Date Updated |           | PCI from Inspection | Comments |              |     |
|           | 03/13/2009   | 29        | Yes                 |          |              |     |
|           | 06/09/2003   | 68        | Yes                 |          |              |     |
|           | 07/01/1997   | 86        | Yes                 |          |              |     |
| MUIRFI    | 386          | MUIRFIEL  | D LN                |          | 06/01/2009   | 77  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments |              |     |
|           | 06/01/2009   | 77        | No.                 |          |              |     |
|           | 03/13/2009   | 75        | Yes                 |          |              |     |
|           | 06/23/2004   | 92        | Yes                 |          |              |     |
|           | 00/20/2001   |           |                     |          |              |     |
| MULBER    | 344A         | MULLBER   | RY DR               |          | 03/13/2009   | 57  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments |              |     |
|           | 03/13/2009   | 57        | Yes                 |          |              |     |
|           | 06/09/2003   | 75        | Yes                 |          |              |     |
|           | 07/01/1997   | 62        | Yes                 |          |              |     |
| MULBER    | 344B         | MULLBER   | RY DR               |          | 02/23/2010   | 78  |
|           | Date Updated | DCI Llict | PCI from Inspection | Comments |              |     |
|           | 02/23/2010   | 78        | No No               | Comments |              |     |
|           |              |           |                     |          |              |     |
|           | 06/01/2009   | 78        | No                  |          |              |     |
|           | 03/13/2009   | 76        | Yes                 |          |              |     |
|           | 06/09/2003   | 63        | Yes                 |          |              |     |
|           | 07/01/1997   | 71        | Yes                 |          |              |     |
| MYRTLE    | 320          | MYRTLE S  | т                   |          | 06/01/2009   | 78  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments |              |     |
|           | 06/01/2009   | 78        | No                  |          |              |     |
|           | 03/13/2009   | 76        | Yes                 |          |              |     |
|           | 06/23/2003   | 95        | Yes                 |          |              |     |
|           | 01/01/2001   | 100       | No                  |          |              |     |
|           | 07/01/1997   | 39        | Yes                 |          |              |     |
| NATION    | 375A         | NATIONAL  | . WAY               |          | 08/04/2015   | 40  |
|           | Date Updated | DCI Llict | PCI from Inspection | Comments |              |     |
|           | 08/04/2015   | 40        | No No               | Comments |              |     |
|           | 10/10/2012   | 44        | No                  |          |              |     |
|           |              |           |                     |          |              |     |
|           | 03/13/2009   | 16<br>65  | Yes                 |          |              |     |
|           | 06/09/2003   | 65<br>61  | Yes                 |          |              |     |
|           | 07/01/1997   | 61        | Yes                 |          |              |     |
| NATION    | 375B         | NATIONAL  | . WAY               |          | 08/04/2015   | 51  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments |              |     |
|           | 08/04/2015   | 51        | No                  |          |              |     |
|           | 08/14/2014   | 51        | No                  |          |              |     |
|           | 10/11/2012   | 46        | No                  |          |              |     |
|           | 10/11/2012   |           |                     |          |              |     |
|           | 03/13/2009   | 43        | Yes                 |          |              |     |



# **PCI History**

| 04 4      | 0 4 15       | 01 1      |                       |                                          |               | DC: |
|-----------|--------------|-----------|-----------------------|------------------------------------------|---------------|-----|
| Street ID | Section ID   | Street Na |                       | Las                                      | t Updated     | PCI |
| NATION    | 375B         | NATIONAL  | . WAY                 |                                          | 08/04/2015    | 74  |
|           | Date Updated | PCI Hist  | PCI from Inspection   | Comments                                 |               |     |
|           | 07/01/1997   | 63        | Yes                   |                                          |               |     |
|           |              |           |                       |                                          |               |     |
| NBOONES   | 379A         | N BOONES  | S FERRY RD            |                                          | 06/09/2014    | 74  |
|           | Date Updated | PCI Hist  | PCI from Inspection   | Comments                                 |               |     |
|           | 06/09/2014   | 74        | No                    | ADT ON 11/12/2003 - 2                    | 2,693         |     |
|           | 00/40/0000   | 20        | V                     | ADT ON 9/2/2010                          |               |     |
|           | 03/13/2009   | 82        | Yes                   | ADT ON 11/12/2003 - 2<br>ADT ON 9/2/2010 | 2,693         |     |
|           | 06/23/2003   | 43        | Yes                   | ADT ON 11/12/2003 - 2                    | 2.693         |     |
|           |              |           |                       | ADT ON 9/2/2010                          | -,            |     |
|           | 07/01/1997   | 74        | Yes                   | ADT ON 11/12/2003 - 2                    | 2,693         |     |
|           | 04/04/4000   | 400       | NI.                   | ADT ON 41/12/2003                        | 2 602         |     |
|           | 01/01/1990   | 100       | No                    | ADT ON 11/12/2003 - 2<br>ADT ON 9/2/2010 | 2,093<br>دوم, |     |
|           |              |           |                       | , 15 1 OH 0/2/2010                       |               |     |
| NBOONES   | 379B         | N BOONES  | S FERRY RD            |                                          | 06/09/2014    | 70  |
|           | Date Updated | PCI Hist  | PCI from Inspection   | Comments                                 |               |     |
|           | 06/09/2014   | 70        | No                    | ADT ON 11/12/2003 - 2                    | 2,603         |     |
|           |              |           |                       | ADT ON 9/2/2010                          | ,             |     |
|           | 03/13/2009   | 79        | Yes                   | ADT ON 11/12/2003 - 2                    | 2,603         |     |
|           |              |           |                       | ADT ON 9/2/2010                          |               |     |
| NCSCAD    | 248B         | N CASCAE  | E DR                  |                                          | 03/13/2009    | 80  |
|           | Date Updated | PCI Hist  | PCI from Inspection   | Comments                                 |               |     |
|           | 03/13/2009   | 80        | Yes                   |                                          |               |     |
|           | 04/16/2008   | 84        | No                    |                                          |               |     |
|           | 06/09/2003   | 92        | Yes                   |                                          |               |     |
|           | 07/01/1997   | 87        | Yes                   |                                          |               |     |
|           |              |           |                       |                                          |               |     |
| NCSCAD    | 248C         | N CASCAE  | DE DR                 |                                          | 03/13/2009    | 46  |
|           | Date Updated | PCI Hist  | PCI from Inspection   | Comments                                 |               |     |
|           | 03/13/2009   | 46        | Yes                   | WIDTH VARIES FROM                        | 1 31 TO 36 FT |     |
|           | 04/16/2008   | 80        | No                    | WIDTH VARIES FROM                        | 1 31 TO 36 FT |     |
|           | 06/09/2003   | 83        | Yes                   | WIDTH VARIES FROM                        | 1 31 TO 36 FT |     |
|           | 07/01/1997   | 67        | Yes                   | WIDTH VARIES FROM                        | 131 TO 36 FT  |     |
| NEKIAS    | 308          | NEKIA ST  |                       |                                          | 06/13/2011    | 77  |
|           |              |           | DOI from In the state | Camanante                                | 23            |     |
|           | Date Updated |           | PCI from Inspection   | Comments                                 |               |     |
|           | 06/13/2011   | 77<br>77  | No                    |                                          |               |     |
|           | 03/13/2009   | 77        | Yes                   |                                          |               |     |
|           | 06/23/2003   | 83        | Yes                   |                                          |               |     |
|           | 07/01/1997   | 86        | Yes                   |                                          |               |     |
| NEWPOR    | 349A         | NEWPORT   | WAY                   |                                          | 06/15/2011    | 76  |
|           | Date Updated | PCI Hist  | PCI from Inspection   | Comments                                 |               |     |
|           | 06/15/2011   | 76        | No                    |                                          |               |     |
|           | 03/13/2009   | 76        | Yes                   |                                          |               |     |
|           | 06/09/2003   | 90        | Yes                   |                                          |               |     |
|           |              |           |                       |                                          |               |     |
|           |              |           |                       |                                          |               |     |



# **PCI History**

| Street ID | Section ID   | Street Na | me                  |              | Last Updated | PCI |
|-----------|--------------|-----------|---------------------|--------------|--------------|-----|
| NEWPOR    | 349A         | NEWPOR1   | WAY                 |              | 06/15/2011   | 76  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments     |              |     |
|           | 07/01/1997   | 84        | Yes                 |              |              |     |
|           | 01/01/1991   | 100       | No                  |              |              |     |
| NEWPOR    | 349B         | NEWPORT   | WAY                 |              | 06/15/2011   | 79  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments     |              |     |
|           | 06/15/2011   | 79        | No                  |              |              |     |
|           | 03/13/2009   | 80        | Yes                 |              |              |     |
|           | 06/09/2003   | 95        | Yes                 |              |              |     |
|           | 01/01/1999   | 100       | No                  |              |              |     |
|           | 07/01/1997   | 19        | Yes                 |              |              |     |
| NFIRST    | 231B         | N FIRST S | т                   |              | 03/13/2009   | 54  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments     |              |     |
|           | 03/13/2009   | 54        | Yes                 | 501111101110 |              |     |
|           | 06/23/2003   | 65        | Yes                 |              |              |     |
|           | 08/01/1997   | 66        | Yes                 |              |              |     |
|           | 00/01/1997   | 00        | 1 53                |              |              |     |
| NFIRST    | 231C         | N FIRST S | Т                   |              | 03/13/2009   | 50  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments     |              |     |
|           | 03/13/2009   | 50        | Yes                 |              |              |     |
|           | 06/23/2003   | 45        | Yes                 |              |              |     |
|           | 08/01/1997   | 63        | Yes                 |              |              |     |
| NFIRST    | 231D         | N FIRST S | т                   |              | 06/10/2015   | 45  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments     |              |     |
|           | 06/10/2015   | 45        | No                  |              |              |     |
|           | 06/09/2014   | 45        | No                  |              |              |     |
|           | 03/13/2009   | 16        | Yes                 |              |              |     |
|           | 06/23/2003   | 21        | Yes                 |              |              |     |
|           | 08/01/1997   | 37        | Yes                 |              |              |     |
| NFRONT    | 200B         | N FRONT   | ST                  |              | 02/17/2010   | 100 |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments     |              |     |
|           | 02/17/2010   | 100       | No                  |              |              |     |
|           | 03/13/2009   | 48        | Yes                 |              |              |     |
|           | 06/23/2003   | 73        | Yes                 |              |              |     |
|           | 07/01/1997   | 83        | Yes                 |              |              |     |
|           | 01/01/1990   | 100       | No                  |              |              |     |
|           |              |           |                     |              |              |     |
| NFRONT    | 200C         | N FRONT   | ST                  |              | 02/17/2010   | 100 |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments     |              |     |
|           | 02/17/2010   | 100       | No                  |              |              |     |
|           | 03/13/2009   | 31        | Yes                 |              |              |     |
|           |              |           |                     |              |              |     |
|           | 06/23/2003   | 19        | Yes                 |              |              |     |



# **PCI History**

| Street ID | Section ID   | Street Na | me          |            |          | Last Updated | PCI |
|-----------|--------------|-----------|-------------|------------|----------|--------------|-----|
| NFRONT    | 200D         | N FRONT   |             |            |          | 02/17/2010   | 100 |
| NEKONI    | 2000         |           |             |            |          | 02/1//2010   | 100 |
|           | Date Updated | PCI Hist  | PCI from    | Inspection | Comments |              |     |
|           | 02/17/2010   | 100       |             | No         |          |              |     |
|           | 03/13/2009   | 45        |             | Yes        |          |              |     |
|           | 06/23/2003   | 40        |             | Yes        |          |              |     |
|           | 07/01/1997   | 38        |             | Yes        |          |              |     |
| NFRONT    | 200E         | N FRONT   | ST          |            |          | 08/07/2012   | 100 |
|           | Date Updated | PCI Hist  | PCI from    | Inspection | Comments |              |     |
|           | 08/07/2012   | 100       |             | No         |          |              |     |
|           | 03/13/2009   | 19        |             | Yes        |          |              |     |
|           | 06/23/2003   | 55        |             | Yes        |          |              |     |
|           | 07/01/1997   | 50        |             | Yes        |          |              |     |
| NFRONT    | 200F         | N FRONT   | ST          |            |          | 08/07/2012   | 100 |
|           | Date Updated | DCI Hist  | PCI from    | Inspection | Comments |              |     |
|           | 08/07/2012   | 100       | i Oi iiOiii | No         | Comments |              |     |
|           |              |           |             |            |          |              |     |
|           | 03/13/2009   | 15<br>54  |             | Yes        |          |              |     |
|           | 06/23/2003   | 51        |             | Yes        |          |              |     |
|           | 07/01/1997   | 87        |             | Yes        |          |              |     |
| NONAME    | 456          | NO NAME   | ST          |            |          | 03/13/2009   | 92  |
|           | Date Updated | PCI Hist  | PCI from    | Inspection | Comments |              |     |
|           | 03/13/2009   | 92        |             | Yes        |          |              |     |
| NORTHC    | 448          | NORTH CT  |             |            |          | 03/13/2009   | 84  |
|           | Date Updated | PCI Hist  | PCI from    | Inspection | Comments |              |     |
|           | 03/13/2009   | 84        |             | Yes        |          |              |     |
| NSECND    | 232B         | N SECONI  | ST          |            |          | 06/09/2014   | 45  |
|           | Date Updated | PCI Hist  | PCI from    | Inspection | Comments |              |     |
|           | 06/09/2014   | 45        |             | No         |          |              |     |
|           | 03/13/2009   | 18        |             | Yes        |          |              |     |
|           | 06/23/2003   | 42        |             | Yes        |          |              |     |
|           | 08/01/1997   | 50        |             | Yes        |          |              |     |
| NSECND    | 232C         | N SECONI  | ) ST        |            |          | 06/09/2014   | 44  |
|           | Date Updated | PCI Hist  |             | Inspection | Comments |              |     |
|           | 06/09/2014   | 44        | . 3         | No         |          |              |     |
|           | 03/13/2009   | 22        |             | Yes        |          |              |     |
|           | 06/23/2003   | 44        |             | Yes        |          |              |     |
|           | 08/01/1997   | 55        |             | Yes        |          |              |     |
|           |              |           |             | . 55       |          |              |     |
| NSECND    | 232D         | N SECONI  |             |            |          | 06/09/2014   | 45  |
|           | Date Updated | PCI Hist  | PCI from    | Inspection | Comments |              |     |
|           | 06/09/2014   | 45        |             | No         |          |              |     |
|           | 03/13/2009   | 19        |             | Yes        |          |              |     |
|           |              |           |             |            |          |              |     |
|           | 06/23/2003   | 18        |             | Yes        |          |              |     |



# **PCI History**

| Street ID | Section ID   | Street Na | me                  | Las                                      | st Updated | PCI |
|-----------|--------------|-----------|---------------------|------------------------------------------|------------|-----|
| NSECND    | 232E         | N SECONI  | ST                  |                                          | 03/13/2009 | 17  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                 |            |     |
|           | 03/13/2009   | 17        | Yes                 |                                          |            |     |
|           | 06/23/2003   | 27        | Yes                 |                                          |            |     |
|           | 08/01/1997   | 62        | Yes                 |                                          |            |     |
| NSECND    | 232F         | N SECONI  | ST                  |                                          | 06/10/2015 | 91  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                 |            |     |
|           | 06/10/2015   | 91        | No                  | ADT ON 10/1/2012                         |            |     |
|           | 06/09/2014   | 92        | No                  | ADT ON 10/1/2012                         |            |     |
| NSECND    | 232G         | N SECONI  | ST                  |                                          | 06/10/2015 | 93  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                 |            |     |
|           | 06/10/2015   | 93        | No                  |                                          |            |     |
|           | 07/30/2014   | 100       | No                  |                                          |            |     |
|           | 06/09/2014   | 45        | No                  |                                          |            |     |
| NSETLR    | 257B         | N SETTLE  | MIER AV             |                                          | 03/13/2009 | 78  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                 |            |     |
|           | 03/13/2009   | 78        | Yes                 |                                          |            |     |
|           | 04/16/2008   | 88        | No                  |                                          |            |     |
|           | 06/09/2003   | 92        | Yes                 |                                          |            |     |
|           | 01/01/2000   | 100       | No                  |                                          |            |     |
|           | 07/01/1997   | 57        | Yes                 |                                          |            |     |
| NSETLR    | 257C         | N SETTLE  | MIER AV             |                                          | 03/13/2009 | 48  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                 |            |     |
|           | 03/13/2009   | 48        | Yes                 | Comments                                 |            |     |
|           | 04/16/2008   | 81        | No                  |                                          |            |     |
|           | 06/09/2003   | 85        | Yes                 |                                          |            |     |
|           | 07/01/1997   | 87        | Yes                 |                                          |            |     |
|           | 01/01/1994   | 100       | No                  |                                          |            |     |
| NSETLR    | 257D         | N SETTLE  | MIER AV             |                                          | 01/20/2015 | 60  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                 |            |     |
|           | 01/20/2015   | 60        | No                  | ADT ON 8/30/2003 - 5<br>ADT ON 3/25/2010 | ,825       |     |
|           | 03/13/2009   | 66        | Yes                 | ADT ON 8/30/2003 - 5<br>ADT ON 3/25/2010 | ,825       |     |
|           | 04/16/2008   | 81        | No                  | ADT ON 8/30/2003 - 5<br>ADT ON 3/25/2010 | ,825       |     |
|           | 06/09/2003   | 85        | Yes                 | ADT ON 8/30/2003 - 5<br>ADT ON 3/25/2010 | ,825       |     |
|           | 07/01/1997   | 87        | Yes                 | ADT ON 8/30/2003 - 5<br>ADT ON 3/25/2010 | ,825       |     |
|           | 01/01/1994   | 100       | No                  | ADT ON 8/30/2003 - 5<br>ADT ON 3/25/2010 | ,825       |     |



# **PCI History**

| Street ID | Section ID   | Street Na | me                  | Last Updated | PCI        |    |
|-----------|--------------|-----------|---------------------|--------------|------------|----|
| NSETLR    | 257E         | N SETTLE  | MIER AV             |              | 03/13/2009 | 65 |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments     |            |    |
|           | 03/13/2009   | 65        | Yes                 |              |            |    |
|           | 04/16/2008   | 81        | No                  |              |            |    |
|           | 06/09/2003   | 86        | Yes                 |              |            |    |
|           | 01/01/1999   | 100       | No                  |              |            |    |
|           | 07/01/1997   | 66        | Yes                 |              |            |    |
| NUGGET    | 417          | NUGGET (  | т                   |              | 06/22/2011 | 83 |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments     |            |    |
|           | 06/22/2011   | 83        | No                  |              |            |    |
|           | 03/13/2009   | 84        | Yes                 |              |            |    |
|           | 06/23/2004   | 95        | Yes                 |              |            |    |
| OAKST     | 218A         | OAK ST    |                     |              | 03/13/2009 | 96 |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments     |            |    |
|           | 03/13/2009   | 96        | Yes                 |              |            |    |
|           | 06/23/2003   | 51        | Yes                 |              |            |    |
|           | 08/01/1997   | 52        | Yes                 |              |            |    |
| OAKST     | 218B         | OAK ST    |                     |              | 03/13/2009 | 96 |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments     |            |    |
|           | 03/13/2009   | 96        | Yes                 | Commonto     |            |    |
|           | 06/23/2003   | 20        | Yes                 |              |            |    |
|           | 08/01/1997   | 31        | Yes                 |              |            |    |
| OLIVEA    | 317          | OLIVE AVI | <u> </u>            |              | 06/01/2009 | 80 |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments     |            |    |
|           | 06/01/2009   | 80        | No.                 |              |            |    |
|           | 03/13/2009   | 78        | Yes                 |              |            |    |
|           | 06/23/2003   | 95        | Yes                 |              |            |    |
|           | 01/01/2001   | 100       | No                  |              |            |    |
|           | 07/01/1997   | 50        | Yes                 |              |            |    |
| OLYMPI    | 452          | OLYMPIC   | ST                  |              | 03/13/2009 | 92 |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments     |            |    |
|           | 03/13/2009   | 92        | Yes                 | 30           |            |    |
| ORCHAR    | 107A         | ORCHARD   | LANE                |              | 06/24/2011 | 86 |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments     |            |    |
|           | 06/24/2011   | 86        | No                  | 22           |            |    |
|           | 03/13/2009   | 89        | Yes                 |              |            |    |
|           | 06/09/2003   | 83        | Yes                 |              |            |    |
|           | 07/01/1997   | 98        | Yes                 |              |            |    |
| ORCHAR    | 107B         | ORCHARD   | LANE                |              | 06/23/2011 | 82 |
|           | Date Updated |           | PCI from Inspection | Comments     |            |    |
|           | 06/23/2011   | 82        | No                  |              |            |    |
|           | 03/13/2009   | 84        | Yes                 |              |            |    |



# **PCI History**

| Street ID | Section ID   | Street Na | me                  |          | Last Updated | PCI  |
|-----------|--------------|-----------|---------------------|----------|--------------|------|
| ORCHAR    | 107B         | ORCHARD   |                     |          | 06/23/2011   | 82   |
| OROHAR    |              |           |                     |          | 00/20/2011   | - V2 |
|           | Date Updated |           | PCI from Inspection | Comments |              |      |
|           | 06/09/2003   | 29        | Yes                 |          |              |      |
|           | 07/01/1997   | 35        | Yes                 |          |              |      |
| OREGON    | 252          | OREGON    | WAY                 |          | 06/01/2009   | 79   |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments |              |      |
|           | 06/01/2009   | 79        | No                  |          |              |      |
|           | 03/13/2009   | 77        | Yes                 |          |              |      |
|           | 06/09/2003   | 92        | Yes                 |          |              |      |
|           | 07/01/1997   | 90        | Yes                 |          |              |      |
|           | 01/01/1996   | 100       | No                  |          |              |      |
| OREGON    | 254          | OREGON    | СТ                  |          | 06/16/2011   | 79   |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments |              |      |
|           | 06/16/2011   | 79        | No                  | 50       |              |      |
|           | 03/13/2009   | 80        | Yes                 |          |              |      |
|           | 06/09/2003   | 95        | Yes                 |          |              |      |
|           | 07/01/1997   | 92        | Yes                 |          |              |      |
|           | 07/01/1997   | 92        | 165                 |          |              |      |
| OXFORD    | 407A         | OXFORD S  | T                   |          | 08/16/2012   | 88   |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments |              |      |
|           | 08/16/2012   | 88        | No                  |          |              |      |
|           | 03/13/2009   | 100       | Yes                 |          |              |      |
| OXFORD    | 407B         | OXFORD S  | ST                  |          | 08/16/2012   | 80   |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments |              |      |
|           | 08/16/2012   | 80        | No                  | Commonto |              |      |
|           | 07/10/2012   | 78        | No                  |          |              |      |
|           | 03/13/2009   | 82        | Yes                 |          |              |      |
|           | 06/23/2004   | 95        | Yes                 |          |              |      |
|           | 00/23/2004   | 33        | 103                 |          |              |      |
| PALMAV    | 316          | PALM AVE  |                     |          | 06/01/2009   | 81   |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments |              |      |
|           | 06/01/2009   | 81        | No                  |          |              |      |
|           | 03/13/2009   | 79        | Yes                 |          |              |      |
|           | 06/23/2003   | 95        | Yes                 |          |              |      |
|           | 01/01/2001   | 100       | No                  |          |              |      |
|           | 07/01/1997   | 41        | Yes                 |          |              |      |
| PANACT    | 427          | PANA CT   |                     |          | 07/01/2014   | 87   |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments |              |      |
|           | 07/01/2014   | 87        | No                  |          |              |      |
|           | 06/21/2011   | 88        | No                  |          |              |      |
|           | 03/13/2009   | 89        | Yes                 |          |              |      |
|           |              |           |                     |          |              |      |



# **PCI History**

| Street ID | Section ID   | Street Na | me                  | L                                                                             | ast Updated | PCI |
|-----------|--------------|-----------|---------------------|-------------------------------------------------------------------------------|-------------|-----|
| PANAST    | 413A         | PANA ST   |                     |                                                                               | 07/01/2014  | 86  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                                                      |             |     |
|           | 07/01/2014   | 86        | No                  | ADT ON 8/5/2005                                                               |             |     |
|           | 03/13/2009   | 89        | Yes                 | ADT ON 8/5/2005                                                               |             |     |
|           | 06/23/2004   | 92        | Yes                 | ADT ON 8/5/2005                                                               |             |     |
| PANAST    | 413B         | PANA ST   |                     |                                                                               | 07/01/2014  | 78  |
| r ANAO I  |              |           | DOL 6 1 11          |                                                                               | 07/01/2014  | 70  |
|           | Date Updated | PCI Hist  |                     | Comments                                                                      |             |     |
|           | 07/01/2014   | 78        | No                  |                                                                               |             |     |
|           | 03/13/2009   | 83        | Yes                 |                                                                               |             |     |
|           | 06/23/2004   | 90        | Yes                 |                                                                               |             |     |
| PARADI    | 444          | PARADISE  | ST                  |                                                                               | 07/10/2012  | 88  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                                                      |             |     |
|           | 07/10/2012   | 88        | No                  |                                                                               |             |     |
|           | 03/13/2009   | 96        | Yes                 |                                                                               |             |     |
| PARKAV    | 127A         | PARK AVE  |                     |                                                                               | 08/04/2015  | 36  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                                                      |             |     |
|           | 08/04/2015   | 36        | No                  | Comments                                                                      |             |     |
|           | 03/13/2009   | 50        | Yes                 |                                                                               |             |     |
|           | 06/09/2003   | 88        | Yes                 |                                                                               |             |     |
|           | 07/01/1997   | 78        | Yes                 |                                                                               |             |     |
|           | 0770171337   | 70        | 103                 |                                                                               |             |     |
| PARKAV    | 127B         | PARK AVE  |                     |                                                                               | 08/04/2015  | 0   |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                                                      |             |     |
|           | 08/04/2015   | 0         | No                  |                                                                               |             |     |
|           | 03/13/2009   | 17        | Yes                 |                                                                               |             |     |
|           | 06/09/2003   | 36        | Yes                 |                                                                               |             |     |
|           | 07/01/1997   | 61        | Yes                 |                                                                               |             |     |
| PARKAV    | 127C         | PARK AVE  |                     |                                                                               | 08/04/2015  | 53  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                                                      |             |     |
|           | 08/04/2015   | 53        | No                  | ADT ON 4/19/1998 ADT ON 10/19/2000<br>ADT ON 2/5/2004 -<br>ADT ON 6/2/2009    | ) - 886     |     |
|           | 06/11/2015   | 50        | No                  | ADT ON 4/19/1998 ADT ON 10/19/2000<br>ADT ON 2/5/2004 -<br>ADT ON 6/2/2009    | ) - 886     |     |
|           | 03/13/2009   | 50        | Yes                 | ADT ON 4/19/1998 ADT ON 10/19/2000<br>ADT ON 2/5/2004 -<br>ADT ON 6/2/2009    | ) - 886     |     |
|           | 06/09/2003   | 77        | Yes                 | ADT ON 4/19/1998<br>ADT ON 10/19/2000<br>ADT ON 2/5/2004 -<br>ADT ON 6/2/2009 | ) - 886     |     |



# **PCI History**

| Street ID | Section ID               | Street Na | me                  | l a                                                                               | ast Updated | PCI |
|-----------|--------------------------|-----------|---------------------|-----------------------------------------------------------------------------------|-------------|-----|
| PARKAV    | 127C                     | PARK AVE  |                     |                                                                                   | 08/04/2015  | 67  |
| PARNAV    | 1276                     |           |                     |                                                                                   | 06/04/2015  | 07  |
|           | Date Updated             |           | PCI from Inspection | Comments                                                                          |             |     |
|           | 07/01/1997               | 81        | Yes                 | ADT ON 4/19/1998 -<br>ADT ON 10/19/2000<br>ADT ON 2/5/2004 - 1<br>ADT ON 6/2/2009 | - 886       |     |
| PARKAV    | 127D                     | PARK AVE  |                     |                                                                                   | 08/04/2015  | 67  |
|           | Date Updated             | PCI Hist  | PCI from Inspection | Comments                                                                          |             |     |
|           | 08/04/2015               | 67        | No                  | Commonto                                                                          |             |     |
|           | 06/24/2010               | 71        | No                  |                                                                                   |             |     |
|           |                          |           |                     |                                                                                   |             |     |
|           | 03/13/2009               | 70        | Yes                 |                                                                                   |             |     |
|           | 06/09/2003               | 90        | Yes                 |                                                                                   |             |     |
|           | 01/01/1999               | 100       | No                  |                                                                                   |             |     |
|           | 07/01/1997               | 50        | Yes                 |                                                                                   |             |     |
| PARKCI    | 128                      | PARK CIRC | CLE                 |                                                                                   | 06/23/2011  | 83  |
|           | Date Updated             | PCI Hist  | PCI from Inspection | Comments                                                                          |             |     |
|           | 06/23/2011               | 83        | No.                 |                                                                                   |             |     |
|           | 03/13/2009               | 84        | Yes                 |                                                                                   |             |     |
|           | 06/09/2003               | 95        | Yes                 |                                                                                   |             |     |
|           | 01/01/2000               | 100       | No                  |                                                                                   |             |     |
|           |                          |           |                     |                                                                                   |             |     |
|           | 07/01/1997               | 59        | Yes                 |                                                                                   |             |     |
| PARKVI    | 129                      | PARKVIEW  | V CT                |                                                                                   | 03/13/2009  | 52  |
|           | Date Updated             | PCI Hist  | PCI from Inspection | Comments                                                                          |             |     |
|           | 03/13/2009               | 52        | Yes                 |                                                                                   |             |     |
|           | 06/09/2003               | 77        | Yes                 |                                                                                   |             |     |
|           | 07/01/1997               | 73        | Yes                 |                                                                                   |             |     |
| PARRRD    | 201A                     | PARR RD   |                     |                                                                                   | 08/04/2015  | 79  |
|           | Date Updated             | PCI Hist  | PCI from Inspection | Comments                                                                          |             |     |
|           | 08/04/2015               | 79        | No                  | ADT ON 12/1/2003                                                                  |             |     |
|           |                          |           |                     |                                                                                   |             |     |
|           | 03/13/2009               | 90        | Yes                 | ADT ON 12/1/2003                                                                  |             |     |
| PATRIO    | 422                      | PATRIOT S | ST .                |                                                                                   | 06/01/2009  | 80  |
|           | Date Updated             | PCI Hist  | PCI from Inspection | Comments                                                                          |             |     |
|           | 06/01/2009               | 80        | No                  |                                                                                   |             |     |
|           | 03/13/2009               | 78        | Yes                 |                                                                                   |             |     |
|           | 04/16/2008               | 86        | No                  |                                                                                   |             |     |
|           | 06/23/2004               | 89        | Yes                 |                                                                                   |             |     |
| PAULIN    | 113                      | PAULINE S | ST                  |                                                                                   | 03/13/2009  | 61  |
|           | Date Updated             |           | PCI from Inspection | Comments                                                                          |             |     |
|           | ·                        |           |                     | COMMENTS                                                                          |             |     |
|           | 03/13/2009               | 61        | Yes                 |                                                                                   |             |     |
|           | 00/00/0000               |           |                     |                                                                                   |             |     |
|           | 06/23/2003<br>07/01/1997 | 76<br>79  | Yes<br>Yes          |                                                                                   |             |     |



# **PCI History**

| Street ID | Section ID                             | Street Na       | me                  | Last Updated                              | PCI |
|-----------|----------------------------------------|-----------------|---------------------|-------------------------------------------|-----|
| PAULUS    | 395                                    | PAULUS C        | т                   | 06/01/2009                                | 77  |
|           | Date Updated                           | PCI Hist        | PCI from Inspection | Comments                                  |     |
|           | 06/01/2009                             | 77              | No                  |                                           |     |
|           | 03/13/2009                             | 75              | Yes                 |                                           |     |
|           | 06/23/2004                             | 82              | Yes                 |                                           |     |
| PRAIRI    | 443                                    | PRAIRIE S       | Т                   | 07/10/2012                                | 88  |
|           | Date Updated                           | PCI Hist        | PCI from Inspection | Comments                                  |     |
|           | 07/10/2012                             | 88              | No                  |                                           |     |
|           | 03/13/2009                             | 96              | Yes                 |                                           |     |
| PRINCE    | 329A                                   | PRINCETO        | N RD                | 07/01/2014                                | 69  |
|           | Date Updated                           | DCI Hist        | PCI from Inspection | Comments                                  |     |
|           | 07/01/2014                             | 69              | No                  | No PSL - Residental 25 MPH                |     |
|           | 07/01/2014                             | 09              | INU                 | Type C curb                               |     |
|           | 03/13/2009                             | 67              | Yes                 | No PSL - Residental 25 MPH<br>Type C curb |     |
|           | 06/09/2003                             | 89              | Yes                 | No PSL - Residental 25 MPH<br>Type C curb |     |
|           | 07/01/1997                             | 85              | Yes                 | No PSL - Residental 25 MPH<br>Type C curb |     |
|           | 01/01/1992                             | 100             | No                  | No PSL - Residental 25 MPH<br>Type C curb |     |
| PRINCE    | 329B                                   | PRINCETO        | N RD                | 06/24/2010                                | 76  |
|           | Date Updated                           | PCI Hist        | PCI from Inspection | Comments                                  |     |
|           | 06/24/2010                             | 76              | No                  |                                           |     |
|           | 03/13/2009                             | 75              | Yes                 |                                           |     |
|           | 06/09/2003                             | 88              | Yes                 |                                           |     |
|           | 07/01/1997                             | 85              | Yes                 |                                           |     |
|           | 01/01/1992                             | 100             | No                  |                                           |     |
| PROGRE    | 374A                                   | PROGRES         | S WAY               | 08/04/2015                                | 73  |
|           | Date Updated                           | PCI Hist        | PCI from Inspection | Comments                                  |     |
|           | 08/04/2015                             | 73              | No .                |                                           |     |
|           | 03/13/2009                             | 79              | Yes                 |                                           |     |
|           | 06/09/2003                             | 92              | Yes                 |                                           |     |
|           | 01/01/1999                             | 100             | No                  |                                           |     |
|           | 07/01/1997                             | 31              | Yes                 |                                           |     |
|           | 01/01/1996                             | 100             | No                  |                                           |     |
| PROGRE    | 374B                                   | PROGRES         | S WAY               | 08/04/2015                                | 75  |
|           | Date Updated                           | PCI Hist        | PCI from Inspection | Comments                                  |     |
|           | 08/04/2015                             | 75              | No                  |                                           |     |
|           | 03/13/2009                             | 80              | Yes                 |                                           |     |
|           | 00, 10, 2000                           |                 |                     |                                           |     |
|           | 06/09/2003                             | 92              | Yes                 |                                           |     |
|           | 06/09/2003<br>01/01/1999               | 92<br>100       | Yes<br>No           |                                           |     |
|           | 06/09/2003<br>01/01/1999<br>07/01/1997 | 92<br>100<br>30 | Yes<br>No<br>Yes    |                                           |     |



# **PCI History**

| Street ID | Section ID   | Street Na | me                  |          | Last Updated | PCI      |
|-----------|--------------|-----------|---------------------|----------|--------------|----------|
| QUAILR    | 384          | QUAIL RU  | N CIR               |          | 07/08/2011   | 79       |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments |              |          |
|           | 07/08/2011   | 79        | No                  |          |              |          |
|           | 03/13/2009   | 79        | Yes                 |          |              |          |
|           | 06/23/2004   | 92        | Yes                 |          |              |          |
|           |              |           |                     |          |              |          |
| QUEENC    | 130          | QUEEN CI  | TY BLVD             |          | 07/06/2011   | 79       |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments |              |          |
|           | 07/06/2011   | 79        | No                  |          |              |          |
|           | 03/13/2009   | 80        | Yes                 |          |              |          |
|           | 06/09/2003   | 90        | Yes                 |          |              |          |
|           | 07/01/1997   | 82        | Yes                 |          |              |          |
| QUINNR    | 330          | QUINN RD  |                     |          | 03/13/2009   | 26       |
|           | Date Updated | PCI Hist  |                     | Comments |              |          |
|           | 03/13/2009   | 26        | Yes                 | Comments |              |          |
|           | 04/12/2004   | 33        | No                  |          |              |          |
|           | 06/09/2003   | 33        | Yes                 |          |              |          |
|           | 07/01/1997   | 33<br>21  | Yes                 |          |              |          |
|           | 07/01/1997   | 21        | 162                 |          |              |          |
| QUINNR    | 330A         | QUINN RD  |                     |          | 03/13/2009   | 42       |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments |              |          |
|           | 03/13/2009   | 42        | Yes                 |          |              |          |
|           | 04/16/2008   | 65        | No                  |          |              |          |
|           | 04/12/2004   | 69        | No                  |          |              |          |
|           | 06/09/2003   | 67        | Yes                 |          |              |          |
|           | 07/01/1997   | 71        | Yes                 |          |              |          |
| QUINNR    | 330B         | QUINN RD  |                     |          | 03/13/2009   | 34       |
| <b>40</b> |              |           |                     | _        | 00/10/2000   | <u> </u> |
|           | Date Updated | PCI Hist  | •                   | Comments |              |          |
|           | 03/13/2009   | 34        | Yes                 |          |              |          |
|           | 04/16/2008   | 27        | No                  |          |              |          |
|           | 04/12/2004   | 36        | No                  |          |              |          |
|           | 06/09/2003   | 36        | Yes                 |          |              |          |
|           | 07/01/1997   | 36        | Yes                 |          |              |          |
| RANDOL    | 326          | RANDOLP   | H RD                |          | 06/01/2009   | 84       |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments |              |          |
|           | 06/01/2009   | 84        | No                  |          |              |          |
|           | 03/13/2009   | 83        | Yes                 |          |              |          |
|           | 07/28/2004   | 100       | No                  |          |              |          |
|           | 06/09/2003   | 74        | Yes                 |          |              |          |
|           | 07/01/1997   | 66        | Yes                 |          |              |          |
| RANIER    | 327A         | RAINIER R | D                   |          | 06/15/2011   | 82       |
| -         | Date Updated | PCI Hist  |                     | Comments |              |          |
|           |              |           |                     | Comments |              |          |
|           | 06/15/2011   | 82        | No<br>You           |          |              |          |
|           | 03/13/2009   | 83        | Yes                 |          |              |          |
|           | 06/12/2006   | 100       | No                  |          |              |          |



# **PCI History**

| Street ID | Section ID                                                                        | Street Na                                  | me                                                      | L        | ast Updated              | PCI      |
|-----------|-----------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|----------|--------------------------|----------|
| RANIER    | 327A                                                                              | RAINIER R                                  | D                                                       |          | 06/15/2011               | 82       |
|           | Date Updated                                                                      | PCI Hist                                   | PCI from Inspection                                     | Comments |                          |          |
|           | 06/09/2003                                                                        | 30                                         | Yes                                                     |          |                          |          |
|           | 07/01/1997                                                                        | 43                                         | Yes                                                     |          |                          |          |
| RANIER    | 327B                                                                              | RAINIER R                                  | D                                                       |          | 06/15/2011               | 81       |
|           | Date Updated                                                                      | PCI Hist                                   | PCI from Inspection                                     | Comments |                          |          |
|           | 06/15/2011                                                                        | 81                                         | No                                                      |          |                          |          |
|           | 03/13/2009                                                                        | 82                                         | Yes                                                     |          |                          |          |
|           | 06/12/2006                                                                        | 100                                        | No                                                      |          |                          |          |
|           | 06/09/2003                                                                        | 73                                         | Yes                                                     |          |                          |          |
|           | 07/01/1997                                                                        | 67                                         | Yes                                                     |          |                          |          |
| REEDAV    | 435                                                                               | REED AVE                                   |                                                         |          | 03/13/2009               | 100      |
|           | Date Updated                                                                      | PCI Hist                                   | PCI from Inspection                                     | Comments |                          |          |
|           | 03/13/2009                                                                        | 100                                        | Yes                                                     |          |                          |          |
| REVERE    | 401                                                                               | REVERE S                                   | Т                                                       |          | 06/01/2009               | 81       |
|           | Date Updated                                                                      | PCI Hist                                   | PCI from Inspection                                     | Comments |                          |          |
|           | 06/01/2009                                                                        | 81                                         | No                                                      |          |                          |          |
|           | 03/13/2009                                                                        | 79                                         | Yes                                                     |          |                          |          |
|           | 06/23/2004                                                                        | 90                                         | Yes                                                     |          |                          |          |
| ROANOK    | 425A                                                                              | ROANOKE                                    | ST                                                      |          | 06/01/2009               | 81       |
|           | Date Updated                                                                      | PCI Hist                                   | PCI from Inspection                                     | Comments |                          |          |
|           | 06/01/2009                                                                        | 81                                         | No                                                      |          |                          |          |
|           | 03/13/2009                                                                        | 79                                         | Yes                                                     |          |                          |          |
|           | 06/23/2004                                                                        | 89                                         | Yes                                                     |          |                          |          |
| ROANOK    | 425B                                                                              | ROANOKE                                    | ST                                                      |          | 03/13/2009               | 79       |
|           | Date Updated                                                                      | PCI Hist                                   | PCI from Inspection                                     | Comments |                          |          |
|           | 03/13/2009                                                                        | 79                                         | Yes                                                     |          |                          |          |
|           | 03/13/2009                                                                        | 19                                         |                                                         |          |                          |          |
|           | 06/23/2004                                                                        | 92                                         | Yes                                                     |          |                          |          |
| ROBERT    |                                                                                   |                                            | Yes                                                     |          | 03/13/2009               | 77       |
| ROBERT    | 06/23/2004                                                                        | 92<br>ROBERT S                             | Yes                                                     | Comments | 03/13/2009               | 77       |
| ROBERT    | 06/23/2004<br><b>360</b>                                                          | 92<br>ROBERT S                             | Yes                                                     | Comments | 03/13/2009               | 77       |
| ROBERT    | 06/23/2004  360  Date Updated                                                     | 92  ROBERT S  PCI Hist                     | Yes T PCI from Inspection                               | Comments | 03/13/2009               | 77       |
| ROBERT    | 06/23/2004  360  Date Updated 03/13/2009                                          | 92  ROBERT S  PCI Hist 77                  | Yes T PCI from Inspection Yes                           | Comments | 03/13/2009               | 77       |
|           | 06/23/2004  360  Date Updated 03/13/2009 06/09/2003                               | 92  ROBERT S  PCI Hist 77 90               | Yes PCI from Inspection Yes Yes Yes Yes                 | Comments | 03/13/2009<br>08/04/2015 | 77<br>45 |
|           | 06/23/2004  360  Date Updated 03/13/2009 06/09/2003 07/01/1997                    | 92  ROBERT S  PCI Hist 77 90 95  ROBIN AV  | Yes PCI from Inspection Yes Yes Yes Yes                 | Comments |                          |          |
|           | 06/23/2004  360  Date Updated 03/13/2009 06/09/2003 07/01/1997  430               | 92  ROBERT S  PCI Hist 77 90 95  ROBIN AV  | Yes T PCI from Inspection Yes Yes Yes Yes               |          |                          |          |
| ROBERT    | 06/23/2004  360  Date Updated 03/13/2009 06/09/2003 07/01/1997  430  Date Updated | 92  ROBERT S  PCI Hist 77 90 95  ROBIN AVI | PCI from Inspection Yes Yes Yes Yes PCI from Inspection | Comments |                          |          |



# **PCI History**

| Street ID | Section ID                  | Street Na                  | me                         |                         | Last Updated | PCI |
|-----------|-----------------------------|----------------------------|----------------------------|-------------------------|--------------|-----|
| ROYAVE    | 416                         | ROY AVE                    |                            |                         | 06/22/2011   | 79  |
|           | Date Updated                | PCI Hist                   | PCI from Inspection        | Comments                |              |     |
|           | 06/22/2011                  | 79                         | No                         |                         |              |     |
|           | 03/13/2009                  | 80                         | Yes                        |                         |              |     |
|           | 06/23/2004                  | 92                         | Yes                        |                         |              |     |
| SALLAL    | 331A                        | SALLAL R                   | D                          |                         | 06/01/2009   | 83  |
|           | Date Updated                | PCI Hist                   | PCI from Inspection        | Comments                |              |     |
|           | 06/01/2009                  | 83                         | No                         |                         |              |     |
|           | 03/13/2009                  | 82                         | Yes                        |                         |              |     |
|           | 04/16/2008                  | 89                         | No                         |                         |              |     |
|           | 07/28/2004                  | 100                        | No                         |                         |              |     |
|           | 06/09/2003                  | 41                         | Yes                        |                         |              |     |
|           | 07/01/1997                  | 29                         | Yes                        |                         |              |     |
| SALLAL    | 331B                        | SALLAL R                   | D                          |                         | 06/01/2009   | 81  |
|           | Date Updated                | PCI Hist                   | PCI from Inspection        | Comments                |              |     |
|           | 06/01/2009                  | 81                         | No .                       |                         |              |     |
|           | 03/13/2009                  | 80                         | Yes                        |                         |              |     |
|           | 04/16/2008                  | 89                         | No                         |                         |              |     |
|           | 07/28/2004                  | 100                        | No                         |                         |              |     |
|           | 06/09/2003                  | 24                         | Yes                        |                         |              |     |
|           | 07/01/1997                  | 22                         | Yes                        |                         |              |     |
| SALLAL    | 336                         | SALLAL C                   | Т                          |                         | 06/01/2009   | 83  |
|           | Date Updated                | PCI Hist                   | PCI from Inspection        | Comments                |              |     |
|           | 06/01/2009                  | 83                         | No.                        |                         |              |     |
|           | 03/13/2009                  | 82                         | Yes                        |                         |              |     |
|           | 07/28/2004                  | 100                        | No                         |                         |              |     |
|           | 06/09/2003                  | 44                         | Yes                        |                         |              |     |
|           | 07/01/1997                  | 24                         | Yes                        |                         |              |     |
|           |                             |                            |                            |                         |              |     |
| SANTIA    | 249                         | SANTIAM                    | DR                         |                         | 03/13/2009   | 95  |
|           | Date Updated                | PCI Hist                   | PCI from Inspection        | Comments                |              |     |
|           | 03/13/2009                  | 95                         | Yes                        |                         |              |     |
|           | 06/28/2006                  | 100                        | No                         |                         |              |     |
|           | 06/09/2003                  | 19                         | Yes                        |                         |              |     |
|           | 07/01/1997                  | 21                         | Yes                        |                         |              |     |
| SAWGRA    |                             | SAWGRAS                    | SS ST                      |                         | 03/13/2009   | 92  |
| SAWGRA    | 453                         | SAWGRAS                    |                            |                         |              |     |
| SAWGRA    | 453 Date Updated            |                            | PCI from Inspection        | Comments                |              |     |
| SAWGRA    |                             |                            |                            | Comments                |              |     |
|           | Date Updated                | PCI Hist<br>92             | PCI from Inspection        | Comments                | 03/13/2009   | 90  |
| SAWGRA    | Date Updated 03/13/2009     | PCI Hist<br>92<br>S BOONES | PCI from Inspection<br>Yes | Comments                | 03/13/2009   | 90  |
|           | Date Updated 03/13/2009 380 | PCI Hist<br>92<br>S BOONES | PCI from Inspection<br>Yes | Comments<br>WIDTH VARIE |              | 90  |



# **PCI History**

| Street ID  | Section ID               | Street Na | me                         | Lá                    | ast Updated   | PCI |
|------------|--------------------------|-----------|----------------------------|-----------------------|---------------|-----|
| SBOONY     | 380                      | S BOONES  | S FERRY RD                 |                       | 03/13/2009    | 90  |
|            | Data Undated             | DCI Uiot  | DCI from Inopostion        | Commente              |               |     |
|            | Date Updated 06/23/2003  | 20        | PCI from Inspection<br>Yes | Comments WIDTH VARIES |               |     |
|            | 00/23/2003               | 20        | 163                        | Split From SFRONT2    | 200A 03/01/09 |     |
|            | 07/01/1997               | 27        | Yes                        | WIDTH VARIES          |               |     |
|            |                          |           |                            | Split From SFRONT2    | 200A 03/01/09 |     |
| SCSCAD     | 248A                     | S CASCAD  | E DR                       |                       | 06/24/2010    | 77  |
|            |                          |           |                            | Commente              |               |     |
|            | Date Updated             |           | PCI from Inspection        | Comments              |               |     |
|            | 06/24/2010               | 77<br>    | No                         |                       |               |     |
|            | 03/13/2009               | 77        | Yes                        |                       |               |     |
|            | 06/09/2003               | 95        | Yes                        |                       |               |     |
|            | 01/01/2001               | 100       | No                         |                       |               |     |
|            | 07/01/1997               | 19        | Yes                        |                       |               |     |
| SENECA     | 161                      | SENECA C  | т                          |                       | 06/01/2009    | 81  |
|            | Date Updated             | PCI Hist  | PCI from Inspection        | Comments              |               |     |
|            | 06/01/2009               | 81        | No                         |                       |               |     |
|            | 03/13/2009               | 79        | Yes                        |                       |               |     |
|            | 04/16/2008               | 87        | No                         |                       |               |     |
|            | 04/12/2004               | 93        | No                         |                       |               |     |
|            | 06/23/2003               | 93<br>96  | Yes                        |                       |               |     |
|            | 01/01/2002               | 100       | No                         |                       |               |     |
|            | 07/01/2002               | 53        | Yes                        |                       |               |     |
| SENECA     | 309A                     | CENECAL   | CREEK DR                   |                       | 03/22/2016    | 60  |
| SENECA     | 309A                     |           |                            |                       | 03/22/2016    | 60  |
|            | Date Updated             |           | PCI from Inspection        | Comments              |               |     |
|            | 03/22/2016               | 60        | No                         | ADT ON 9/16/1998      |               |     |
|            | 06/14/2011               | 65        | No                         | ADT ON 9/16/1998      |               |     |
|            | 03/13/2009               | 65        | Yes                        | ADT ON 9/16/1998      |               |     |
|            | 06/23/2003               | 81        | Yes                        | ADT ON 9/16/1998      |               |     |
|            | 07/01/1997               | 81        | Yes                        | ADT ON 9/16/1998      |               |     |
| SENECA     | 309B                     | SENECAL   | CREEK DR                   |                       | 03/22/2016    | 75  |
|            | Date Updated             | PCI Hist  | PCI from Inspection        | Comments              |               |     |
|            | 03/22/2016               | 75        | No                         |                       |               |     |
|            | 03/13/2009               | 81        | Yes                        |                       |               |     |
|            | 06/23/2003               | 83        | Yes                        |                       |               |     |
|            | 07/01/1997               | 90        | Yes                        |                       |               |     |
| SFIRST     | 231A                     | S FIRST S | T                          |                       | 06/01/2009    | 81  |
| <b>.</b> . |                          |           |                            | Commont-              | 30.01.2000    | J.  |
|            |                          | PUI HIST  | PCI from Inspection        | Comments              |               |     |
|            | Date Updated             |           | A 1                        |                       |               |     |
|            | 06/01/2009               | 81        | No                         |                       |               |     |
|            | 06/01/2009<br>03/13/2009 | 81<br>80  | Yes                        |                       |               |     |
|            | 06/01/2009               | 81        |                            |                       |               |     |



# **PCI History**

| Street ID | Section ID   | Street Na | me                  | Last Updated                   | PCI |
|-----------|--------------|-----------|---------------------|--------------------------------|-----|
| SFRONT    | 200A         | S FRONT S | т                   | 03/13/2009                     | 90  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                       |     |
|           | 03/13/2009   | 90        | Yes                 | Split From SFRONT200A 03/01/09 |     |
|           | 06/17/2006   | 100       | No                  | Split From SFRONT200A 03/01/09 |     |
|           | 06/23/2003   | 20        | Yes                 | Split From SFRONT200A 03/01/09 |     |
|           | 07/01/1997   | 27        | Yes                 | Split From SFRONT200A 03/01/09 |     |
| SHENAN    | 457          | SHENAND   | OAH LN              | 06/24/2010                     | 69  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                       |     |
|           | 06/24/2010   | 69        | No .                |                                |     |
|           | 03/13/2009   | 69        | Yes                 |                                |     |
| SILVER    | 183A         | SILVERTO  | N RD                | 03/13/2009                     | 17  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                       |     |
|           | 03/13/2009   | 17        | Yes                 |                                |     |
|           | 06/23/2003   | 17        | Yes                 |                                |     |
|           | 07/01/1997   | 18        | Yes                 |                                |     |
| SILVER    | 183B         | SILVERTO  | N RD                | 03/13/2009                     | 67  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                       |     |
|           | 03/13/2009   | 67        | Yes                 |                                |     |
|           | 06/23/2003   | 18        | Yes                 |                                |     |
|           | 07/01/1997   | 18        | Yes                 |                                |     |
| SIXTH     | 236A         | SIXTH ST  |                     | 03/13/2009                     | 37  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                       |     |
|           | 03/13/2009   | 37        | Yes                 | Commente                       |     |
|           | 06/23/2003   | 32        | Yes                 |                                |     |
|           | 08/01/1997   | 80        | Yes                 |                                |     |
| SKYLER    | 439          | SKYLER D  | R                   | 03/13/2009                     | 95  |
| OKTELK    |              |           |                     | 00/10/2003                     | 33  |
|           | Date Updated |           | PCI from Inspection | Comments                       |     |
|           | 03/13/2009   | 95        | Yes                 |                                |     |
| SMITHC    | 259          | SMITH CT  |                     | 03/13/2009                     | 61  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                       |     |
|           | 03/13/2009   | 61        | Yes                 |                                |     |
|           | 04/16/2008   | 83        | No                  |                                |     |
|           | 06/09/2003   | 87        | Yes                 |                                |     |
|           | 07/01/1997   | 82        | Yes                 |                                |     |
| SMITHD    | 239A         | SMITH DR  |                     | 03/13/2009                     | 89  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                       |     |
|           | 03/13/2009   | 89        | Yes                 |                                |     |
|           | 06/09/2003   | 72        | Yes                 |                                |     |
|           | 07/01/1997   | 59        | Yes                 |                                |     |



# **PCI History**

| Street ID | Section ID   | Street Na | me                  | Last Updated                                                             | PCI |
|-----------|--------------|-----------|---------------------|--------------------------------------------------------------------------|-----|
| SMITHD    | 239B         | SMITH DR  |                     | 03/13/2009                                                               | 52  |
|           | Date Updated | PCI Hiet  | PCI from Inspection | Comments                                                                 |     |
|           | 03/13/2009   | 52        | Yes                 | Comments                                                                 |     |
|           |              |           |                     |                                                                          |     |
|           | 04/16/2008   | 81        | No                  |                                                                          |     |
|           | 06/09/2003   | 85        | Yes                 |                                                                          |     |
|           | 07/01/1997   | 79        | Yes                 |                                                                          |     |
| SPRAGU    | 432          | SPRAGUE   | LN                  | 08/04/2015                                                               | 66  |
|           | Date Updated |           | PCI from Inspection | Comments                                                                 |     |
|           | 08/04/2015   | 66        | No                  |                                                                          |     |
|           | 06/24/2010   | 72        | No                  |                                                                          |     |
|           | 03/13/2009   | 72        | Yes                 |                                                                          |     |
| SSECND    | 232A         | S SECONE  | ST                  | 03/13/2009                                                               | 53  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                                                 |     |
|           | 03/13/2009   | 53        | Yes                 |                                                                          |     |
|           | 06/23/2003   | 44        | Yes                 |                                                                          |     |
|           | 08/01/1997   | 55        | Yes                 |                                                                          |     |
| SSETLR    | 257A         | S SETTLE  | MIER AV             | 05/06/2013                                                               | 59  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                                                 |     |
|           | 05/06/2013   | 59        | No                  | ADT ON 8/13/1997 - 1,291<br>ADT ON 3/20/2001 - 4,947<br>ADT ON 8/22/2008 |     |
|           | 03/13/2009   | 60        | Yes                 | ADT ON 8/13/1997 - 1,291<br>ADT ON 3/20/2001 - 4,947<br>ADT ON 8/22/2008 |     |
|           | 04/16/2008   | 84        | No                  | ADT ON 8/13/1997 - 1,291<br>ADT ON 3/20/2001 - 4,947<br>ADT ON 8/22/2008 |     |
|           | 06/09/2003   | 89        | Yes                 | ADT ON 8/13/1997 - 1,291<br>ADT ON 3/20/2001 - 4,947<br>ADT ON 8/22/2008 |     |
|           | 01/01/2000   | 100       | No                  | ADT ON 8/13/1997 - 1,291<br>ADT ON 3/20/2001 - 4,947<br>ADT ON 8/22/2008 |     |
|           | 07/01/1997   | 46        | Yes                 | ADT ON 8/13/1997 - 1,291<br>ADT ON 3/20/2001 - 4,947<br>ADT ON 8/22/2008 |     |
| STACYA    | 255A         | STACY AL  | LISON WAY           | 08/16/2012                                                               | 91  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                                                 |     |
|           | 08/16/2012   | 91        | No                  |                                                                          |     |
|           | 03/13/2009   | 95        | Yes                 |                                                                          |     |
|           | 04/16/2008   | 74        | No                  |                                                                          |     |
|           | 06/09/2003   | 81        | Yes                 |                                                                          |     |
|           | 07/01/1997   | 83        | Yes                 |                                                                          |     |
| STACYA    | 255B         | STACY AL  | LISON WAY           | 08/16/2012                                                               | 90  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                                                 |     |
|           | 08/16/2012   | 90        | No                  |                                                                          |     |
|           | -            | 96        | Yes                 |                                                                          |     |




# **PCI History**

|                                                                                                                        | eet Name                                                         |                                            | Last Updated | PCI |
|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------|--------------|-----|
| STACYA 255C STA                                                                                                        | CY ALLISON WAY                                                   | •                                          | 08/16/2012   | 91  |
| Date Updated PC                                                                                                        | CI Hist PCI from Ir                                              | nspection Comments                         |              |     |
| 08/16/2012                                                                                                             |                                                                  | No                                         |              |     |
| 03/13/2009                                                                                                             | 95 Y                                                             | 'es                                        |              |     |
| STANFI 500 STA                                                                                                         | NFIELD RD                                                        |                                            | 07/10/2012   | 80  |
| Date Updated PC                                                                                                        | CI Hist PCI from Ir                                              | nspection Comments                         |              |     |
| 07/10/2012                                                                                                             | 80 08                                                            | No                                         |              |     |
| 06/01/2009                                                                                                             | 84 N                                                             | No                                         |              |     |
| 03/13/2009                                                                                                             | 83 Y                                                             | 'es                                        |              |     |
| 07/28/2004                                                                                                             | 100 N                                                            | No                                         |              |     |
| 06/09/2003                                                                                                             |                                                                  | 'es                                        |              |     |
| 07/01/1997                                                                                                             | 31 Y                                                             | 'es                                        |              |     |
| STANFO 403 STA                                                                                                         | NFORD ST                                                         |                                            | 08/16/2012   | 79  |
| Date Updated PC                                                                                                        | CI Hist PCI from Ir                                              | nspection Comments                         |              |     |
| 08/16/2012                                                                                                             |                                                                  | No                                         |              |     |
| 07/10/2012                                                                                                             |                                                                  | No                                         |              |     |
| 06/01/2009                                                                                                             |                                                                  | No                                         |              |     |
| 03/13/2009                                                                                                             |                                                                  | 'es                                        |              |     |
| 06/23/2004                                                                                                             |                                                                  | 'es                                        |              |     |
| STARKC 163 STA                                                                                                         | ARK CT                                                           |                                            | 03/13/2009   | 90  |
|                                                                                                                        |                                                                  | nspection Comments                         |              |     |
| Date Updated P0 03/13/2009                                                                                             | CI Hist PCI from Ir<br>90 Y                                      | 'es                                        |              |     |
| 06/23/2003                                                                                                             |                                                                  | es<br>'es                                  |              |     |
|                                                                                                                        |                                                                  |                                            |              |     |
| 01/01/2002<br>07/01/1997                                                                                               |                                                                  | No<br>You                                  |              |     |
| 07/01/1997                                                                                                             | 51 1                                                             | 'es                                        |              |     |
| STARKS 159A STA                                                                                                        | ARK ST                                                           |                                            | 06/01/2009   | 79  |
| ·                                                                                                                      | CI Hist PCI from Ir                                              | nspection Comments                         |              |     |
| 06/01/2009                                                                                                             | 79 N                                                             | No                                         |              |     |
| 03/13/2009                                                                                                             | 77 Y                                                             | 'es                                        |              |     |
| 04/01/2004                                                                                                             | 93 N                                                             | No                                         |              |     |
| 5 1/0 1/ <b>=</b> 00 1                                                                                                 | 96 Y                                                             | 'es                                        |              |     |
| 06/23/2003                                                                                                             |                                                                  |                                            |              |     |
| 06/23/2003                                                                                                             | 100 N                                                            | No                                         |              |     |
| 06/23/2003                                                                                                             |                                                                  | No<br>′es                                  |              |     |
| 06/23/2003<br>01/01/2002<br>07/01/1997                                                                                 |                                                                  |                                            | 03/13/2009   | 85  |
| 06/23/2003<br>01/01/2002<br>07/01/1997<br>STARKS 159B STA                                                              | 59 Y                                                             | r'es                                       | 03/13/2009   | 85  |
| 06/23/2003<br>01/01/2002<br>07/01/1997<br>STARKS 159B STA<br>Date Updated PC                                           | 59 Y  ARK ST  CI Hist PCI from Ir                                | res respection Comments                    | 03/13/2009   | 85  |
| 06/23/2003<br>01/01/2002<br>07/01/1997<br>STARKS 159B STA<br>Date Updated PC<br>03/13/2009                             | 59 Y ARK ST CI Hist PCI from Ir 85 Y                             | respection Comments res                    | 03/13/2009   | 85  |
| 06/23/2003<br>01/01/2002<br>07/01/1997<br>STARKS 159B STA  Date Updated PC 03/13/2009 04/16/2008                       | 59 Y ARK ST CI Hist PCI from Ir 85 Y 87 N                        | respection Comments res                    | 03/13/2009   | 85  |
| 06/23/2003<br>01/01/2002<br>07/01/1997<br>STARKS 159B STA  Date Updated PC 03/13/2009 04/16/2008 04/06/2004            | 59 Y  ARK ST  CI Hist PCI from Ir  85 Y  87 N  93 N              | res  Inspection Comments res No No         | 03/13/2009   | 85  |
| 06/23/2003<br>01/01/2002<br>07/01/1997<br>STARKS 159B STA  Date Updated PC 03/13/2009 04/16/2008 04/06/2004 06/23/2003 | 59 Y  ARK ST  CI Hist PCI from Ir  85 Y  87 N  93 N  96 Y        | res  Inspection Comments  Yes  No  No  Yes | 03/13/2009   | 85  |
| 06/23/2003<br>01/01/2002<br>07/01/1997<br>STARKS 159B STA  Date Updated PC 03/13/2009 04/16/2008 04/06/2004 06/23/2003 | 59 Y  ARK ST  CI Hist PCI from Ir  85 Y  87 N  93 N  96 Y  100 N | res  Inspection Comments res No No         | 03/13/2009   | 85  |



# **PCI History**

| Street ID | Section ID   | Street Na | me                  | Last Updated                                                     | PCI |
|-----------|--------------|-----------|---------------------|------------------------------------------------------------------|-----|
| STARKS    | 159C         | STARK ST  |                     | 03/13/2009                                                       | 92  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                                         |     |
|           | 03/13/2009   | 92        | Yes                 | Split From STARKS159C 03/01/09                                   |     |
|           | 06/23/2003   | 45        | Yes                 | Split From STARKS159C 03/01/09                                   |     |
|           | 07/01/1997   | 63        | Yes                 | Split From STARKS159C 03/01/09                                   |     |
| STARKS    | 159D         | STARK ST  |                     | 03/13/2009                                                       | 54  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                                         |     |
|           | 03/13/2009   | 54        | Yes                 | Split From STARKS159C 03/01/09                                   |     |
|           | 06/23/2003   | 45        | Yes                 | •                                                                |     |
|           | 07/01/1997   | 63        | Yes                 | Split From STARKS159C 03/01/09<br>Split From STARKS159C 03/01/09 |     |
|           | 07/01/1997   | 03        | res                 | Split F10111 STARKS 159C 03/01/09                                |     |
| STEVEN    | 305          | STEVEN S  | Т                   | 03/13/2009                                                       | 73  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                                         |     |
|           | 03/13/2009   | 73        | Yes                 |                                                                  |     |
|           | 06/23/2003   | 82        | Yes                 |                                                                  |     |
|           | 07/01/1997   | 85        | Yes                 |                                                                  |     |
| SWDLND    | 300F         | S WOODL   | AND AVE             | 07/15/2012                                                       | 81  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                                         |     |
|           | 07/15/2012   | 81        | No                  |                                                                  |     |
|           | 03/13/2009   | 84        | Yes                 |                                                                  |     |
|           | 06/28/2006   | 100       | No                  |                                                                  |     |
|           | 06/23/2003   | 34        | Yes                 |                                                                  |     |
|           | 07/01/1997   | 82        | Yes                 |                                                                  |     |
|           | 0170117007   | <u> </u>  | 100                 |                                                                  |     |
| SWDLND    | 300G         | S WOODL   | AND AVE             | 07/15/2012                                                       | 70  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                                         |     |
|           | 07/15/2012   | 70        | No                  |                                                                  |     |
|           | 06/24/2010   | 71        | No                  |                                                                  |     |
|           | 03/13/2009   | 71        | Yes                 |                                                                  |     |
|           | 06/23/2004   | 84        | Yes                 |                                                                  |     |
| SWEETW    | 445          | SWEETWA   | ATER AVE            | 08/16/2012                                                       | 82  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                                         |     |
|           | 08/16/2012   | 82        | No                  |                                                                  |     |
|           | 07/10/2012   | 81        | No                  |                                                                  |     |
|           | 03/13/2009   | 85        | Yes                 |                                                                  |     |
| SYCAMO    | 315          | SYCAMOR   | E AVE               | 06/01/2009                                                       | 81  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                                         |     |
|           |              |           | No                  |                                                                  |     |
|           | 06/01/2009   | 81        | 110                 |                                                                  |     |
|           |              | 81<br>80  | Yes                 |                                                                  |     |
|           | 03/13/2009   | 80        | Yes                 |                                                                  |     |
|           |              |           |                     |                                                                  |     |



# **PCI History**

| 0404         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                                                              |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------------------------------------------------------|
| 310A         | TEN OAKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 08/04/2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 77           |                                                                                              |
| Date Undated | PCI Hist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PCI from Inspection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                                                              |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 501111101110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                                                              |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                                                              |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                                                              |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                                                              |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                                                              |
| 07/01/1997   | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                                                              |
| 310B         | TEN OAKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 08/04/2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 73           |                                                                                              |
| Date Undated | PCI Hist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PCI from Inspection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                                                              |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                                                              |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                                                              |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                                                              |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                                                              |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                                                              |
| 07/01/1997   | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                                                              |
| 233A         | THIRD ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 06/21/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 83           |                                                                                              |
| Date Updated | PCI Hist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PCI from Inspection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                                                              |
| 06/21/2011   | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                                                              |
| 03/13/2009   | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                                                              |
| 06/23/2003   | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                                                              |
| 08/01/1997   | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                                                              |
| 233B         | THIRD ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 06/01/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 81           |                                                                                              |
| Date Updated | PCI Hist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PCI from Inspection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                                                              |
| 06/01/2009   | 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                                                              |
| 03/13/2009   | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                                                              |
| 06/23/2003   | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                                                              |
| 08/01/1997   | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                                                              |
| 233C         | THIRD ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 06/09/2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 43           |                                                                                              |
| Date Updated | PCI Hist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PCI from Inspection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                                                              |
| 06/09/2014   | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ADT ON 8/13/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                                                              |
| 03/13/2009   | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ADT ON 8/13/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                                                              |
| 06/23/2003   | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ADT ON 8/13/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                                                              |
| 08/01/1997   | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ADT ON 8/13/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                                                              |
| 332A         | THOMPSO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N RD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 03/13/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 88           |                                                                                              |
| Date Updated | PCI Hist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PCI from Inspection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                                                              |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                                                              |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                                                              |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                                                              |
| 07/01/1997   | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                                                              |
| 332B         | THOMPSO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N RD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 03/13/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 85           |                                                                                              |
| Date Undated | PCI Hist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PCI from Inspection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                                                              |
|              | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                                                              |
| 03/13/2009   | หว                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                                                                              |
|              | Date Updated 08/04/2015 06/14/2011 06/01/2009 03/13/2009 06/23/2003 07/01/1997  310B  Date Updated 08/04/2015 06/14/2011 03/13/2009 06/23/2003 07/01/1997  233A  Date Updated 06/21/2011 03/13/2009 06/23/2003 08/01/1997  233B  Date Updated 06/01/2009 03/13/2009 06/23/2003 08/01/1997  233C  Date Updated 06/09/2014 03/13/2009 06/23/2003 08/01/1997  332A  Date Updated 06/09/2014 03/13/2009 06/23/2003 08/01/1997  332A  Date Updated 06/09/2014 03/13/2009 06/23/2003 08/01/1997 | Date Updated         PCI Hist           08/04/2015         77           06/14/2011         80           06/01/2009         81           03/13/2009         79           06/23/2003         89           07/01/1997         95           TEN OAKS           Date Updated         PCI Hist           08/04/2015         73           06/14/2011         76           03/13/2009         77           06/23/2003         84           07/01/1997         90           THIRD ST           Date Updated         PCI Hist           06/21/2011         83           03/13/2009         84           06/23/2003         64           08/01/1997         68           THIRD ST           Date Updated         PCI Hist           06/03/2003         36           08/01/1997         46           THIRD ST           Date Updated         PCI Hist           06/09/2014         43           03/13/2009         30           06/23/2003         55           08/01/1997         70 <td c<="" td=""><td>Date Updated 08/04/2015         PCI Hist 77         No 06/14/2011         No 06/14/2011         No 06/14/2011         No 06/01/2009         Yes 06/23/2003         Yes 9         Yes 06/23/2003         Yes 9         Yes 06/23/2003         Yes 07/01/1997         Yes 07/01/1997         Yes 07/01/1997         Yes 06/23/2003         No 06/23/2003         No 06/23/2003         Yes 06/23/2003         <th< td=""><td>  Date Updated</td><td>Date Updated 08/04/2015         PCI Hist 77         No N</td></th<></td></td> | <td>Date Updated 08/04/2015         PCI Hist 77         No 06/14/2011         No 06/14/2011         No 06/14/2011         No 06/01/2009         Yes 06/23/2003         Yes 9         Yes 06/23/2003         Yes 9         Yes 06/23/2003         Yes 07/01/1997         Yes 07/01/1997         Yes 07/01/1997         Yes 06/23/2003         No 06/23/2003         No 06/23/2003         Yes 06/23/2003         <th< td=""><td>  Date Updated</td><td>Date Updated 08/04/2015         PCI Hist 77         No N</td></th<></td> | Date Updated 08/04/2015         PCI Hist 77         No 06/14/2011         No 06/14/2011         No 06/14/2011         No 06/01/2009         Yes 06/23/2003         Yes 9         Yes 06/23/2003         Yes 9         Yes 06/23/2003         Yes 07/01/1997         Yes 07/01/1997         Yes 07/01/1997         Yes 06/23/2003         No 06/23/2003         No 06/23/2003         Yes 06/23/2003 <th< td=""><td>  Date Updated</td><td>Date Updated 08/04/2015         PCI Hist 77         No N</td></th<> | Date Updated | Date Updated 08/04/2015         PCI Hist 77         No N |



# **PCI History**

| Street ID | Section ID               | Street Na | me                  |            | Last Updated | PCI |
|-----------|--------------------------|-----------|---------------------|------------|--------------|-----|
| THOMPS    | 332B                     | THOMPSO   | N RD                |            | 03/13/2009   | 85  |
|           | Date Updated             | PCI Hist  | PCI from Inspection | Comments   |              |     |
|           | 06/09/2003               | 47        | Yes                 | Commonto   |              |     |
|           | 07/01/1997               | 21        | Yes                 |            |              |     |
|           | 0770171007               | 21        | 100                 |            |              |     |
| THOMPS    | 332C                     | THOMPSO   | N RD                |            | 03/13/2009   | 88  |
|           | Date Updated             | PCI Hist  | PCI from Inspection | Comments   |              |     |
|           | 03/13/2009               | 88        | Yes                 |            |              |     |
|           | 06/12/2006               | 100       | No                  |            |              |     |
|           | 06/09/2003               | 81        | Yes                 |            |              |     |
|           | 07/01/1997               | 82        | Yes                 |            |              |     |
| THOMPS    | 332D                     | THOMPSO   | N RD                |            | 03/13/2009   | 86  |
|           | Date Updated             | PCI Hist  | PCI from Inspection | Comments   |              |     |
|           | 03/13/2009               | 86        | Yes                 |            |              |     |
|           | 06/12/2006               | 100       | No                  |            |              |     |
|           | 06/09/2003               | 19        | Yes                 |            |              |     |
|           | 07/01/1997               | 39        | Yes                 |            |              |     |
| TIERRA    | 126A                     | TIERRA LY | /NN DR              | 03/13/2009 | 72           |     |
|           | Date Updated             | PCI Hist  | PCI from Inspection | Comments   |              |     |
|           | 03/13/2009               | 72        | Yes                 | Comments   |              |     |
|           | 04/16/2008               | 72<br>82  | No                  |            |              |     |
|           |                          | 85        | Yes                 |            |              |     |
|           | 06/09/2003<br>07/01/1997 | 82        | Yes                 |            |              |     |
| TIERRA    | 126B                     | TIERRA LY | /NN DR              |            | 03/13/2009   | 85  |
|           | Date Updated             | PCI Hist  | PCI from Inspection | Comments   |              |     |
|           | 03/13/2009               | 85        | Yes                 |            |              |     |
|           | 04/16/2008               | 87        | No                  |            |              |     |
|           | 06/09/2003               | 95        | Yes                 |            |              |     |
|           | 01/01/2000               | 100       | No                  |            |              |     |
|           | 07/01/1997               | 22        | Yes                 |            |              |     |
| TIERRA    | 126C                     | TIERRA LY | /NN DR              |            | 02/23/2010   | 76  |
|           | Date Updated             | PCI Hist  | PCI from Inspection | Comments   |              |     |
|           | 02/23/2010               | 76        | No                  |            |              |     |
|           | 03/13/2009               | 75        | Yes                 |            |              |     |
|           | 06/09/2003               | 95        | Yes                 |            |              |     |
|           | 01/01/2000               | 100       | No                  |            |              |     |
|           | 07/01/1997               | 66        | Yes                 |            |              |     |
| TIERRA    | 181                      | TIERRA L  | /NN CT              |            | 03/13/2009   | 64  |
|           | Date Updated             | PCI Hist  | PCI from Inspection | Comments   |              |     |
|           | 03/13/2009               | 64        | Yes                 |            |              |     |
|           | 03/13/2009               |           |                     |            |              |     |
|           |                          |           | No                  |            |              |     |
|           | 04/16/2008<br>06/09/2003 | 77<br>81  | No<br>Yes           |            |              |     |



# **PCI History**

| Street ID | Section ID               | Street Na | me                  |          | Last Updated | PCI |
|-----------|--------------------------|-----------|---------------------|----------|--------------|-----|
| TIERRA    | 182                      | TIERRA CT |                     |          | 03/13/2009   | 59  |
|           | Date Updated             | PCI Hist  | PCI from Inspection | Comments |              |     |
|           | 03/13/2009               | 59        | Yes                 | 30       |              |     |
|           | 04/16/2008               | 79        | No                  |          |              |     |
|           | 06/09/2003               | 79<br>83  | Yes                 |          |              |     |
|           |                          |           |                     |          |              |     |
|           | 07/01/1997               | 62        | Yes                 |          |              |     |
| TOMLIN    | 114A                     | TOMLIN A  | <b>VE</b>           |          | 06/23/2011   | 82  |
|           | Date Updated             | PCI Hist  | PCI from Inspection | Comments |              |     |
|           | 06/23/2011               | 82        | No                  |          |              |     |
|           | 03/13/2009               | 85        | Yes                 |          |              |     |
|           | 06/05/2006               | 100       | No                  |          |              |     |
|           | 06/23/2003               | 57        | Yes                 |          |              |     |
|           | 07/01/1997               | 67        | Yes                 |          |              |     |
|           |                          |           |                     |          |              |     |
| TOMLIN    | 114B                     | TOMLIN A  | VE .                |          | 03/13/2009   | 88  |
|           | Date Updated             |           | PCI from Inspection | Comments |              |     |
|           | 03/13/2009               | 88        | Yes                 |          |              |     |
|           | 06/05/2006               | 100       | No                  |          |              |     |
|           | 06/23/2003               | 65        | Yes                 |          |              |     |
|           | 07/01/1997               | 64        | Yes                 |          |              |     |
| TOUTST    | 458                      | TOUT ST   |                     |          | 03/13/2009   | 96  |
|           |                          |           | DOL 6 1             |          | 55. 10/2000  |     |
|           | Date Updated             | PCI Hist  | •                   | Comments |              |     |
|           | 03/13/2009               | 96        | Yes                 |          |              |     |
| TRACYL    | 420                      | TRACY LN  |                     |          | 06/16/2011   | 81  |
|           | Date Updated             | PCI Hist  | PCI from Inspection | Comments |              |     |
|           | 06/16/2011               | 81        | No .                |          |              |     |
|           | 03/13/2009               | 83        | Yes                 |          |              |     |
|           | 07/28/2004               | 100       | No                  |          |              |     |
|           | 07/28/2004               | 100       | Yes                 |          |              |     |
|           | 06/23/2004               | 92        | Yes                 |          |              |     |
|           | 00/23/2004               | 92        | 1 63                |          |              |     |
| TROONA    | 451A                     | TROON AV  | Æ                   |          | 03/13/2009   | 92  |
|           | Date Updated             | PCI Hist  | PCI from Inspection | Comments |              |     |
|           | 03/13/2009               | 92        | Yes                 |          |              |     |
| TUKWIL    | 368A                     | TUKWILA   | DR                  |          | 06/16/2011   | 83  |
|           | Date Updated             |           | PCI from Inspection | Comments |              |     |
|           | 06/16/2011               | 83        | No No               | Comments |              |     |
|           |                          |           |                     |          |              |     |
|           | 03/13/2009<br>06/23/2004 | 84<br>95  | Yes<br>Yes          |          |              |     |
|           | 00/20/2004               | 33        | 165                 |          |              |     |
| TUKWIL    | 368B                     | TUKWILA   | DR                  |          | 06/16/2011   | 82  |
|           | Date Updated             | PCI Hist  | PCI from Inspection | Comments |              |     |
|           | 06/16/2011               | 82        | No                  |          |              |     |
|           | 03/13/2009               | 83        | Yes                 |          |              |     |
|           | 06/23/2004               | 90        | Yes                 |          |              |     |
|           |                          |           |                     |          |              |     |



# **PCI History**

| Street ID | Section ID   | Street Na | me                  | Last                                        | Updated   | PCI |
|-----------|--------------|-----------|---------------------|---------------------------------------------|-----------|-----|
| TUKWIL    | 368C         | TUKWILA   | DR                  | 0                                           | 3/13/2009 | 13  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                    |           |     |
|           | 03/13/2009   | 13        | Yes                 |                                             |           |     |
|           | 06/09/2003   | 89        | Yes                 |                                             |           |     |
|           | 07/01/1997   | 92        | Yes                 |                                             |           |     |
| TUKWIL    | 368D         | TUKWILA   | DR                  | 0                                           | 3/13/2009 | 35  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                    |           |     |
|           | 03/13/2009   | 35        | Yes                 |                                             |           |     |
|           | 06/09/2003   | 72        | Yes                 |                                             |           |     |
|           | 07/01/1997   | 90        | Yes                 |                                             |           |     |
| TUKWIL    | 368E         | TUKWILA   | DR                  | 0                                           | 6/24/2010 | 72  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                    |           |     |
|           | 06/24/2010   | 72        | No                  |                                             |           |     |
|           | 03/13/2009   | 71        | Yes                 |                                             |           |     |
|           | 10/02/2006   | 100       | No                  |                                             |           |     |
|           | 06/09/2003   | 59        | Yes                 |                                             |           |     |
|           | 07/01/1997   | 90        | Yes                 |                                             |           |     |
| TUKWIL    | 368Z         | TUKWILA   | DR                  | 0                                           | 3/13/2009 | 92  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                    |           |     |
|           | 03/13/2009   | 92        | Yes                 |                                             |           |     |
| TULIP     | 460          | TULIP AVE |                     | 0                                           | 7/01/2014 | 91  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                    |           |     |
|           | 07/01/2014   | 91        | No                  | ADT ON 4/15/2009 - 286<br>ADT ON 12/15/2010 |           |     |
|           | 03/13/2009   | 95        | Yes                 | ADT ON 4/15/2009 - 286<br>ADT ON 12/15/2010 |           |     |
| TURNBE    | 450          | TURNBER   | RY AVE              | 0                                           | 3/13/2009 | 92  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                    |           |     |
|           | 03/13/2009   | 92        | Yes                 |                                             |           |     |
| UMPQUA    | 333A         | UMPQUA I  | RD                  | 0                                           | 6/01/2009 | 82  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                    |           |     |
|           | 06/01/2009   | 82        | No                  |                                             |           |     |
|           | 03/13/2009   | 81        | Yes                 |                                             |           |     |
|           | 07/12/2004   | 100       | No                  |                                             |           |     |
|           | 06/09/2003   | 64        | Yes                 |                                             |           |     |
|           | 07/01/1997   | 58        | Yes                 |                                             |           |     |
| UMPQUA    | 333B         | UMPQUA I  | RD                  | 0                                           | 6/01/2009 | 82  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                                    |           |     |
|           | 06/01/2009   | 82        | No                  |                                             |           |     |
|           | 03/13/2009   | 81        | Yes                 |                                             |           |     |
|           | 07/12/2004   | 100       | No                  |                                             |           |     |



# **PCI History**

| Street ID | Section ID                 | Street Na | me                     |          | Last Updated | PCI |
|-----------|----------------------------|-----------|------------------------|----------|--------------|-----|
| UMPQUA    | 333B                       | UMPQUA I  | RD                     |          | 06/01/2009   | 82  |
|           | Date Updated               | PCI Hist  | PCI from Inspection    | Comments |              |     |
|           | 06/09/2003                 | 19        | Yes                    | 30       |              |     |
|           | 07/01/1997                 | 31        | Yes                    |          |              |     |
|           | 0170111001                 | <u> </u>  |                        |          |              |     |
| JMPQUA    | 333C                       | UMPQUA I  | RD                     |          | 06/24/2010   | 77  |
|           | Date Updated               | PCI Hist  | PCI from Inspection    | Comments |              |     |
|           | 06/24/2010                 | 77        | No                     |          |              |     |
|           | 03/13/2009                 | 76        | Yes                    |          |              |     |
|           | 06/09/2003                 | 88        | Yes                    |          |              |     |
|           | 07/01/1997                 | 86        | Yes                    |          |              |     |
|           | 01/01/1991                 | 100       | No                     |          |              |     |
| JMPQUA    | 335                        | UMPQUA    | СТ                     |          | 06/15/2011   | 80  |
|           | Date Updated               | PCI Hist  | PCI from Inspection    | Comments |              |     |
|           | 06/15/2011                 | 80        | No                     |          |              |     |
|           | 03/13/2009                 | 82        | Yes                    |          |              |     |
|           | 07/12/2004                 | 100       | No                     |          |              |     |
|           | 06/09/2003                 | 74        | Yes                    |          |              |     |
|           | 07/01/1997                 | 61        | Yes                    |          |              |     |
|           | 0770171337                 |           |                        |          |              |     |
| JMPQUA    | 351                        | UMPQUA I  | PL                     |          | 03/13/2009   | 39  |
|           | Date Updated               |           | PCI from Inspection    | Comments |              |     |
|           | 03/13/2009                 | 39        | Yes                    |          |              |     |
|           | 06/09/2003                 | 75        | Yes                    |          |              |     |
|           | 07/01/1997                 | 73        | Yes                    |          |              |     |
| VANDER    | 353A                       | VANDERB   | ECK LN                 |          | 03/13/2009   | 72  |
|           | Date Updated               | PCI Hist  | PCI from Inspection    | Comments |              |     |
|           | 03/13/2009                 | 72        | Yes                    |          |              |     |
|           | 06/23/2004                 | 90        | Yes                    |          |              |     |
| VANDER    | 353B                       | VANDERB   | FCKIN                  |          | 06/24/2010   | 72  |
|           |                            |           |                        | 0        | VV.27/2V IV  |     |
|           | Date Updated<br>06/24/2010 | PCI Hist  | PCI from Inspection No | Comments |              |     |
|           |                            |           |                        |          |              |     |
|           | 03/13/2009                 | 71        | Yes                    |          |              |     |
|           | 06/23/2004                 | 89        | Yes                    |          |              |     |
| VANDER    | 353C                       | VANDERB   | ECK LN                 |          | 06/24/2010   | 72  |
|           | Date Updated               | PCI Hist  | PCI from Inspection    | Comments |              |     |
|           | 06/24/2010                 | 72        | No                     |          |              |     |
|           | 03/13/2009                 | 71        | Yes                    |          |              |     |
|           | 06/23/2004                 | 92        | Yes                    |          |              |     |
| VANDER    | 353D                       | VANDERB   | ECK LN                 |          | 03/13/2009   | 83  |
|           | Date Updated               | PCI Hist  | PCI from Inspection    | Comments |              |     |
|           | 03/13/2009                 | 83        | Yes                    |          |              |     |
|           | 06/09/2003                 | 94        | Yes                    |          |              |     |
|           | 07/01/1997                 | 39        | Yes                    |          |              |     |



# **PCI History**

| Street ID | Section ID   | Street Na | me                  | La               | ast Updated | PCI |
|-----------|--------------|-----------|---------------------|------------------|-------------|-----|
| VANDER    | 353E         | VANDERB   | ECK LN              |                  | 03/13/2009  | 89  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments         |             |     |
|           | 03/13/2009   | 89        | Yes                 |                  |             |     |
|           | 06/12/2006   | 100       | No                  |                  |             |     |
|           | 06/09/2003   | 20        | Yes                 |                  |             |     |
|           | 07/01/1997   | 18        | Yes                 |                  |             |     |
| VANDER    | 353F         | VANDERB   | ECK LN              |                  | 03/13/2009  | 74  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments         |             |     |
|           | 03/13/2009   | 74        | Yes                 |                  |             |     |
|           | 06/09/2003   | 91        | Yes                 |                  |             |     |
|           | 07/01/1997   | 86        | Yes                 |                  |             |     |
|           | 01/01/1992   | 100       | No                  |                  |             |     |
| VANLIE    | 120          | VAN LIEU  | СТ                  |                  | 06/11/2015  | 100 |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments         |             |     |
|           | 06/11/2015   | 100       | No                  |                  |             |     |
|           | 03/13/2009   | 26        | Yes                 |                  |             |     |
|           | 06/09/2003   | 63        | Yes                 |                  |             |     |
|           | 07/01/1997   | 77        | Yes                 |                  |             |     |
| VASSER    | 409          | VASSER S  | Т                   |                  | 08/16/2012  | 81  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments         |             |     |
|           | 08/16/2012   | 81        | No                  | Comments         |             |     |
|           | 07/10/2012   | 80        | No                  |                  |             |     |
|           | 06/17/2011   | 80        | No                  |                  |             |     |
|           | 03/13/2009   | 82        | Yes                 |                  |             |     |
|           | 06/23/2004   | 95        | Yes                 |                  |             |     |
| VINEAV    | 459          | VINE AVE  |                     |                  | 07/01/2014  | 91  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments         |             |     |
|           | 07/01/2014   | 91        | No                  | ADT ON 4/22/2009 |             |     |
|           | 03/13/2009   | 95        | Yes                 | ADT ON 4/22/2009 |             |     |
| WALKER    | 168          | WALKER (  | СТ                  |                  | 03/13/2009  | 84  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments         |             |     |
|           | 03/13/2009   | 84        | Yes                 |                  |             |     |
|           | 06/23/2003   | 89        | Yes                 |                  |             |     |
|           | 07/01/1997   | 90        | Yes                 |                  |             |     |
| WALTON    | 334          | WALTON V  | VAY                 |                  | 03/13/2009  | 30  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments         |             |     |
|           | 03/13/2009   | 30        | Yes                 |                  |             |     |
|           | 06/09/2003   | 61        | Yes                 |                  |             |     |
|           | 07/01/1997   | 51        | Yes                 |                  |             |     |



# **PCI History**

| Street ID | Section ID               | Street Na | me                  | L                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ast Updated                                                                                                                                  | PCI |
|-----------|--------------------------|-----------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----|
| WARREN    | 169A                     | WARREN    | VAY                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 06/22/2011                                                                                                                                   | 56  |
|           | Date Updated             | PCI Hist  | PCI from Inspection | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                              |     |
|           | 06/22/2011               | 56        | No                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                              |     |
|           | 03/13/2009               | 57        | Yes                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                              |     |
|           | 06/23/2003               | 75        | Yes                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                              |     |
|           | 07/01/1997               | 78        | Yes                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                              |     |
|           | 0110111331               | 70        | 103                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                              |     |
| WARREN    | 169B                     | WARREN    | VAY                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 06/22/2011                                                                                                                                   | 83  |
|           | Date Updated             | PCI Hist  | PCI from Inspection | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                              |     |
|           | 06/22/2011               | 83        | No                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                              |     |
|           | 03/13/2009               | 84        | Yes                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                              |     |
|           | 06/23/2003               | 82        | Yes                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                              |     |
|           | 07/01/1997               | 90        | Yes                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                              |     |
| WESTHA    | 223A                     | W HAYES   | ST                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 03/13/2009                                                                                                                                   | 18  |
|           |                          |           |                     | Commonto                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                              |     |
|           | Date Updated             |           | PCI from Inspection | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                              |     |
|           | 03/13/2009               | 18        | Yes                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                              |     |
|           | 06/09/2003               | 45        | Yes                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                              |     |
|           | 07/01/1997               | 42        | Yes                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                              |     |
| WESTHA    | 223B                     | W HAYES   | ST                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 03/13/2009                                                                                                                                   | 53  |
|           | Date Updated             | PCI Hist  | PCI from Inspection | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                              |     |
|           | 03/13/2009               | 53        | Yes                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                              |     |
|           | 06/09/2003               | 76        | Yes                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                              |     |
|           | 07/01/1997               | 75        | Yes                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                              |     |
| WESTHA    | 223C                     | W HAYES   | ST                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 06/28/2013                                                                                                                                   | 53  |
|           |                          |           |                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00/20/2010                                                                                                                                   |     |
|           | Date Updated             |           | PCI from Inspection | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.074                                                                                                                                        |     |
|           | 06/28/2013               | 53        | No                  | ADT ON 9/26/2003 -<br>ADT ON 5/23/2005 -                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                              |     |
|           |                          |           |                     | ADT ON 3/23/2005 -<br>ADT ON 3/19/2008 -                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                              |     |
|           |                          |           |                     | ADT ON 4/10/2008 -                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                              |     |
|           |                          |           |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -, <del>-</del>                                                                                                                              |     |
|           |                          |           |                     | ADT ON 4/17/2012                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                              |     |
|           | 03/13/2009               | 47        | Yes                 | ADT ON 4/17/2012<br>ADT ON 9/26/2003 -                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,671                                                                                                                                        |     |
|           | 03/13/2009               | 47        | Yes                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                              |     |
|           | 03/13/2009               | 47        | Yes                 | ADT ON 9/26/2003 -<br>ADT ON 5/23/2005 -<br>ADT ON 3/19/2008 -                                                                                                                                                                                                                                                                                                                                                                                                  | 2,946<br>5,821                                                                                                                               |     |
|           | 03/13/2009               | 47        | Yes                 | ADT ON 9/26/2003 -<br>ADT ON 5/23/2005 -<br>ADT ON 3/19/2008 -<br>ADT ON 4/10/2008 -                                                                                                                                                                                                                                                                                                                                                                            | 2,946<br>5,821                                                                                                                               |     |
|           |                          |           |                     | ADT ON 9/26/2003 -<br>ADT ON 5/23/2005 -<br>ADT ON 3/19/2008 -<br>ADT ON 4/10/2008 -<br>ADT ON 4/17/2012                                                                                                                                                                                                                                                                                                                                                        | 2,946<br>5,821<br>5,671                                                                                                                      |     |
|           | 03/13/2009               | 47<br>66  | Yes                 | ADT ON 9/26/2003 -<br>ADT ON 5/23/2005 -<br>ADT ON 3/19/2008 -<br>ADT ON 4/10/2008 -<br>ADT ON 4/17/2012<br>ADT ON 9/26/2003 -                                                                                                                                                                                                                                                                                                                                  | 2,946<br>5,821<br>5,671<br>2,671                                                                                                             |     |
|           |                          |           |                     | ADT ON 9/26/2003 -<br>ADT ON 5/23/2005 -<br>ADT ON 3/19/2008 -<br>ADT ON 4/10/2008 -<br>ADT ON 4/17/2012<br>ADT ON 9/26/2003 -<br>ADT ON 5/23/2005 -                                                                                                                                                                                                                                                                                                            | 2,946<br>5,821<br>5,671<br>2,671<br>2,946                                                                                                    |     |
|           |                          |           |                     | ADT ON 9/26/2003 -<br>ADT ON 5/23/2005 -<br>ADT ON 3/19/2008 -<br>ADT ON 4/10/2008 -<br>ADT ON 4/17/2012<br>ADT ON 9/26/2003 -<br>ADT ON 5/23/2005 -<br>ADT ON 3/19/2008 -                                                                                                                                                                                                                                                                                      | 2,946<br>5,821<br>5,671<br>2,671<br>2,946<br>5,821                                                                                           |     |
|           |                          |           |                     | ADT ON 9/26/2003 - ADT ON 5/23/2005 - ADT ON 3/19/2008 - ADT ON 4/10/2008 - ADT ON 4/17/2012 ADT ON 9/26/2003 - ADT ON 5/23/2005 - ADT ON 3/19/2008 - ADT ON 4/10/2008 -                                                                                                                                                                                                                                                                                        | 2,946<br>5,821<br>5,671<br>2,671<br>2,946<br>5,821                                                                                           |     |
|           |                          | 66        | No                  | ADT ON 9/26/2003 - ADT ON 5/23/2005 - ADT ON 3/19/2008 - ADT ON 4/10/2008 - ADT ON 4/17/2012 ADT ON 9/26/2003 - ADT ON 5/23/2005 - ADT ON 3/19/2008 - ADT ON 4/10/2008 - ADT ON 4/17/2012                                                                                                                                                                                                                                                                       | 2,946<br>5,821<br>5,671<br>2,671<br>2,946<br>5,821<br>5,671                                                                                  |     |
|           | 04/16/2008               |           |                     | ADT ON 9/26/2003 - ADT ON 5/23/2005 - ADT ON 3/19/2008 - ADT ON 4/10/2008 - ADT ON 4/17/2012 ADT ON 9/26/2003 - ADT ON 5/23/2005 - ADT ON 3/19/2008 - ADT ON 4/10/2008 -                                                                                                                                                                                                                                                                                        | 2,946<br>5,821<br>5,671<br>2,671<br>2,946<br>5,821<br>5,671<br>2,671                                                                         |     |
|           | 04/16/2008               | 66        | No                  | ADT ON 9/26/2003 - ADT ON 5/23/2005 - ADT ON 3/19/2008 - ADT ON 4/10/2008 - ADT ON 4/17/2012 ADT ON 9/26/2003 - ADT ON 5/23/2005 - ADT ON 3/19/2008 - ADT ON 4/10/2008 - ADT ON 4/17/2012 ADT ON 9/26/2003 -                                                                                                                                                                                                                                                    | 2,946<br>5,821<br>5,671<br>2,671<br>2,946<br>5,821<br>5,671<br>2,671<br>2,946                                                                |     |
|           | 04/16/2008               | 66        | No                  | ADT ON 9/26/2003 - ADT ON 5/23/2005 - ADT ON 3/19/2008 - ADT ON 4/10/2008 - ADT ON 4/17/2012 ADT ON 9/26/2003 - ADT ON 5/23/2005 - ADT ON 3/19/2008 - ADT ON 4/10/2008 - ADT ON 9/26/2003 - ADT ON 9/26/2003 - ADT ON 5/23/2005 - ADT ON 5/23/2005 - ADT ON 3/19/2008 - ADT ON 3/19/2008 - ADT ON 4/10/2008 -                                                                                                                                                   | 2,946<br>5,821<br>5,671<br>2,671<br>2,946<br>5,821<br>5,671<br>2,671<br>2,946<br>5,821                                                       |     |
|           | 04/16/2008               | 66        | No                  | ADT ON 9/26/2003 - ADT ON 5/23/2005 - ADT ON 3/19/2008 - ADT ON 4/10/2008 - ADT ON 4/17/2012 ADT ON 9/26/2003 - ADT ON 5/23/2005 - ADT ON 3/19/2008 - ADT ON 4/17/2012 ADT ON 9/26/2003 - ADT ON 9/26/2003 - ADT ON 5/23/2005 - ADT ON 5/23/2005 - ADT ON 3/19/2008 -                                                                                                                                                                                           | 2,946<br>5,821<br>5,671<br>2,671<br>2,946<br>5,821<br>5,671<br>2,671<br>2,946<br>5,821                                                       |     |
|           | 04/16/2008               | 66        | No                  | ADT ON 9/26/2003 - ADT ON 5/23/2005 - ADT ON 3/19/2008 - ADT ON 4/10/2008 - ADT ON 4/17/2012 ADT ON 9/26/2003 - ADT ON 5/23/2005 - ADT ON 3/19/2008 - ADT ON 4/10/2008 - ADT ON 9/26/2003 - ADT ON 5/23/2005 - ADT ON 5/23/2005 - ADT ON 3/19/2008 - ADT ON 3/19/2008 - ADT ON 4/17/2012 ADT ON 4/17/2012 ADT ON 9/26/2003 -                                                                                                                                    | 2,946<br>5,821<br>5,671<br>2,671<br>2,946<br>5,821<br>5,671<br>2,671<br>2,946<br>5,821<br>5,671<br>2,947<br>2,947<br>2,947                   |     |
|           | 04/16/2008<br>06/09/2003 | 66<br>74  | No<br>Yes           | ADT ON 9/26/2003 - ADT ON 5/23/2005 - ADT ON 3/19/2008 - ADT ON 4/10/2008 - ADT ON 4/17/2012 ADT ON 9/26/2003 - ADT ON 5/23/2005 - ADT ON 4/10/2008 - ADT ON 4/10/2008 - ADT ON 9/26/2003 - ADT ON 5/23/2005 - ADT ON 3/19/2008 - ADT ON 3/19/2008 - ADT ON 4/10/2008 - ADT ON 4/17/2012 ADT ON 9/26/2003 - ADT ON 4/17/2012 ADT ON 9/26/2003 - ADT ON 5/23/2005 -                  | 2,946<br>5,821<br>5,671<br>2,671<br>2,946<br>5,821<br>5,671<br>2,671<br>2,946<br>5,821<br>5,671<br>2,946<br>2,671<br>2,671<br>2,671<br>2,946 |     |
|           | 04/16/2008<br>06/09/2003 | 66<br>74  | No<br>Yes           | ADT ON 9/26/2003 - ADT ON 5/23/2005 - ADT ON 3/19/2008 - ADT ON 4/10/2008 - ADT ON 4/17/2012 ADT ON 9/26/2003 - ADT ON 5/23/2005 - ADT ON 3/19/2008 - ADT ON 4/10/2008 - ADT ON 9/26/2003 - ADT ON 5/23/2005 - ADT ON 3/19/2008 - ADT ON 4/17/2012 ADT ON 4/17/2012 ADT ON 9/26/2003 - ADT ON 4/17/2012 ADT ON 9/26/2003 - ADT ON 5/23/2005 - ADT ON 5/23/2005 - ADT ON 3/19/2008 - | 2,946<br>5,821<br>5,671<br>2,671<br>2,946<br>5,821<br>5,671<br>2,671<br>2,946<br>5,821<br>5,671<br>2,671<br>2,946<br>5,821<br>5,671          |     |
|           | 04/16/2008<br>06/09/2003 | 66<br>74  | No<br>Yes           | ADT ON 9/26/2003 - ADT ON 5/23/2005 - ADT ON 3/19/2008 - ADT ON 4/10/2008 - ADT ON 4/17/2012 ADT ON 9/26/2003 - ADT ON 5/23/2005 - ADT ON 4/10/2008 - ADT ON 4/10/2008 - ADT ON 9/26/2003 - ADT ON 5/23/2005 - ADT ON 3/19/2008 - ADT ON 3/19/2008 - ADT ON 4/10/2008 - ADT ON 4/17/2012 ADT ON 9/26/2003 - ADT ON 4/17/2012 ADT ON 9/26/2003 - ADT ON 5/23/2005 -                  | 2,946<br>5,821<br>5,671<br>2,671<br>2,946<br>5,821<br>5,671<br>2,671<br>2,946<br>5,821<br>5,671<br>2,671<br>2,946<br>5,821<br>5,671          |     |



# **PCI History**

| Street ID | Section ID   | Street Na | me                  | L                                      | ast Updated | PCI |
|-----------|--------------|-----------|---------------------|----------------------------------------|-------------|-----|
| WESTHA    | 223D         | W HAYES   | ST                  |                                        | 06/28/2013  | 42  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                               |             |     |
|           | 06/28/2013   | 42        | No                  | ADT ON 3/12/2008 -<br>ADT ON 4/10/2008 | 5,571       |     |
|           | 03/13/2009   | 25        | Yes                 | ADT ON 3/12/2008 -<br>ADT ON 4/10/2008 | 5,571       |     |
|           | 04/16/2008   | 24        | No                  | ADT ON 3/12/2008 -<br>ADT ON 4/10/2008 | 5,571       |     |
|           | 06/09/2003   | 46        | Yes                 | ADT ON 3/12/2008 -<br>ADT ON 4/10/2008 | 5,571       |     |
|           | 07/01/1997   | 36        | Yes                 | ADT ON 3/12/2008 -<br>ADT ON 4/10/2008 | 5,571       |     |
| WESTHA    | 223E         | W HAYES   | sт                  |                                        | 06/28/2013  | 55  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                               |             |     |
|           | 06/28/2013   | 55        | No                  | ADT ON 7/2/1998                        |             |     |
|           | 03/13/2009   | 53        | Yes                 | ADT ON 7/2/1998                        |             |     |
|           | 04/16/2008   | 75        | No                  | ADT ON 7/2/1998<br>ADT ON 7/2/1998     |             |     |
|           |              |           |                     |                                        |             |     |
|           | 06/09/2003   | 86        | Yes                 | ADT ON 7/2/1998                        |             |     |
|           | 07/01/1997   | 84        | Yes                 | ADT ON 7/2/1998                        |             |     |
| WESTHA    | 223F         | W HAYES   | ST                  |                                        | 06/28/2013  | 63  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                               |             |     |
|           | 06/28/2013   | 63        | No.                 | ADT ON 3/4/2001                        |             |     |
|           | 03/13/2009   | 60        | Yes                 | ADT ON 3/4/2001                        |             |     |
|           | 06/09/2003   | 95        | Yes                 | ADT ON 3/4/2001                        |             |     |
|           | 01/01/2002   | 100       | No                  | ADT ON 3/4/2001                        |             |     |
|           | 07/01/1997   | 41        | Yes                 | ADT ON 3/4/2001<br>ADT ON 3/4/2001     |             |     |
|           | 07/01/1997   | 41        | 165                 | ADT ON 3/4/2001                        |             |     |
| WESTLI    | 246A         | W LINCOL  | N ST                |                                        | 03/13/2009  | 85  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                               |             |     |
|           | 03/13/2009   | 85        | Yes                 |                                        |             |     |
|           | 05/08/2006   | 100       | No                  |                                        |             |     |
|           | 06/23/2003   | 73        | Yes                 |                                        |             |     |
|           | 07/01/1997   | 78        | Yes                 |                                        |             |     |
| WESTLI    | 246B         | W LINCOL  | N ST                |                                        | 03/13/2009  | 42  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                               |             |     |
|           | 03/13/2009   | 42        | Yes                 |                                        |             |     |
|           | 04/16/2008   | 75        | No                  |                                        |             |     |
|           |              |           |                     |                                        |             |     |
|           | 06/09/2003   | 78<br>74  | Yes                 |                                        |             |     |
|           | 07/01/1997   | 74        | Yes                 |                                        |             |     |
| WESTLI    | 246C         | W LINCOL  | N ST                |                                        | 03/13/2009  | 83  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments                               |             |     |
|           | 03/13/2009   | 83        | Yes                 | - 1                                    |             |     |
| WILLAM    | 436          | WILLAME   | ITE ST              |                                        | 03/13/2009  | 100 |
| TTILLAN   |              |           |                     | _                                      | 03/13/2003  | 100 |
|           | Date Updated |           | PCI from Inspection | Comments                               |             |     |
|           | 03/13/2009   | 100       | Yes                 |                                        |             |     |



# **PCI History**

| WILLIA | 133                     |                   |             |            |                  | ast Updated | PCI |
|--------|-------------------------|-------------------|-------------|------------|------------------|-------------|-----|
|        |                         | WILLIAMS          | AVE         |            |                  | 03/13/2009  | 42  |
|        | Date Updated            | PCI Hist          | PCI from    | Inspection | Comments         |             |     |
|        | 03/13/2009              | 42                |             | Yes        |                  |             |     |
|        | 06/09/2003              | 70                |             | Yes        |                  |             |     |
|        | 07/01/1997              | 56                |             | Yes        |                  |             |     |
| WILLOW | 301A                    | WILLOW A          | VE          |            |                  | 08/04/2015  | 67  |
|        | Date Updated            |                   | PCI from    | Inapartian | Comments         |             |     |
|        |                         |                   | r Ci ilolli |            |                  |             |     |
|        | 08/04/2015              | 67                |             | No         | ADT ON 1/10/1997 |             |     |
|        | 06/01/2009              | 73                |             | No         | ADT ON 1/10/1997 |             |     |
|        | 03/13/2009              | 71                |             | Yes        | ADT ON 1/10/1997 |             |     |
|        | 06/23/2003              | 95                |             | Yes        | ADT ON 1/10/1997 |             |     |
|        | 01/01/2001              | 100               |             | No         | ADT ON 1/10/1997 |             |     |
|        | 07/01/1997              | 53                |             | Yes        | ADT ON 1/10/1997 |             |     |
| WILLOW | 301B                    | WILLOW A          | VE          |            |                  | 08/04/2015  | 68  |
|        | Date Updated            | PCI Hist          | PCI from    | Inspection | Comments         |             |     |
|        | 08/04/2015              | 68                |             | No         |                  |             |     |
|        | 06/24/2010              | 73                |             | No         |                  |             |     |
|        | 06/01/2009              | 71                |             | No         |                  |             |     |
|        | 03/13/2009              | 69                |             | Yes        |                  |             |     |
|        |                         |                   |             |            |                  |             |     |
|        | 06/23/2003              | 77                |             | Yes        |                  |             |     |
|        | 07/01/1997              | 83                |             | Yes        |                  |             |     |
| WILLOW | 301C                    | WILLOW A          | VE          |            |                  | 08/04/2015  | 73  |
|        | Date Updated            | PCI Hist          | PCI from    | Inspection | Comments         |             |     |
|        | 08/04/2015              | 73                |             | No         |                  |             |     |
|        | 03/13/2009              | 78                |             | Yes        |                  |             |     |
|        | 06/23/2003              | 83                |             | Yes        |                  |             |     |
|        | 07/01/1997              | 81                |             | Yes        |                  |             |     |
| WILSON | 165A                    | WILSON S          | Т           |            |                  | 03/13/2009  | 66  |
|        | Date Updated            | PCI Hist          | PCI from    | Inspection | Comments         |             |     |
|        | 03/13/2009              | 66                |             | Yes        | Comments         |             |     |
|        | 06/23/2003              | 75                |             | Yes        |                  |             |     |
|        |                         |                   |             |            |                  |             |     |
|        | 07/01/1997              | 53                |             | Yes        |                  |             |     |
| WILSON | 165B                    | WILSON S          | Т           |            |                  | 03/13/2009  | 33  |
|        | Date Updated            |                   | PCI from    |            | Comments         |             |     |
|        | 03/13/2009              | 33                |             | Yes        |                  |             |     |
|        | 06/23/2003              | 57                |             | Yes        |                  |             |     |
|        | 07/01/1997              | 74                |             | Yes        |                  |             |     |
|        |                         |                   | T           |            |                  | 03/13/2009  | 34  |
| WILSON | 165C                    | WILSON S          |             |            |                  |             |     |
| WILSON |                         | WILSON S PCI Hist |             | Inspection | Comments         |             |     |
| WILSON | Date Updated            | PCI Hist          | PCI from    |            | Comments         |             |     |
| WILSON | Date Updated 03/13/2009 | PCI Hist<br>34    | PCI from    | Yes        | Comments         |             |     |
| WILSON | Date Updated            | PCI Hist          | PCI from    |            | Comments         |             |     |



# **PCI History**

| Street ID | Section ID   | Street Na | me                  | La                | st Updated | PCI |
|-----------|--------------|-----------|---------------------|-------------------|------------|-----|
| WLINC     | 110E         | W LINCOL  | N ST                |                   | 03/13/2009 | 59  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments          |            |     |
|           | 03/13/2009   | 59        | Yes                 |                   |            |     |
|           | 04/16/2008   | 67        | No                  |                   |            |     |
|           | 06/09/2003   | 75        | Yes                 |                   |            |     |
|           | 08/01/1997   | 75        | Yes                 |                   |            |     |
| WLINC     | 110F         | W LINCOL  | N ST                |                   | 03/13/2009 | 35  |
|           | Data Undated | DCI Llist | DCI from Inopostion | Comments          |            |     |
|           | Date Updated |           | PCI from Inspection | Comments          |            |     |
|           | 03/13/2009   | 35<br>50  | Yes                 |                   |            |     |
|           | 04/16/2008   | 56        | No                  |                   |            |     |
|           | 06/09/2003   | 67        | Yes                 |                   |            |     |
|           | 08/01/1997   | 70        | Yes                 |                   |            |     |
| WOODCR    | 217          | WOODCRI   | EST CT              |                   | 06/11/2015 | 0   |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments          |            |     |
|           | 06/11/2015   | 0         | No .                |                   |            |     |
|           | 03/13/2009   | 12        | Yes                 |                   |            |     |
|           | 06/23/2003   | 24        | Yes                 |                   |            |     |
|           | 07/01/1997   | 53        | Yes                 |                   |            |     |
| WOODLA    | 300A         | WOODLAN   | ID AV               |                   | 08/04/2015 | 46  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments          |            |     |
|           | 08/04/2015   | 46        | No                  | ADT ON 6/18/2008  |            |     |
|           | 06/11/2015   | 44        | No                  | ADT ON 6/18/2008  |            |     |
|           | 03/13/2009   | 27        | Yes                 | ADT ON 6/18/2008  |            |     |
|           | 06/23/2003   | 75        | Yes                 | ADT ON 6/18/2008  |            |     |
|           | 07/01/1997   | 44        | Yes                 | ADT ON 6/18/2008  |            |     |
|           | 0770171337   |           | 103                 | ADT ON 0/10/2000  |            |     |
| WOODLA    | 300B         | WOODLAN   | ID AV               |                   | 08/04/2015 | 66  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments          |            |     |
|           | 08/04/2015   | 66        | No                  | ADT ON 11/16/2001 |            |     |
|           | 03/13/2009   | 72        | Yes                 | ADT ON 11/16/2001 |            |     |
|           | 06/23/2003   | 84        | Yes                 | ADT ON 11/16/2001 |            |     |
|           | 07/01/1997   | 80        | Yes                 | ADT ON 11/16/2001 |            |     |
| WOODLA    | 300C         | WOODLAN   | ID AV               |                   | 08/04/2015 | 0   |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments          |            |     |
|           | 08/04/2015   | 0         | No .                |                   |            |     |
|           | 03/13/2009   | 20        | Yes                 |                   |            |     |
|           | 06/23/2003   | 37        | Yes                 |                   |            |     |
|           | 07/01/1997   | 30        | Yes                 |                   |            |     |
| WOODLA    | 300D         | WOODLAN   | ID AV               |                   | 08/04/2015 | 68  |
|           | Date Updated | PCI Hist  | PCI from Inspection | Comments          |            |     |
|           | 08/04/2015   | 68        | No                  | Comments          |            |     |
|           |              |           |                     |                   |            |     |
|           | 06/24/2010   | 72<br>71  | No<br>You           |                   |            |     |
|           | 03/13/2009   | 71        | Yes                 |                   |            |     |
|           | 06/23/2003   | 73        | Yes                 |                   |            |     |



# **PCI History**

| Street ID | Section ID                                                                                                    | Street Na                                                             | me                                                                  | La                                                                                                                                                                                                 | ast Updated                         | PCI |
|-----------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----|
| WOODLA    | 300D                                                                                                          | WOODLAN                                                               | ID AV                                                               |                                                                                                                                                                                                    | 08/04/2015                          | 66  |
|           | Date Updated                                                                                                  | PCI Hist                                                              | PCI from Inspection                                                 | Comments                                                                                                                                                                                           |                                     |     |
|           | 07/01/1997                                                                                                    | 82                                                                    | Yes                                                                 |                                                                                                                                                                                                    |                                     |     |
| WOODLA    | 300E                                                                                                          | WOODLAN                                                               | ID AV                                                               |                                                                                                                                                                                                    | 08/04/2015                          | 66  |
|           | Date Updated                                                                                                  | PCI Hist                                                              | PCI from Inspection                                                 | Comments                                                                                                                                                                                           |                                     |     |
|           | 08/04/2015                                                                                                    | 66                                                                    | No                                                                  | Comments                                                                                                                                                                                           |                                     |     |
|           | 06/24/2010                                                                                                    | 72                                                                    | No                                                                  |                                                                                                                                                                                                    |                                     |     |
|           | 03/13/2009                                                                                                    | 71                                                                    | Yes                                                                 |                                                                                                                                                                                                    |                                     |     |
|           | 06/23/2003                                                                                                    | 83                                                                    | Yes                                                                 |                                                                                                                                                                                                    |                                     |     |
|           | 07/01/1997                                                                                                    | 84                                                                    | Yes                                                                 |                                                                                                                                                                                                    |                                     |     |
|           | 07/01/1997                                                                                                    | 04                                                                    | 165                                                                 |                                                                                                                                                                                                    |                                     |     |
| WORKMA    | 240                                                                                                           | WORKMAI                                                               | N DR                                                                |                                                                                                                                                                                                    | 03/13/2009                          | 83  |
|           | Date Updated                                                                                                  | PCI Hist                                                              | PCI from Inspection                                                 | Comments                                                                                                                                                                                           |                                     |     |
|           | 03/13/2009                                                                                                    | 83                                                                    | Yes                                                                 |                                                                                                                                                                                                    |                                     |     |
|           | 06/09/2003                                                                                                    | 40                                                                    | Yes                                                                 |                                                                                                                                                                                                    |                                     |     |
|           | 07/01/1997                                                                                                    | 51                                                                    | Yes                                                                 |                                                                                                                                                                                                    |                                     |     |
| YOUNGS    | 157A                                                                                                          | YOUNG ST                                                              | •                                                                   |                                                                                                                                                                                                    | 08/04/2015                          | 84  |
| LOUNGS    | 10/7                                                                                                          | I OUNG 3                                                              |                                                                     |                                                                                                                                                                                                    | 00/04/2010                          | 0-  |
| TOUNGS    |                                                                                                               |                                                                       |                                                                     | Comments                                                                                                                                                                                           | 00/04/2010                          | 04  |
| TOUNGS    | Date Updated                                                                                                  | PCI Hist                                                              | PCI from Inspection                                                 | Comments ADT ON 7/24/2008                                                                                                                                                                          | 00/04/2013                          | 04  |
| TOUNGS    | Date Updated 08/04/2015                                                                                       | PCI Hist<br>84                                                        | PCI from Inspection<br>No                                           | ADT ON 7/24/2008                                                                                                                                                                                   | 00/04/2013                          | 04  |
| TOUNGS    | Date Updated 08/04/2015 06/01/2010                                                                            | PCI Hist<br>84<br>100                                                 | PCI from Inspection No No                                           | ADT ON 7/24/2008<br>ADT ON 7/24/2008                                                                                                                                                               | 00/04/2010                          | 04  |
| 1001103   | Date Updated 08/04/2015 06/01/2010 03/13/2009                                                                 | PCI Hist<br>84<br>100<br>38                                           | PCI from Inspection No No Yes                                       | ADT ON 7/24/2008<br>ADT ON 7/24/2008<br>ADT ON 7/24/2008                                                                                                                                           | 05/04/2010                          | 04  |
| 1001103   | Date Updated 08/04/2015 06/01/2010                                                                            | PCI Hist<br>84<br>100                                                 | PCI from Inspection No No                                           | ADT ON 7/24/2008<br>ADT ON 7/24/2008                                                                                                                                                               | 00/04/2010                          | 04  |
| YOUNGS    | Date Updated 08/04/2015 06/01/2010 03/13/2009 06/23/2003                                                      | PCI Hist<br>84<br>100<br>38<br>56                                     | PCI from Inspection No No Yes Yes Yes                               | ADT ON 7/24/2008<br>ADT ON 7/24/2008<br>ADT ON 7/24/2008<br>ADT ON 7/24/2008                                                                                                                       | 08/04/2015                          | 84  |
|           | Date Updated 08/04/2015 06/01/2010 03/13/2009 06/23/2003 07/01/1997                                           | PCI Hist<br>84<br>100<br>38<br>56<br>64<br>YOUNG ST                   | PCI from Inspection No No Yes Yes Yes                               | ADT ON 7/24/2008<br>ADT ON 7/24/2008<br>ADT ON 7/24/2008<br>ADT ON 7/24/2008<br>ADT ON 7/24/2008                                                                                                   |                                     |     |
|           | Date Updated 08/04/2015 06/01/2010 03/13/2009 06/23/2003 07/01/1997                                           | PCI Hist<br>84<br>100<br>38<br>56<br>64<br>YOUNG ST                   | PCI from Inspection No No Yes Yes Yes Yes PCI from Inspection       | ADT ON 7/24/2008<br>ADT ON 7/24/2008<br>ADT ON 7/24/2008<br>ADT ON 7/24/2008<br>ADT ON 7/24/2008<br>Comments                                                                                       | 08/04/2015                          |     |
|           | Date Updated 08/04/2015 06/01/2010 03/13/2009 06/23/2003 07/01/1997                                           | PCI Hist<br>84<br>100<br>38<br>56<br>64<br>YOUNG ST                   | PCI from Inspection No No Yes Yes Yes                               | ADT ON 7/24/2008<br>ADT ON 7/24/2008<br>ADT ON 7/24/2008<br>ADT ON 7/24/2008<br>ADT ON 7/24/2008                                                                                                   | 08/04/2015                          |     |
|           | Date Updated 08/04/2015 06/01/2010 03/13/2009 06/23/2003 07/01/1997                                           | PCI Hist<br>84<br>100<br>38<br>56<br>64<br>YOUNG ST                   | PCI from Inspection No No Yes Yes Yes Yes PCI from Inspection       | ADT ON 7/24/2008<br>ADT ON 7/24/2008<br>ADT ON 7/24/2008<br>ADT ON 7/24/2008<br>ADT ON 7/24/2008<br>Comments<br>ADT ON 7/24/2008 -                                                                 | <b>08/04/2015</b><br>6,367          |     |
|           | Date Updated 08/04/2015 06/01/2010 03/13/2009 06/23/2003 07/01/1997  157B  Date Updated 08/04/2015            | PCI Hist<br>84<br>100<br>38<br>56<br>64<br>YOUNG ST<br>PCI Hist<br>84 | PCI from Inspection No No Yes Yes Yes Yes No PCI from Inspection No | ADT ON 7/24/2008<br>ADT ON 7/24/2008<br>ADT ON 7/24/2008<br>ADT ON 7/24/2008<br>ADT ON 7/24/2008<br>Comments<br>ADT ON 7/24/2008 -<br>ADT ON 2/4/2009<br>ADT ON 7/24/2008 -                        | <b>08/04/2015</b><br>6,367<br>6,367 |     |
|           | Date Updated 08/04/2015 06/01/2010 03/13/2009 06/23/2003 07/01/1997  157B  Date Updated 08/04/2015 06/01/2010 | PCI Hist<br>84<br>100<br>38<br>56<br>64<br>YOUNG ST<br>PCI Hist<br>84 | PCI from Inspection No No Yes Yes Yes Yes No No No No               | ADT ON 7/24/2008  Comments ADT ON 7/24/2008 ADT ON 2/4/2009 ADT ON 7/24/2009 ADT ON 2/4/2009 ADT ON 7/24/2009 ADT ON 7/24/2008 | <b>08/04/2015</b> 6,367 6,367 6,367 |     |

Attachment D

Methodology Memo



#### TECHNICAL MEMORANDUM

#### Woodburn Transportation System Plan (TSP) Update

Analysis Methodology and Assumptions Memorandum (Subtask 2.3)

Date: February 21, 2018

Project #:21071.2

To: Chris Kerr, City of Woodburn

Dan Fricke, Oregon Department of Transportation, Region 2

From: Matt Hughart and Molly McCormick, Kittleson & Associates, Inc.

This memorandum documents the methodology and key assumptions to be used in preparation of analyses for the Woodburn Transportation System Plan (TSP) Update. The methodology and assumptions included in this memorandum are based on guidance provided in the Oregon Department of Transportation (ODOT) Transportation System Plan Guidelines (2008, Reference 1), the ODOT Analysis Procedures Manual (APM, Versions 1 and 2, Reference 2), and direction provided by City and ODOT staff. The analyses described in this memorandum will help identify potential deficiencies in the transportation system, including:

- Traffic operations at the study intersections under existing and future traffic conditions,
- Traffic safety at the study intersections and along study area roadways,
- Gaps and deficiencies in the bicycle and pedestrian network,
- Gaps and deficiencies in transit service (service frequency, hours, coverage, etc.), and
- Gaps and deficiencies in other travel modes.

This information will serve as a baseline for identifying a comprehensive list of needs and deficiencies to be addressed as part of the TSP update. It will also serve as a baseline for identifying and evaluating potential solutions and developing a prioritized list of improvements for the TSP update.

#### STUDY INTERSECTIONS AND STUDY SEGMENTS

The study intersections and segments for the Woodburn TSP Update were determined by the City and ODOT prior to the development of the scope of the work. There is a total of 22 study intersections located along City and ODOT facilities, including 11 signalized and 11 unsignalized intersections. There are three study segments. Traffic counts were conducted by the Oregon Department of Transportation in fall 2017

and consist of 16-hour and 96-hour<sup>1</sup> counts, as noted in Table 1 and Table 2. The process for determining the seasonal adjustment factors in Table 1 is discussed in sections below.

**Table 1: Study Intersections** 

| Map<br>ID | Intersection                                 | Count Date | Count Type | Peak Hour<br>Start | Peak Hour<br>TEV | Seasonal<br>Adjustment<br>Factor |
|-----------|----------------------------------------------|------------|------------|--------------------|------------------|----------------------------------|
| 1         | Butteville Road/OR 219                       | 9/28/2017  | 16-hour    | 3:45 PM            | 822              | 1.16                             |
| 2         | OR 219/Woodland Avenue                       | 9/26/2017  | 16-hour    | 5:00 PM            | 1,354            | 1.06                             |
| 3         | OR 214/I-5 Southbound Ramp                   | 9/28/2017  | 16-hour    | 4:15 PM            | 2,560            | 1.04                             |
| 4         | OR 214/I-5 Northbound Ramp                   | 9/28/2017  | 16-hour    | 4:15 PM            | 2,713            | 1.04                             |
| 5         | OR 214/Evergreen Road                        | 9/26/2017  | 16-hour    | 4:00 PM            | 2,487            | 1.06                             |
| 6         | OR 214/Oregon Way/Country Club Road          | 9/28/2017  | 16-hour    | 4:15 PM            | 2,093            | 1.06                             |
| 7         | Cascade Drive/OR 214                         | 9/28/2017  | 16-hour    | 4:45 PM            | 1,899            | 1.06                             |
| 8         | OR 214/Boones Ferry Road NE                  | 9/26/2017  | 16-hour    | 4:30 PM            | 2,517            | 1.06                             |
| 9         | OR 214/Meridian Drive/5 <sup>th</sup> Street | 9/28/2017  | 16-hour    | 4:00 PM            | 1,602            | 1.06                             |
| 10        | Front Street/OR 214                          | 10/5/2017  | 16-hour    | 4:15 PM            | 1,733            | 1.09                             |
| 11        | Park Avenue/OR 214                           | 9/28/2017  | 16-hour    | 3:45 PM            | 1,751            | 1.06                             |
| 12        | OR 214/OR 211/OR 99E                         | 9/26/2017  | 16-hour    | 3:30 PM            | 2,879            | 1.05                             |
| 13        | Boones Ferry Road NE/Crosby Road             | 10/3/2017  | 16-hour    | 4:30 PM            | 736              | N/A                              |
| 14        | Hardcastle Avenue/Front Street               | 9/26/2017  | 16-hour    | 4:45 PM            | 701              | N/A                              |
| 15        | Lincoln Street/Front Street                  | 9/28/2017  | 16-hour    | 5:15 PM            | 795              | N/A                              |
| 16        | Garfield Street/Young Street/Front Street    | 9/28/2017  | 16-hour    | 5:00 PM            | 770              | N/A                              |
| 17        | Cleveland Street/Front Street                | 9/26/2017  | 16-hour    | 5:00 PM            | 688              | N/A                              |
| 18        | Parr Road/Settlemier Avenue                  | 9/28/2017  | 16-hour    | 5:00 PM            | 804              | N/A                              |
| 19        | OR 99E/Hardcastle Avenue                     | 10/5/2017  | 16-hour    | 4:30 PM            | 2,546            | 1.05                             |
| 20        | OR 99E/Lincoln Street                        | 10/5/2017  | 16-hour    | 4:30 PM            | 2,405            | 1.05                             |
| 21        | OR 99E/Young Street                          | 9/26/2017  | 16-hour    | 4:30 PM            | 2,564            | 1.05                             |
| 22        | OR 99E/Cleveland Street                      | 9/28/2017  | 16-hour    | 4:15 PM            | 1,798            | 1.05                             |

**Table 2: Study Segments** 

| Map<br>ID | Intersection                    | Count Date       | Count Type |
|-----------|---------------------------------|------------------|------------|
| S1        | Willow Avenue – Roadway Segment | 9/25 – 9/28/2017 | 96-hour    |
| S2        | Hayes Street – Roadway Segment  | 9/25 – 9/28/2017 | 84-hour    |
| S3        | Gatch Street – Roadway Segment  | 9/25 – 9/28/2017 | 96-hour    |

<sup>&</sup>lt;sup>1</sup> Traffic counts collected on the Hayes Street roadway segment included 84 hours of data instead of 96 hours. It is assumed that there were technical difficulties at this location during data collection.

#### Peak Hour Development

The traffic counts were reviewed to determine individual and system-wide peak hours for the operational analyses. The system-wide peak hour for the study intersections was identified as 4:30 to 5:30 p.m. The system peak hour will be used to complete the operational analyses in order to accurately represent the overall peak period experienced on the Woodburn roadway system.

#### Seasonal Factors

30th Hour Volumes (30 HV) for the Woodburn TSP Update will be developed based on the traffic counts collected at the study intersections and the application of seasonal adjustment factors consistent with the methodology identified in the APM. The APM outlines three methods for identifying seasonal adjustment factors for highway traffic volumes. All three methods utilize information provided by Automatic Traffic Recorders (ATRs) located in select locations throughout the State Highway System that collect traffic data 24-hours a day, 365 days a year. Each method was evaluated to determine the most appropriate method for the study intersections. Based on the evaluations, a combination of the On-Site ATR method and the Seasonal Trend Table method will be used to develop 30 HV volumes at the ODOT study intersections. The results of the evaluation are summarized below.

#### On-Site ATR Method

Based on conversations with ODOT staff and the APM, it was suggested that ATR 24-020 (located west of Woodburn on OR 219) and ATR 24-001 (located north of Woodburn on OR 99E) would be appropriate ATRs for seasonally adjusting the Butteville Road/OR 219 intersection and intersections along OR99E, respectively. The On-Site ATR Method adjustment factors for these ATRs are outlined in Table 3 below.

Table 3: Seasonal Adjustment Factors using the On-Site ATR Method

| ATR    | Data Month                       | 2016 | 2015 | 2014 | 2013 | 2012 | Average <sup>1</sup> | Seasonal<br>Adjustment Factor |
|--------|----------------------------------|------|------|------|------|------|----------------------|-------------------------------|
| 24-020 | Peak Month<br>(July)             | 121  | 120  | 126  | 127  | 135  | 125                  | 1.16                          |
|        | Count Month<br>(September)       | 113  | 109  | 107  | 107  | 107  | 108                  | 1.10                          |
| 24-001 | Peak Month<br>(June/July/August) | 111  | 113  | 112  | 112  | 115  | 112                  | 1.05                          |
| 24-001 | Count Month<br>(September)       | 106  | 105  | 109  | 107  | 110  | 107                  | 1.03                          |

 $<sup>^{\</sup>rm 1}$  Shaded values were dropped from the average calculations based on ODOT methodology

#### Seasonal Trend Table Method

The Seasonal Trend Table Method uses average values from the ATR Characteristic Table for each seasonal traffic trend. Based on a review of the regional and local traffic trends, a combination of the Interstate Non-Urbanized, Commuter, and Summer seasonal traffic trend values were used to determine the seasonal adjustment factors for the study intersections. Table 4 summarizes the average values for

the seasonal traffic trends during the count months of September and October and during the peak period as provided in the ODOT Seasonal Trend Table.

**Table 4: Season Adjustment Factors using the Seasonal Trend Table** 

| Trend                        | Peak<br>Period<br>Seasonal<br>Factor | 15-September<br>Seasonal<br>Factor | 01-October<br>Seasonal<br>Factor | Seasonal<br>Adjustment<br>Factor<br>(September) | Average<br>(September) | Seasonal<br>Adjustment<br>Factor<br>(October) | Average<br>(October) |
|------------------------------|--------------------------------------|------------------------------------|----------------------------------|-------------------------------------------------|------------------------|-----------------------------------------------|----------------------|
| Interstate Non-<br>Urbanized | 0.8564                               | 0.9458                             | N/A                              | 1.1044                                          | N/A                    | N/A                                           | N/A                  |
| Commuter                     | 0.9037                               | 0.9359                             | 59 0.9431                        |                                                 | 1.0633                 | 1.0436                                        | 1.0878               |
| Summer                       | 0.8350                               | 0.9110                             | 0.9452                           | 1.0910                                          | 1.0033                 | 1.1320                                        | 1.0878               |

The seasonal adjustment factor shown in Table 4 for Interstate Non-Urbanized facilities (1.10) will be used to derive 30 HV volumes at the Interstate 5 (I-5) Ramp Terminals. An average of the seasonal adjustment factors for Commuter and Summer facilities will be used to derive 30 HV at all other ODOT study intersections, with 1.06 for locations with counts conducted in September and 1.09 for locations with counts conducted in October.

#### **Historical Factors**

All of the traffic counts were conducted in 2017; therefore, no historical factors are needed to adjust traffic volumes.

#### **Forecast Traffic Volumes**

Forecast traffic volumes for the Woodburn TSP Update will be developed for the study intersections based on the methodology identified in the National Cooperative Highway Research Program (NCHRP) Report 255 *Highway Traffic Data for Urbanized Area Project Planning and Design*. The methodology combines the year 2017 30 HV traffic volumes developed at the study intersections with base year and future year 2035 traffic volume forecasts from the current Woodburn travel demand model developed by ODOT's Transportation Planning and Analysis Unit (TPAU).

#### **Intersection Operational Standards**

The study intersections are a mix of ODOT and Woodburn facilities. The ODOT controlled intersections within the study area are located along I-5, OR 219, OR 214, OR 211, and OR 99E. ODOT uses volume-to-capacity (V/C) ratio to assess intersections operations. Table 6 of the *Oregon Highway Plan* (OHP, Reference 3) and Table 10-2 of the *Oregon Highway Design Manual* (HDM, Reference 4) provide maximum V/C ratios for all signalized and unsignalized intersections outside the Portland metropolitan area Urban Growth Boundary (UGB). The OHP ratios are used to evaluate existing and future no-build conditions, while the HDM ratios are used in the creation of future TSP alternatives which involve projects along state highways. Table 5 summarizes the ODOT standards for the facilities being analyzed through the TSP update process.

**Table 5: ODOT Operational Standards** 

| Roadway                                      | Posted<br>Speed ><br>Roadway 35 MPH |                       | National<br>Highway<br>System | National<br>Network<br>(Truck<br>Route) | OHP<br>Freight<br>Route | OHP<br>Mobility<br>Targets | HDM<br>Standard        |
|----------------------------------------------|-------------------------------------|-----------------------|-------------------------------|-----------------------------------------|-------------------------|----------------------------|------------------------|
| OR 219 (Hillsboro-<br>Silverton Highway 140) | No/Yes <sup>1</sup>                 | District              | Yes/No <sup>2</sup>           | No                                      | No                      | 0.95/0.90 <sup>1</sup>     | 0.75/0.80 <sup>2</sup> |
| OR 214 (Hillsboro-<br>Silverton Highway 140) | No                                  | District              | Yes/No³                       | Yes                                     | No                      | 0.95                       | 0.80                   |
| OR 211 (Woodburn-<br>Estacada Highway 161)   | No/Yes <sup>4</sup>                 | District              | No                            | No                                      | No                      | 0.95                       | 0.75/0.80              |
| OR 99E<br>(Pacific Highway East 081)         | No/Yes⁵                             | Regional<br>Highway   | Yes/No <sup>6</sup>           | Yes                                     | No                      | 0.90/0.85                  | 0.75                   |
| I-5 Ramp Terminals<br>(Pacific Highway 001)  | Yes <sup>7</sup>                    | Interstate<br>Highway | Yes                           | Yes                                     | Yes                     | 0.85                       | 0.70                   |

<sup>&</sup>lt;sup>1</sup> The posted speed limit on OR 219 transitions from 35 MPH east of Willow Avenue to 55 MPH west of Willow Avenue. Therefore, the study intersection of Butteville Road/OR 219 has a different set of OHP mobility standards as compared to all other study intersections along OR 219.

Marion County used the following mobility standards, as presented in the current Marion County Rural TSP 2005 Update:

- LOS D or better with a V/C ratio of 0.85 or better for signalized, all-way stop, and roundabout intersections.
- LOS E or better with a v/c ratio of 0.90 or better for other unsignalized intersections.
- LOS D or better with a v/c ratio of 0.60 or better for road segments.

The City of Woodburn uses the following mobility standards, as presented in the current Woodburn TSP adopted in 2003:

- Level of Service (LOS) "E" for signalized intersections
- V/C ratio less than 1.00 regardless of LOS
- V/C ratio of less than 0.90 on the critical movement should be maintained, provided the queues on the critical approach can be appropriately accommodated.

<sup>&</sup>lt;sup>2</sup> OR 219 transitions to part of the National Highway System east of Woodland Avenue. Therefore, the study intersections of Butteville Road/OR 219 and OR 219/Woodland Avenue have a different set of HDM standards as compared to all other study intersections along OR 219.

<sup>&</sup>lt;sup>3</sup> OR 214 transitions from being part of the National Highway System at milepost 39.31.

<sup>&</sup>lt;sup>4</sup> The posted speed limit on OR 211 transitions from 35 MPH west of Cooley Road to 45 MPH east of Cooley Road.

<sup>&</sup>lt;sup>5</sup> The posted speed limit on OR 99E transitions from 45 MPH north of Industrial Road to 35 MPH south of Industrial Road, to 45 MPH south of Cleveland Road, and to 55 MPH at milepost 33.34.

<sup>&</sup>lt;sup>6</sup> OR 99E is only identified as a National Highway System route between the mileposts of 31.70 and 32.87.

<sup>&</sup>lt;sup>7</sup> The non-freeway speed limits adjacent to the ramp terminals are less than 45 MPH.

#### ANALYSIS MODEL PARAMETERS

The bullets below identify the proposed sources of data and methodologies to be used to analyze traffic conditions in Woodburn. Analyses of the study area and intersections will be conducted according to the most-recent version of the APM.

- Intersection/Roadway Geometry (lane numbers and arrangements, cross-section elements, signal phasing, etc.) will be verified for consistency with previous work efforts, reviewed through aerial photography, and confirmed through a site visit. Available as-built data may also be used to verify existing roadway geometry. The analysis models will be built on scaled roadway line work from GIS or aerial photography. ODOT's two-way stop-controlled intersection calculator tool will be used to calculate expected queue lengths for two-way stop-controlled intersections.
- 2. Operational Data (such as posted speeds, intersection control, parking, right-turn on red, etc.) will be field verified. Data will be reviewed during a site visit and supplemented by available GIS data, aerials, and photos.
- 3. Peak Hour Factors (PHF) will be calculated for each intersection and applied to the existing conditions analyses. PHFs of 0.95 will be used for the future analysis for high-order facilities (arterials), with 0.90 applied to medium-order facilities (collectors) and 0.85 applied to local roads. If the existing PHF is greater than these default future values, the existing PHF will be applied.
- 4. Traffic Operations
  - a. The 2000 Highway Capacity Manual (HCM 2000) methodology will be used to analyze traffic operations at the signalized intersections while the HCM 2010 methodology will be used to analyze traffic operations at the unsignalized intersections.
  - b. The existing and future no-build traffic operations analyses will use Synchro 9 software using HCM 2000 reports for signalized intersections and HCM 2010 reports for unsignalized intersections. Electronic Synchro 9 files shall be provided to ODOT for review.
  - c. Queuing analysis methodology will be based on Synchro 95<sup>th</sup> percentile queue lengths. Microsimulation is not proposed as part of this long-range planning effort.

#### SAFETY ANALYSES

Safety analyses will include reviewing historical crash data and examining roadway crossings, as described in the following sections.

#### Crash Analyses

The most recent five years of crash data will be reviewed at the study intersections and roadway segments identified through this planning process. The data will be analyzed for a variety of factors including type, severity, general conditions, and location to identify potential crash patterns or anomalies. Particular attention will be paid to the details of crashes involving pedestrians and bicyclists.

Study intersection crash rates and critical crash rates will be calculated based on the method outlined in Part B of the Highway Safety Manual. If a critical crash rate cannot be calculated due to limited data, the published 90th percentile rates in Table 4-1 of ODOT's APM will be used for comparisons purposes. Project-area K-factors from 12+ hour counts will be used to convert short duration counts to daily traffic approach volumes.

For all areas that exceed the critical crash rate or 90th percentile rate, we will identify and present crash patterns and potential projects, policies, or studies that could address reported crash types and patterns. Countermeasures suggested for mitigation will be identified as having crash reduction potential based on Crash Modification Factors from the Highway Safety Manual or FHWA's online Crash Modification Factor (CMF) Clearinghouse with a star rating of 3 or better. All CMFs must have consistent volumes/parameters as the study intersections.

#### NON-AUTOMOBILE ANALYSIS

The existing pedestrian, bicycle, and transit network will be reviewed to identify gaps and deficiencies. A gap is defined as a missing link in the network, such as a missing sidewalk on a collector or arterial roadway. A deficiency, or obstacle, is defined as a bicycle or pedestrian facility that is not up to standards or sufficient to meet users' needs. Examples of deficiencies include:

- On-street connection on a collector or arterial roadway that has a Bicycle Level of Traffic Stress rating greater than 2 (Interested but Concerned)
- Sidewalks that are too narrow to meet ADA standards or crossings without a curb ramp

The multimodal analysis will be performed in accordance with the methodologies identified in Chapter 14 of the APM and identify the needs associated with public transportation, pedestrian, and bicycle facilities and services. The pedestrian and bicycle analyses will be supplemented by a Pedestrian Level of Traffic Stress (PLTS) analysis and a Bicycle Level of Traffic Street (BLTS) analysis, consistent with the APM. Both PLTS and BLTS methods group facilities into four different stress levels for segments, intersection approaches, and intersection crossings. Facilities with an LTS 1 rating have little to no traffic stress, require less attention, and are suitable for all users. Facilities with an LTS 2 rating have little traffic stress, but require more attention and therefore, may or may not be suitable for small children. Facilities with an LTS 3 rating have moderate traffic stress and are suitable for adults. Facilities with an LTS 4 rating have high traffic stress and are only suitable for able-bodied adults with limited options.

#### **NEXT STEPS**

We would like to request concurrence from TPAU and ODOT Region 2 on the methodology and key assumptions outlined in this memorandum. This memorandum is being provided prior to beginning the existing conditions analysis and conforms to the project scope. Please contact us with any questions or comments at your earliest convenience.

#### **REFERENCES**

- 1. Oregon Department of Transportation. Transportation System Plan Guidelines, 2008.
- 2. Oregon Department of Transportation. *Analysis Procedures Manual*, 2012.
- 3. Oregon Department of Transportation. *Oregon Highway Plan*, 2012.
- 4. Oregon Department of Transportation. Highway Design Manual, 2012.

Attachment E

Existing 2017 Traffic

Condition Worksheets

| Intersection           |          |       |         |      |          |       |
|------------------------|----------|-------|---------|------|----------|-------|
| Int Delay, s/veh       | 4.7      |       |         |      |          |       |
|                        |          | EDD   | ///DI   | WDT  | NIDI     | NDD   |
| Movement               | EBT      | EBR   | WBL     | WBT  | NBL      | NBR   |
| Lane Configurations    | <b>}</b> | 00    | 150     | 4    | <b>\</b> | 111   |
| Traffic Vol, veh/h     | 335      | 89    | 158     | 210  | 41       | 114   |
| Future Vol, veh/h      | 335      | 89    | 158     | 210  | 41       | 114   |
| Conflicting Peds, #/hr | _ 0      | 0     | _ 0     | _ 0  | 0        | 0     |
| Sign Control           | Free     | Free  | Free    | Free | Stop     | Stop  |
| RT Channelized         | -        | None  | -       | None | -        | None  |
| Storage Length         | -        | -     | -       | -    | 0        | -     |
| Veh in Median Storage, |          | -     | -       | 0    | 0        | -     |
| Grade, %               | 0        | -     | -       | 0    | 0        | -     |
| Peak Hour Factor       | 96       | 96    | 96      | 96   | 96       | 96    |
| Heavy Vehicles, %      | 15       | 21    | 18      | 29   | 31       | 15    |
| Mvmt Flow              | 349      | 93    | 165     | 219  | 43       | 119   |
|                        |          |       |         |      |          |       |
| Major/Minor            | laia-1   |       | Mais -0 |      | Mine -1  |       |
|                        | lajor1   |       | Major2  |      | Minor1   |       |
| Conflicting Flow All   | 0        | 0     | 442     | 0    | 943      | 395   |
| Stage 1                | -        | -     | -       | -    | 395      | -     |
| Stage 2                | -        | -     | -       | -    | 548      | -     |
| Critical Hdwy          | -        | -     | 4.28    | -    | 6.71     | 6.35  |
| Critical Hdwy Stg 1    | -        | -     | -       | -    | 5.71     | -     |
| Critical Hdwy Stg 2    | -        | -     | -       | -    | 5.71     | -     |
| Follow-up Hdwy         | -        | -     | 2.362   | -    | 3.779    | 3.435 |
| Pot Cap-1 Maneuver     | -        | -     | 1038    | -    | 259      | 627   |
| Stage 1                | -        | -     | -       | -    | 622      | -     |
| Stage 2                | -        | -     | _       | _    | 525      | -     |
| Platoon blocked, %     | _        | _     |         | _    | 0_0      |       |
| Mov Cap-1 Maneuver     | _        | _     | 1038    | _    | 212      | 627   |
| Mov Cap-2 Maneuver     | _        | _     | -       | _    | 212      | -     |
| Stage 1                | _        |       |         |      | 622      | _     |
| Stage 2                | -        | _     | _       | _    | 430      | -     |
| Stage 2                | -        | -     | -       | -    | 430      | -     |
|                        |          |       |         |      |          |       |
| Approach               | EB       |       | WB      |      | NB       |       |
| HCM Control Delay, s   | 0        |       | 3.9     |      | 19.2     |       |
| HCM LOS                |          |       |         |      | С        |       |
|                        |          |       |         |      |          |       |
|                        |          | 151 4 | FDT     |      | 14/51    | 14/5- |
| Minor Lane/Major Mvmt  | 1        | NBLn1 | EBT     | EBR  | WBL      | WBT   |
| Capacity (veh/h)       |          | 413   | -       |      | 1038     | -     |
| HCM Lane V/C Ratio     |          | 0.391 | -       | -    | 0.159    | -     |
| HCM Control Delay (s)  |          | 19.2  | -       | -    | 9.1      | 0     |
| HCM Lane LOS           |          | С     | -       | -    | Α        | Α     |
| HCM 95th %tile Q(veh)  |          | 1.8   | -       | -    | 0.6      | -     |
|                        |          |       |         |      |          |       |

|                                | ۶          | <b>→</b> | •            | •                         | <b>+</b> | •          | 1          | <b>†</b> | <i>&gt;</i> | <b>/</b>   | <b>↓</b> | ✓    |
|--------------------------------|------------|----------|--------------|---------------------------|----------|------------|------------|----------|-------------|------------|----------|------|
| Movement                       | EBL        | EBT      | EBR          | WBL                       | WBT      | WBR        | NBL        | NBT      | NBR         | SBL        | SBT      | SBR  |
| Lane Configurations            | 7          | <b>^</b> | 7            | *                         | <b>^</b> | 7          | ¥          | f)       |             | , j        | 4        |      |
| Traffic Volume (vph)           | 40         | 326      | 2            | 36                        | 336      | 134        | 4          | 7        | 51          | 462        | 5        | 41   |
| Future Volume (vph)            | 40         | 326      | 2            | 36                        | 336      | 134        | 4          | 7        | 51          | 462        | 5        | 41   |
| Ideal Flow (vphpl)             | 1750       | 1750     | 1750         | 1750                      | 1750     | 1750       | 1750       | 1750     | 1750        | 1750       | 1750     | 1750 |
| Total Lost time (s)            | 4.0        | 4.5      | 4.0          | 4.0                       | 4.5      | 4.0        | 4.0        | 4.0      |             | 4.0        | 4.0      |      |
| Lane Util. Factor              | 1.00       | 0.95     | 1.00         | 1.00                      | 0.95     | 1.00       | 1.00       | 1.00     |             | 0.95       | 0.95     |      |
| Frpb, ped/bikes                | 1.00       | 1.00     | 0.98         | 1.00                      | 1.00     | 1.00       | 1.00       | 1.00     |             | 1.00       | 1.00     |      |
| Flpb, ped/bikes                | 1.00       | 1.00     | 1.00         | 1.00                      | 1.00     | 1.00       | 1.00       | 1.00     |             | 1.00       | 1.00     |      |
| Frt                            | 1.00       | 1.00     | 0.85         | 1.00                      | 1.00     | 0.85       | 1.00       | 0.87     |             | 1.00       | 0.98     |      |
| Flt Protected                  | 0.95       | 1.00     | 1.00         | 0.95                      | 1.00     | 1.00       | 0.95       | 1.00     |             | 0.95       | 0.96     |      |
| Satd. Flow (prot)              | 1614       | 2866     | 976          | 1250                      | 2866     | 1430       | 1662       | 1163     |             | 1490       | 1455     |      |
| Flt Permitted                  | 0.95       | 1.00     | 1.00         | 0.95                      | 1.00     | 1.00       | 0.95       | 1.00     |             | 0.95       | 0.96     |      |
| Satd. Flow (perm)              | 1614       | 2866     | 976          | 1250                      | 2866     | 1430       | 1662       | 1163     |             | 1490       | 1455     |      |
| Peak-hour factor, PHF          | 0.92       | 0.92     | 0.92         | 0.92                      | 0.92     | 0.92       | 0.92       | 0.92     | 0.92        | 0.92       | 0.92     | 0.92 |
| Adj. Flow (vph)                | 43         | 354      | 2            | 39                        | 365      | 146        | 4          | 8        | 55          | 502        | 5        | 45   |
| RTOR Reduction (vph)           | 0          | 0        | 1            | 0                         | 0        | 60         | 0          | 50       | 0           | 0          | 4        | 0    |
| Lane Group Flow (vph)          | 43         | 354      | 1            | 39                        | 365      | 86         | 4          | 13       | 0           | 276        | 272      | 0    |
| Confl. Bikes (#/hr)            | 73         | 334      | 1            | 37                        | 303      | 00         | 7          | 13       | U           | 270        | 212      | U    |
| Heavy Vehicles (%)             | 3%         | 16%      | 50%          | 33%                       | 16%      | 4%         | 0%         | 50%      | 28%         | 6%         | 20%      | 11%  |
| Turn Type                      | Prot       | NA       | pm+ov        | Prot                      | NA       | pm+ov      | Split      | NA       | 2070        | Split      | NA       | 1170 |
| Protected Phases               | 5          | 2        | piii+0v<br>8 | 1                         | 6        | μπ+ον<br>4 | Spill<br>8 | 8        |             | 3piit<br>4 | 4        |      |
| Permitted Phases               | 5          |          | 2            | ı                         | 0        | 6          | 0          | 0        |             | 4          | 4        |      |
| Actuated Green, G (s)          | 4.1        | 17.4     | 22.7         | 4.5                       | 17.8     | 37.4       | 5.3        | 5.3      |             | 19.6       | 19.6     |      |
| Effective Green, g (s)         | 4.1        | 17.4     | 22.7         | 4.5                       | 17.8     | 37.4       | 5.3        | 5.3      |             | 19.6       | 19.6     |      |
| Actuated g/C Ratio             | 0.06       | 0.27     | 0.36         | 0.07                      | 0.28     | 0.59       | 0.08       | 0.08     |             | 0.31       | 0.31     |      |
|                                | 4.0        | 4.5      | 4.0          | 4.0                       | 4.5      | 4.0        | 4.0        | 4.0      |             | 4.0        | 4.0      |      |
| Clearance Time (s)             |            |          |              |                           |          |            |            |          |             |            |          |      |
| Vehicle Extension (s)          | 2.5        | 4.2      | 2.5          | 2.5                       | 4.2      | 2.5        | 2.5        | 2.5      |             | 2.5        | 2.5      |      |
| Lane Grp Cap (vph)             | 104        | 787      | 350          | 88                        | 805      | 844        | 139        | 97       |             | 461        | 450      |      |
| v/s Ratio Prot                 | 0.03       | 0.12     | 0.00         | c0.03                     | c0.13    | 0.03       | 0.00       | c0.01    |             | 0.19       | c0.19    |      |
| v/s Ratio Perm                 | 0.44       | 0.45     | 0.00         |                           | 0.45     | 0.03       | 0.00       | 0.10     |             | 0.40       | 0.40     |      |
| v/c Ratio                      | 0.41       | 0.45     | 0.00         | 0.44                      | 0.45     | 0.10       | 0.03       | 0.13     |             | 0.60       | 0.60     |      |
| Uniform Delay, d1              | 28.4       | 19.0     | 13.0         | 28.2                      | 18.7     | 5.6        | 26.6       | 26.9     |             | 18.5       | 18.6     |      |
| Progression Factor             | 1.00       | 1.00     | 1.00         | 1.00                      | 1.00     | 1.00       | 1.00       | 1.00     |             | 1.00       | 1.00     |      |
| Incremental Delay, d2          | 1.9        | 0.6      | 0.0          | 2.6                       | 0.6      | 0.0        | 0.1        | 0.4      |             | 1.8        | 1.9      |      |
| Delay (s)                      | 30.4       | 19.6     | 13.0         | 30.8                      | 19.4     | 5.7        | 26.7       | 27.3     |             | 20.3       | 20.5     |      |
| Level of Service               | С          | В        | В            | С                         | В        | А          | С          | С        |             | С          | С        |      |
| Approach Delay (s)             |            | 20.7     |              |                           | 16.5     |            |            | 27.3     |             |            | 20.4     |      |
| Approach LOS                   |            | С        |              |                           | В        |            |            | С        |             |            | С        |      |
| Intersection Summary           |            |          |              |                           |          |            |            |          |             |            |          |      |
| HCM 2000 Control Delay         |            |          | 19.4         | Н                         | CM 2000  | Level of S | Service    |          | В           |            |          |      |
| HCM 2000 Volume to Capac       | city ratio |          | 0.48         |                           |          |            |            |          |             |            |          |      |
| Actuated Cycle Length (s)      | ,          |          | 63.3         | Sum of lost time (s) 16.5 |          |            |            |          |             |            |          |      |
| Intersection Capacity Utilizat | ion        |          | 46.7%        | ICU Level of Service A    |          |            |            |          |             |            |          |      |
| Analysis Period (min)          |            |          | 15           |                           |          |            |            |          |             |            |          |      |
| c Critical Lane Group          |            |          |              |                           |          |            |            |          |             |            |          |      |

|                                 | ۶         | <b>→</b>     | •            | •    | -            | •            | •       | <b>†</b> | /    | <b>/</b>     | ţ    | -√           |
|---------------------------------|-----------|--------------|--------------|------|--------------|--------------|---------|----------|------|--------------|------|--------------|
| Movement                        | EBL       | EBT          | EBR          | WBL  | WBT          | WBR          | NBL     | NBT      | NBR  | SBL          | SBT  | SBR          |
| Lane Configurations             |           | <b>^</b>     | 7            |      | <b>^</b>     | 7            |         |          |      | ሻሻ           |      | 7            |
| Traffic Volume (vph)            | 0         | 609          | 336          | 0    | 641          | 474          | 0       | 0        | 0    | 483          | 0    | 250          |
| Future Volume (vph)             | 0         | 609          | 336          | 0    | 641          | 474          | 0       | 0        | 0    | 483          | 0    | 250          |
| Ideal Flow (vphpl)              | 1750      | 1750         | 1750         | 1750 | 1750         | 1750         | 1750    | 1750     | 1750 | 1750         | 1750 | 1750         |
| Total Lost time (s)             |           | 4.5          | 4.0          |      | 4.5          | 4.0          |         |          |      | 4.5          |      | 4.5          |
| Lane Util. Factor               |           | 0.95         | 1.00         |      | 0.95         | 1.00         |         |          |      | 0.97         |      | 1.00         |
| Frpb, ped/bikes                 |           | 1.00         | 0.98         |      | 1.00         | 0.98         |         |          |      | 1.00         |      | 1.00         |
| Flpb, ped/bikes<br>Frt          |           | 1.00<br>1.00 | 1.00<br>0.85 |      | 1.00<br>1.00 | 1.00<br>0.85 |         |          |      | 1.00<br>1.00 |      | 1.00<br>0.85 |
| FIt Protected                   |           | 1.00         | 1.00         |      | 1.00         | 1.00         |         |          |      | 0.95         |      | 1.00         |
| Satd. Flow (prot)               |           | 2866         | 1255         |      | 2842         | 1173         |         |          |      | 2710         |      | 1271         |
| Flt Permitted                   |           | 1.00         | 1.00         |      | 1.00         | 1.00         |         |          |      | 0.95         |      | 1.00         |
| Satd. Flow (perm)               |           | 2866         | 1255         |      | 2842         | 1173         |         |          |      | 2710         |      | 1271         |
| Peak-hour factor, PHF           | 0.98      | 0.98         | 0.98         | 0.98 | 0.98         | 0.98         | 0.98    | 0.98     | 0.98 | 0.98         | 0.98 | 0.98         |
| Adj. Flow (vph)                 | 0.70      | 621          | 343          | 0.70 | 654          | 484          | 0.70    | 0.70     | 0.70 | 493          | 0.70 | 255          |
| RTOR Reduction (vph)            | 0         | 021          | 0            | 0    | 004          | 0            | 0       | 0        | 0    | 0            | 0    | 57           |
| Lane Group Flow (vph)           | 0         | 621          | 343          | 0    | 654          | 484          | 0       | 0        | 0    | 493          | 0    | 198          |
| Confl. Peds. (#/hr)             | 5         | 021          | 2            | 2    | 004          | 5            | 1       | U        | U    | 473          | 0    | 170          |
| Heavy Vehicles (%)              | 0%        | 16%          | 16%          | 0%   | 17%          | 24%          | 0%      | 0%       | 0%   | 19%          | 0%   | 17%          |
| Turn Type                       | 0.0       | NA           | Free         | 0.0  | NA           | Free         | 0.0     | 0,0      | 0.0  | Prot         | 0.0  | custom       |
| Protected Phases                |           | 2            | 1100         |      | 6            | 1100         |         |          |      | 4            |      | 4 5          |
| Permitted Phases                |           | _            | Free         |      |              | Free         |         |          |      | •            |      | . 0          |
| Actuated Green, G (s)           |           | 67.7         | 100.0        |      | 53.7         | 100.0        |         |          |      | 23.3         |      | 37.8         |
| Effective Green, g (s)          |           | 67.7         | 100.0        |      | 53.7         | 100.0        |         |          |      | 23.3         |      | 37.8         |
| Actuated g/C Ratio              |           | 0.68         | 1.00         |      | 0.54         | 1.00         |         |          |      | 0.23         |      | 0.38         |
| Clearance Time (s)              |           | 4.5          |              |      | 4.5          |              |         |          |      | 4.5          |      |              |
| Vehicle Extension (s)           |           | 6.0          |              |      | 4.0          |              |         |          |      | 2.5          |      |              |
| Lane Grp Cap (vph)              |           | 1940         | 1255         |      | 1526         | 1173         |         |          |      | 631          |      | 480          |
| v/s Ratio Prot                  |           | 0.22         |              |      | 0.23         |              |         |          |      | c0.18        |      | 0.16         |
| v/s Ratio Perm                  |           |              | 0.27         |      |              | c0.41        |         |          |      |              |      |              |
| v/c Ratio                       |           | 0.32         | 0.27         |      | 0.43         | 0.41         |         |          |      | 0.78         |      | 0.41         |
| Uniform Delay, d1               |           | 6.7          | 0.0          |      | 13.9         | 0.0          |         |          |      | 36.0         |      | 22.9         |
| Progression Factor              |           | 1.00         | 1.00         |      | 0.84         | 1.00         |         |          |      | 1.00         |      | 1.00         |
| Incremental Delay, d2           |           | 0.4          | 0.5          |      | 0.8          | 1.0          |         |          |      | 6.0          |      | 0.4          |
| Delay (s)                       |           | 7.1          | 0.5          |      | 12.4         | 1.0          |         |          |      | 42.0         |      | 23.3         |
| Level of Service                |           | A            | Α            |      | В            | Α            |         |          |      | D            | 05 ( | С            |
| Approach Delay (s)              |           | 4.8          |              |      | 7.6          |              |         | 0.0      |      |              | 35.6 |              |
| Approach LOS                    |           | Α            |              |      | А            |              |         | А        |      |              | D    |              |
| Intersection Summary            |           |              |              |      |              |              |         |          |      |              |      |              |
| HCM 2000 Control Delay          |           |              | 14.0         | H    | CM 2000      | Level of S   | Service |          | В    |              |      |              |
| HCM 2000 Volume to Capac        | ity ratio |              | 0.55         |      |              |              |         |          |      |              |      |              |
| Actuated Cycle Length (s)       |           |              | 100.0        |      | um of los    |              |         |          | 13.0 |              |      |              |
| Intersection Capacity Utilizati | ion       |              | 43.7%        | IC   | U Level      | of Service   |         |          | А    |              |      |              |
| Analysis Period (min)           |           |              | 15           |      |              |              |         |          |      |              |      |              |

|                                   | ۶       | <b>→</b> | •     | •    | •         | •          | 1       | <b>†</b> | <b>/</b> | <b>/</b> | ļ    | √    |
|-----------------------------------|---------|----------|-------|------|-----------|------------|---------|----------|----------|----------|------|------|
| Movement                          | EBL     | EBT      | EBR   | WBL  | WBT       | WBR        | NBL     | NBT      | NBR      | SBL      | SBT  | SBR  |
| Lane Configurations               |         | <b>^</b> | 7     |      | <b>^</b>  | 7          | ሻ       | 4        | 7        |          |      |      |
| Traffic Volume (vph)              | 0       | 924      | 169   | 0    | 858       | 273        | 242     | 0        | 479      | 0        | 0    | 0    |
| Future Volume (vph)               | 0       | 924      | 169   | 0    | 858       | 273        | 242     | 0        | 479      | 0        | 0    | 0    |
| Ideal Flow (vphpl)                | 1750    | 1750     | 1750  | 1750 | 1750      | 1750       | 1750    | 1750     | 1750     | 1750     | 1750 | 1750 |
| Total Lost time (s)               |         | 4.5      | 4.0   |      | 4.5       | 4.0        | 4.5     | 4.5      | 4.5      |          |      |      |
| Lane Util. Factor                 |         | 0.95     | 1.00  |      | 0.95      | 1.00       | 0.95    | 0.91     | 0.95     |          |      |      |
| Frpb, ped/bikes                   |         | 1.00     | 0.98  |      | 1.00      | 0.98       | 1.00    | 0.99     | 0.99     |          |      |      |
| Flpb, ped/bikes                   |         | 1.00     | 1.00  |      | 1.00      | 1.00       | 1.00    | 1.00     | 1.00     |          |      |      |
| Frt                               |         | 1.00     | 0.85  |      | 1.00      | 0.85       | 1.00    | 0.86     | 0.85     |          |      |      |
| Flt Protected                     |         | 1.00     | 1.00  |      | 1.00      | 1.00       | 0.95    | 1.00     | 1.00     |          |      |      |
| Satd. Flow (prot)                 |         | 2866     | 1234  |      | 2725      | 1212       | 1350    | 1104     | 1132     |          |      |      |
| Flt Permitted                     |         | 1.00     | 1.00  |      | 1.00      | 1.00       | 0.95    | 1.00     | 1.00     |          |      |      |
| Satd. Flow (perm)                 |         | 2866     | 1234  |      | 2725      | 1212       | 1350    | 1104     | 1132     |          |      |      |
| Peak-hour factor, PHF             | 0.96    | 0.96     | 0.96  | 0.96 | 0.96      | 0.96       | 0.96    | 0.96     | 0.96     | 0.96     | 0.96 | 0.96 |
| Adj. Flow (vph)                   | 0       | 962      | 176   | 0    | 894       | 284        | 252     | 0        | 499      | 0        | 0    | 0    |
| RTOR Reduction (vph)              | 0       | 0        | 0     | 0    | 0         | 0          | 0       | 83       | 83       | 0        | 0    | 0    |
| Lane Group Flow (vph)             | 0       | 963      | 176   | 0    | 894       | 284        | 227     | 182      | 176      | 0        | 0    | 0    |
| Confl. Peds. (#/hr)               | 4       |          | 3     | 3    |           | 4          |         |          | 2        | 2        |      |      |
| Heavy Vehicles (%)                | 0%      | 16%      | 18%   | 0%   | 22%       | 20%        | 17%     | 0%       | 23%      | 0%       | 0%   | 0%   |
| Turn Type                         |         | NA       | Free  |      | NA        | Free       | Perm    | NA       | Perm     |          |      |      |
| Protected Phases                  |         | 2        |       |      | 6         |            |         | 8        |          |          |      |      |
| Permitted Phases                  |         |          | Free  |      |           | Free       | 8       |          | 8        |          |      |      |
| Actuated Green, G (s)             |         | 68.2     | 100.0 |      | 68.2      | 100.0      | 22.8    | 22.8     | 22.8     |          |      |      |
| Effective Green, g (s)            |         | 68.2     | 100.0 |      | 68.2      | 100.0      | 22.8    | 22.8     | 22.8     |          |      |      |
| Actuated g/C Ratio                |         | 0.68     | 1.00  |      | 0.68      | 1.00       | 0.23    | 0.23     | 0.23     |          |      |      |
| Clearance Time (s)                |         | 4.5      |       |      | 4.5       |            | 4.5     | 4.5      | 4.5      |          |      |      |
| Vehicle Extension (s)             |         | 4.0      |       |      | 6.0       |            | 2.5     | 2.5      | 2.5      |          |      |      |
| Lane Grp Cap (vph)                |         | 1954     | 1234  |      | 1858      | 1212       | 307     | 251      | 258      |          |      |      |
| v/s Ratio Prot                    |         | c0.34    |       |      | 0.33      |            |         |          |          |          |      |      |
| v/s Ratio Perm                    |         |          | 0.14  |      |           | 0.23       | c0.17   | 0.16     | 0.16     |          |      |      |
| v/c Ratio                         |         | 0.49     | 0.14  |      | 0.48      | 0.23       | 0.74    | 0.72     | 0.68     |          |      |      |
| Uniform Delay, d1                 |         | 7.6      | 0.0   |      | 7.5       | 0.0        | 35.8    | 35.7     | 35.3     |          |      |      |
| Progression Factor                |         | 1.57     | 1.00  |      | 0.77      | 1.00       | 1.00    | 1.00     | 1.00     |          |      |      |
| Incremental Delay, d2             |         | 8.0      | 0.2   |      | 0.7       | 0.4        | 8.5     | 9.3      | 6.6      |          |      |      |
| Delay (s)                         |         | 12.8     | 0.2   |      | 6.5       | 0.4        | 44.3    | 45.0     | 41.9     |          |      |      |
| Level of Service                  |         | В        | Α     |      | Α         | Α          | D       | D        | D        |          |      |      |
| Approach Delay (s)                |         | 10.8     |       |      | 5.0       |            |         | 43.7     |          |          | 0.0  |      |
| Approach LOS                      |         | В        |       |      | А         |            |         | D        |          |          | А    |      |
| Intersection Summary              |         |          |       |      |           |            |         |          |          |          |      |      |
| HCM 2000 Control Delay            |         |          | 16.7  | Н    | CM 2000   | Level of   | Service |          | В        |          |      |      |
| HCM 2000 Volume to Capacit        | y ratio |          | 0.55  |      |           |            |         |          |          |          |      |      |
| Actuated Cycle Length (s)         |         |          | 100.0 | S    | um of los | t time (s) |         |          | 9.0      |          |      |      |
| Intersection Capacity Utilization | on      |          | 56.9% |      |           | of Service | ;       |          | В        |          |      |      |
| Analysis Period (min)             |         |          | 15    |      |           |            |         |          |          |          |      |      |
| c Critical Lane Group             |         |          |       |      |           |            |         |          |          |          |      |      |

|                                      | ۶            | <b>→</b>     | •       | •            | <b>←</b>     | •          | •            | <b>†</b>     | <b>/</b>     | <b>/</b>     | <b>↓</b>     | 4            |
|--------------------------------------|--------------|--------------|---------|--------------|--------------|------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Movement                             | EBL          | EBT          | EBR     | WBL          | WBT          | WBR        | NBL          | NBT          | NBR          | SBL          | SBT          | SBR          |
| Lane Configurations                  | ሻ            | <b>^</b>     | 7       | Ť            | <b>∱</b> ∱   |            | 7            | <b>^</b>     | 7            | Ť            | <b>†</b>     | 7            |
| Traffic Volume (vph)                 | 78           | 851          | 117     | 192          | 675          | 14         | 311          | 28           | 212          | 21           | 35           | 69           |
| Future Volume (vph)                  | 78           | 851          | 117     | 192          | 675          | 14         | 311          | 28           | 212          | 21           | 35           | 69           |
| Ideal Flow (vphpl)                   | 1750         | 1750         | 1750    | 1750         | 1750         | 1750       | 1750         | 1750         | 1750         | 1750         | 1750         | 1750         |
| Total Lost time (s)                  | 4.0          | 4.5          | 4.5     | 4.0          | 4.5          |            | 4.5          | 4.5          | 4.5          | 4.5          | 4.5          | 4.5          |
| Lane Util. Factor                    | 1.00         | 0.95         | 1.00    | 1.00         | 0.95         |            | 1.00         | 1.00         | 1.00         | 1.00         | 1.00         | 1.00         |
| Frpb, ped/bikes                      | 1.00         | 1.00         | 1.00    | 1.00         | 1.00         |            | 1.00         | 1.00         | 0.98         | 1.00         | 1.00         | 0.99         |
| Flpb, ped/bikes                      | 1.00         | 1.00         | 1.00    | 1.00         | 1.00         |            | 1.00         | 1.00         | 1.00         | 1.00         | 1.00         | 1.00         |
| Frt<br>Elt Drotostad                 | 1.00         | 1.00<br>1.00 | 0.85    | 1.00<br>0.95 | 1.00<br>1.00 |            | 1.00         | 1.00<br>1.00 | 0.85<br>1.00 | 1.00<br>0.95 | 1.00<br>1.00 | 0.85         |
| Flt Protected Satd. Flow (prot)      | 0.95<br>1362 | 2842         | 1316    | 1409         | 2829         |            | 0.95<br>1446 | 1620         | 1262         | 1511         | 1651         | 1.00<br>1096 |
| Flt Permitted                        | 0.27         | 1.00         | 1.00    | 0.13         | 1.00         |            | 0.95         | 1.00         | 1.00         | 0.95         | 1.00         | 1.00         |
| Satd. Flow (perm)                    | 394          | 2842         | 1316    | 199          | 2829         |            | 1446         | 1620         | 1262         | 1511         | 1651         | 1096         |
| Peak-hour factor, PHF                | 0.97         | 0.97         | 0.97    | 0.97         | 0.97         | 0.97       | 0.97         | 0.97         | 0.97         | 0.97         | 0.97         |              |
| -                                    | 80           | 877          | 121     | 198          | 696          | 14         | 321          | 29           | 219          | 22           | 36           | 0.97<br>71   |
| Adj. Flow (vph) RTOR Reduction (vph) | 0            | 0//          | 82      | 190          | 1            | 0          | 0            | 0            | 155          | 0            | 0            | 67           |
| Lane Group Flow (vph)                | 80           | 877          | 39      | 198          | 709          | 0          | 321          | 29           | 64           | 22           | 36           | 4            |
| Confl. Peds. (#/hr)                  | 3            | 0//          | 39      | 170          | 709          | 3          | 1            | 29           | 4            | 4            | 30           | 1            |
| Heavy Vehicles (%)                   | 22%          | 17%          | 13%     | 18%          | 17%          | 23%        | 15%          | 8%           | 16%          | 10%          | 6%           | 34%          |
| Turn Type                            | D.P+P        | NA           | Perm    | D.P+P        | NA           | 2370       | Split        | NA           | Perm         | Split        | NA           | Perm         |
| Protected Phases                     | 5            | 2            | r Cilli | 1            | 6            |            | Split<br>8   | 8            | FCIIII       | 3piit<br>4   | 4            | r Cilli      |
| Permitted Phases                     | 6            | 2            | 2       | 2            | U            |            | U            | U            | 8            | 4            | 4            | 4            |
| Actuated Green, G (s)                | 47.0         | 32.2         | 32.2    | 47.0         | 40.0         |            | 29.3         | 29.3         | 29.3         | 6.2          | 6.2          | 6.2          |
| Effective Green, g (s)               | 47.0         | 32.2         | 32.2    | 47.0         | 40.0         |            | 29.3         | 29.3         | 29.3         | 6.2          | 6.2          | 6.2          |
| Actuated g/C Ratio                   | 0.47         | 0.32         | 0.32    | 0.47         | 0.40         |            | 0.29         | 0.29         | 0.29         | 0.06         | 0.06         | 0.06         |
| Clearance Time (s)                   | 4.0          | 4.5          | 4.5     | 4.0          | 4.5          |            | 4.5          | 4.5          | 4.5          | 4.5          | 4.5          | 4.5          |
| Vehicle Extension (s)                | 2.5          | 6.2          | 6.2     | 2.5          | 6.2          |            | 2.5          | 2.5          | 2.5          | 2.5          | 2.5          | 2.5          |
| Lane Grp Cap (vph)                   | 252          | 915          | 423     | 272          | 1131         |            | 423          | 474          | 369          | 93           | 102          | 67           |
| v/s Ratio Prot                       | 0.02         | c0.31        | .20     | c0.11        | 0.25         |            | c0.22        | 0.02         | 007          | 0.01         | c0.02        | 0.1          |
| v/s Ratio Perm                       | 0.13         |              | 0.03    | 0.23         |              |            |              |              | 0.05         |              |              | 0.00         |
| v/c Ratio                            | 0.32         | 0.96         | 0.09    | 0.73         | 0.63         |            | 0.76         | 0.06         | 0.17         | 0.24         | 0.35         | 0.07         |
| Uniform Delay, d1                    | 15.7         | 33.2         | 23.7    | 33.0         | 24.0         |            | 32.1         | 25.4         | 26.3         | 44.6         | 45.0         | 44.2         |
| Progression Factor                   | 1.02         | 0.91         | 1.85    | 1.00         | 0.95         |            | 1.00         | 1.00         | 1.00         | 1.00         | 1.00         | 1.00         |
| Incremental Delay, d2                | 0.5          | 19.4         | 0.4     | 7.6          | 2.3          |            | 7.3          | 0.0          | 0.2          | 1.0          | 1.5          | 0.3          |
| Delay (s)                            | 16.5         | 49.7         | 44.1    | 40.6         | 25.2         |            | 39.4         | 25.5         | 26.5         | 45.6         | 46.5         | 44.5         |
| Level of Service                     | В            | D            | D       | D            | С            |            | D            | С            | С            | D            | D            | D            |
| Approach Delay (s)                   |              | 46.6         |         |              | 28.5         |            |              | 33.7         |              |              | 45.2         |              |
| Approach LOS                         |              | D            |         |              | С            |            |              | С            |              |              | D            |              |
| Intersection Summary                 |              |              |         |              |              |            |              |              |              |              |              |              |
| HCM 2000 Control Delay               |              |              | 37.7    | Н            | CM 2000      | Level of S | Service      |              | D            |              |              |              |
| HCM 2000 Volume to Capac             | city ratio   |              | 0.80    |              |              |            |              |              |              |              |              |              |
| Actuated Cycle Length (s)            |              |              | 100.0   | S            | um of lost   | time (s)   |              |              | 17.5         |              |              |              |
| Intersection Capacity Utilizat       | tion         |              | 73.3%   |              | CU Level o   |            |              |              | D            |              |              |              |
| Analysis Period (min)                |              |              | 15      |              |              |            |              |              |              |              |              |              |

|                                                | ۶           | <b>→</b>   | •     | •       | -                         | •           | •         | <b>†</b> | <b>/</b>  | <b>/</b>  | <b>+</b> | 4    |
|------------------------------------------------|-------------|------------|-------|---------|---------------------------|-------------|-----------|----------|-----------|-----------|----------|------|
| Movement                                       | EBL         | EBT        | EBR   | WBL     | WBT                       | WBR         | NBL       | NBT      | NBR       | SBL       | SBT      | SBR  |
| Lane Configurations                            | ሻ           | <b>∱</b> ∱ |       | Ť       | <b>∱</b> ∱                |             | Ť         | f)       |           | ሻ         | f)       |      |
| Traffic Volume (vph)                           | 117         | 956        | 25    | 16      | 827                       | 56          | 12        | 20       | 5         | 65        | 16       | 86   |
| Future Volume (vph)                            | 117         | 956        | 25    | 16      | 827                       | 56          | 12        | 20       | 5         | 65        | 16       | 86   |
| Ideal Flow (vphpl)                             | 1750        | 1750       | 1750  | 1750    | 1750                      | 1750        | 1750      | 1750     | 1750      | 1750      | 1750     | 1750 |
| Total Lost time (s)                            | 4.0         | 4.5        |       | 4.0     | 4.5                       |             | 4.0       | 4.0      |           | 4.0       | 4.0      |      |
| Lane Util. Factor                              | 1.00        | 0.95       |       | 1.00    | 0.95                      |             | 1.00      | 1.00     |           | 1.00      | 1.00     |      |
| Frpb, ped/bikes                                | 1.00        | 1.00       |       | 1.00    | 1.00                      |             | 1.00      | 1.00     |           | 1.00      | 1.00     |      |
| Flpb, ped/bikes                                | 1.00        | 1.00       |       | 1.00    | 1.00                      |             | 1.00      | 1.00     |           | 1.00      | 1.00     |      |
| Frt                                            | 1.00        | 1.00       |       | 1.00    | 0.99                      |             | 1.00      | 0.97     |           | 1.00      | 0.87     |      |
| Flt Protected                                  | 0.95        | 1.00       |       | 0.95    | 1.00                      |             | 0.95      | 1.00     |           | 0.95      | 1.00     |      |
| Satd. Flow (prot)                              | 1553        | 2746       |       | 1471    | 2718                      |             | 1525      | 1407     |           | 1385      | 1429     |      |
| Flt Permitted                                  | 0.24        | 1.00       |       | 0.20    | 1.00                      |             | 0.95      | 1.00     |           | 0.95      | 1.00     |      |
| Satd. Flow (perm)                              | 392         | 2746       | 0.07  | 313     | 2718                      | 0.07        | 1525      | 1407     | 0.07      | 1385      | 1429     | 0.07 |
| Peak-hour factor, PHF                          | 0.96        | 0.96       | 0.96  | 0.96    | 0.96                      | 0.96        | 0.96      | 0.96     | 0.96      | 0.96      | 0.96     | 0.96 |
| Adj. Flow (vph)                                | 122         | 996        | 26    | 17      | 861                       | 58          | 12        | 21       | 5         | 68        | 17       | 90   |
| RTOR Reduction (vph)                           | 0           | 1001       | 0     | 0       | 4                         | 0           | 0         | 5        | 0         | 0         | 78       | 0    |
| Lane Group Flow (vph)                          | 122<br>2    | 1021       | 0     | 17<br>1 | 915                       | 0           | 13        | 21       | 0         | 68        | 29       | 0    |
| Confl. Peds. (#/hr)                            | 7%          | 20%        | 42%   | 13%     | 22%                       | 6%          | 9%        | 21%      | 20%       | 20%       | 7%       | 7%   |
| Heavy Vehicles (%)                             |             |            | 42%   |         |                           | 0%          |           |          | 20%       |           |          | 170  |
| Turn Type Protected Phases                     | D.P+P       | NA         |       | pm+pt   | NA                        |             | Prot      | NA       |           | Prot<br>7 | NA       |      |
| Permitted Phases                               | 5<br>6      | 2          |       | 1       | 6                         |             | 3         | 8        |           | /         | 4        |      |
| Actuated Green, G (s)                          | 67.6        | 65.1       |       | 54.2    | 54.2                      |             | 2.3       | 5.6      |           | 10.3      | 13.6     |      |
| Effective Green, g (s)                         | 67.6        | 65.1       |       | 54.2    | 54.2                      |             | 2.3       | 5.6      |           | 10.3      | 13.6     |      |
| Actuated g/C Ratio                             | 0.68        | 0.65       |       | 0.54    | 0.54                      |             | 0.02      | 0.06     |           | 0.10      | 0.14     |      |
| Clearance Time (s)                             | 4.0         | 4.5        |       | 4.0     | 4.5                       |             | 4.0       | 4.0      |           | 4.0       | 4.0      |      |
| Vehicle Extension (s)                          | 2.5         | 6.2        |       | 2.5     | 6.2                       |             | 2.5       | 2.5      |           | 2.5       | 2.5      |      |
| Lane Grp Cap (vph)                             | 420         | 1787       |       | 198     | 1473                      |             | 35        | 78       |           | 142       | 194      |      |
| v/s Ratio Prot                                 | 0.04        | c0.37      |       | 0.00    | c0.34                     |             | 0.01      | c0.02    |           | c0.05     | 0.02     |      |
| v/s Ratio Perm                                 | 0.04        | 60.57      |       | 0.04    | 60.54                     |             | 0.01      | CU.UZ    |           | CO.03     | 0.02     |      |
| v/c Ratio                                      | 0.10        | 0.57       |       | 0.09    | 0.62                      |             | 0.37      | 0.27     |           | 0.48      | 0.15     |      |
| Uniform Delay, d1                              | 13.2        | 9.7        |       | 11.7    | 15.8                      |             | 48.1      | 45.2     |           | 42.3      | 38.1     |      |
| Progression Factor                             | 0.47        | 0.63       |       | 1.00    | 1.00                      |             | 1.00      | 1.00     |           | 1.00      | 1.00     |      |
| Incremental Delay, d2                          | 0.2         | 0.8        |       | 0.1     | 2.0                       |             | 4.8       | 1.4      |           | 1.8       | 0.3      |      |
| Delay (s)                                      | 6.4         | 6.9        |       | 11.8    | 17.8                      |             | 52.9      | 46.6     |           | 44.2      | 38.4     |      |
| Level of Service                               | A           | A          |       | В       | В                         |             | D         | D        |           | D         | D        |      |
| Approach Delay (s)                             |             | 6.9        |       |         | 17.7                      |             |           | 48.7     |           |           | 40.6     |      |
| Approach LOS                                   |             | А          |       |         | В                         |             |           | D        |           |           | D        |      |
| Intersection Summary                           |             |            |       |         |                           |             |           |          |           |           |          |      |
| HCM 2000 Control Delay                         |             |            | 14.6  | Ш       | CM 2000                   | Lovel of S  | Convice   |          | В         |           |          |      |
| HCM 2000 Control Delay HCM 2000 Volume to Capa | acity ratio |            | 0.59  | П       | CIVI ZUUU                 | Level of 3  | DEI VILLE |          | D         |           |          |      |
| Actuated Cycle Length (s)                      | iony rano   |            | 100.0 | C       | um of lost                | time (c)    |           |          | 16.5      |           |          |      |
| Intersection Capacity Utiliza                  | ation       |            | 54.8% |         | uni or iosi<br>CU Level o |             |           |          | 10.5<br>A |           |          |      |
| Analysis Period (min)                          | autit       |            | 15    | IC      | O LEVEL                   | DI DEI VICE |           |          | A         |           |          |      |
| Analysis Fellou (IIIII)                        |             |            | 13    |         |                           |             |           |          |           |           |          |      |

| Intersection           |         |          |        |          |         |      |
|------------------------|---------|----------|--------|----------|---------|------|
| Int Delay, s/veh       | 0.4     |          |        |          |         |      |
|                        |         |          |        |          |         |      |
| Movement               | EBT     | EBR      | WBL    | WBT      | NBL     | NBR  |
| Lane Configurations    | ħβ      |          |        | <b>^</b> |         | - 7  |
| Traffic Vol, veh/h     | 971     | 56       | 33     | 906      | 0       | 35   |
| Future Vol, veh/h      | 971     | 56       | 33     | 906      | 0       | 35   |
| Conflicting Peds, #/hr | 0       | 2        | 2      | 0        | 0       | 0    |
| Sign Control           | Free    | Free     | Free   | Free     | Stop    | Stop |
| RT Channelized         | -       | None     |        | None     | -       | None |
| Storage Length         | -       | -        | 130    | -        | -       | 0    |
| Veh in Median Storage, | , # 0   | _        | -      | 0        | 0       | -    |
| Grade, %               | 0       | _        | _      | 0        | 0       | _    |
| Peak Hour Factor       | 94      | 94       | 94     | 94       | 94      | 94   |
| Heavy Vehicles, %      | 19      | 17       | 10     | 23       | 0       | 24   |
| Mymt Flow              | 1033    | 60       | 35     | 964      | 0       | 37   |
| IVIVIIIL FIUW          | 1033    | 00       | 33     | 904      | U       | 31   |
|                        |         |          |        |          |         |      |
| Major/Minor N          | /lajor1 | <u> </u> | Major2 |          | /linor1 |      |
| Conflicting Flow All   | 0       | 0        | 1095   | 0        | -       | 548  |
| Stage 1                | -       | -        | -      | -        | -       | -    |
| Stage 2                | _       |          | _      | -        | _       | _    |
| Critical Hdwy          | _       | _        | 4.3    | -        | _       | 7.38 |
| Critical Hdwy Stg 1    | _       |          |        | _        | _       | 7.50 |
| Critical Hdwy Stg 2    |         |          | _      |          | _       | _    |
| Follow-up Hdwy         | -       | -        | 2.3    | -        | -       | 3.54 |
| Pot Cap-1 Maneuver     | -       | -        | 588    | _        | 0       | 428  |
| •                      | -       | -        |        | -        |         |      |
| Stage 1                | -       | -        | -      | -        | 0       | -    |
| Stage 2                | -       | -        | -      | -        | 0       | -    |
| Platoon blocked, %     | -       | -        |        | -        |         |      |
| Mov Cap-1 Maneuver     | -       | -        | 588    | -        | -       | 427  |
| Mov Cap-2 Maneuver     | -       | -        | -      | -        | -       | -    |
| Stage 1                | -       | -        | -      | -        | -       | -    |
| Stage 2                | -       | -        | -      | -        | -       | -    |
|                        |         |          |        |          |         |      |
| Annroach               | ED      |          | WB     |          | NB      |      |
| Approach               | EB      |          |        |          |         |      |
| HCM Control Delay, s   | 0       |          | 0.4    |          | 14.2    |      |
| HCM LOS                |         |          |        |          | В       |      |
|                        |         |          |        |          |         |      |
| Minor Lane/Major Mvm   | t ſ     | NBLn1    | EBT    | EBR      | WBL     | WBT  |
| Capacity (veh/h)       |         | 427      |        | -        | 588     | -    |
| HCM Lane V/C Ratio     |         | 0.087    | -      |          | 0.06    |      |
|                        |         |          |        | -        |         | -    |
| HCM Long LOS           |         | 14.2     | -      | -        |         | -    |
| HCM Lane LOS           |         | В        | -      | -        | В       | -    |
| HCM 95th %tile Q(veh)  |         | 0.3      | -      | -        | 0.2     | -    |

| ea | r 2017<br>Weekday |          |     |
|----|-------------------|----------|-----|
| •  | <b>/</b>          | <b>↓</b> | 4   |
| R  | SBL               | SBT      | SBR |
| _  | _                 |          |     |

|                               | •          | <b>→</b> | •     | •     | ←          | •          | 4       | <b>†</b> | ~    | -    | <b>↓</b> | 4    |
|-------------------------------|------------|----------|-------|-------|------------|------------|---------|----------|------|------|----------|------|
| Movement                      | EBL        | EBT      | EBR   | WBL   | WBT        | WBR        | NBL     | NBT      | NBR  | SBL  | SBT      | SBR  |
| Lane Configurations           | ሻ          | <b>↑</b> | 7     | ሻ     | <b>†</b>   | 7          | ሻ       | <b>^</b> | 7    | ሻ    | <b>†</b> | 7    |
| Traffic Volume (vph)          | 98         | 575      | 307   | 107   | 622        | 78         | 236     | 133      | 78   | 114  | 205      | 114  |
| Future Volume (vph)           | 98         | 575      | 307   | 107   | 622        | 78         | 236     | 133      | 78   | 114  | 205      | 114  |
| Ideal Flow (vphpl)            | 1750       | 1750     | 1750  | 1750  | 1750       | 1750       | 1750    | 1750     | 1750 | 1750 | 1750     | 1750 |
| Total Lost time (s)           | 4.5        | 5.0      | 4.5   | 4.5   | 5.0        | 5.0        | 4.5     | 5.0      | 5.0  | 4.5  | 5.0      | 5.0  |
| Lane Util. Factor             | 1.00       | 1.00     | 1.00  | 1.00  | 1.00       | 1.00       | 1.00    | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 |
| Frpb, ped/bikes               | 1.00       | 1.00     | 0.94  | 1.00  | 1.00       | 0.91       | 1.00    | 1.00     | 0.98 | 1.00 | 1.00     | 0.71 |
| Flpb, ped/bikes               | 1.00       | 1.00     | 1.00  | 1.00  | 1.00       | 1.00       | 1.00    | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 |
| Frt                           | 1.00       | 1.00     | 0.85  | 1.00  | 1.00       | 0.85       | 1.00    | 1.00     | 0.85 | 1.00 | 1.00     | 0.85 |
| Flt Protected                 | 0.95       | 1.00     | 1.00  | 0.95  | 1.00       | 1.00       | 0.95    | 1.00     | 1.00 | 0.95 | 1.00     | 1.00 |
| Satd. Flow (prot)             | 1446       | 1458     | 1219  | 1484  | 1446       | 1115       | 1385    | 1483     | 1343 | 1458 | 1446     | 881  |
| Flt Permitted                 | 0.95       | 1.00     | 1.00  | 0.95  | 1.00       | 1.00       | 0.95    | 1.00     | 1.00 | 0.95 | 1.00     | 1.00 |
| Satd. Flow (perm)             | 1446       | 1458     | 1219  | 1484  | 1446       | 1115       | 1385    | 1483     | 1343 | 1458 | 1446     | 881  |
| Peak-hour factor, PHF         | 0.95       | 0.95     | 0.95  | 0.95  | 0.95       | 0.95       | 0.95    | 0.95     | 0.95 | 0.95 | 0.95     | 0.95 |
| Adj. Flow (vph)               | 103        | 605      | 323   | 113   | 655        | 82         | 248     | 140      | 82   | 120  | 216      | 120  |
| RTOR Reduction (vph)          | 0          | 0        | 95    | 0     | 0          | 47         | 0       | 0        | 62   | 0    | 0        | 99   |
| Lane Group Flow (vph)         | 103        | 605      | 228   | 113   | 655        | 35         | 248     | 140      | 20   | 120  | 216      | 21   |
| Confl. Peds. (#/hr)           | 26         |          | 26    | 26    |            | 26         | 118     |          | 2    | 2    |          | 118  |
| Heavy Vehicles (%)            | 15%        | 20%      | 15%   | 12%   | 21%        | 22%        | 20%     | 18%      | 8%   | 14%  | 21%      | 20%  |
| Turn Type                     | Prot       | NA       | pm+ov | Prot  | NA         | Perm       | Prot    | NA       | Perm | Prot | NA       | Perm |
| Protected Phases              | 5          | 2        | 3     | 1     | 6          |            | 3       | 8        |      | 7    | 4        |      |
| Permitted Phases              |            |          | 2     |       |            | 6          |         |          | 8    |      |          | 4    |
| Actuated Green, G (s)         | 14.8       | 55.3     | 80.4  | 15.5  | 56.0       | 56.0       | 25.1    | 33.5     | 33.5 | 16.3 | 24.7     | 24.7 |
| Effective Green, g (s)        | 14.8       | 55.3     | 80.4  | 15.5  | 56.0       | 56.0       | 25.1    | 33.5     | 33.5 | 16.3 | 24.7     | 24.7 |
| Actuated g/C Ratio            | 0.11       | 0.40     | 0.58  | 0.11  | 0.40       | 0.40       | 0.18    | 0.24     | 0.24 | 0.12 | 0.18     | 0.18 |
| Clearance Time (s)            | 4.5        | 5.0      | 4.5   | 4.5   | 5.0        | 5.0        | 4.5     | 5.0      | 5.0  | 4.5  | 5.0      | 5.0  |
| Vehicle Extension (s)         | 2.5        | 4.8      | 2.5   | 2.5   | 4.8        | 4.8        | 2.5     | 2.5      | 2.5  | 2.5  | 2.5      | 2.5  |
| Lane Grp Cap (vph)            | 153        | 577      | 702   | 164   | 580        | 447        | 249     | 355      | 322  | 170  | 255      | 155  |
| v/s Ratio Prot                | 0.07       | 0.41     | 0.06  | c0.08 | c0.45      |            | c0.18   | 0.09     |      | 0.08 | c0.15    |      |
| v/s Ratio Perm                |            |          | 0.13  |       |            | 0.03       |         |          | 0.01 |      |          | 0.02 |
| v/c Ratio                     | 0.67       | 1.05     | 0.32  | 0.69  | 1.13       | 0.08       | 1.00    | 0.39     | 0.06 | 0.71 | 0.85     | 0.14 |
| Uniform Delay, d1             | 60.1       | 42.1     | 15.4  | 59.7  | 41.8       | 25.9       | 57.2    | 44.5     | 40.9 | 59.3 | 55.6     | 48.5 |
| Progression Factor            | 1.00       | 1.00     | 1.00  | 1.00  | 1.00       | 1.00       | 1.00    | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 |
| Incremental Delay, d2         | 10.1       | 50.8     | 0.2   | 10.5  | 78.3       | 0.1        | 55.6    | 0.5      | 0.1  | 11.7 | 21.7     | 0.3  |
| Delay (s)                     | 70.2       | 93.0     | 15.6  | 70.2  | 120.1      | 26.0       | 112.8   | 45.1     | 41.0 | 71.0 | 77.4     | 48.8 |
| Level of Service              | Е          | F        | В     | Е     | F          | С          | F       | D        | D    | Е    | Е        | D    |
| Approach Delay (s)            |            | 66.5     |       |       | 104.4      |            |         | 80.1     |      |      | 68.2     |      |
| Approach LOS                  |            | Е        |       |       | F          |            |         | F        |      |      | Е        |      |
| Intersection Summary          |            |          |       |       |            |            |         |          |      |      |          |      |
| HCM 2000 Control Delay        |            |          | 80.5  | Н     | ICM 2000   | Level of   | Service |          | F    |      |          |      |
| HCM 2000 Volume to Capa       | city ratio |          | 0.99  |       |            |            |         |          |      |      |          |      |
| Actuated Cycle Length (s)     |            |          | 139.6 | S     | ium of los | t time (s) |         |          | 19.0 |      |          |      |
| Intersection Capacity Utiliza | ation      |          | 96.2% |       | CU Level   |            | ;       |          | F    |      |          |      |
| Analysis Period (min)         |            |          | 15    |       |            |            |         |          |      |      |          |      |
| c Critical Lane Group         |            |          |       |       |            |            |         |          |      |      |          |      |

c Critical Lane Group

|                               | ۶          | <b>→</b> | •     | •     | +          | •          | •       | <b>†</b> | <i>&gt;</i> | <b>/</b> | <b>+</b> | ✓    |
|-------------------------------|------------|----------|-------|-------|------------|------------|---------|----------|-------------|----------|----------|------|
| Movement                      | EBL        | EBT      | EBR   | WBL   | WBT        | WBR        | NBL     | NBT      | NBR         | SBL      | SBT      | SBR  |
| Lane Configurations           | ሻ          | <b>₽</b> |       | ሻ     | î»         |            | Ť       | <b>₽</b> |             | 7        | <b>₽</b> |      |
| Traffic Volume (vph)          | 35         | 641      | 39    | 48    | 718        | 43         | 16      | 11       | 29          | 37       | 28       | 38   |
| Future Volume (vph)           | 35         | 641      | 39    | 48    | 718        | 43         | 16      | 11       | 29          | 37       | 28       | 38   |
| Ideal Flow (vphpl)            | 1750       | 1750     | 1750  | 1750  | 1750       | 1750       | 1750    | 1750     | 1750        | 1750     | 1750     | 1750 |
| Total Lost time (s)           | 5.0        | 5.0      |       | 5.0   | 5.0        |            | 5.0     | 5.0      |             | 5.0      | 5.0      |      |
| Lane Util. Factor             | 1.00       | 1.00     |       | 1.00  | 1.00       |            | 1.00    | 1.00     |             | 1.00     | 1.00     |      |
| Frpb, ped/bikes               | 1.00       | 1.00     |       | 1.00  | 1.00       |            | 1.00    | 0.98     |             | 1.00     | 0.97     |      |
| Flpb, ped/bikes               | 1.00       | 1.00     |       | 1.00  | 1.00       |            | 0.97    | 1.00     |             | 0.99     | 1.00     |      |
| Frt                           | 1.00       | 0.99     |       | 1.00  | 0.99       |            | 1.00    | 0.89     |             | 1.00     | 0.91     |      |
| Flt Protected                 | 0.95       | 1.00     |       | 0.95  | 1.00       |            | 0.95    | 1.00     |             | 0.95     | 1.00     |      |
| Satd. Flow (prot)             | 1484       | 1437     |       | 1338  | 1428       |            | 1216    | 1153     |             | 1281     | 1359     |      |
| Flt Permitted                 | 0.29       | 1.00     |       | 0.33  | 1.00       |            | 0.71    | 1.00     |             | 0.73     | 1.00     |      |
| Satd. Flow (perm)             | 447        | 1437     |       | 464   | 1428       |            | 912     | 1153     |             | 985      | 1359     |      |
| Peak-hour factor, PHF         | 0.98       | 0.98     | 0.98  | 0.98  | 0.98       | 0.98       | 0.98    | 0.98     | 0.98        | 0.98     | 0.98     | 0.98 |
| Adj. Flow (vph)               | 36         | 654      | 40    | 49    | 733        | 44         | 16      | 11       | 30          | 38       | 29       | 39   |
| RTOR Reduction (vph)          | 0          | 1        | 0     | 0     | 1          | 0          | 0       | 27       | 0           | 0        | 36       | 0    |
| Lane Group Flow (vph)         | 36         | 693      | 0     | 49    | 776        | 0          | 16      | 14       | 0           | 38       | 32       | 0    |
| Confl. Peds. (#/hr)           | 9          |          | 33    | 33    |            | 9          | 18      |          | 4           | 4        |          | 18   |
| Confl. Bikes (#/hr)           |            |          |       |       |            | 1          |         |          |             |          |          |      |
| Heavy Vehicles (%)            | 12%        | 20%      | 27%   | 24%   | 22%        | 10%        | 33%     | 50%      | 26%         | 29%      | 4%       | 22%  |
| Turn Type                     | D.P+P      | NA       |       | D.P+P | NA         |            | Perm    | NA       |             | Perm     | NA       |      |
| Protected Phases              | 5          | 2        |       | 1     | 6          |            |         | 8        |             |          | 4        |      |
| Permitted Phases              | 6          |          |       | 2     |            |            | 8       |          |             | 4        |          |      |
| Actuated Green, G (s)         | 67.5       | 64.0     |       | 67.5  | 64.2       |            | 7.6     | 7.6      |             | 7.6      | 7.6      |      |
| Effective Green, g (s)        | 67.5       | 64.0     |       | 67.5  | 64.2       |            | 7.6     | 7.6      |             | 7.6      | 7.6      |      |
| Actuated g/C Ratio            | 0.75       | 0.71     |       | 0.75  | 0.71       |            | 0.08    | 0.08     |             | 0.08     | 0.08     |      |
| Clearance Time (s)            | 5.0        | 5.0      |       | 5.0   | 5.0        |            | 5.0     | 5.0      |             | 5.0      | 5.0      |      |
| Vehicle Extension (s)         | 2.5        | 5.3      |       | 2.5   | 5.3        |            | 2.5     | 2.5      |             | 2.5      | 2.5      |      |
| Lane Grp Cap (vph)            | 372        | 1020     |       | 381   | 1017       |            | 76      | 97       |             | 83       | 114      |      |
| v/s Ratio Prot                | 0.00       | 0.48     |       | c0.00 | c0.54      |            |         | 0.01     |             |          | 0.02     |      |
| v/s Ratio Perm                | 0.07       |          |       | 0.09  |            |            | 0.02    |          |             | c0.04    |          |      |
| v/c Ratio                     | 0.10       | 0.68     |       | 0.13  | 0.76       |            | 0.21    | 0.14     |             | 0.46     | 0.28     |      |
| Uniform Delay, d1             | 4.2        | 7.3      |       | 3.7   | 8.2        |            | 38.5    | 38.2     |             | 39.3     | 38.7     |      |
| Progression Factor            | 1.00       | 1.00     |       | 1.00  | 1.00       |            | 1.00    | 1.00     |             | 1.00     | 1.00     |      |
| Incremental Delay, d2         | 0.1        | 2.5      |       | 0.1   | 4.2        |            | 1.0     | 0.5      |             | 2.9      | 1.0      |      |
| Delay (s)                     | 4.3        | 9.8      |       | 3.8   | 12.3       |            | 39.5    | 38.7     |             | 42.2     | 39.7     |      |
| Level of Service              | Α          | Α        |       | Α     | В          |            | D       | D        |             | D        | D        |      |
| Approach Delay (s)            |            | 9.5      |       |       | 11.8       |            |         | 38.9     |             |          | 40.6     |      |
| Approach LOS                  |            | Α        |       |       | В          |            |         | D        |             |          | D        |      |
| Intersection Summary          |            |          |       |       |            |            |         |          |             |          |          |      |
| HCM 2000 Control Delay        |            |          | 13.5  | H     | CM 2000    | Level of S | Service |          | В           |          |          |      |
| HCM 2000 Volume to Capa       | city ratio |          | 0.70  |       |            |            |         |          |             |          |          |      |
| Actuated Cycle Length (s)     | •          |          | 90.1  | S     | um of lost | time (s)   |         |          | 15.0        |          |          |      |
| Intersection Capacity Utiliza | ition      |          | 67.3% |       | CU Level o |            |         |          | С           |          |          |      |
| Analysis Period (min)         |            |          | 15    |       |            |            |         |          |             |          |          |      |
| c Critical Lane Group         |            |          |       |       |            |            |         |          |             |          |          |      |

| Intersection           |         |          |          |          |        |            |                      |                                |
|------------------------|---------|----------|----------|----------|--------|------------|----------------------|--------------------------------|
| Int Delay, s/veh       | 17      |          |          |          |        |            |                      |                                |
| Movement               | EBL     | EBT      | WBT      | WBR      | SBL    | SBR        |                      |                                |
| ane Configurations     | ሻ       | <b>†</b> | <b>1</b> | 7        | ¥      |            |                      |                                |
| Traffic Vol, veh/h     | 96      | 703      | 788      | 150      | 65     | 53         |                      |                                |
| uture Vol, veh/h       | 96      | 703      | 788      | 150      | 65     | 53         |                      |                                |
| Conflicting Peds, #/hr |         | 0        | 0        | 8        | 0      | 0          |                      |                                |
| ign Control            | Free    | Free     | Free     | Free     | Stop   | Stop       |                      |                                |
| T Channelized          | -       |          | -        | Yield    | -      | None       |                      |                                |
| torage Length          | 130     | -        | -        | 60       | 0      | -          |                      |                                |
| eh in Median Storag    | e,# -   | 0        | 0        | -        | 0      | -          |                      |                                |
| Grade, %               | -       | 0        | 0        | -        | 0      | -          |                      |                                |
| eak Hour Factor        | 94      | 94       | 94       | 94       | 94     | 94         |                      |                                |
| leavy Vehicles, %      | 25      | 21       | 18       | 18       | 30     | 24         |                      |                                |
| 1vmt Flow              | 102     | 748      | 838      | 160      | 69     | 56         |                      |                                |
|                        |         |          |          |          |        |            |                      |                                |
| ajor/Minor             | Major1  |          | Major2   | <u> </u> | Minor2 |            |                      |                                |
| conflicting Flow All   | 846     | 0        | -        | 0        | 1798   | 846        |                      |                                |
| Stage 1                | -       | -        | -        | -        | 846    | -          |                      |                                |
| Stage 2                | -       | -        | _        | -        | 952    | -          |                      |                                |
| ritical Hdwy           | 4.35    | -        | -        | -        | 6.7    | 6.44       |                      |                                |
| itical Hdwy Stg 1      | -       | -        | -        | -        | 5.7    | -          |                      |                                |
| itical Hdwy Stg 2      | -       | -        | -        | -        | 5.7    | -          |                      |                                |
| ollow-up Hdwy          | 2.425   | -        | -        | -        |        | 3.516      |                      |                                |
| ot Cap-1 Maneuver      | 701     | -        | -        | -        | 75     | 331        |                      |                                |
| Stage 1                | -       | -        | -        | -        | 377    | -          |                      |                                |
| Stage 2                | -       | -        | -        | -        | 334    | -          |                      |                                |
| atoon blocked, %       |         | -        | -        | -        |        |            |                      |                                |
| lov Cap-1 Maneuver     | 701     | -        | -        | -        | ~ 63   | 328        |                      |                                |
| lov Cap-2 Maneuver     |         | -        | -        | -        | ~ 63   | -          |                      |                                |
| Stage 1                | -       | -        | -        | -        | 374    | -          |                      |                                |
| Stage 2                | -       | -        | -        | -        | 283    | -          |                      |                                |
|                        |         |          |          |          |        |            |                      |                                |
| proach                 | EB      |          | WB       |          | SB     |            |                      |                                |
| CM Control Delay, s    | 1.3     |          | 0        |          | 257.8  |            |                      |                                |
| ICM LOS                |         |          |          |          | F      |            |                      |                                |
|                        |         |          |          |          | •      |            |                      |                                |
| inor Lane/Major Mvi    | mt      | EBL      | EBT      | WBT      | WBR    | SBLn1      |                      |                                |
| apacity (veh/h)        |         | 701      | 201      |          | 11011  | 99         |                      |                                |
| CM Lane V/C Ratio      |         | 0.146    | -        | -        | -      | 1.268      |                      |                                |
| CM Control Delay (s    | :) (:   | 11       | -        | -        |        | 257.8      |                      |                                |
| CM Lane LOS            | 7)      | В        | -        | -        | -      | 237.0<br>F |                      |                                |
| CM 95th %tile Q(vel    | n)      | 0.5      |          | _        | _      | 8.7        |                      |                                |
| ·                      | '/      | 0.0      |          |          |        | 0.7        |                      |                                |
| otes                   |         |          |          |          |        |            |                      |                                |
| Volume exceeds ca      | apacity | \$: D∈   | elay exc | ceeds 30 | 00s    | +: Com     | putation Not Defined | *: All major volume in platoor |

| Intersection           |               |          |      |        |      |          |           |      |       |           |                 |       |
|------------------------|---------------|----------|------|--------|------|----------|-----------|------|-------|-----------|-----------------|-------|
| Int Delay, s/veh       | 12.4          |          |      |        |      |          |           |      |       |           |                 |       |
| Movement               | EBL           | EBT      | EBR  | WBL    | WBT  | WBR      | NBL       | NBT  | NBR   | SBL       | SBT             | SBR   |
| Lane Configurations    | T T           | <b>1</b> | LDN  | YVDL   | 7}   | אטוע     | NDL       | 4    | NDI   | JUL       | <u>ુુુુુુુુ</u> | 7 JUK |
| Traffic Vol, veh/h     | 12            | 639      | 54   | 106    | 822  | 17       | 15        | 3    | 91    | 23        | 4               | 63    |
| Future Vol, veh/h      | 12            | 639      | 54   | 106    | 822  | 17       | 15        | 3    | 91    | 23        | 4               | 63    |
| Conflicting Peds, #/hr | 4             | 037      | 14   | 14     | 022  | 4        | 22        | 0    | 0     | 0         | 0               | 22    |
| Sign Control           | Free          | Free     | Free | Free   | Free | Free     | Stop      | Stop | Stop  | Stop      | Stop            | Stop  |
| RT Channelized         | -             | -        | None | -      | -    | None     | 310p<br>- | 310p | None  | 310p      | 310p            | None  |
| Storage Length         | 90            | -        | None | 185    | _    | None     | -         | -    | NONE  |           | -               | 55    |
| Veh in Median Storage  |               | 0        | -    | 105    | 0    | -        | _         | 0    | -     | -         | 0               | -     |
| Grade, %               | <b>5, π</b> − | 0        | -    | -      | 0    |          | _         | 0    | -     |           | 0               |       |
| Peak Hour Factor       | 91            | 91       | 91   | 91     | 91   | 91       | 91        | 91   | 91    | 91        | 91              | 91    |
| Heavy Vehicles, %      | 91            | 23       | 16   | 91     | 23   | 38       | 91        | 0    | 10    | 91        | 25              | 7     |
| Mvmt Flow              | 13            | 702      | 59   | 116    | 903  | 19       | 16        | 3    | 100   | 25        | 4               | 69    |
| IVIVIIIL FIUW          | 13            | 702      | 39   | 110    | 903  | 19       | 10        | 3    | 100   | 20        | 4               | 09    |
|                        |               |          |      |        |      |          |           |      |       |           |                 |       |
| Major/Minor            | Major1        |          |      | Major2 |      | <u> </u> | Minor1    |      |       | Minor2    |                 |       |
| Conflicting Flow All   | 926           | 0        | 0    | 776    | 0    | 0        | 1942      | 1931 | 746   | 1960      | 1952            | 939   |
| Stage 1                | -             | -        | -    | -      | -    | -        | 772       | 772  | -     | 1150      | 1150            | -     |
| Stage 2                | -             | -        | -    | -      | -    | -        | 1170      | 1159 | -     | 810       | 802             | -     |
| Critical Hdwy          | 4.19          | -        | -    | 4.19   | -    | -        | 7.1       | 6.5  | 6.3   | 7.19      | 6.75            | 6.27  |
| Critical Hdwy Stg 1    | -             | -        | -    | -      | -    | -        | 6.1       | 5.5  | -     | 6.19      | 5.75            | -     |
| Critical Hdwy Stg 2    | -             | -        | -    | -      | -    | -        | 6.1       | 5.5  | -     | 6.19      | 5.75            | -     |
| Follow-up Hdwy         | 2.281         | -        | -    | 2.281  | -    | -        | 3.5       | 4    | 3.39  | 3.581     | 4.225           | 3.363 |
| Pot Cap-1 Maneuver     | 710           | -        | -    | 810    | -    | -        | 50        | 67   | 401   | 46        | 56              | 313   |
| Stage 1                | -             | -        | -    | -      | -    | -        | 395       | 412  | -     | 234       | 247             | -     |
| Stage 2                | -             | -        | -    | -      | -    | -        | 237       | 272  | -     | 364       | 365             | -     |
| Platoon blocked, %     |               | -        | -    |        | -    | -        |           |      |       |           |                 |       |
| Mov Cap-1 Maneuver     | 695           | -        | -    | 810    | -    | -        | 30        | 55   | 396   | 29        | 46              | 305   |
| Mov Cap-2 Maneuver     | -             | -        | -    | -      | -    | -        | 30        | 55   | -     | 29        | 46              | -     |
| Stage 1                | -             | -        | -    | -      | -    | -        | 382       | 399  | -     | 229       | 211             | -     |
| Stage 2                | -             | -        | -    | -      | -    | -        | 150       | 232  | -     | 265       | 353             | -     |
|                        |               |          |      |        |      |          |           |      |       |           |                 |       |
| Approach               | EB            |          |      | WB     |      |          | NB        |      |       | SB        |                 |       |
| HCM Control Delay, s   | 0.2           |          |      | 1.1    |      |          | 104.7     |      |       | 114.7     |                 |       |
| HCM LOS                | 0.2           |          |      | 1.1    |      |          | F         |      |       | F         |                 |       |
| 1.0101 200             |               |          |      |        |      |          | '         |      |       |           |                 |       |
| Minor Lane/Major Mvn   | nt            | NBLn1    | EBL  | EBT    | EBR  | WBL      | WBT       | WBR: | SBLn1 | SBLn2     |                 |       |
| Capacity (veh/h)       |               | 139      | 695  | _      | _    | 810      | _         | _    | 31    | 305       |                 |       |
| HCM Lane V/C Ratio     |               | 0.862    |      | _      | _    | 0.144    | _         | _    | 0.957 |           |                 |       |
| HCM Control Delay (s)  | )             | 104.7    | 10.3 |        | _    | 10.2     | -         |      | 335.3 | 20.2      |                 |       |
| HCM Lane LOS           |               | F        | В    | _      | _    | В        | _         | -Ψ   | F     | 20.2<br>C |                 |       |
| HCM 95th %tile Q(veh   | 1)            | 5.6      | 0.1  |        |      | 0.5      |           | _    | 3.3   | 0.9       |                 |       |
| How but build a (ven   | '/            | 5.0      | 0.1  | _      |      | 0.0      |           |      | 5.5   | 0.7       |                 |       |

|                                      | ۶            | <b>→</b>     | •            | •            | <b>←</b>     | •          | 4            | <b>†</b>     | <b>/</b>     | <b>&gt;</b>  | ţ            | 4    |
|--------------------------------------|--------------|--------------|--------------|--------------|--------------|------------|--------------|--------------|--------------|--------------|--------------|------|
| Movement                             | EBL          | EBT          | EBR          | WBL          | WBT          | WBR        | NBL          | NBT          | NBR          | SBL          | SBT          | SBR  |
| Lane Configurations                  | ሻ            | <b>↑</b>     | 7            | ሻ            | <b>₽</b>     |            | ሻሻ           | <b>^</b>     | 7            | Ť            | <b>∱</b> ∱   |      |
| Traffic Volume (vph)                 | 159          | 324          | 251          | 203          | 240          | 60         | 230          | 368          | 92           | 160          | 790          | 127  |
| Future Volume (vph)                  | 159          | 324          | 251          | 203          | 240          | 60         | 230          | 368          | 92           | 160          | 790          | 127  |
| Ideal Flow (vphpl)                   | 1750         | 1750         | 1750         | 1750         | 1750         | 1750       | 1750         | 1750         | 1750         | 1750         | 1750         | 1750 |
| Total Lost time (s)                  | 4.5          | 5.5          | 5.5          | 4.5          | 5.5          |            | 4.5          | 5.5          | 5.5          | 4.5          | 5.5          |      |
| Lane Util. Factor                    | 1.00         | 1.00         | 1.00         | 1.00         | 1.00         |            | 0.97         | 0.95         | 1.00         | 1.00         | 0.95         |      |
| Frpb, ped/bikes                      | 1.00         | 1.00         | 0.98         | 1.00         | 1.00         |            | 1.00         | 1.00         | 0.98         | 1.00         | 1.00         |      |
| Flpb, ped/bikes                      | 1.00         | 1.00         | 1.00         | 1.00         | 1.00         |            | 1.00         | 1.00         | 1.00         | 1.00         | 1.00         |      |
| Frt<br>Elt Drotoctod                 | 1.00         | 1.00<br>1.00 | 0.85         | 1.00<br>0.95 | 0.97<br>1.00 |            | 1.00         | 1.00         | 0.85         | 1.00         | 0.98<br>1.00 |      |
| Flt Protected Satd. Flow (prot)      | 0.95<br>1421 | 1483         | 1.00<br>1218 | 1341         | 1326         |            | 0.95<br>2906 | 1.00<br>2639 | 1.00<br>1054 | 0.95<br>1374 | 2927         |      |
| Flt Permitted                        | 0.95         | 1.00         | 1.00         | 0.95         | 1.00         |            | 0.95         | 1.00         | 1.00         | 0.95         | 1.00         |      |
| Satd. Flow (perm)                    | 1421         | 1483         | 1218         | 1341         | 1326         |            | 2906         | 2639         | 1054         | 1374         | 2927         |      |
|                                      | 0.96         | 0.96         | 0.96         | 0.96         |              | 0.96       | 0.96         | 0.96         | 0.96         | 0.96         | 0.96         | 0.96 |
| Peak-hour factor, PHF                | 166          | 338          | 261          | 211          | 0.96<br>250  |            | 240          | 383          | 96           | 167          | 823          | 132  |
| Adj. Flow (vph) RTOR Reduction (vph) | 0            | 330          | 200          | 0            | 7            | 62<br>0    | 0            | 303          | 65           | 0            | o23<br>9     | 0    |
| Lane Group Flow (vph)                | 166          | 338          | 61           | 211          | 306          | 0          | 240          | 383          | 31           | 167          | 946          | 0    |
| Confl. Peds. (#/hr)                  | 100          | 330          | 5            | 5            | 300          | U          | 240          | 303          | 1            | 107          | 940          | U    |
| Heavy Vehicles (%)                   | 17%          | 18%          | 20%          | 24%          | 25%          | 40%        | 11%          | 26%          | 38%          | 21%          | 10%          | 19%  |
| Turn Type                            | Prot         | NA           | Perm         | Prot         | NA           | 4070       | Prot         | NA           | custom       | Prot         | NA           | 1770 |
| Protected Phases                     | 3            | 8            | r Cilli      | 7            | 4            |            | 1            | 6            | Custom       | 5            | 2            |      |
| Permitted Phases                     | J            | U            | 8            | ,            | 7            |            | !            | U            | 2            | J            | ۷            |      |
| Actuated Green, G (s)                | 23.3         | 30.5         | 30.5         | 23.3         | 30.5         |            | 14.4         | 40.7         | 41.8         | 15.5         | 41.8         |      |
| Effective Green, g (s)               | 23.3         | 30.5         | 30.5         | 23.3         | 30.5         |            | 14.4         | 40.7         | 41.8         | 15.5         | 41.8         |      |
| Actuated g/C Ratio                   | 0.18         | 0.23         | 0.23         | 0.18         | 0.23         |            | 0.11         | 0.31         | 0.32         | 0.12         | 0.32         |      |
| Clearance Time (s)                   | 4.5          | 5.5          | 5.5          | 4.5          | 5.5          |            | 4.5          | 5.5          | 5.5          | 4.5          | 5.5          |      |
| Vehicle Extension (s)                | 3.0          | 3.2          | 3.2          | 3.0          | 3.5          |            | 3.0          | 5.2          | 5.2          | 3.0          | 5.2          |      |
| Lane Grp Cap (vph)                   | 254          | 347          | 285          | 240          | 311          |            | 321          | 826          | 338          | 163          | 941          |      |
| v/s Ratio Prot                       | 0.12         | 0.23         | 200          | c0.16        | c0.23        |            | c0.08        | 0.15         | 000          | 0.12         | c0.32        |      |
| v/s Ratio Perm                       |              |              | 0.05         |              |              |            |              |              | 0.03         |              |              |      |
| v/c Ratio                            | 0.65         | 0.97         | 0.21         | 0.88         | 0.98         |            | 0.75         | 0.46         | 0.09         | 1.02         | 1.00         |      |
| Uniform Delay, d1                    | 49.6         | 49.4         | 40.1         | 52.0         | 49.5         |            | 56.0         | 35.9         | 30.8         | 57.2         | 44.1         |      |
| Progression Factor                   | 1.00         | 1.00         | 1.00         | 1.00         | 1.00         |            | 1.17         | 0.71         | 0.32         | 1.00         | 1.00         |      |
| Incremental Delay, d2                | 5.9          | 41.1         | 0.4          | 28.4         | 46.5         |            | 7.8          | 1.6          | 0.5          | 77.1         | 30.5         |      |
| Delay (s)                            | 55.5         | 90.5         | 40.5         | 80.4         | 96.0         |            | 73.3         | 27.2         | 10.2         | 134.3        | 74.6         |      |
| Level of Service                     | Ε            | F            | D            | F            | F            |            | Ε            | С            | В            | F            | Е            |      |
| Approach Delay (s)                   |              | 65.8         |              |              | 89.7         |            |              | 40.3         |              |              | 83.5         |      |
| Approach LOS                         |              | Е            |              |              | F            |            |              | D            |              |              | F            |      |
| Intersection Summary                 |              |              |              |              |              |            |              |              |              |              |              |      |
| HCM 2000 Control Delay               |              |              | 70.3         | H            | CM 2000      | Level of S | Service      |              | Е            |              |              |      |
| HCM 2000 Volume to Capac             | ity ratio    |              | 0.94         |              |              |            |              |              |              |              |              |      |
| Actuated Cycle Length (s)            |              |              | 130.0        | Sı           | um of lost   | time (s)   |              |              | 20.0         |              |              |      |
| Intersection Capacity Utilizat       | ion          |              | 84.5%        |              | CU Level o   | . ,        |              |              | E            |              |              |      |
| Analysis Period (min)                |              |              | 15           |              |              |            |              |              |              |              |              |      |

| Intersection Delay, s/veh 12  |   |
|-------------------------------|---|
| initersection belay, siven 12 | 2 |
| Intersection LOS B            | В |

| Movement                | EBL             | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|-------------------------|-----------------|------|------|------|------|------|------|------|------|------|------|------|--|
| Lane Configurations     |                 | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |  |
| Traffic Vol, veh/h      | 18              | 44   | 121  | 29   | 61   | 7    | 51   | 119  | 15   | 14   | 219  | 38   |  |
| Future Vol, veh/h       | 18              | 44   | 121  | 29   | 61   | 7    | 51   | 119  | 15   | 14   | 219  | 38   |  |
| Peak Hour Factor        | 0.94            | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 |  |
| Heavy Vehicles, %       | 39              | 23   | 6    | 31   | 20   | 86   | 22   | 13   | 27   | 36   | 13   | 16   |  |
| Mvmt Flow               | 19              | 47   | 129  | 31   | 65   | 7    | 54   | 127  | 16   | 15   | 233  | 40   |  |
| Number of Lanes         | 0               | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |  |
| Approach                | EB              |      |      | WB   |      |      | NB   |      |      | SB   |      |      |  |
| Opposing Approach       | WB              |      |      | EB   |      |      | SB   |      |      | NB   |      |      |  |
| Opposing Lanes          | 1               |      |      | 1    |      |      | 1    |      |      | 1    |      |      |  |
| Conflicting Approach Le | eft SB          |      |      | NB   |      |      | EB   |      |      | WB   |      |      |  |
| Conflicting Lanes Left  | 1               |      |      | 1    |      |      | 1    |      |      | 1    |      |      |  |
| Conflicting Approach Ri | igh <b>t</b> NB |      |      | SB   |      |      | WB   |      |      | EB   |      |      |  |
| Conflicting Lanes Right | 1               |      |      | 1    |      |      | 1    |      |      | 1    |      |      |  |
| HCM Control Delay       | 11.5            |      |      | 10.6 |      |      | 11.3 |      |      | 13.4 |      |      |  |
| HCM LOS                 | В               |      |      | В    |      |      | В    |      |      | В    |      |      |  |

| Lane                   | NBLn1 | EBLn1\ | WBLn1 | SBLn1 |
|------------------------|-------|--------|-------|-------|
| Vol Left, %            | 28%   | 10%    | 30%   | 5%    |
| Vol Thru, %            | 64%   | 24%    | 63%   | 81%   |
| Vol Right, %           | 8%    | 66%    | 7%    | 14%   |
| Sign Control           | Stop  | Stop   | Stop  | Stop  |
| Traffic Vol by Lane    | 185   | 183    | 97    | 271   |
| LT Vol                 | 51    | 18     | 29    | 14    |
| Through Vol            | 119   | 44     | 61    | 219   |
| RT Vol                 | 15    | 121    | 7     | 38    |
| Lane Flow Rate         | 197   | 195    | 103   | 288   |
| Geometry Grp           | 1     | 1      | 1     | 1     |
| Degree of Util (X)     | 0.31  | 0.313  | 0.178 | 0.455 |
| Departure Headway (Hd) | 5.674 | 5.787  | 6.218 | 5.678 |
| Convergence, Y/N       | Yes   | Yes    | Yes   | Yes   |
| Cap                    | 634   | 621    | 577   | 634   |
| Service Time           | 3.71  | 3.824  | 4.262 | 3.71  |
| HCM Lane V/C Ratio     | 0.311 | 0.314  | 0.179 | 0.454 |
| HCM Control Delay      | 11.3  | 11.5   | 10.6  | 13.4  |
| HCM Lane LOS           | В     | В      | В     | В     |
| HCM 95th-tile Q        | 1.3   | 1.3    | 0.6   | 2.4   |

| Intersection           |         |        |        |       |      |      |  |  |  |
|------------------------|---------|--------|--------|-------|------|------|--|--|--|
| Intersection Delay, s/ | veh11.6 |        |        |       |      |      |  |  |  |
| Intersection LOS       | В       |        |        |       |      |      |  |  |  |
|                        |         |        |        |       |      |      |  |  |  |
| Movement               | WBL     | WBR    | NBT    | NBR   | SBL  | SBT  |  |  |  |
| Lane Configurations    | ¥       |        | ₽      |       |      | र्स  |  |  |  |
| Traffic Vol, veh/h     | 129     | 65     | 128    | 113   | 96   | 144  |  |  |  |
| Future Vol, veh/h      | 129     | 65     | 128    | 113   | 96   | 144  |  |  |  |
| Peak Hour Factor       | 0.84    | 0.84   | 0.84   | 0.84  | 0.84 | 0.84 |  |  |  |
| Heavy Vehicles, %      | 12      | 28     | 15     | 19    | 22   | 24   |  |  |  |
| Mvmt Flow              | 154     | 77     | 152    | 135   | 114  | 171  |  |  |  |
| Number of Lanes        | 1       | 0      | 1      | 0     | 0    | 1    |  |  |  |
| Approach               | WB      |        | NB     |       | SB   |      |  |  |  |
| Opposing Approach      |         |        | SB     |       | NB   |      |  |  |  |
| Opposing Lanes         | 0       |        | 1      |       | 1    |      |  |  |  |
| Conflicting Approach   |         |        |        |       | WB   |      |  |  |  |
| Conflicting Lanes Lef  |         |        | 0      |       | 1    |      |  |  |  |
| Conflicting Approach   |         |        | WB     |       |      |      |  |  |  |
| Conflicting Lanes Rig  |         |        | 1      |       | 0    |      |  |  |  |
| HCM Control Delay      | 11.4    |        | 11.1   |       | 12.4 |      |  |  |  |
| HCM LOS                | В       |        | В      |       | В    |      |  |  |  |
|                        |         |        |        |       |      |      |  |  |  |
| Lane                   | 1       | VBLn1V | VBLn1S | SBLn1 |      |      |  |  |  |

| Lane                   | NBLn1\ | VBLn1 | SBLn1 |  |
|------------------------|--------|-------|-------|--|
| Vol Left, %            | 0%     | 66%   | 40%   |  |
| Vol Thru, %            | 53%    | 0%    | 60%   |  |
| Vol Right, %           | 47%    | 34%   | 0%    |  |
| Sign Control           | Stop   | Stop  | Stop  |  |
| Traffic Vol by Lane    | 241    | 194   | 240   |  |
| LT Vol                 | 0      | 129   | 96    |  |
| Through Vol            | 128    | 0     | 144   |  |
| RT Vol                 | 113    | 65    | 0     |  |
| Lane Flow Rate         | 287    | 231   | 286   |  |
| Geometry Grp           | 1      | 1     | 1     |  |
| Degree of Util (X)     | 0.39   | 0.348 | 0.424 |  |
| Departure Headway (Hd) | 4.889  | 5.418 | 5.338 |  |
| Convergence, Y/N       | Yes    | Yes   | Yes   |  |
| Cap                    | 729    | 656   | 669   |  |
| Service Time           | 2.976  | 3.514 | 3.428 |  |
| HCM Lane V/C Ratio     | 0.394  | 0.352 | 0.428 |  |
| HCM Control Delay      | 11.1   | 11.4  | 12.4  |  |
| HCM Lane LOS           | В      | В     | В     |  |
| HCM 95th-tile Q        | 1.9    | 1.6   | 2.1   |  |

| Intersection            |        |     |     |     |     |     |     |     |     |     |     |     |  |
|-------------------------|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|
| Intersection Delay, s/v | eh14.2 |     |     |     |     |     |     |     |     |     |     |     |  |
| Intersection LOS        | В      |     |     |     |     |     |     |     |     |     |     |     |  |
|                         |        |     |     |     |     |     |     |     |     |     |     |     |  |
| Marramant               | EDI    | EDT | EDD | WDI | WDT | WDD | NDI | NDT | NDD | CDI | CDT | CDD |  |
| Movement                | EBL    | FRI | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |  |
| Lane Configurations     |        | 4   |     |     | 4   |     |     | 4   |     |     | 4   |     |  |
| Traffic Vol, veh/h      | 12     | 105 | 13  | 31  | 115 | 51  | 10  | 147 | 36  | 24  | 134 | 23  |  |
| Future Vol, veh/h       | 12     | 105 | 13  | 31  | 115 | 51  | 10  | 147 | 36  | 24  | 134 | 23  |  |

| Lane Configurations |      | ₩,   |      |      | **   |      |      | **   |      |      | **   |      |  |
|---------------------|------|------|------|------|------|------|------|------|------|------|------|------|--|
| Traffic Vol, veh/h  | 12   | 105  | 13   | 31   | 115  | 51   | 10   | 147  | 36   | 24   | 134  | 23   |  |
| Future Vol, veh/h   | 12   | 105  | 13   | 31   | 115  | 51   | 10   | 147  | 36   | 24   | 134  | 23   |  |
| Peak Hour Factor    | 0.74 | 0.74 | 0.74 | 0.74 | 0.74 | 0.74 | 0.74 | 0.74 | 0.74 | 0.74 | 0.74 | 0.74 |  |
| Heavy Vehicles, %   | 25   | 25   | 31   | 16   | 25   | 18   | 30   | 13   | 28   | 54   | 20   | 9    |  |
| Mvmt Flow           | 16   | 142  | 18   | 42   | 155  | 69   | 14   | 199  | 49   | 32   | 181  | 31   |  |
| Number of Lanes     | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |  |
| Approach            | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |  |
| Onnosing Approach   | WR   |      |      | FR   |      |      | SB   |      |      | NR   |      |      |  |

| Арргоасті              | LD     | VVD | ואט  | 30   |  |
|------------------------|--------|-----|------|------|--|
| Opposing Approach      | WB     | EB  | SB   | NB   |  |
| Opposing Lanes         | 1      | 1   | 1    | 1    |  |
| Conflicting Approach L | eft SB | NB  | EB   | WB   |  |
| Conflicting Lanes Left | 1      | 1   | 1    | 1    |  |
| Conflicting Approach R | RighNB | SB  | WB   | EB   |  |
| Conflicting Lanes Righ | t 1    | 1   | 1    | 1    |  |
| HCM Control Delay      | 12.5   | 14  | 14.4 | 15.3 |  |
| HCM LOS                | В      | В   | В    | С    |  |
|                        |        |     |      |      |  |

| Lane                   | NBLn1 | EBLn1\ | VBLn1 | SBLn1 |
|------------------------|-------|--------|-------|-------|
| Vol Left, %            | 5%    | 9%     | 16%   | 13%   |
| Vol Thru, %            | 76%   | 81%    | 58%   | 74%   |
| Vol Right, %           | 19%   | 10%    | 26%   | 13%   |
| Sign Control           | Stop  | Stop   | Stop  | Stop  |
| Traffic Vol by Lane    | 193   | 130    | 197   | 181   |
| LT Vol                 | 10    | 12     | 31    | 24    |
| Through Vol            | 147   | 105    | 115   | 134   |
| RT Vol                 | 36    | 13     | 51    | 23    |
| Lane Flow Rate         | 261   | 176    | 266   | 245   |
| Geometry Grp           | 1     | 1      | 1     | 1     |
| Degree of Util (X)     | 0.45  | 0.315  | 0.447 | 0.454 |
| Departure Headway (Hd) | 6.217 | 6.461  | 6.043 | 6.68  |
| Convergence, Y/N       | Yes   | Yes    | Yes   | Yes   |
| Cap                    | 574   | 552    | 591   | 536   |
| Service Time           | 4.303 | 4.558  | 4.13  | 4.766 |
| HCM Lane V/C Ratio     | 0.455 | 0.319  | 0.45  | 0.457 |
| HCM Control Delay      | 14.4  | 12.5   | 14    | 15.3  |
| HCM Lane LOS           | В     | В      | В     | С     |
| HCM 95th-tile Q        | 2.3   | 1.3    | 2.3   | 2.3   |

| Intersection                                |        |  |  |  |  |  |
|---------------------------------------------|--------|--|--|--|--|--|
| Intersection Delay, s/v<br>Intersection LOS | eh11.9 |  |  |  |  |  |
| Intersection LOS                            | В      |  |  |  |  |  |
|                                             |        |  |  |  |  |  |

| Movement                | EBL             | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|-------------------------|-----------------|------|------|------|------|------|------|------|------|------|------|------|--|
| Lane Configurations     |                 | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |  |
| Traffic Vol, veh/h      | 21              | 174  | 5    | 29   | 151  | 49   | 12   | 120  | 27   | 37   | 108  | 25   |  |
| Future Vol, veh/h       | 21              | 174  | 5    | 29   | 151  | 49   | 12   | 120  | 27   | 37   | 108  | 25   |  |
| Peak Hour Factor        | 0.92            | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |  |
| Heavy Vehicles, %       | 10              | 20   | 40   | 38   | 23   | 14   | 25   | 15   | 22   | 19   | 18   | 24   |  |
| Mvmt Flow               | 23              | 189  | 5    | 32   | 164  | 53   | 13   | 130  | 29   | 40   | 117  | 27   |  |
| Number of Lanes         | 0               | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |  |
| Approach                | EB              |      |      | WB   |      |      | NB   |      |      | SB   |      |      |  |
| Opposing Approach       | WB              |      |      | EB   |      |      | SB   |      |      | NB   |      |      |  |
| Opposing Lanes          | 1               |      |      | 1    |      |      | 1    |      |      | 1    |      |      |  |
| Conflicting Approach Le | eft SB          |      |      | NB   |      |      | EB   |      |      | WB   |      |      |  |
| Conflicting Lanes Left  | 1               |      |      | 1    |      |      | 1    |      |      | 1    |      |      |  |
| Conflicting Approach Ri | igh <b>t</b> NB |      |      | SB   |      |      | WB   |      |      | EB   |      |      |  |
| Conflicting Lanes Right | 1               |      |      | 1    |      |      | 1    |      |      | 1    |      |      |  |
| HCM Control Delay       | 11.5            |      |      | 13   |      |      | 11.4 |      |      | 11.4 |      |      |  |
| HCM LOS                 | В               |      |      | В    |      |      | В    |      |      | В    |      |      |  |

| Lane                   | NBLn1 | EBLn1\ | WBLn1 | SBLn1 |
|------------------------|-------|--------|-------|-------|
| Vol Left, %            | 8%    | 10%    | 13%   | 22%   |
| Vol Thru, %            | 75%   | 87%    | 66%   | 64%   |
| Vol Right, %           | 17%   | 3%     | 21%   | 15%   |
| Sign Control           | Stop  | Stop   | Stop  | Stop  |
| Traffic Vol by Lane    | 159   | 200    | 229   | 170   |
| LT Vol                 | 12    | 21     | 29    | 37    |
| Through Vol            | 120   | 174    | 151   | 108   |
| RT Vol                 | 27    | 5      | 49    | 25    |
| Lane Flow Rate         | 173   | 217    | 249   | 185   |
| Geometry Grp           | 1     | 1      | 1     | 1     |
| Degree of Util (X)     | 0.286 | 0.338  | 0.408 | 0.301 |
| Departure Headway (Hd) | 5.95  | 5.602  | 5.895 | 5.87  |
| Convergence, Y/N       | Yes   | Yes    | Yes   | Yes   |
| Cap                    | 603   | 641    | 610   | 612   |
| Service Time           | 3.999 | 3.648  | 3.938 | 3.919 |
| HCM Lane V/C Ratio     | 0.287 | 0.339  | 0.408 | 0.302 |
| HCM Control Delay      | 11.4  | 11.5   | 13    | 11.4  |
| HCM Lane LOS           | В     | В      | В     | В     |
| HCM 95th-tile Q        | 1.2   | 1.5    | 2     | 1.3   |

| Intersection              |    |  |  |  |
|---------------------------|----|--|--|--|
| Intersection Delay, s/veh | 11 |  |  |  |
| Intersection LOS          | В  |  |  |  |
|                           |    |  |  |  |

| Movement                | EBL            | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|-------------------------|----------------|------|------|------|------|------|------|------|------|------|------|------|--|
| Lane Configurations     |                | 4    |      |      | 4    |      |      | र्स  | 7    |      | 4    |      |  |
| Traffic Vol, veh/h      | 14             | 138  | 15   | 45   | 83   | 42   | 7    | 78   | 16   | 47   | 84   | 17   |  |
| Future Vol, veh/h       | 14             | 138  | 15   | 45   | 83   | 42   | 7    | 78   | 16   | 47   | 84   | 17   |  |
| Peak Hour Factor        | 0.77           | 0.77 | 0.77 | 0.77 | 0.77 | 0.77 | 0.77 | 0.77 | 0.77 | 0.77 | 0.77 | 0.77 |  |
| Heavy Vehicles, %       | 14             | 23   | 13   | 11   | 28   | 14   | 43   | 18   | 50   | 9    | 21   | 12   |  |
| Mvmt Flow               | 18             | 179  | 19   | 58   | 108  | 55   | 9    | 101  | 21   | 61   | 109  | 22   |  |
| Number of Lanes         | 0              | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 1    | 0    | 1    | 0    |  |
| Approach                | EB             |      |      | WB   |      |      | NB   |      |      | SB   |      |      |  |
| Opposing Approach       | WB             |      |      | EB   |      |      | SB   |      |      | NB   |      |      |  |
| Opposing Lanes          | 1              |      |      | 1    |      |      | 1    |      |      | 2    |      |      |  |
| Conflicting Approach Le | eft SB         |      |      | NB   |      |      | EB   |      |      | WB   |      |      |  |
| Conflicting Lanes Left  | 1              |      |      | 2    |      |      | 1    |      |      | 1    |      |      |  |
| Conflicting Approach R  | igh <b>N</b> B |      |      | SB   |      |      | WB   |      |      | EB   |      |      |  |
| Conflicting Lanes Right | 2              |      |      | 1    |      |      | 1    |      |      | 1    |      |      |  |
| HCM Control Delay       | 11.1           |      |      | 10.9 |      |      | 10.9 |      |      | 11.1 |      |      |  |
| HCM LOS                 | В              |      |      | В    |      |      | В    |      |      | В    |      |      |  |

| Lane                   | NBLn11 | NBLn2 | EBLn1V | VBLn1: | SBLn1 |   |
|------------------------|--------|-------|--------|--------|-------|---|
| Vol Left, %            | 8%     | 0%    | 8%     | 26%    | 32%   | ) |
| Vol Thru, %            | 92%    | 0%    | 83%    | 49%    | 57%   | ) |
| Vol Right, %           | 0%     | 100%  | 9%     | 25%    | 11%   | ) |
| Sign Control           | Stop   | Stop  | Stop   | Stop   | Stop  | ) |
| Traffic Vol by Lane    | 85     | 16    | 167    | 170    | 148   | } |
| LT Vol                 | 7      | 0     | 14     | 45     | 47    | ' |
| Through Vol            | 78     | 0     | 138    | 83     | 84    | ļ |
| RT Vol                 | 0      | 16    | 15     | 42     | 17    | ' |
| Lane Flow Rate         | 110    | 21    | 217    | 221    | 192   | ) |
| Geometry Grp           | 7      | 7     | 2      | 2      | 5     | j |
| Degree of Util (X)     | 0.208  | 0.032 | 0.327  | 0.326  | 0.3   | ļ |
| Departure Headway (Hd) | 6.772  | 5.589 | 5.429  | 5.32   | 5.615 | ) |
| Convergence, Y/N       | Yes    | Yes   | Yes    | Yes    | Yes   | ; |
| Cap                    | 531    | 640   | 661    | 676    | 640   | ) |
| Service Time           | 4.508  | 3.324 | 3.463  | 3.353  | 3.649 | ) |
| HCM Lane V/C Ratio     | 0.207  | 0.033 | 0.328  | 0.327  | 0.3   | } |
| HCM Control Delay      | 11.3   | 8.5   | 11.1   | 10.9   | 11.1  |   |
| HCM Lane LOS           | В      | Α     | В      | В      | В     | } |
| HCM 95th-tile Q        | 8.0    | 0.1   | 1.4    | 1.4    | 1.3   | ; |

| Intersection              |       |        |       |       |        |        |       |       |       |      |      |     |
|---------------------------|-------|--------|-------|-------|--------|--------|-------|-------|-------|------|------|-----|
| Intersection Delay, s/vel | า11 5 |        |       |       |        |        |       |       |       |      |      |     |
| Intersection LOS          | В     |        |       |       |        |        |       |       |       |      |      |     |
| Intersection LOS          | D     |        |       |       |        |        |       |       |       |      |      |     |
|                           |       |        |       |       |        |        |       |       |       |      |      |     |
| Movement                  | EBL   | EBT    | EBR   | WBL   | WBT    | WBR    | NBL   | NBT   | NBR   | SBL  | SB   |     |
| Lane Configurations       |       | ₽      |       | ሽ     | - ₽    |        |       | - 4   | - 7   |      | ની   |     |
| Traffic Vol, veh/h        | 67    | 81     | 56    | 52    | 70     | 8      | 50    | 101   | 33    | 4    | 119  |     |
| Future Vol, veh/h         | 67    | 81     | 56    | 52    | 70     | 8      | 50    | 101   | 33    | 4    | 119  |     |
| Peak Hour Factor          | 0.81  | 0.81   | 0.81  | 0.81  | 0.81   | 0.81   | 0.81  | 0.81  | 0.81  | 0.81 | 0.81 | 0   |
| Heavy Vehicles, %         | 49    | 27     | 21    | 25    | 37     | 12     | 14    | 9     | 21    | 0    | 21   | 2   |
| Mvmt Flow                 | 83    | 100    | 69    | 64    | 86     | 10     | 62    | 125   | 41    | 5    | 147  | 10! |
| Number of Lanes           | 1     | 1      | 0     | 1     | 1      | 0      | 0     | 1     | 1     | 0    | 1    | 1   |
| Approach                  | EB    |        |       | WB    |        |        | NB    |       |       | SB   |      |     |
| Opposing Approach         | WB    |        |       | EB    |        |        | SB    |       |       | NB   |      |     |
| Opposing Lanes            | 2     |        |       | 2     |        |        | 2     |       |       | 2    |      |     |
| Conflicting Approach Le   |       |        |       | NB    |        |        | EB    |       |       | WB   |      |     |
| Conflicting Lanes Left    | 2     |        |       | 2     |        |        | 2     |       |       | 2    |      |     |
| Conflicting Approach Rig  | ght\B |        |       | SB    |        |        | WB    |       |       | EB   |      |     |
| Conflicting Lanes Right   | 2     |        |       | 2     |        |        | 2     |       |       | 2    |      |     |
| HCM Control Delay         | 11.9  |        |       | 11.3  |        |        | 12.2  |       |       | 10.6 |      |     |
| HCM LOS                   | В     |        |       | В     |        |        | В     |       |       | В    |      |     |
|                           |       |        |       |       |        |        |       |       |       |      |      |     |
| Lane                      | N     | NBLn11 | NBLn2 | EBLn1 | EBLn2\ | VBLn1\ | WBLn2 | SBLn1 | SBLn2 |      |      |     |
| Vol Left, %               |       | 33%    | 0%    | 100%  |        | 100%   | 0%    | 3%    | 0%    |      |      |     |
| Vol Thru, %               |       | 67%    | 0%    | 0%    | 59%    | 0%     | 90%   | 97%   | 0%    |      |      |     |
| Vol Right, %              |       | 0%     | 100%  | 0%    | 41%    | 0%     | 10%   | 0%    |       |      |      |     |
| Sign Control              |       | Stop   | Stop  | Stop  | Stop   | Stop   | Stop  | Stop  | Stop  |      |      |     |
| Traffic Vol by Lane       |       | 151    | 33    | 67    | 137    | 52     | 78    | 123   | 85    |      |      |     |
| LT Vol                    |       | 50     | 0     | 67    | 0      | 52     | 0     | 4     | 0     |      |      |     |
| Through Vol               |       | 101    | 0     | 0     | 81     | 0      | 70    | 119   | 0     |      |      |     |
| RT Vol                    |       | 0      | 33    | 0     | 56     | 0      | 8     | 0     | 85    |      |      |     |
| Lane Flow Rate            |       | 186    | 41    | 83    | 169    | 64     | 96    | 152   | 105   |      |      |     |
| Geometry Grp              |       | 7      | 7     | 7     | 7      | 7      | 7     | 7     | 7     |      |      |     |
| Degree of Util (X)        |       | 0.344  | 0.064 | 0.174 | 0.301  | 0.131  | 0.186 | 0.263 | 0.171 |      |      |     |
| Departure Headway (Ho     | l)    | 6.647  | 5.682 | 7.582 | 6.405  | 7.327  | 6.953 | 6.236 | 5.872 |      |      |     |
| Convergence, Y/N          |       | Yes    | Yes   | Yes   | Yes    | Yes    | Yes   | Yes   | Yes   |      |      |     |
| Сар                       |       | 541    | 629   | 473   | 560    | 489    | 515   | 576   | 610   |      |      |     |
| Service Time              |       | 4.398  | 3.433 | 5.331 | 4.154  | 5.08   | 4.706 | 3.987 | 3.622 |      |      |     |
| HCM Lane V/C Ratio        |       | 0.344  | 0.065 | 0.175 | 0.302  | 0.131  | 0.186 | 0.264 | 0.172 |      |      |     |
| HCM Control Delay         |       | 12.9   | 8.8   | 11.9  | 11.9   | 11.2   | 11.3  | 11.2  | 9.8   |      |      |     |
| HCM Lane LOS              |       | В      | Α     | В     | В      | В      | В     | В     | Α     |      |      |     |
| LICM OF the tile O        |       | 1 г    | 0.2   | 0 /   | 1 2    | 0.4    |       |       | 0.7   |      |      |     |

1.5

0.2

0.6

1.3

0.4

0.7

0.6

HCM 95th-tile Q

|                                 | ۶         | <b>→</b> | •     | •    | <b>+</b>  | •          | •       | <b>†</b>   | ~    | <b>/</b> | <b>↓</b>   | <b>√</b> |
|---------------------------------|-----------|----------|-------|------|-----------|------------|---------|------------|------|----------|------------|----------|
| Movement                        | EBL       | EBT      | EBR   | WBL  | WBT       | WBR        | NBL     | NBT        | NBR  | SBL      | SBT        | SBR      |
| Lane Configurations             |           | र्स      | 7     |      | र्स       | 7          | ሻ       | <b>∱</b> ∱ |      | ሻ        | <b>∱</b> ⊅ |          |
| Traffic Volume (vph)            | 77        | 47       | 57    | 112  | 35        | 45         | 54      | 870        | 70   | 60       | 1160       | 86       |
| Future Volume (vph)             | 77        | 47       | 57    | 112  | 35        | 45         | 54      | 870        | 70   | 60       | 1160       | 86       |
| Ideal Flow (vphpl)              | 1750      | 1750     | 1750  | 1750 | 1750      | 1750       | 1750    | 1750       | 1750 | 1750     | 1750       | 1750     |
| Total Lost time (s)             |           | 4.5      | 4.5   |      | 4.5       | 4.5        | 4.5     | 4.5        |      | 4.5      | 4.5        |          |
| Lane Util. Factor               |           | 1.00     | 1.00  |      | 1.00      | 1.00       | 1.00    | 0.95       |      | 1.00     | 0.95       |          |
| Frpb, ped/bikes                 |           | 1.00     | 0.98  |      | 1.00      | 0.98       | 1.00    | 1.00       |      | 1.00     | 1.00       |          |
| Flpb, ped/bikes                 |           | 1.00     | 1.00  |      | 1.00      | 1.00       | 1.00    | 1.00       |      | 1.00     | 1.00       |          |
| Frt                             |           | 1.00     | 0.85  |      | 1.00      | 0.85       | 1.00    | 0.99       |      | 1.00     | 0.99       |          |
| Flt Protected                   |           | 0.97     | 1.00  |      | 0.96      | 1.00       | 0.95    | 1.00       |      | 0.95     | 1.00       |          |
| Satd. Flow (prot)               |           | 1493     | 1227  |      | 1479      | 1206       | 1363    | 2671       |      | 1458     | 2736       |          |
| Flt Permitted                   |           | 0.57     | 1.00  |      | 0.59      | 1.00       | 0.14    | 1.00       |      | 0.24     | 1.00       |          |
| Satd. Flow (perm)               |           | 873      | 1227  |      | 902       | 1206       | 204     | 2671       |      | 369      | 2736       |          |
| Peak-hour factor, PHF           | 0.94      | 0.94     | 0.94  | 0.94 | 0.94      | 0.94       | 0.94    | 0.94       | 0.94 | 0.94     | 0.94       | 0.94     |
| Adj. Flow (vph)                 | 82        | 50       | 61    | 119  | 37        | 48         | 57      | 926        | 74   | 64       | 1234       | 91       |
| RTOR Reduction (vph)            | 0         | 0        | 49    | 0    | 0         | 39         | 0       | 4          | 0    | 0        | 4          | 0        |
| Lane Group Flow (vph)           | 0         | 132      | 12    | 0    | 156       | 9          | 57      | 996        | 0    | 64       | 1321       | 0        |
| Confl. Peds. (#/hr)             | 6         |          | 6     | 6    |           | 6          | 3       |            | 3    | 3        |            | 3        |
| Heavy Vehicles (%)              | 16%       | 9%       | 19%   | 13%  | 15%       | 21%        | 22%     | 23%        | 21%  | 14%      | 20%        | 21%      |
| Turn Type                       | Perm      | NA       | Perm  | Perm | NA        | Perm       | D.P+P   | NA         |      | D.P+P    | NA         |          |
| Protected Phases                |           | 8        |       |      | 4         |            | 1       | 6          |      | 5        | 2          |          |
| Permitted Phases                | 8         |          | 8     | 4    |           | 4          | 2       |            |      | 6        |            |          |
| Actuated Green, G (s)           |           | 25.1     | 25.1  |      | 25.1      | 25.1       | 91.4    | 85.7       |      | 91.4     | 82.1       |          |
| Effective Green, g (s)          |           | 25.1     | 25.1  |      | 25.1      | 25.1       | 91.4    | 85.7       |      | 91.4     | 82.1       |          |
| Actuated g/C Ratio              |           | 0.19     | 0.19  |      | 0.19      | 0.19       | 0.70    | 0.66       |      | 0.70     | 0.63       |          |
| Clearance Time (s)              |           | 4.5      | 4.5   |      | 4.5       | 4.5        | 4.5     | 4.5        |      | 4.5      | 4.5        |          |
| Vehicle Extension (s)           |           | 2.5      | 2.5   |      | 2.5       | 2.5        | 2.5     | 4.6        |      | 2.5      | 4.6        |          |
| Lane Grp Cap (vph)              |           | 168      | 236   |      | 174       | 232        | 226     | 1760       |      | 307      | 1727       |          |
| v/s Ratio Prot                  |           |          |       |      |           |            | 0.02    | c0.37      |      | 0.01     | c0.48      |          |
| v/s Ratio Perm                  |           | 0.15     | 0.01  |      | c0.17     | 0.01       | 0.16    |            |      | 0.14     |            |          |
| v/c Ratio                       |           | 0.79     | 0.05  |      | 0.90      | 0.04       | 0.25    | 0.57       |      | 0.21     | 0.77       |          |
| Uniform Delay, d1               |           | 49.9     | 42.7  |      | 51.2      | 42.7       | 19.7    | 12.0       |      | 6.9      | 17.1       |          |
| Progression Factor              |           | 1.00     | 1.00  |      | 1.00      | 1.00       | 0.42    | 0.85       |      | 0.72     | 0.99       |          |
| Incremental Delay, d2           |           | 20.4     | 0.1   |      | 39.8      | 0.1        | 0.4     | 1.2        |      | 0.1      | 1.8        |          |
| Delay (s)                       |           | 70.3     | 42.8  |      | 90.9      | 42.7       | 8.6     | 11.4       |      | 5.1      | 18.8       |          |
| Level of Service                |           | Е        | D     |      | F         | D          | А       | В          |      | Α        | В          |          |
| Approach Delay (s)              |           | 61.6     |       |      | 79.6      |            |         | 11.2       |      |          | 18.2       |          |
| Approach LOS                    |           | E        |       |      | Е         |            |         | В          |      |          | В          |          |
| Intersection Summary            |           |          |       |      |           |            |         |            |      |          |            |          |
| HCM 2000 Control Delay          |           |          | 22.9  | Н    | CM 2000   | Level of   | Service |            | С    |          |            |          |
| HCM 2000 Volume to Capac        | ity ratio |          | 0.79  |      |           |            |         |            |      |          |            |          |
| Actuated Cycle Length (s)       |           |          | 130.0 | S    | um of los | t time (s) |         |            | 13.5 |          |            |          |
| Intersection Capacity Utilizati | ion       |          | 70.0% |      | U Level   |            | Э       |            | С    |          |            |          |
| Analysis Period (min)           |           |          | 15    |      |           |            |         |            |      |          |            |          |
| c Critical Lane Group           |           |          |       |      |           |            |         |            |      |          |            |          |

|                                  | ۶       | <b>→</b> | •     | •    | +         | •          | 1       | <b>†</b>    | ~    | <b>/</b> | <b>↓</b>   | 4    |
|----------------------------------|---------|----------|-------|------|-----------|------------|---------|-------------|------|----------|------------|------|
| Movement                         | EBL     | EBT      | EBR   | WBL  | WBT       | WBR        | NBL     | NBT         | NBR  | SBL      | SBT        | SBR  |
| Lane Configurations              |         | 4        |       |      | ર્ન       | 7          | ሻ       | <b>∱</b> î≽ |      | ሻ        | <b>∱</b> } |      |
| Traffic Volume (vph)             | 79      | 8        | 59    | 21   | 7         | 22         | 48      | 893         | 11   | 15       | 1277       | 86   |
| Future Volume (vph)              | 79      | 8        | 59    | 21   | 7         | 22         | 48      | 893         | 11   | 15       | 1277       | 86   |
| Ideal Flow (vphpl)               | 1750    | 1750     | 1750  | 1750 | 1750      | 1750       | 1750    | 1750        | 1750 | 1750     | 1750       | 1750 |
| Total Lost time (s)              |         | 4.5      |       |      | 4.5       | 4.5        | 4.5     | 4.5         |      | 4.5      | 4.5        |      |
| Lane Util. Factor                |         | 1.00     |       |      | 1.00      | 1.00       | 1.00    | 0.95        |      | 1.00     | 0.95       |      |
| Frpb, ped/bikes                  |         | 0.99     |       |      | 1.00      | 0.97       | 1.00    | 1.00        |      | 1.00     | 1.00       |      |
| Flpb, ped/bikes                  |         | 0.99     |       |      | 1.00      | 1.00       | 1.00    | 1.00        |      | 1.00     | 1.00       |      |
| Frt                              |         | 0.95     |       |      | 1.00      | 0.85       | 1.00    | 1.00        |      | 1.00     | 0.99       |      |
| Flt Protected                    |         | 0.97     |       |      | 0.96      | 1.00       | 0.95    | 1.00        |      | 0.95     | 1.00       |      |
| Satd. Flow (prot)                |         | 1291     |       |      | 1434      | 1124       | 1446    | 2629        |      | 1288     | 2724       |      |
| Flt Permitted                    |         | 0.82     |       |      | 0.76      | 1.00       | 0.13    | 1.00        |      | 0.26     | 1.00       |      |
| Satd. Flow (perm)                |         | 1082     |       |      | 1128      | 1124       | 203     | 2629        |      | 351      | 2724       |      |
| Peak-hour factor, PHF            | 0.94    | 0.94     | 0.94  | 0.94 | 0.94      | 0.94       | 0.94    | 0.94        | 0.94 | 0.94     | 0.94       | 0.94 |
| Adj. Flow (vph)                  | 84      | 9        | 63    | 22   | 7         | 23         | 51      | 950         | 12   | 16       | 1359       | 91   |
| RTOR Reduction (vph)             | 0       | 20       | 0     | 0    | 0         | 19         | 0       | 0           | 0    | 0        | 2          | 0    |
| Lane Group Flow (vph)            | 0       | 136      | 0     | 0    | 29        | 4          | 51      | 962         | 0    | 16       | 1448       | 0    |
| Confl. Peds. (#/hr)              | 10      |          |       |      |           | 10         | 6       |             | 6    | 6        |            | 6    |
| Confl. Bikes (#/hr)              |         |          | 1     |      |           |            |         |             | 1    |          |            |      |
| Heavy Vehicles (%)               | 19%     | 50%      | 25%   | 5%   | 57%       | 29%        | 15%     | 26%         | 40%  | 29%      | 21%        | 15%  |
| Turn Type                        | Perm    | NA       |       | Perm | NA        | Perm       | D.P+P   | NA          |      | D.P+P    | NA         |      |
| Protected Phases                 |         | 8        |       |      | 4         |            | 1       | 6           |      | 5        | 2          |      |
| Permitted Phases                 | 8       |          |       | 4    |           | 4          | 2       |             |      | 6        |            |      |
| Actuated Green, G (s)            |         | 20.4     |       |      | 20.4      | 20.4       | 96.1    | 89.1        |      | 96.1     | 90.9       |      |
| Effective Green, g (s)           |         | 20.4     |       |      | 20.4      | 20.4       | 96.1    | 89.1        |      | 96.1     | 90.9       |      |
| Actuated g/C Ratio               |         | 0.16     |       |      | 0.16      | 0.16       | 0.74    | 0.69        |      | 0.74     | 0.70       |      |
| Clearance Time (s)               |         | 4.5      |       |      | 4.5       | 4.5        | 4.5     | 4.5         |      | 4.5      | 4.5        |      |
| Vehicle Extension (s)            |         | 2.5      |       |      | 2.5       | 2.5        | 2.5     | 4.6         |      | 2.5      | 4.6        |      |
| Lane Grp Cap (vph)               |         | 169      |       |      | 177       | 176        | 199     | 1801        |      | 309      | 1904       |      |
| v/s Ratio Prot                   |         |          |       |      |           |            | 0.01    | c0.37       |      | 0.00     | c0.53      |      |
| v/s Ratio Perm                   |         | c0.13    |       |      | 0.03      | 0.00       | 0.18    |             |      | 0.04     |            |      |
| v/c Ratio                        |         | 0.80     |       |      | 0.16      | 0.02       | 0.26    | 0.53        |      | 0.05     | 0.76       |      |
| Uniform Delay, d1                |         | 52.9     |       |      | 47.4      | 46.3       | 7.4     | 10.1        |      | 8.3      | 12.6       |      |
| Progression Factor               |         | 1.00     |       |      | 1.00      | 1.00       | 1.07    | 0.75        |      | 1.25     | 0.55       |      |
| Incremental Delay, d2            |         | 22.8     |       |      | 0.3       | 0.0        | 0.4     | 1.0         |      | 0.0      | 2.1        |      |
| Delay (s)                        |         | 75.7     |       |      | 47.7      | 46.4       | 8.3     | 8.6         |      | 10.4     | 8.9        |      |
| Level of Service                 |         | Е        |       |      | D         | D          | А       | Α           |      | В        | Α          |      |
| Approach Delay (s)               |         | 75.7     |       |      | 47.1      |            |         | 8.6         |      |          | 8.9        |      |
| Approach LOS                     |         | Е        |       |      | D         |            |         | А           |      |          | А          |      |
| Intersection Summary             |         |          |       |      |           |            |         |             |      |          |            |      |
| HCM 2000 Control Delay           |         |          | 13.4  | Н    | CM 2000   | Level of   | Service |             | В    |          |            |      |
| HCM 2000 Volume to Capacit       | v ratio |          | 0.77  |      | OM 2000   | 2010101    | 0011100 |             |      |          |            |      |
| Actuated Cycle Length (s)        | ,       |          | 130.0 | Si   | um of los | t time (s) |         |             | 13.5 |          |            |      |
| Intersection Capacity Utilizatio | n       |          | 66.6% |      | CU Level  |            | e       |             | C    |          |            |      |
| Analysis Period (min)            | •       |          | 15    |      |           | 50. 110    |         |             |      |          |            |      |
| c Critical Lane Group            |         |          | . 5   |      |           |            |         |             |      |          |            |      |

|                               | ٠           | <b>→</b> | •     | •    | <b>+</b>  | •          | •       | <b>†</b>   | ~    | <b>/</b> | <b>↓</b>   | 4    |
|-------------------------------|-------------|----------|-------|------|-----------|------------|---------|------------|------|----------|------------|------|
| Movement                      | EBL         | EBT      | EBR   | WBL  | WBT       | WBR        | NBL     | NBT        | NBR  | SBL      | SBT        | SBR  |
| Lane Configurations           | ሻ           | ₽        |       |      | 4         | 7          | ሻ       | <b>↑</b> ↑ |      | *        | <b>↑</b> ↑ |      |
| Traffic Volume (vph)          | 112         | 114      | 60    | 58   | 151       | 243        | 48      | 590        | 27   | 249      | 920        | 120  |
| Future Volume (vph)           | 112         | 114      | 60    | 58   | 151       | 243        | 48      | 590        | 27   | 249      | 920        | 120  |
| Ideal Flow (vphpl)            | 1750        | 1750     | 1750  | 1750 | 1750      | 1750       | 1750    | 1750       | 1750 | 1750     | 1750       | 1750 |
| Total Lost time (s)           | 4.5         | 4.5      |       |      | 4.5       | 4.5        | 4.5     | 4.5        |      | 4.5      | 4.5        |      |
| Lane Util. Factor             | 1.00        | 1.00     |       |      | 1.00      | 1.00       | 1.00    | 0.95       |      | 1.00     | 0.95       |      |
| Frpb, ped/bikes               | 1.00        | 0.99     |       |      | 1.00      | 1.00       | 1.00    | 1.00       |      | 1.00     | 1.00       |      |
| Flpb, ped/bikes               | 1.00        | 1.00     |       |      | 1.00      | 1.00       | 1.00    | 1.00       |      | 1.00     | 1.00       |      |
| Frt                           | 1.00        | 0.95     |       |      | 1.00      | 0.85       | 1.00    | 0.99       |      | 1.00     | 0.98       |      |
| Flt Protected                 | 0.95        | 1.00     |       |      | 0.99      | 1.00       | 0.95    | 1.00       |      | 0.95     | 1.00       |      |
| Satd. Flow (prot)             | 1222        | 1321     |       |      | 1463      | 1293       | 1179    | 2700       |      | 1373     | 2759       |      |
| Flt Permitted                 | 0.42        | 1.00     |       |      | 0.74      | 1.00       | 0.22    | 1.00       |      | 0.37     | 1.00       |      |
| Satd. Flow (perm)             | 543         | 1321     |       |      | 1094      | 1293       | 271     | 2700       |      | 531      | 2759       |      |
| Peak-hour factor, PHF         | 0.99        | 0.99     | 0.99  | 0.99 | 0.99      | 0.99       | 0.99    | 0.99       | 0.99 | 0.99     | 0.99       | 0.99 |
| Adj. Flow (vph)               | 113         | 115      | 61    | 59   | 153       | 245        | 48      | 596        | 27   | 252      | 929        | 121  |
| RTOR Reduction (vph)          | 0           | 16       | 0     | 0    | 0         | 89         | 0       | 2          | 0    | 0        | 6          | 0    |
| Lane Group Flow (vph)         | 113         | 160      | 0     | 0    | 212       | 156        | 48      | 621        | 0    | 252      | 1044       | 0    |
| Confl. Peds. (#/hr)           |             |          | 4     | 4    |           |            | 1       |            | 2    | 2        |            | 1    |
| Confl. Bikes (#/hr)           |             |          |       |      |           |            |         |            | 1    |          |            |      |
| Heavy Vehicles (%)            | 36%         | 22%      | 30%   | 33%  | 12%       | 15%        | 41%     | 22%        | 27%  | 21%      | 18%        | 19%  |
| Turn Type                     | Perm        | NA       |       | Perm | NA        | Perm       | D.P+P   | NA         |      | D.P+P    | NA         |      |
| Protected Phases              |             | 4        |       |      | 8         |            | 5       | 2          |      | 1        | 6          |      |
| Permitted Phases              | 4           |          |       | 8    |           | 8          | 6       |            |      | 2        |            |      |
| Actuated Green, G (s)         | 28.0        | 28.0     |       |      | 28.0      | 28.0       | 88.5    | 72.1       |      | 88.5     | 82.7       |      |
| Effective Green, g (s)        | 28.0        | 28.0     |       |      | 28.0      | 28.0       | 88.5    | 72.1       |      | 88.5     | 82.7       |      |
| Actuated g/C Ratio            | 0.22        | 0.22     |       |      | 0.22      | 0.22       | 0.68    | 0.55       |      | 0.68     | 0.64       |      |
| Clearance Time (s)            | 4.5         | 4.5      |       |      | 4.5       | 4.5        | 4.5     | 4.5        |      | 4.5      | 4.5        |      |
| Vehicle Extension (s)         | 2.5         | 2.5      |       |      | 2.5       | 2.5        | 2.5     | 4.6        |      | 2.5      | 4.6        |      |
| Lane Grp Cap (vph)            | 116         | 284      |       |      | 235       | 278        | 224     | 1497       |      | 467      | 1755       |      |
| v/s Ratio Prot                |             | 0.12     |       |      |           |            | 0.01    | 0.23       |      | 0.07     | c0.38      |      |
| v/s Ratio Perm                | c0.21       |          |       |      | 0.19      | 0.12       | 0.14    |            |      | c0.30    |            |      |
| v/c Ratio                     | 0.97        | 0.56     |       |      | 0.90      | 0.56       | 0.21    | 0.41       |      | 0.54     | 0.59       |      |
| Uniform Delay, d1             | 50.6        | 45.6     |       |      | 49.7      | 45.5       | 8.1     | 16.7       |      | 16.5     | 13.8       |      |
| Progression Factor            | 1.00        | 1.00     |       |      | 1.00      | 1.00       | 1.00    | 1.00       |      | 1.41     | 1.31       |      |
| Incremental Delay, d2         | 74.9        | 2.1      |       |      | 33.6      | 2.1        | 0.4     | 0.8        |      | 0.6      | 1.0        |      |
| Delay (s)                     | 125.5       | 47.6     |       |      | 83.3      | 47.6       | 8.5     | 17.6       |      | 23.9     | 19.1       |      |
| Level of Service              | F           | D        |       |      | F         | D          | Α       | В          |      | С        | В          |      |
| Approach Delay (s)            |             | 78.1     |       |      | 64.2      |            |         | 16.9       |      |          | 20.0       |      |
| Approach LOS                  |             | Е        |       |      | Е         |            |         | В          |      |          | С          |      |
| Intersection Summary          |             |          |       |      |           |            |         |            |      |          |            |      |
| HCM 2000 Control Delay        |             |          | 32.8  | Н    | CM 2000   | Level of   | Service |            | С    |          |            |      |
| HCM 2000 Volume to Capa       | icity ratio |          | 0.69  |      |           |            |         |            |      |          |            |      |
| Actuated Cycle Length (s)     |             |          | 130.0 |      | um of los | ٠,         |         |            | 13.5 |          |            |      |
| Intersection Capacity Utiliza | ation       |          | 74.2% | IC   | CU Level  | of Service | е       |            | D    |          |            |      |
| Analysis Period (min)         |             |          | 15    |      |           |            |         |            |      |          |            |      |
| c Critical Lane Group         |             |          |       |      |           |            |         |            |      |          |            |      |

| Intersection           |         |        |          |           |           |        |                      |                                  |
|------------------------|---------|--------|----------|-----------|-----------|--------|----------------------|----------------------------------|
| Int Delay, s/veh       | 12.3    |        |          |           |           |        |                      |                                  |
| Movement               | EBL     | EBR    | NBL      | NBT       | SBT       | SBR    |                      |                                  |
| Lane Configurations    | ሻ       | 7      |          | 41        | <b>†</b>  |        |                      |                                  |
| Traffic Vol, veh/h     | 84      | 60     | 57       | 663       | 792       | 215    |                      |                                  |
| Future Vol, veh/h      | 84      | 60     | 57       | 663       | 792       | 215    |                      |                                  |
| Conflicting Peds, #/hr |         | 1      | 1        | 000       | 0         | 1      |                      |                                  |
| Sign Control           | Stop    | Stop   | Free     | Free      | Free      | Free   |                      |                                  |
| RT Channelized         | -       |        | -        | None      | -         | None   |                      |                                  |
| Storage Length         | 110     | 0      | -        | -         | -         | -      |                      |                                  |
| Veh in Median Storag   |         | -      | -        | 0         | 0         | -      |                      |                                  |
| Grade, %               | 0       | -      | -        | 0         | 0         | -      |                      |                                  |
| Peak Hour Factor       | 92      | 92     | 92       | 92        | 92        | 92     |                      |                                  |
| Heavy Vehicles, %      | 21      | 35     | 31       | 25        | 29        | 16     |                      |                                  |
| Mvmt Flow              | 91      | 65     | 62       | 721       | 861       | 234    |                      |                                  |
|                        |         |        |          |           |           |        |                      |                                  |
| Major/Minor            | Minor2  | Λ      | /lajor1  |           | Major2    |        |                      |                                  |
| Conflicting Flow All   | 1463    |        | 1096     | 0         | - viajoiz | 0      |                      |                                  |
| Stage 1                | 979     | -      | -        | -         | -         | -      |                      |                                  |
| Stage 2                | 484     | _      | _        | _         | _         | _      |                      |                                  |
| Critical Hdwy          | 7.22    | 7.6    | 4.72     | -         | -         | -      |                      |                                  |
| Critical Hdwy Stg 1    | 6.22    | -      | -        | -         | -         | -      |                      |                                  |
| Critical Hdwy Stg 2    | 6.22    | -      | -        | -         | -         | -      |                      |                                  |
| Follow-up Hdwy         | 3.71    | 3.65   | 2.51     | -         | -         | -      |                      |                                  |
| Pot Cap-1 Maneuver     | 100     | 404    | 488      | -         | -         | -      |                      |                                  |
| Stage 1                | 284     | -      | -        | -         | -         | -      |                      |                                  |
| Stage 2                | 534     | -      | -        | -         | -         | -      |                      |                                  |
| Platoon blocked, %     |         |        |          | -         | -         | -      |                      |                                  |
| Mov Cap-1 Maneuver     | ~ 79    | 403    | 488      | -         | -         | -      |                      |                                  |
| Mov Cap-2 Maneuver     |         | -      | -        | -         | -         | -      |                      |                                  |
| Stage 1                | 284     | -      | -        | -         | -         | -      |                      |                                  |
| Stage 2                | 420     | -      | -        | -         | -         | -      |                      |                                  |
| •                      |         |        |          |           |           |        |                      |                                  |
| Approach               | EB      |        | NB       |           | SB        |        |                      |                                  |
| HCM Control Delay, s   | 148.6   |        | 2.2      |           | 0         |        |                      |                                  |
| HCM LOS                | F       |        |          |           |           |        |                      |                                  |
|                        |         |        |          |           |           |        |                      |                                  |
| Minor Lane/Major Mvr   | mt      | NBL    | NBT      | EBLn1 l   | EBLn2     | SBT    | SBR                  |                                  |
| Capacity (veh/h)       |         | 488    | _        | 79        | 403       |        | -                    |                                  |
| HCM Lane V/C Ratio     |         | 0.127  | _        | 1.156     |           | _      | -                    |                                  |
| HCM Control Delay (s   | 5)      | 13.4   |          | 243.5     | 15.7      | -      | -                    |                                  |
| HCM Lane LOS           |         | В      | A        | F         | C         | _      | -                    |                                  |
| HCM 95th %tile Q(veh   | n)      | 0.4    | -        | 6.7       | 0.6       | -      | -                    |                                  |
| ·                      | ,       |        |          |           |           |        |                      |                                  |
| Notes                  | nnoo!!  | ф D-   | Jourse   | 200 de 20 | 200       | C = == | nutation Nat Defined | *. All mader veloces in plate an |
| ~: Volume exceeds ca   | apacity | \$: De | elay exc | ceeds 30  | UUS       | +: Com | putation Not Defined | *: All major volume in platoon   |

|                         | ۶    | -    | $\rightarrow$ | •    | <b>←</b> | •    | 4    | <b>†</b> | -    | <b>↓</b> |  |
|-------------------------|------|------|---------------|------|----------|------|------|----------|------|----------|--|
| Lane Group              | EBL  | EBT  | EBR           | WBL  | WBT      | WBR  | NBL  | NBT      | SBL  | SBT      |  |
| Lane Group Flow (vph)   | 43   | 354  | 2             | 39   | 365      | 146  | 4    | 63       | 276  | 276      |  |
| v/c Ratio               | 0.21 | 0.44 | 0.01          | 0.23 | 0.45     | 0.14 | 0.02 | 0.32     | 0.59 | 0.59     |  |
| Control Delay           | 35.5 | 24.7 | 0.0           | 36.3 | 24.2     | 1.5  | 34.8 | 17.8     | 27.0 | 26.9     |  |
| Queue Delay             | 0.0  | 0.0  | 0.0           | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0      |  |
| Total Delay             | 35.5 | 24.7 | 0.0           | 36.3 | 24.2     | 1.5  | 34.8 | 17.8     | 27.0 | 26.9     |  |
| Queue Length 50th (ft)  | 16   | 63   | 0             | 14   | 65       | 0    | 2    | 3        | 98   | 96       |  |
| Queue Length 95th (ft)  | 57   | 141  | 0             | 54   | 143      | 19   | 12   | 43       | 228  | 227      |  |
| Internal Link Dist (ft) |      | 439  |               |      | 969      |      |      | 574      |      | 512      |  |
| Turn Bay Length (ft)    | 225  |      | 140           | 225  |          | 95   | 110  |          | 340  |          |  |
| Base Capacity (vph)     | 629  | 2127 | 678           | 487  | 2127     | 1340 | 933  | 677      | 1106 | 1082     |  |
| Starvation Cap Reductn  | 0    | 0    | 0             | 0    | 0        | 0    | 0    | 0        | 0    | 0        |  |
| Spillback Cap Reductn   | 0    | 0    | 0             | 0    | 0        | 0    | 0    | 0        | 0    | 0        |  |
| Storage Cap Reductn     | 0    | 0    | 0             | 0    | 0        | 0    | 0    | 0        | 0    | 0        |  |
| Reduced v/c Ratio       | 0.07 | 0.17 | 0.00          | 0.08 | 0.17     | 0.11 | 0.00 | 0.09     | 0.25 | 0.26     |  |
| Intersection Summary    |      |      |               |      |          |      |      |          |      |          |  |

|                         | _    | $\sim$ | •    | 4    | <b>\</b> | 1    |
|-------------------------|------|--------|------|------|----------|------|
|                         | _    | •      |      | _    | -        | -    |
| Lane Group              | EBT  | EBR    | WBT  | WBR  | SBL      | SBR  |
| Lane Group Flow (vph)   | 621  | 343    | 654  | 484  | 493      | 255  |
| v/c Ratio               | 0.32 | 0.27   | 0.43 | 0.41 | 0.78     | 0.48 |
| Control Delay           | 7.8  | 0.5    | 13.3 | 1.2  | 44.9     | 17.4 |
| Queue Delay             | 0.0  | 0.0    | 0.0  | 0.0  | 0.0      | 0.0  |
| Total Delay             | 7.8  | 0.5    | 13.3 | 1.2  | 44.9     | 17.4 |
| Queue Length 50th (ft)  | 76   | 0      | 94   | 0    | 152      | 76   |
| Queue Length 95th (ft)  | 127  | 0      | 150  | 6    | 193      | 134  |
| Internal Link Dist (ft) | 969  |        | 680  |      |          |      |
| Turn Bay Length (ft)    |      | 270    |      | 525  | 650      | 425  |
| Base Capacity (vph)     | 1941 | 1255   | 1527 | 1173 | 962      | 601  |
| Starvation Cap Reductn  | 0    | 0      | 0    | 0    | 0        | 0    |
| Spillback Cap Reductn   | 0    | 0      | 0    | 0    | 0        | 0    |
| Storage Cap Reductn     | 0    | 0      | 0    | 0    | 0        | 0    |
| Reduced v/c Ratio       | 0.32 | 0.27   | 0.43 | 0.41 | 0.51     | 0.42 |
| Intersection Summary    |      |        |      |      |          |      |

|                         | <b>→</b> | •    | •    | •    | •    | <b>†</b> | <b>/</b> |
|-------------------------|----------|------|------|------|------|----------|----------|
| Lane Group              | EBT      | EBR  | WBT  | WBR  | NBL  | NBT      | NBR      |
| Lane Group Flow (vph)   | 963      | 176  | 894  | 284  | 227  | 265      | 259      |
| v/c Ratio               | 0.49     | 0.14 | 0.48 | 0.23 | 0.74 | 0.79     | 0.76     |
| Control Delay           | 15.0     | 0.2  | 7.6  | 0.4  | 49.3 | 37.5     | 34.1     |
| Queue Delay             | 0.0      | 0.0  | 0.0  | 0.0  | 0.0  | 0.0      | 0.0      |
| Total Delay             | 15.0     | 0.2  | 7.6  | 0.4  | 49.3 | 37.5     | 34.1     |
| Queue Length 50th (ft)  | 243      | 0    | 85   | 0    | 144  | 107      | 96       |
| Queue Length 95th (ft)  | 353      | 0    | 278  | m0   | 198  | 186      | 170      |
| Internal Link Dist (ft) | 680      |      | 816  |      |      | 933      |          |
| Turn Bay Length (ft)    |          | 565  |      | 405  | 600  |          | 275      |
| Base Capacity (vph)     | 1955     | 1234 | 1859 | 1212 | 479  | 461      | 471      |
| Starvation Cap Reductn  | 0        | 0    | 0    | 0    | 0    | 0        | 0        |
| Spillback Cap Reductn   | 0        | 0    | 0    | 0    | 0    | 0        | 0        |
| Storage Cap Reductn     | 0        | 0    | 0    | 0    | 0    | 0        | 0        |
| Reduced v/c Ratio       | 0.49     | 0.14 | 0.48 | 0.23 | 0.47 | 0.57     | 0.55     |
| Intersection Summary    |          |      |      |      |      |          |          |

m Volume for 95th percentile queue is metered by upstream signal.

|                         | ၨ    | <b>→</b> | •    | •    | •    | •    | <b>†</b> | ~    | <b>\</b> | ļ    | 4    |  |
|-------------------------|------|----------|------|------|------|------|----------|------|----------|------|------|--|
| Lane Group              | EBL  | EBT      | EBR  | WBL  | WBT  | NBL  | NBT      | NBR  | SBL      | SBT  | SBR  |  |
| Lane Group Flow (vph)   | 80   | 877      | 121  | 198  | 710  | 321  | 29       | 219  | 22       | 36   | 71   |  |
| v/c Ratio               | 0.29 | 0.91     | 0.23 | 0.75 | 0.60 | 0.76 | 0.06     | 0.42 | 0.20     | 0.30 | 0.31 |  |
| Control Delay           | 15.7 | 43.1     | 9.8  | 48.5 | 25.5 | 46.4 | 27.4     | 6.8  | 46.9     | 49.5 | 3.6  |  |
| Queue Delay             | 0.0  | 0.0      | 0.0  | 0.0  | 0.0  | 0.0  | 0.0      | 0.0  | 0.0      | 0.0  | 0.0  |  |
| Total Delay             | 15.7 | 43.1     | 9.8  | 48.5 | 25.5 | 46.4 | 27.4     | 6.8  | 46.9     | 49.5 | 3.6  |  |
| Queue Length 50th (ft)  | 15   | 212      | 3    | 91   | 235  | 187  | 13       | 0    | 13       | 22   | 0    |  |
| Queue Length 95th (ft)  | m67  | #417     | 59   | #194 | 318  | #345 | 37       | 58   | 37       | 53   | 0    |  |
| Internal Link Dist (ft) |      | 816      |      |      | 528  |      | 708      |      |          | 401  |      |  |
| Turn Bay Length (ft)    | 175  |          | 310  | 375  |      | 325  |          | 330  | 70       |      | 70   |  |
| Base Capacity (vph)     | 341  | 963      | 526  | 265  | 1180 | 423  | 474      | 524  | 234      | 255  | 303  |  |
| Starvation Cap Reductn  | 0    | 0        | 0    | 0    | 0    | 0    | 0        | 0    | 0        | 0    | 0    |  |
| Spillback Cap Reductn   | 0    | 0        | 0    | 0    | 0    | 0    | 0        | 0    | 0        | 0    | 0    |  |
| Storage Cap Reductn     | 0    | 0        | 0    | 0    | 0    | 0    | 0        | 0    | 0        | 0    | 0    |  |
| Reduced v/c Ratio       | 0.23 | 0.91     | 0.23 | 0.75 | 0.60 | 0.76 | 0.06     | 0.42 | 0.09     | 0.14 | 0.23 |  |

### **Intersection Summary**

<sup># 95</sup>th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

|                         | •    | <b>→</b> | •    | ←    | 4    | <b>†</b> | -    | <b>↓</b> |  |
|-------------------------|------|----------|------|------|------|----------|------|----------|--|
| Lane Group              | EBL  | EBT      | WBL  | WBT  | NBL  | NBT      | SBL  | SBT      |  |
| Lane Group Flow (vph)   | 122  | 1022     | 17   | 919  | 13   | 26       | 68   | 107      |  |
| v/c Ratio               | 0.30 | 0.53     | 0.07 | 0.56 | 0.13 | 0.27     | 0.50 | 0.39     |  |
| Control Delay           | 4.9  | 6.9      | 11.9 | 15.6 | 45.0 | 44.1     | 54.8 | 15.7     |  |
| Queue Delay             | 0.0  | 0.0      | 0.0  | 0.0  | 0.0  | 0.0      | 0.0  | 0.0      |  |
| Total Delay             | 4.9  | 6.9      | 11.9 | 15.6 | 45.0 | 44.1     | 54.8 | 15.7     |  |
| Queue Length 50th (ft)  | 9    | 52       | 4    | 189  | 8    | 13       | 42   | 9        |  |
| Queue Length 95th (ft)  | m15  | m112     | 17   | 298  | 26   | 39       | 82   | 60       |  |
| Internal Link Dist (ft) |      | 528      |      | 586  |      | 584      |      | 244      |  |
| Turn Bay Length (ft)    | 305  |          | 185  |      | 150  |          | 55   |          |  |
| Base Capacity (vph)     | 407  | 1941     | 316  | 1629 | 244  | 229      | 221  | 334      |  |
| Starvation Cap Reductn  | 0    | 0        | 0    | 0    | 0    | 0        | 0    | 0        |  |
| Spillback Cap Reductn   | 0    | 0        | 0    | 0    | 0    | 0        | 0    | 0        |  |
| Storage Cap Reductn     | 0    | 0        | 0    | 0    | 0    | 0        | 0    | 0        |  |
| Reduced v/c Ratio       | 0.30 | 0.53     | 0.05 | 0.56 | 0.05 | 0.11     | 0.31 | 0.32     |  |
| Intersection Summary    |      |          |      |      |      |          |      |          |  |

m Volume for 95th percentile queue is metered by upstream signal.

|                         | •    | <b>→</b> | •    | •    | ←     | •    | •     | <b>†</b> | /    | <b>\</b> | Ţ    | 1    |
|-------------------------|------|----------|------|------|-------|------|-------|----------|------|----------|------|------|
| Lane Group              | EBL  | EBT      | EBR  | WBL  | WBT   | WBR  | NBL   | NBT      | NBR  | SBL      | SBT  | SBR  |
| Lane Group Flow (vph)   | 103  | 605      | 323  | 113  | 655   | 82   | 248   | 140      | 82   | 120      | 216  | 120  |
| v/c Ratio               | 0.67 | 1.05     | 0.41 | 0.69 | 1.13  | 0.17 | 1.00  | 0.39     | 0.21 | 0.71     | 0.85 | 0.48 |
| Control Delay           | 82.5 | 92.3     | 6.5  | 81.8 | 118.0 | 7.8  | 113.5 | 50.9     | 10.8 | 82.0     | 84.4 | 15.2 |
| Queue Delay             | 0.0  | 0.0      | 0.0  | 0.0  | 0.0   | 0.0  | 0.0   | 0.0      | 0.0  | 0.0      | 0.0  | 0.0  |
| Total Delay             | 82.5 | 92.3     | 6.5  | 81.8 | 118.0 | 7.8  | 113.5 | 50.9     | 10.8 | 82.0     | 84.4 | 15.2 |
| Queue Length 50th (ft)  | 92   | ~610     | 37   | 101  | ~703  | 2    | ~234  | 108      | 0    | 108      | 192  | 0    |
| Queue Length 95th (ft)  | 161  | #942     | 108  | 173  | #1045 | 40   | #459  | 198      | 48   | 181      | #326 | 63   |
| Internal Link Dist (ft) |      | 1985     |      |      | 1344  |      |       | 5001     |      |          | 6623 |      |
| Turn Bay Length (ft)    | 250  |          | 190  | 225  |       | 150  | 285   |          | 110  | 175      |      | 775  |
| Base Capacity (vph)     | 260  | 577      | 797  | 267  | 579   | 490  | 249   | 355      | 384  | 262      | 312  | 276  |
| Starvation Cap Reductn  | 0    | 0        | 0    | 0    | 0     | 0    | 0     | 0        | 0    | 0        | 0    | 0    |
| Spillback Cap Reductn   | 0    | 0        | 0    | 0    | 0     | 0    | 0     | 0        | 0    | 0        | 0    | 0    |
| Storage Cap Reductn     | 0    | 0        | 0    | 0    | 0     | 0    | 0     | 0        | 0    | 0        | 0    | 0    |
| Reduced v/c Ratio       | 0.40 | 1.05     | 0.41 | 0.42 | 1.13  | 0.17 | 1.00  | 0.39     | 0.21 | 0.46     | 0.69 | 0.43 |

### Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

<sup># 95</sup>th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

|                         | ၨ    | <b>→</b> | •    | ←    | 4    | <b>†</b> | <b>\</b> | <b>↓</b> |  |
|-------------------------|------|----------|------|------|------|----------|----------|----------|--|
| Lane Group              | EBL  | EBT      | WBL  | WBT  | NBL  | NBT      | SBL      | SBT      |  |
| Lane Group Flow (vph)   | 36   | 694      | 49   | 777  | 16   | 41       | 38       | 68       |  |
| v/c Ratio               | 0.09 | 0.65     | 0.12 | 0.72 | 0.17 | 0.27     | 0.36     | 0.38     |  |
| Control Delay           | 3.0  | 12.4     | 3.2  | 15.2 | 40.9 | 22.8     | 47.5     | 26.2     |  |
| Queue Delay             | 0.0  | 0.0      | 0.0  | 0.0  | 0.0  | 0.0      | 0.0      | 0.0      |  |
| Total Delay             | 3.0  | 12.4     | 3.2  | 15.2 | 40.9 | 22.8     | 47.5     | 26.2     |  |
| Queue Length 50th (ft)  | 3    | 214      | 4    | 268  | 8    | 6        | 20       | 15       |  |
| Queue Length 95th (ft)  | 11   | 427      | 14   | #621 | 29   | 36       | 53       | 56       |  |
| Internal Link Dist (ft) |      | 1344     |      | 2218 |      | 301      |          | 478      |  |
| Turn Bay Length (ft)    | 100  |          | 150  |      | 150  |          | 60       |          |  |
| Base Capacity (vph)     | 601  | 1077     | 577  | 1073 | 313  | 418      | 340      | 493      |  |
| Starvation Cap Reductn  | 0    | 0        | 0    | 0    | 0    | 0        | 0        | 0        |  |
| Spillback Cap Reductn   | 0    | 0        | 0    | 0    | 0    | 0        | 0        | 0        |  |
| Storage Cap Reductn     | 0    | 0        | 0    | 0    | 0    | 0        | 0        | 0        |  |
| Reduced v/c Ratio       | 0.06 | 0.64     | 0.08 | 0.72 | 0.05 | 0.10     | 0.11     | 0.14     |  |
| Intersection Summary    |      |          |      |      |      |          |          |          |  |

<sup># 95</sup>th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

|                         | <b>→</b> | <b>→</b> | •    | •    | ←    | •    | <b>†</b> | /    | <b>\</b> | <b>↓</b> |  |
|-------------------------|----------|----------|------|------|------|------|----------|------|----------|----------|--|
| Lane Group              | EBL      | EBT      | EBR  | WBL  | WBT  | NBL  | NBT      | NBR  | SBL      | SBT      |  |
| Lane Group Flow (vph)   | 166      | 338      | 261  | 211  | 313  | 240  | 383      | 96   | 167      | 955      |  |
| v/c Ratio               | 0.65     | 0.97     | 0.54 | 0.88 | 0.99 | 0.75 | 0.46     | 0.24 | 1.02     | 1.01     |  |
| Control Delay           | 61.8     | 91.7     | 9.2  | 85.2 | 95.7 | 78.1 | 28.0     | 3.2  | 132.8    | 74.2     |  |
| Queue Delay             | 0.0      | 0.0      | 0.0  | 0.0  | 0.0  | 0.0  | 0.0      | 0.0  | 0.0      | 0.0      |  |
| Total Delay             | 61.8     | 91.7     | 9.2  | 85.2 | 95.7 | 78.1 | 28.0     | 3.2  | 132.8    | 74.2     |  |
| Queue Length 50th (ft)  | 129      | 284      | 0    | 171  | 258  | 84   | 52       | 16   | ~149     | ~472     |  |
| Queue Length 95th (ft)  | 208      | #478     | 77   | #300 | #452 | 137  | 122      | m19  | #296     | #609     |  |
| Internal Link Dist (ft) |          | 1924     |      |      | 547  |      | 853      |      |          | 1161     |  |
| Turn Bay Length (ft)    | 260      |          |      | 215  |      | 250  |          | 190  | 220      |          |  |
| Base Capacity (vph)     | 278      | 347      | 485  | 263  | 317  | 346  | 825      | 404  | 163      | 949      |  |
| Starvation Cap Reductn  | 0        | 0        | 0    | 0    | 0    | 0    | 0        | 0    | 0        | 0        |  |
| Spillback Cap Reductn   | 0        | 0        | 0    | 0    | 0    | 0    | 0        | 0    | 0        | 0        |  |
| Storage Cap Reductn     | 0        | 0        | 0    | 0    | 0    | 0    | 0        | 0    | 0        | 0        |  |
| Reduced v/c Ratio       | 0.60     | 0.97     | 0.54 | 0.80 | 0.99 | 0.69 | 0.46     | 0.24 | 1.02     | 1.01     |  |

### **Intersection Summary**

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

<sup># 95</sup>th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

| → <b>→</b> ~ ~ ~ 1 <b>→</b> ↓                             |
|-----------------------------------------------------------|
| Lara Cravia FDT FDD WDT WDD NDI NDT CDI CDT               |
| Lane Group EBT EBR WBT WBR NBL NBT SBL SBT                |
| Lane Group Flow (vph) 132 61 156 48 57 1000 64 1325       |
| v/c Ratio 0.79 0.20 0.90 0.16 0.24 0.56 0.20 0.76         |
| Control Delay 79.5 4.8 96.5 2.2 6.1 12.4 5.0 20.8         |
| Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0               |
| Total Delay 79.5 4.8 96.5 2.2 6.1 12.4 5.0 20.8           |
| Queue Length 50th (ft) 105 0 127 0 4 361 8 597            |
| Queue Length 95th (ft) #181 19 #231 6 m9 498 m10 m632     |
| Internal Link Dist (ft) 3911 440 1076 1586                |
| Turn Bay Length (ft) 50 80 85 85                          |
| Base Capacity (vph) 204 355 211 350 247 1784 367 1753     |
| Starvation Cap Reductn 0 0 0 0 0 0 0                      |
| Spillback Cap Reductn 0 0 0 0 0 0 0                       |
| Storage Cap Reductn 0 0 0 0 0 0 0                         |
| Reduced v/c Ratio 0.65 0.17 0.74 0.14 0.23 0.56 0.17 0.76 |

Intersection Summary

<sup># 95</sup>th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

|                         | <b>→</b> | <b>←</b> | •    | <b>1</b> | <b>†</b> | -    | ļ    |
|-------------------------|----------|----------|------|----------|----------|------|------|
| Lane Group              | EBT      | WBT      | WBR  | NBL      | NBT      | SBL  | SBT  |
| Lane Group Flow (vph)   | 156      | 29       | 23   | 51       | 962      | 16   | 1450 |
| v/c Ratio               | 0.83     | 0.16     | 0.09 | 0.24     | 0.52     | 0.05 | 0.75 |
| Control Delay           | 75.4     | 46.3     | 0.7  | 7.5      | 10.3     | 6.7  | 10.1 |
| Queue Delay             | 0.0      | 0.0      | 0.0  | 0.0      | 0.0      | 0.0  | 0.0  |
| Total Delay             | 75.4     | 46.3     | 0.7  | 7.5      | 10.3     | 6.7  | 10.1 |
| Queue Length 50th (ft)  | 109      | 21       | 0    | 10       | 134      | 2    | 102  |
| Queue Length 95th (ft)  | 181      | 48       | 0    | m23      | 434      | m6   | 306  |
| Internal Link Dist (ft) | 4110     | 594      |      |          | 2344     |      | 1076 |
| Turn Bay Length (ft)    |          |          | 50   | 85       |          | 100  |      |
| Base Capacity (vph)     | 255      | 247      | 315  | 306      | 1857     | 393  | 1927 |
| Starvation Cap Reductn  | 0        | 0        | 0    | 0        | 0        | 0    | 0    |
| Spillback Cap Reductn   | 0        | 0        | 0    | 0        | 0        | 0    | 0    |
| Storage Cap Reductn     | 0        | 0        | 0    | 0        | 0        | 0    | 0    |
| Reduced v/c Ratio       | 0.61     | 0.12     | 0.07 | 0.17     | 0.52     | 0.04 | 0.75 |
| Intersection Summary    |          |          |      |          |          |      |      |

m Volume for 95th percentile queue is metered by upstream signal.

|                         | •     | <b>→</b> | ←    | •    | •    | <b>†</b> | -    | Ţ    |  |
|-------------------------|-------|----------|------|------|------|----------|------|------|--|
| Long Croup              | EDI   | ГПТ      | WBT  | WBR  | NDI  | NDT      | CDI  | CDT  |  |
| Lane Group              | EBL   | EBT      | WDI  |      | NBL  | NBT      | SBL  | SBT  |  |
| Lane Group Flow (vph)   | 113   | 176      | 212  | 245  | 48   | 623      | 252  | 1050 |  |
| v/c Ratio               | 0.97  | 0.59     | 0.90 | 0.67 | 0.21 | 0.41     | 0.55 | 0.59 |  |
| Control Delay           | 125.0 | 47.3     | 86.7 | 32.8 | 9.1  | 18.2     | 22.9 | 21.0 |  |
| Queue Delay             | 0.0   | 0.0      | 0.0  | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  |  |
| Total Delay             | 125.0 | 47.3     | 86.7 | 32.8 | 9.1  | 18.2     | 22.9 | 21.0 |  |
| Queue Length 50th (ft)  | 93    | 117      | 172  | 100  | 12   | 155      | 59   | 455  |  |
| Queue Length 95th (ft)  | #198  | 187      | #278 | 187  | 28   | 218      | m151 | 548  |  |
| Internal Link Dist (ft) |       | 3376     | 444  |      |      | 451      |      | 2344 |  |
| Turn Bay Length (ft)    | 30    |          |      | 40   | 60   |          | 60   |      |  |
| Base Capacity (vph)     | 144   | 365      | 290  | 426  | 264  | 1517     | 461  | 1781 |  |
| Starvation Cap Reductn  | 0     | 0        | 0    | 0    | 0    | 0        | 0    | 0    |  |
| Spillback Cap Reductn   | 0     | 0        | 0    | 0    | 0    | 0        | 0    | 0    |  |
| Storage Cap Reductn     | 0     | 0        | 0    | 0    | 0    | 0        | 0    | 0    |  |
| Reduced v/c Ratio       | 0.78  | 0.48     | 0.73 | 0.58 | 0.18 | 0.41     | 0.55 | 0.59 |  |

Intersection Summary

<sup># 95</sup>th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Attachment F ODOT Crash Data CDS150 08/31/2017

#### PAGE: 1

# OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CRASH SUMMARIES BY YEAR BY COLLISION TYPE

Boones Ferry Rd & Crosby Rd January 1, 2011 through December 31, 2015

oandary 1, 2011 tillough Decemi

NON- PROPERTY INTER-FATAL DAMAGE TOTAL PEOPLE PEOPLE DRY INTER- SECTION OFF-FATAL WET **COLLISION TYPE** CRASHES CRASHES ONLY CRASHES KILLED INJURED TRUCKS SURF **SURF** DAY DARK SECTION RELATED ROAD

YEAR:

**TOTAL** 

FINAL TOTAL

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

# OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CRASH SUMMARIES BY YEAR BY COLLISION TYPE

Boones Ferry Rd / Settlemier Ave & OR 214 January 1, 2011 through December 31, 2015

| COLLISION TYPE       | FATAL<br>CRASHES | NON-<br>FATAL<br>CRASHES | PROPERTY<br>DAMAGE<br>ONLY | TOTAL<br>CRASHES | PEOPLE<br>KILLED | PEOPLE<br>INJURED | TRUCKS   | DRY<br>SURF | WET<br>SURF | DAY | DARK       | INTER-<br>SECTION | INTER-<br>SECTION<br>RELATED | OFF-<br>ROAD |
|----------------------|------------------|--------------------------|----------------------------|------------------|------------------|-------------------|----------|-------------|-------------|-----|------------|-------------------|------------------------------|--------------|
| YEAR: 2015           | 010101120        | 0.0.00                   | 0.12.                      | 010101120        | TULLED           | HIOOKED           | 11100110 | 00111       | 00111       |     | <i>D</i> , | CLOTION           |                              | 110/12       |
| TURNING MOVEMENTS    | 0                | 1                        | 0                          | 1                | 0                | 1                 | 1        | 1           | 0           | 1   | 0          | 1                 | 0                            | 0            |
| 2015 TOTAL           | 0                | 1                        | 0                          | 1                | 0                | 1                 | 1        | 1           | 0           | 1   | 0          | 1                 | 0                            | 0            |
| YEAR: 2013           |                  |                          |                            |                  |                  |                   |          |             |             |     |            |                   |                              |              |
| ANGLE                | 0                | 1                        | 0                          | 1                | 0                | 4                 | 0        | 0           | 1           | 0   | 1          | 1                 | 0                            | 0            |
| REAR-END             | 0                | 0                        | 1                          | 1                | 0                | 0                 | 0        | 1           | 0           | 1   | 0          | 1                 | 0                            | 0            |
| TURNING MOVEMENTS    | 0                | 1                        | 0                          | 1                | 0                | 1                 | 0        | 1           | 0           | 0   | 1          | 1                 | 0                            | 0            |
| 2013 TOTAL           | 0                | 2                        | 1                          | 3                | 0                | 5                 | 0        | 2           | 1           | 1   | 2          | 3                 | 0                            | 0            |
| YEAR: 2012           |                  |                          |                            |                  |                  |                   |          |             |             |     |            |                   |                              |              |
| FIXED / OTHER OBJECT | 0                | 0                        | 1                          | 1                | 0                | 0                 | 0        | 1           | 0           | 1   | 0          | 1                 | 0                            | 1            |
| REAR-END             | 0                | 0                        | 1                          | 1                | 0                | 0                 | 0        | 1           | 0           | 1   | 0          | 1                 | 0                            | 0            |
| 2012 TOTAL           | 0                | 0                        | 2                          | 2                | 0                | 0                 | 0        | 2           | 0           | 2   | 0          | 2                 | 0                            | 1            |
| YEAR: 2011           |                  |                          |                            |                  |                  |                   |          |             |             |     |            |                   |                              |              |
| TURNING MOVEMENTS    | 0                | 1                        | 0                          | 1                | 0                | 2                 | 0        | 0           | 1           | 0   | 1          | 1                 | 0                            | 0            |
| 2011 TOTAL           | 0                | 1                        | 0                          | 1                | 0                | 2                 | 0        | 0           | 1           | 0   | 1          | 1                 | 0                            | 0            |
| FINAL TOTAL          | 0                | 4                        | 3                          | 7                | 0                | 8                 | 1        | 5           | 2           | 4   | 3          | 7                 | 0                            | 1            |

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

## OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CONTINUOUS SYSTEM CRASH LISTING

140 HILLSBORO-SILVERTON

Boones Ferry Rd / Settlemier Ave & OR 214 January 1, 2011 through December 31, 2015

| S D P R S W SER# E A U C O DATE COUNTY INVEST E L G H R DAY/TIME CITY UNLOC? D C S L K LAT/LONG URBAN AREA | RD# FC CONN # CMPT/MLG FIRST STREET MILEPNT SECOND STREET LRS INTERSECTION SEQ# | RD CHAR (ME<br>DIRECT | LEGS TRAF-           | OFFRD WTHR CRASH TY<br>RNDBT SURF COLL TYP<br>DRVWY LIGHT SVRTY |                                 | A S<br>PRTC INJ G E LICNS PF<br>P# TYPE SVRTY E X RES LO |             | ACTN EVENT     | CAUSE    |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------|----------------------|-----------------------------------------------------------------|---------------------------------|----------------------------------------------------------|-------------|----------------|----------|
| 02557 Y N N 08/03/2012 MARION NONE Fri 6P WOODBURN                                                         | 1 14<br>MN 0 HILLSBORO-SILV HY                                                  | INTER C               | CROSS N<br>TRF SIGNA | Y CLR FIX OBJ<br>L N DRY FIX                                    | 01 NONE 0 TURN-I<br>PRVTE N E   |                                                          |             | 040<br>000 040 | 01<br>00 |
| WOODBURN UA<br>No 45 8 58.04 -122 51 34.65                                                                 | 37.87 SETTLEMIER AVE 014000100S00 1                                             | 05                    | 0                    | N DAY PDO                                                       | PSNGR CAR                       | 01 DRVR NONE 25 F OR-Y<br>OR<25                          | 047,080,081 | 017            | 01       |
| 00012 N N N 01/03/2012 MARION                                                                              | 1 14                                                                            |                       | CROSS N              | N CLR S-1STOP                                                   | 01 NONE 0 STRGHT                | ŗ                                                        |             | 004            | 07<br>00 |
| NONE Tue 4P WOODBURN WOODBURN UA                                                                           | MN 0 BOONES FERRY RD<br>37.87 HILLSBORO-SILV HY<br>014000100S00 1               | W<br>06               | TRF SIGNA            |                                                                 | PRVTE W E<br>PSNGR CAR          |                                                          | 026         | 000            | 07       |
| No 45 8 58.14 -122 51 35.96                                                                                | 014000100500 1                                                                  |                       |                      |                                                                 | 02 NONE 0 STOP                  | OR<25                                                    |             |                |          |
|                                                                                                            |                                                                                 |                       |                      |                                                                 | PRVTE W E                       |                                                          |             | 011 004        | 00       |
|                                                                                                            |                                                                                 |                       |                      |                                                                 | PSNGR CAR                       | 01 DRVR NONE 38 F OR-Y<br>OR<25                          | 000         | 000            | 00       |
| 83924 N N N 10/14/2013 MARION                                                                              | 1 14                                                                            | INTER C               | CROSS N              | N CLR S-1STOP                                                   | 01 NONE 0 STRGHT                | [                                                        |             |                | 07       |
| NO RPT Mon 3P WOODBURN                                                                                     | MN 0 BOONES FERRY RD                                                            | M                     | TRF SIGNA            | L N DRY REAR                                                    | PRVTE W E                       |                                                          |             | 000            | 00       |
| WOODBURN UA<br>No 45 8 58.04 -122 51 34.65                                                                 | 37.87 HILLSBORO-SILV HY 014000100S00 1                                          | 06                    | 0                    | N DAY PDO                                                       | PSNGR CAR                       | 01 DRVR NONE 53 M OR-Y<br>OR<25                          | 026         | 000            | 07       |
|                                                                                                            |                                                                                 |                       |                      |                                                                 | 02 NONE 0 STOP                  |                                                          |             |                |          |
|                                                                                                            |                                                                                 |                       |                      |                                                                 | PRVTE W E                       |                                                          |             | 011            | 00       |
|                                                                                                            |                                                                                 |                       |                      |                                                                 | PSNGR CAR                       | 01 DRVR NONE 46 F OTH-Y<br>N-RES                         | 000         | 000            | 00       |
| 02839 N N N 07/28/2015 MARION                                                                              | 1 14                                                                            | INTER C               | CROSS N              | N CLR S-OTHER                                                   | 01 NONE 1 TURN-F                | 3                                                        |             |                | 08       |
| NO RPT Tue 9A WOODBURN                                                                                     | MN 0 BOONES FERRY RD                                                            | CN                    |                      | L N DRY TURN                                                    | PRVTE N W                       |                                                          |             | 000            | 00       |
| WOODBURN UA<br>No 45 8 58.04 -122 51 34.65                                                                 | 37.87 HILLSBORO-SILV HY<br>014000100S00 1                                       | 01                    | 0                    | N DAY INJ                                                       | SEMI TOW                        | 01 DRVR NONE 49 M OR-Y<br>OR<25                          | 006         | 000            | 08       |
|                                                                                                            |                                                                                 |                       |                      |                                                                 | 02 NONE 0 TURN-F                | ₹                                                        |             |                |          |
|                                                                                                            |                                                                                 |                       |                      |                                                                 | PRVTE N W                       |                                                          |             | 000            | 00       |
|                                                                                                            |                                                                                 |                       |                      |                                                                 | PSNGR CAR                       | 01 DRVR INJC 25 F OR-Y<br>OR<25                          | 000         | 000            | 00       |
|                                                                                                            |                                                                                 |                       |                      |                                                                 |                                 | 02 PSNG NO<5 03 M                                        | 000         | 000            | 00       |
| 00211 N N N Y N 01/21/2011 MARION CITY Fri 7A WOODBURN                                                     | 1 14<br>MN 0 BOONES FERRY RD                                                    |                       | CROSS N<br>TRF SIGNA |                                                                 | N 01 NONE 0 TURN-I<br>PRVTE W N |                                                          |             | 000            | 04<br>00 |
| WOODBURN UA<br>No 45 8 58.04 -122 51 34.65                                                                 | 37.87 HILLSBORO-SILV HY 014000100S00 1                                          | 02                    | 0                    | N DLIT INJ                                                      | PSNGR CAR                       | 01 DRVR INJC 51 M OR-Y<br>OR<25                          | 020         | 000            | 04       |
|                                                                                                            |                                                                                 |                       |                      |                                                                 | 02 NONE 0 STRGHT                | Ţ                                                        |             |                |          |
|                                                                                                            |                                                                                 |                       |                      |                                                                 | PRVTE E W                       |                                                          | 0.00        | 000            | 00       |
|                                                                                                            |                                                                                 |                       |                      |                                                                 | PSNGK CAR                       | 01 DRVR INJB 45 F OR-Y<br>OR>25                          | 000         | 000            | 00       |
|                                                                                                            | 1 14                                                                            |                       |                      |                                                                 | N 01 NONE 0 TURN-I              |                                                          |             |                | 02       |
| NO RPT Sun 3A WOODBURN                                                                                     | MN 0 BOONES FERRY RD                                                            |                       | TRF SIGNA            |                                                                 | PRVTE W N                       |                                                          |             | 000            | 00       |
| WOODBURN UA<br>No 45 8 58.04 -122 51 34.65                                                                 | 37.87 HILLSBORO-SILV HY<br>014000100S00 1                                       | 02                    | 0                    | N DLIT INJ                                                      | PSNGR CAR                       | 01 DRVR NONE 00 U UNK<br>UNK                             | 097         | 000            | 00       |

CDS380 9/6/2017

### OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

PAGE: 2

CONTINUOUS SYSTEM CRASH LISTING

140 HILLSBORO-SILVERTON

Boones Ferry Rd / Settlemier Ave & OR 214

January 1, 2011 through December 31, 2015

| S D                                  |                         |                                              |                                                |                  |
|--------------------------------------|-------------------------|----------------------------------------------|------------------------------------------------|------------------|
| P RSW                                | RD# FC CONN #           | INT-TYP                                      | SPCL USE                                       |                  |
| SER# E A U C O DATE COUNTY           | CMPT/MLG FIRST STREET   | RD CHAR (MEDIAN) INT-REL OFFRD WTHR CRASH TY | P TRLR QTY MOVE A S                            |                  |
| INVEST E L G H R DAY/TIME CITY       | MILEPNT SECOND STREET   | DIRECT LEGS TRAF- RNDBT SURF COLL TYP        | OWNER FROM PRTC INJ G E LICNS PED              |                  |
| UNLOC? D C S L K LAT/LONG URBAN AREA | LRS INTERSECTION SEQ#   | LOCTN (#LANES) CNTL DRVWY LIGHT SVRTY        | V# VEH TYPE TO P# TYPE SVRTY E X RES LOC ERROR | ACTN EVENT CAUSE |
|                                      |                         |                                              |                                                |                  |
|                                      |                         |                                              | 02 NONE 0 TURN-L                               |                  |
|                                      |                         |                                              | PRVTE E S                                      | 000 00           |
|                                      |                         |                                              | PSNGR CAR 01 DRVR INJC 47 M OR-Y 097           | 000 00           |
|                                      |                         |                                              | OR<25                                          |                  |
|                                      |                         |                                              | 02 PSNG NO<5 02 M 000                          | 000 00           |
|                                      |                         |                                              |                                                |                  |
| 02927 NNNN 08/29/2013 MARION         | 1 14                    | INTER CROSS N N RAIN ANGL-OTH                | 01 NONE 0 STRGHT                               | 013 04           |
| CITY Thu 5A WOODBURN                 | MN 0 BOONES FERRY RD    | CN TRF SIGNAL N WET ANGL                     | PRVTE E W                                      | 000 013 00       |
| WOODBURN UA                          | 37.87 HILLSBORO-SILV HY | 02 1 N DAWN INJ                              | PSNGR CAR 01 DRVR INJB 19 F OR-Y 020           | 000 04           |
| No 45 8 58.04 -122 51 34.65          | 014000100800 1          |                                              | OR<25                                          |                  |
|                                      |                         |                                              | 02 PSNG INJB 52 F 000                          | 000 00           |
|                                      |                         |                                              |                                                |                  |
|                                      |                         |                                              | 02 NONE 0 STRGHT                               |                  |
|                                      |                         |                                              | PRVTE S N                                      | 000 00           |
|                                      |                         |                                              | PSNGR CAR 01 DRVR INJB 45 M NONE 000           | 000 00           |
|                                      |                         |                                              | OR<25                                          |                  |
|                                      |                         |                                              | 00 11017                                       |                  |
|                                      |                         |                                              | 03 NONE 0 STOP                                 | 010              |
|                                      |                         |                                              | PRVTE N S                                      | 012 00           |
|                                      |                         |                                              | PSNGR CAR 01 DRVR INJB 45 M OR-Y 000           | 000 00           |
|                                      |                         |                                              | OR<25                                          |                  |

# OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CRASH SUMMARIES BY YEAR BY COLLISION TYPE

#### Butteville Rd & OR 219 Hillsboro-Silverton Hwy (140) January 1, 2011 through December 31, 2015

NON- PROPERTY INTER-DRY **FATAL FATAL** DAMAGE TOTAL PEOPLE PEOPLE WET INTER- SECTION OFF-**COLLISION TYPE** CRASHES CRASHES ONLY CRASHES KILLED INJURED TRUCKS SURF **SURF** DAY DARK SECTION RELATED ROAD YEAR: 2015 **REAR-END** SIDESWIPE - MEETING TURNING MOVEMENTS **2015 TOTAL** YEAR: 2014 **REAR-END** 2014 TOTAL YEAR: 2012 SIDESWIPE - MEETING 2012 TOTAL YEAR: 2011 FIXED / OTHER OBJECT **REAR-END** 2011 TOTAL FINAL TOTAL 

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

8/31/2017

CDS380

## OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CONTINUOUS SYSTEM CRASH LISTING

140 HILLSBORO-SILVERTON

Butteville Rd & OR 219 Hillsboro-Silverton Hwy (140)

January 1, 2011 through December 31, 2015

| S |       |       |   |         |         |      |
|---|-------|-------|---|---------|---------|------|
|   | D C M | DD# D | ~ | CONN. # | TMB BVD | CDCT |

| P R S W  SER# E A U C O DATE COUNTY INVEST E L G H R DAY/TIME CITY UNLOC? D C S L K LAT/LONG URBAN AREA | RD# FC CONN # CMPT/MLG FIRST STREET MILEPNT SECOND STREET LRS INTERSECTION SEQ# | RD CHAR<br>DIRECT<br>LOCTN |         | TRAF- RN  |                 | CRASH TYP<br>COLL TYP |                               |               | A S<br>G E LICNS PE<br>E X RES LC |             | ACTN EVENT | CAUSE       |
|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------|---------|-----------|-----------------|-----------------------|-------------------------------|---------------|-----------------------------------|-------------|------------|-------------|
| 00137 N N N 01/14/2014 MARION COUNTY Tue 7P                                                             | 1 06<br>MN 0                                                                    | INTER<br>UN                | 3-LEG N | TOP SIGN  |                 | S-1STOP<br>REAR       | 01 NONE 0 STRGHT<br>PRVTE S N |               |                                   |             | 000        | 07<br>00    |
| No 45 9 4.13 -122 53 47.58                                                                              | 36.02<br>014000100s00                                                           | 06                         | 0       |           | N DARK          |                       | PSNGR CAR                     | 01 DRVR NONE  | 27 M SUSP<br>OR>25                | 026         | 000        | 07          |
|                                                                                                         |                                                                                 |                            |         |           |                 |                       | 02 NONE 0 STOP                |               |                                   |             |            |             |
|                                                                                                         |                                                                                 |                            |         |           |                 |                       | PRVTE S N                     | 0.1           |                                   |             | 012        | 00          |
|                                                                                                         |                                                                                 |                            |         |           |                 |                       | PSNGR CAR                     | 01 DRVR NONE  | 33 M OR-Y<br>OR<25                | 000         | 000        | 00          |
| 02907 Y N N N N 09/04/2011 MARION                                                                       | 1 06                                                                            | INTER                      | 3-LEG N |           |                 |                       |                               |               |                                   |             | 088        | 30,03       |
| STATE Sun 10P                                                                                           | MN 0<br>36.02                                                                   | N<br>05                    | 0       | TOP SIGN  | N DRY<br>N DARK |                       | PRVTE S N<br>PSNGR CAR        | 01 DRVR NONE  | 18 M OR-Y                         | 050,021,081 | 000 088    | 00<br>30,03 |
| No 45 9 4.13 -122 53 47.58                                                                              | 014000100s00                                                                    |                            | Ü       |           | n Billin        | 120                   | 281.61. 6.11.                 | or bloom      | OR<25                             | 000,021,001 |            | 20,00       |
|                                                                                                         |                                                                                 |                            |         |           |                 |                       | 02 NONE 0 PRKD-P<br>PRVTE S N |               |                                   |             | 032        | 00          |
|                                                                                                         |                                                                                 |                            |         |           |                 |                       | PSNGR CAR                     |               |                                   |             |            |             |
| 02466 Y N N 07/26/2012 MARION                                                                           | 1 06                                                                            | INTER                      | 3-LEG N |           |                 |                       | 01 NONE 0 STRGHT              |               |                                   |             |            | 01          |
| NO RPT Thu 7A                                                                                           | MN 0                                                                            | E<br>06                    | 0 UI    | NKNOWN    | N DRY           |                       | PRVTE E W                     | 01 DDIID MONE | 40 M OD V                         | 047 000     | 007        | 00<br>01    |
| No 45 9 4.13 -122 53 47.58                                                                              | 36.02<br>014000100s00                                                           | 06                         | U       |           | N DAY           | PDO                   | PSNGR CAR                     | 01 DRVR NONE  | 0R>25                             | 047,080     | 000        | 01          |
|                                                                                                         |                                                                                 |                            |         |           |                 |                       | 02 NONE 0 STRGHT              |               |                                   |             | 000        | 0.0         |
|                                                                                                         |                                                                                 |                            |         |           |                 |                       | PRVTE W E<br>PSNGR CAR        | 01 DRVR NONE  | 42 F OR-Y                         | 000         | 000        | 00          |
|                                                                                                         |                                                                                 |                            |         |           |                 |                       | 281.61. 6.11.                 | or bloom      | OR<25                             |             |            |             |
| 02702 N N N 08/19/2011 MARION<br>NONE Fri 1P                                                            | 1 06<br>MN 0                                                                    | INTER<br>S                 | 3-LEG N | NKNOWN    | N CLR<br>N DRY  | S-1STOP               | 01 NONE 0 STRGHT PRVTE S N    |               |                                   |             | 013        | 07<br>00    |
| NONE FII IF                                                                                             | 36.02                                                                           | 06                         | 0       | INTINOWIN | N DAY           |                       | PSNGR CAR                     | 01 DRVR NONE  | 00 M OR-Y                         | 026         | 000        | 07          |
| No 45 9 4.13 -122 53 47.58                                                                              | 014000100800                                                                    |                            |         |           |                 |                       |                               |               | OR<25                             |             |            |             |
|                                                                                                         |                                                                                 |                            |         |           |                 |                       | 02 NONE 0 STOP<br>PRVTE S N   |               |                                   |             | 011 013    | 00          |
|                                                                                                         |                                                                                 |                            |         |           |                 |                       | PSNGR CAR                     | 01 DRVR NONE  | 26 M OR-Y                         | 000         | 000        | 00          |
|                                                                                                         |                                                                                 |                            |         |           |                 |                       |                               |               | OR<25                             |             |            |             |
|                                                                                                         |                                                                                 |                            |         |           |                 |                       | 03 NONE 0 STOP<br>PRVTE S N   |               |                                   |             | 022        | 00          |
|                                                                                                         |                                                                                 |                            |         |           |                 |                       | PSNGR CAR                     | 01 DRVR NONE  | 28 M OR-Y                         | 000         | 000        | 00          |
|                                                                                                         |                                                                                 |                            |         |           |                 |                       |                               |               | OR<25                             |             |            |             |
| 01065 N N N 03/23/2015 MARION                                                                           | 1 16                                                                            | INTER                      | 3-LEG N |           |                 | S-1STOP               | 01 NONE 0 STRGHT              |               |                                   |             | 000        | 07          |
| NONE Mon 10A<br>WOODBURN UA                                                                             | MN 0<br>36.02                                                                   | S<br>06                    | 0       | TOP SIGN  | N DAY           |                       | RENTL S N<br>PSNGR CAR        | 01 DRVR NONE  | 25 M OR-Y                         | 026         | 000        | 00<br>07    |
| No 45 9 4.13 -122 53 47.58                                                                              | 014000100800                                                                    | 30                         | J       |           | ., 5111         | 1110                  | 1 SNOW SHIP                   | OT DIVIN HONE | OR<25                             | 020         |            | <i>3</i> ,  |

### PAGE: 2

#### CDS380 8/31/2017 OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

CONTINUOUS SYSTEM CRASH LISTING

Butteville Rd & OR 219 Hillsboro-Silverton Hwy (140) 140 HILLSBORO-SILVERTON January 1, 2011 through December 31, 2015

| S D P R S W  SER# E A U C O DATE COUNTY INVEST E L G H R DAY/TIME CITY UNLOC? D C S L K LAT/LONG URBAN AREA | RD# FC CONN # CMPT/MLG FIRST STREET MILEPNT SECOND STREET LRS INTERSECTION SEQ# | INT-<br>RD CHAR (MEDI<br>DIRECT LE<br>LOCTN (#LA | AN) INT-REL O<br>GS TRAF- R | FFRD WTHR CRASH TY<br>NDBT SURF COLL TYP<br>RVWY LIGHT SVRTY |                  | A S PRTC INJ G E LI P# TYPE SVRTY E X RE |                 | ACTN EVENT | CAUSE |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------|--------------------------------------------------------------|------------------|------------------------------------------|-----------------|------------|-------|
|                                                                                                             |                                                                                 |                                                  |                             |                                                              | 02 NONE 0 STOP   |                                          |                 |            |       |
|                                                                                                             |                                                                                 |                                                  |                             |                                                              | PRVTE S N        |                                          |                 | 012        | 00    |
|                                                                                                             |                                                                                 |                                                  |                             |                                                              | PSNGR CAR        | 01 DRVR INJC 18 M OF OF                  | R-Y 000<br>R<25 | 000        | 00    |
|                                                                                                             |                                                                                 |                                                  |                             |                                                              |                  | 02 PSNG INJC 17 F                        | 000             | 000        | 00    |
| 03986 N N N 10/16/2015 MARION                                                                               | 1 16                                                                            | INTER 3-I                                        | LEG N                       | N CLR S-1STOP                                                | 01 NONE 0 STRGHT |                                          |                 |            | 29    |
| NONE Fri 6A                                                                                                 | MN 0                                                                            | S                                                | STOP SIGN                   | N DRY REAR                                                   | PRVTE S N        |                                          |                 | 000        | 00    |
| WOODBURN UA<br>No 45 9 4.13 -122 53 47.58                                                                   | 36.02<br>014000100s00                                                           | 06                                               | 0                           | N DLIT PDO                                                   | PSNGR CAR        | 01 DRVR NONE 57 M OF                     | R-Y 026<br>R<25 | 000        | 29    |
|                                                                                                             |                                                                                 |                                                  |                             |                                                              | 02 NONE 0 STOP   |                                          |                 |            |       |
|                                                                                                             |                                                                                 |                                                  |                             |                                                              | PRVTE S N        |                                          |                 | 012        | 00    |
|                                                                                                             |                                                                                 |                                                  |                             |                                                              | PSNGR CAR        | 01 DRVR NONE 00 F UN<br>UN               |                 | 000        | 00    |
| 01241 N N N 04/06/2015 MARION                                                                               | 1 16                                                                            | INTER 3-I                                        | LEG N                       | N CLR O-STRGHT                                               | 01 NONE 0 STRGHT |                                          |                 | 128        | 10    |
| NONE Mon 5P                                                                                                 | MN 0                                                                            | CN                                               | STOP SIGN                   | N DRY SS-M                                                   | PRVTE N S        |                                          |                 | 000 128    | 00    |
| WOODBURN UA                                                                                                 | 36.02                                                                           | 02                                               | 0                           | N DAY PDO                                                    | PSNGR CAR        | 01 DRVR NONE 00 F OF                     | R-Y 079,080     | 000        | 10    |
| No 45 9 4.13 -122 53 47.58                                                                                  | 014000100S00                                                                    |                                                  |                             |                                                              |                  | OF                                       | <25             |            |       |
|                                                                                                             |                                                                                 |                                                  |                             |                                                              | 02 NONE 0 STRGHT |                                          |                 |            |       |
|                                                                                                             |                                                                                 |                                                  |                             |                                                              | PRVTE S N        |                                          |                 | 000 128    | 00    |
|                                                                                                             |                                                                                 |                                                  |                             |                                                              | PSNGR CAR        | 01 DRVR NONE 40 M OF                     | R-Y 000<br>R>25 | 000        | 00    |
| 00038 N N N 01/05/2015 MARION                                                                               | 1 16                                                                            | INTER 3-I                                        | LEG N                       | N RAIN ANGL-OTH                                              | 01 NONE 0 TURN-R |                                          |                 |            | 02    |
| NONE Mon 1A                                                                                                 | MN 0                                                                            | CN                                               | STOP SIGN                   | N WET TURN                                                   | PRVTE W S        |                                          |                 | 000        | 00    |
| WOODBURN UA                                                                                                 | 36.02                                                                           | 03                                               | 0                           | N DARK PDO                                                   | PSNGR CAR        | 01 DRVR NONE 00 U UN                     | IK 028          | 000        | 02    |
| No 45 9 4.13 -122 53 47.58                                                                                  | 014000100S00                                                                    |                                                  |                             |                                                              |                  | UN                                       | IK              |            |       |
|                                                                                                             |                                                                                 |                                                  |                             |                                                              | 02 NONE 0 STRGHT |                                          |                 |            |       |
|                                                                                                             |                                                                                 |                                                  |                             |                                                              | PRVTE N S        |                                          |                 | 000        | 00    |
|                                                                                                             |                                                                                 |                                                  |                             |                                                              | PSNGR CAR        | 01 DRVR NONE 36 M OF                     | R-Y 000<br>R<25 | 000        | 00    |

# OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CRASH SUMMARIES BY YEAR BY COLLISION TYPE

Cascade Dr & OR 214 Hillsboro-Silverton Hwy (140) January 1, 2011 through December 31, 2015

| COLLISION TYPE                                     | FATAL<br>CRASHES | NON-<br>FATAL<br>CRASHES | PROPERTY<br>DAMAGE<br>ONLY | TOTAL<br>CRASHES | PEOPLE<br>KILLED | PEOPLE<br>INJURED | TRUCKS | DRY<br>SURF | WET<br>SURF | DAY    | DARK | INTER-<br>SECTION | INTER-<br>SECTION<br>RELATED | OFF-<br>ROAD |
|----------------------------------------------------|------------------|--------------------------|----------------------------|------------------|------------------|-------------------|--------|-------------|-------------|--------|------|-------------------|------------------------------|--------------|
| YEAR: 2015                                         |                  |                          |                            |                  |                  |                   |        |             |             |        |      |                   |                              |              |
| REAR-END                                           | 0                | 1                        | 0                          | 1                | 0                | 1                 | 0      | 1           | 0           | 1      | 0    | 1                 | 0                            | 0            |
| TURNING MOVEMENTS                                  | 0                | 1                        | 0                          | 1                | 0                | 1                 | 0      | 0           | 1           | 1      | 0    | 1                 | 0                            | 0            |
| 2015 TOTAL                                         | 0                | 2                        | 0                          | 2                | 0                | 2                 | 0      | 1           | 1           | 2      | 0    | 2                 | 0                            | 0            |
| YEAR: 2014<br>SIDESWIPE - OVERTAKING<br>2014 TOTAL | 0                | 1                        | 0                          | 1                | 0                | 1<br>1            | 0<br>0 | 1<br>1      | 0<br>0      | 1<br>1 | 0    | 1<br>1            | 0<br>0                       | 0            |
| YEAR: 2012<br>TURNING MOVEMENTS<br>2012 TOTAL      | 0<br>0           | 0                        |                            | 1<br>1           | 0                | 0<br>0            | 0      | 0           | 1<br>1      | 1<br>1 | 0    | 1<br>1            | 0<br>0                       | 0            |
| FINAL TOTAL                                        | 0                | 3                        | 1                          | 4                | 0                | 3                 | 0      | 2           | 2           | 4      | 0    | 4                 | 0                            | 0            |

## CDS380 9/6/2017 OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION PAGE: 1

TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

### CONTINUOUS SYSTEM CRASH LISTING

140 HILLSBORO-SILVERTON

Cascade Dr & OR 214 Hillsboro-Silverton Hwy (140)

January 1, 2011 through December 31, 2015

| S D P R S W  SER# E A U C O DATE CO INVEST E L G H R DAY/TIME CI UNLOC? D C S L K LAT/LONG UF | ITY MILEPNT      | FIRST STREET RD SECOND STREET DIE | INT-TYP CHAR (MEDIAN) RECT LEGS CTN (#LANES) | TRAF- R        |                 | COLL TYP | OWNER              | FROM          | PRTC INJ<br>P# TYPE SVRTY | A S<br>G E LICNS<br>E X RES |         | ACTN E | EVENT | CAUSE    |
|-----------------------------------------------------------------------------------------------|------------------|-----------------------------------|----------------------------------------------|----------------|-----------------|----------|--------------------|---------------|---------------------------|-----------------------------|---------|--------|-------|----------|
| 03549 N N N 10/10/2014 MF<br>NONE Fri 10A WC                                                  | OODBURN MN 0     | CASCADE DR E                      |                                              | STOP SIGN      | N DRY           | SS-O     |                    | E W           |                           |                             |         | 000    |       | 13<br>00 |
| No 45 9 3.25 -122 52                                                                          |                  | HILLSBORO-SILV HY 06              | 5 0                                          |                | N DAY           | INJ      | PSNGR CAR          |               | 01 DRVR NONE              | 43 M OR-Y<br>OR<25          | 045     | 000    |       | 13       |
|                                                                                               |                  |                                   |                                              |                |                 |          | 02 NONE 0<br>PRVTE | STRGHT<br>E W |                           |                             |         | 000    |       | 00       |
|                                                                                               |                  |                                   |                                              |                |                 |          | PSNGR CAR          |               | 01 DRVR INJC              | 43 F OR-Y<br>OR<25          | 000     | 000    |       | 00       |
| 05096 N N N N N 12/19/2015 MP<br>CITY Sat 1P WC                                               |                  | CASCADE DR S                      | NTER 3-LEG                                   | N<br>STOP SIGN | N CLD<br>N WET  |          |                    |               |                           |                             |         | 1      | 110   | 02       |
| No 45 9 3.25 -122 52                                                                          |                  | HILLSBORO-SILV HY 06              | 5 0                                          |                | N DAY           | INJ      |                    | STRGHT<br>E W | 01 BIKE INJB              | 66 M                        | 01 062  | 047 1  | 110   | 00       |
|                                                                                               |                  |                                   |                                              |                |                 |          | 01 NONE 0<br>PRVTE | TURN-R<br>S E |                           |                             |         | 000    |       | 00       |
|                                                                                               |                  |                                   |                                              |                |                 |          | PSNGR CAR          |               | 01 DRVR NONE              | 52 M OR-Y<br>OR<25          | 027     | 000    |       | 02       |
| 00038 N N N N N 01/05/2012 MP                                                                 |                  | INT<br>CASCADE DR W               | NTER 3-LEG                                   |                | N RAIN<br>N WET | ANGL-OTH | 01 NONE 0<br>PRVTE | TURN-L<br>S W |                           |                             |         | 015    |       | 02<br>00 |
|                                                                                               | OODBURN UA 37.27 | HILLSBORO-SILV HY 05              |                                              | NONE           | N DAY           |          | PSNGR CAR          |               | 01 DRVR NONE              | 39 M OR-Y<br>OR>25          | 028     | 000    |       | 02       |
|                                                                                               |                  |                                   |                                              |                |                 |          | 02 NONE 0<br>PRVTE |               |                           |                             |         | 000    |       | 00       |
|                                                                                               |                  |                                   |                                              |                |                 |          | PSNGR CAR          |               | 01 DRVR NONE              | 39 M OR-Y<br>OR<25          | 000     | 000    |       | 00       |
| 03176 N N N N Y 08/21/2015 MF<br>CITY Fri 4P WC                                               |                  | INT<br>CASCADE DR W               | NTER 3-LEG                                   | N<br>STOP SIGN | N CLR<br>N DRY  |          | 01 NONE 0<br>PRVTE | STRGHT<br>W E |                           |                             |         | 000    | 004   | 07<br>00 |
| WC<br>No 45 9 3.25 -122 52                                                                    |                  | HILLSBORO-SILV HY 06              | 0                                            |                | N DAY           | INJ      | PSNGR CAR          |               | 01 DRVR NONE              | 52 M OR-Y<br>OR<25          | 043,026 | 000    |       | 07       |
|                                                                                               |                  |                                   |                                              |                |                 |          | 02 NONE 0<br>PRVTE | STOP<br>W E   |                           |                             |         | 011 (  | 004   | 00       |
|                                                                                               |                  |                                   |                                              |                |                 |          | PSNGR CAR          |               | 01 DRVR INJC              | 18 M OR-Y<br>OR<25          | 000     | 000    |       | 00       |

### PAGE: 1

# OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CRASH SUMMARIES BY YEAR BY COLLISION TYPE

## Cleveland St & Front St January 1, 2011 through December 31, 2015

|                |         | NON-    | PROPERTY |         |        |         |        |      |      |     |      |         | INTER-  |      |
|----------------|---------|---------|----------|---------|--------|---------|--------|------|------|-----|------|---------|---------|------|
|                | FATAL   | FATAL   | DAMAGE   | TOTAL   | PEOPLE | PEOPLE  |        | DRY  | WET  |     |      | INTER-  | SECTION | OFF- |
| COLLISION TYPE | CRASHES | CRASHES | ONLY     | CRASHES | KILLED | INJURED | TRUCKS | SURF | SURF | DAY | DARK | SECTION | RELATED | ROAD |
| YEAR: 2013     |         |         |          |         |        |         |        |      |      |     |      |         |         |      |
| ANGLE          | 0       | 1       | 0        | 1       | 0      | 1       | 0      | 0    | 1    | 0   | 1    | 1       | 0       | 0    |
| 2013 TOTAL     | 0       | 1       | 0        | 1       | 0      | 1       | 0      | 0    | 1    | 0   | 1    | 1       | 0       | 0    |
| YEAR: 2012     |         |         |          |         |        |         |        |      |      |     |      |         |         |      |
| ANGLE          | 0       | 1       | 0        | 1       | 0      | 1       | 0      | 1    | 0    | 1   | 0    | 1       | 0       | 0    |
| 2012 TOTAL     | 0       | 1       | 0        | 1       | 0      | 1       | 0      | 1    | 0    | 1   | 0    | 1       | 0       | 0    |
| FINAL TOTAL    | 0       | 2       | 0        | 2       | 0      | 2       | 0      | 1    | 1    | 1   | 1    | 2       | 0       | 0    |

CITY OF WOODBURN, MARION COUNTY

### PAGE: 1

#### 8/31/2017 OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

URBAN NON-SYSTEM CRASH LISTING

### Cleveland St & Front St

January 1, 2011 through December 31, 2015

|       | S D W S W E A U C O E L G H R D C S L K | DAY/TIME     | FC<br>DISTNC | CITY STREET FIRST STREET SECOND STREET INTERSECTION SEQ # | RD CHAR<br>DIRECT<br>LOCTN | INT-TYP<br>(MEDIAN)<br>LEGS<br>(#LANES) | INT-REL OF<br>TRAF- RN | F-RD WTHI<br>DBT SURI | COLL TYP | SPCL USE<br>TRLR QTY<br>OWNER<br>V# VEH TYPE | MOVE<br>FROM<br>TO | PRTC<br>P# TYPE | INJ<br>SVRTY | A S<br>G E LICNS<br>E X RES | PED<br>LOC ERROR | ACTN EVENT | CAUSE |
|-------|-----------------------------------------|--------------|--------------|-----------------------------------------------------------|----------------------------|-----------------------------------------|------------------------|-----------------------|----------|----------------------------------------------|--------------------|-----------------|--------------|-----------------------------|------------------|------------|-------|
| 03169 | NNNNN                                   | 09/19/2012   | 16           | CLEVELAND ST                                              | INTER                      | CROSS                                   | N                      | N CLR                 | ANGL-OTH | 01 NONE 0                                    | STRGHT             |                 |              |                             |                  |            | 03    |
| CITY  |                                         | Wed 2P       | 0            | FRONT ST                                                  | CN                         |                                         | STOP SIGN              | N DRY                 | ANGL     | PRVTE                                        | SE NW              |                 |              |                             |                  | 000        | 00    |
| No    | 45 8 28.16                              | 5 -122 51 29 | .35          | 1                                                         | 02                         | 0                                       |                        | N DAY                 | INJ      | PSNGR CAR                                    |                    | 01 DRVF         | R INJC       | 55 F OR-Y<br>OR<25          | 000              | 000        | 00    |
|       |                                         |              |              |                                                           |                            |                                         |                        |                       |          | 02 NONE 0                                    | STRGHT             |                 |              |                             |                  |            |       |
|       |                                         |              |              |                                                           |                            |                                         |                        |                       |          | PRVTE                                        | SW NE              |                 |              |                             |                  | 000        | 00    |
|       |                                         |              |              |                                                           |                            |                                         |                        |                       |          | PSNGR CAR                                    |                    | 01 DRVF         | R NONE       | 19 F OR-Y<br>OR<25          | 021              | 000        | 03    |
| 03925 | N N N                                   | 11/06/2013   | 16           | CLEVELAND ST                                              | INTER                      | CROSS                                   | N                      | N RAII                | ANGL-OTH | 01 NONE 0                                    | STRGHT             |                 |              |                             |                  |            | 02    |
| NONE  |                                         | Wed 6P       | 0            | FRONT ST                                                  | CN                         |                                         | STOP SIGN              | N WET                 | ANGL     | PRVTE                                        | NW SE              |                 |              |                             |                  | 015        | 00    |
| No    | 45 8 28.16                              | 5 -122 51 29 | .35          | 1                                                         | 03                         | 0                                       |                        | N DUSI                | INJ      | PSNGR CAR                                    |                    | 01 DRVF         | R NONE       | 27 F OR-Y<br>OR<25          | 028              | 000        | 02    |
|       |                                         |              |              |                                                           |                            |                                         |                        |                       |          | 02 NONE 0                                    | STRGHT             |                 |              |                             |                  |            |       |
|       |                                         |              |              |                                                           |                            |                                         |                        |                       |          | PRVTE                                        | NE SW              |                 |              |                             |                  | 015        | 00    |
|       |                                         |              |              |                                                           |                            |                                         |                        |                       |          | PSNGR CAR                                    |                    | 01 DRVF         | R INJC       | 30 F OR-Y<br>OR<25          | 000              | 000        | 00    |

## OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CRASH SUMMARIES BY YEAR BY COLLISION TYPE

## Cleveland St & OR 99E

January 1, 2011 through December 31, 2015

|                   |         | NON-    | PROPERTY |         |        |         |        |      |      |     |      |         | INTER-  |      |
|-------------------|---------|---------|----------|---------|--------|---------|--------|------|------|-----|------|---------|---------|------|
|                   | FATAL   | FATAL   | DAMAGE   | TOTAL   | PEOPLE | PEOPLE  |        | DRY  | WET  |     |      | INTER-  | SECTION | OFF- |
| COLLISION TYPE    | CRASHES | CRASHES | ONLY     | CRASHES | KILLED | INJURED | TRUCKS | SURF | SURF | DAY | DARK | SECTION | RELATED | ROAD |
| YEAR: 2015        |         |         |          |         |        |         |        |      |      |     |      |         |         |      |
| REAR-END          | 0       | 0       | 1        | 1       | 0      | 0       | 0      | 1    | 0    | 1   | 0    | 1       | 0       | 0    |
| TURNING MOVEMENTS | 0       | 3       | 0        | 3       | 0      | 4       | 0      | 2    | 1    | 2   | 1    | 3       | 0       | 0    |
| 2015 TOTAL        | 0       | 3       | 1        | 4       | 0      | 4       | 0      | 3    | 1    | 3   | 1    | 4       | 0       | 0    |
| YEAR: 2014        |         |         |          |         |        |         |        |      |      |     |      |         |         |      |
| HEAD-ON           | 0       | 1       | 0        | 1       | 0      | 1       | 0      | 1    | 0    | 1   | 0    | 1       | 0       | 0    |
| REAR-END          | 0       | 0       | 1        | 1       | 0      | 0       | 0      | 0    | 1    | 1   | 0    | 1       | 0       | 0    |
| TURNING MOVEMENTS | 0       | 3       | 2        | 5       | 0      | 5       | 0      | 2    | 3    | 4   | 1    | 5       | 0       | 0    |
| 2014 TOTAL        | 0       | 4       | 3        | 7       | 0      | 6       | 0      | 3    | 4    | 6   | 1    | 7       | 0       | 0    |
| YEAR: 2013        |         |         |          |         |        |         |        |      |      |     |      |         |         |      |
| ANGLE             | 0       | 1       | 1        | 2       | 0      | 2       | 0      | 0    | 2    | 2   | 0    | 2       | 0       | 0    |
| TURNING MOVEMENTS | 0       | 1       | 0        | 1       | 0      | 1       | 0      | 1    | 0    | 0   | 1    | 1       | 0       | 0    |
| 2013 TOTAL        | 0       | 2       | 1        | 3       | 0      | 3       | 0      | 1    | 2    | 2   | 1    | 3       | 0       | 0    |
| YEAR: 2012        |         |         |          |         |        |         |        |      |      |     |      |         |         |      |
| REAR-END          | 0       | 1       | 0        | 1       | 0      | 1       | 0      | 1    | 0    | 1   | 0    | 1       | 0       | 0    |
| TURNING MOVEMENTS | 0       | 1       | 1        | 2       | 0      | 1       | 0      | 0    | 2    | 1   | 1    | 2       | 0       | 0    |
| 2012 TOTAL        | 0       | 2       | 1        | 3       | 0      | 2       | 0      | 1    | 2    | 2   | 1    | 3       | 0       | 0    |
| YEAR: 2011        |         |         |          |         |        |         |        |      |      |     |      |         |         |      |
| ANGLE             | 0       | 0       | 1        | 1       | 0      | 0       | 0      | 1    | 0    | 0   | 1    | 1       | 0       | 0    |
| REAR-END          | 0       | 0       | 1        | 1       | 0      | 0       | 0      | 0    | 1    | 1   | 0    | 1       | 0       | 0    |
| TURNING MOVEMENTS | 0       | 1       | 1        | 2       | 0      | 1       | 0      | 1    | 1    | 1   | 1    | 2       | 0       | 0    |
| 2011 TOTAL        | 0       | 1       | 3        | 4       | 0      | 1       | 0      | 2    | 2    | 2   | 2    | 4       | 0       | 0    |
| FINAL TOTAL       | 0       | 12      | 9        | 21      | 0      | 16      | 0      | 10   | 11   | 15  | 6    | 21      | 0       | 0    |

## OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CONTINUOUS SYSTEM CRASH LISTING

081 PACIFIC HIGHWAY EAST

### Cleveland St & OR 99E January 1, 2011 through December 31, 2015

| S D                                  |                                        |           |                           |                 |           |                           |               |                    |         |            |       |
|--------------------------------------|----------------------------------------|-----------|---------------------------|-----------------|-----------|---------------------------|---------------|--------------------|---------|------------|-------|
| P R S W SER# E A U C O DATE COUNTY   | RD# FC CONN #<br>CMPT/MLG FIRST STREET | סה כמאס ( | INT-TYP<br>(MEDIAN) TWT-D | FI OFFDD WTUD ( | CDACU TVD | SPCL USE<br>TRLR QTY MOVE |               | A S                |         |            |       |
| INVEST E L G H R DAY/TIME CITY       | MILEPNT SECOND STREET                  | DIRECT    | LEGS TRAF-                |                 |           | OWNER FROM                | PRTC INJ      | G E LICNS PE       | ID.     |            |       |
| UNLOC? D C S L K LAT/LONG URBAN AREA | LRS INTERSECTION SEQ#                  | LOCTN     | (#LANES) CNTL             | DRVWY LIGHT     | SVRTY V   | # VEH TYPE TO             | P# TYPE SVRTY | E X RES LO         | C ERROR | ACTN EVENT | CAUSE |
| 03231 N N N 09/25/2012 MARION        | 1 14                                   | INTER     | 3-LEG N                   | N CLR S-        | -1STOP 0  | )1 NONE 0 STRGHT          |               |                    |         |            | 07    |
| NONE Tue 2P WOODBURN                 | MN 0 CLEVELAND ST                      | NE        | UNKNOV                    | IN N DRY RE     | EAR       | PRVTE NE SW               |               |                    |         | 000        | 00    |
| WOODBURN UA                          | 32.97 PACIFIC HY 99E                   | 06        | 0                         | Y DAY I         | J         | PSNGR CAR                 | 01 DRVR NONE  | 74 M OR-Y          | 026     | 000        | 07    |
| No 45 8 8.64 -122 50 42.25           | 008100100S00 1                         |           |                           |                 |           |                           |               | UNK                |         |            |       |
|                                      |                                        |           |                           |                 | 0         | 2 NONE 0 STOP             |               |                    |         |            |       |
|                                      |                                        |           |                           |                 |           | PRVTE NE SW               |               |                    |         | 012        | 00    |
|                                      |                                        |           |                           |                 |           | PSNGR CAR                 | 01 DRVR INJC  | 47 F OR-Y          | 000     | 000        | 00    |
|                                      |                                        |           |                           |                 |           |                           |               | OR<25              |         |            |       |
| 03452 Y N N 10/14/2011 MARION        | 1 14                                   | INTER     | CROSS N                   | N RAIN S-       | -1STOP 0  | 1 NONE 0 STRGHT           |               |                    |         |            | 01,07 |
| NONE Fri 1P WOODBURN                 | MN 0 CLEVELAND ST                      | SW        | TRF SI                    | GNAL N WET RE   | EAR       | PRVTE SW NE               |               |                    |         | 000        | 00    |
| WOODBURN UA                          | 32.97 PACIFIC HY 99E                   | 06        | 0                         | N DAY PI        | DO        | PSNGR CAR                 | 01 DRVR NONE  | 46 F OR-Y          | 047,026 | 000        | 01,07 |
| No 45 8 8.64 -122 50 42.25           | 008100100S00 1                         |           |                           |                 |           |                           |               | OR<25              |         |            |       |
|                                      |                                        |           |                           |                 | 0         | 2 NONE 0 STOP             |               |                    |         |            |       |
|                                      |                                        |           |                           |                 |           | PRVTE SW NE               |               |                    |         | 011 013    | 00    |
|                                      |                                        |           |                           |                 |           | PSNGR CAR                 | 01 DRVR NONE  | 28 M OR-Y          | 000     | 000        | 00    |
|                                      |                                        |           |                           |                 |           |                           |               | OR<25              |         |            |       |
|                                      |                                        |           |                           |                 | 0         | 3 NONE 0 STOP             |               |                    |         |            |       |
|                                      |                                        |           |                           |                 |           | PRVTE SW NE               |               |                    |         | 022        | 00    |
|                                      |                                        |           |                           |                 |           | PSNGR CAR                 | 01 DRVR NONE  |                    | 000     | 000        | 00    |
|                                      |                                        |           |                           |                 |           |                           |               | OR<25              |         |            |       |
| 02897 N N N N N 08/25/2014 MARION    | 1 14                                   | INTER     | 3-LEG N                   | N CLR O-        | -1STOP 0  | 1 NONE 1 STRGHT           |               |                    |         | 022        | 25    |
| STATE Mon 5P WOODBURN                | MN 0 CLEVELAND ST                      | SW        | STOP S                    | IGN N DRY H     | EAD       | PRVTE NE SW               |               |                    |         | 000 022    | 25    |
| WOODBURN UA                          | 32.97 PACIFIC HY 99E                   | 06        | 0                         | N DAY I         | J         | PSNGR CAR                 | 01 DRVR NONE  |                    | 017,080 | 000        | 00    |
| No 45 8 8.64 -122 50 42.25           | 008100100800 1                         |           |                           |                 |           |                           |               | OR<25              |         |            |       |
|                                      |                                        |           |                           |                 | 0         | 2 NONE 0 STOP             |               |                    |         |            |       |
|                                      |                                        |           |                           |                 |           | PRVTE SW NE               |               |                    |         | 011        | 00    |
|                                      |                                        |           |                           |                 |           | PSNGR CAR                 | 01 DRVR INJC  |                    | 000     | 000        | 00    |
|                                      |                                        |           |                           |                 |           |                           |               | OR<25              |         |            |       |
| 03691 N N N 10/21/2014 MARION        | 1 14                                   | INTER     | 3-LEG N                   | N RAIN S-       | -1STOP 0  | 1 NONE 0 STRGHT           |               |                    |         |            | 07    |
| NONE Tue 8A WOODBURN                 | MN 0 CLEVELAND ST                      | SW        |                           | IGN N WET RE    | EAR       | PRVTE SW NE               |               |                    |         | 000        | 00    |
| WOODBURN UA                          | 32.97 PACIFIC HY 99E                   | 06        | 0                         | N DAY PI        | DO        | PSNGR CAR                 | 01 DRVR NONE  |                    | 026     | 000        | 07    |
| No 45 8 8.64 -122 50 42.25           | 008100100S00 1                         |           |                           |                 |           |                           |               | OR>25              |         |            |       |
|                                      |                                        |           |                           |                 | 0         | 2 NONE 0 STOP             |               |                    |         |            |       |
|                                      |                                        |           |                           |                 |           | PRVTE SW NE               |               |                    |         | 011        | 00    |
|                                      |                                        |           |                           |                 |           | PSNGR CAR                 | 01 DRVR NONE  |                    | 000     | 000        | 00    |
|                                      |                                        |           |                           |                 |           |                           |               | OR<25              |         |            |       |
| 01803 N N N 05/18/2015 MARION        |                                        |           |                           | N CLR S-        |           | 1 NONE 0 STRGHT           |               |                    |         |            | 29    |
| NONE Mon 9A WOODBURN                 | MN 0 CLEVELAND ST                      |           |                           | IGN N DRY R     |           | PRVTE N S                 |               |                    |         | 000        | 00    |
|                                      | 32.97 PACIFIC HY 99E<br>008100100S00 1 |           | 0                         | Y DAY PI        | DO        | PSNGR CAR                 | 01 DRVR NONE  | 25 F OR-Y<br>OR<25 | 026     | 000        | 29    |
| No 45 8 8.64 -122 50 42.25           | 000100100500                           |           |                           |                 |           |                           | 02 PSNG NO<5  |                    | 000     | 000        | 00    |
|                                      |                                        |           |                           |                 |           |                           | 03 PSNG NO<5  |                    | 000     | 000        | 00    |

081 PACIFIC HIGHWAY EAST

## OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

CONTINUOUS SYSTEM CRASH LISTING

#### Cleveland St & OR 99E January 1, 2011 through December 31, 2015

S D P RSW RD# FC CONN # INT-TYP CMPT/MLG FIRST STREET RD CHAR (MEDIAN) INT-REL OFFRD WTHR CRASH TYP SER# E A U C O DATE COUNTY TRLR OTY MOVE A S PRTC INJ G E LICNS PED INVEST E L G H R DAY/TIME CITY MILEPNT SECOND STREET DIRECT LEGS TRAF- RNDBT SURF COLL TYP OWNER FROM T<sub>r</sub>RS INTERSECTION SEO# LOCTN (#LANES) CNTL DRVWY LIGHT SVRTY V# VEH TYPE TO P# TYPE SVRTY E X RES LOC ERROR ACTN EVENT CAUSE UNLOC? D C S L K LAT/LONG URBAN AREA 02 NONE 0 STOP PRVTE N S 012 00 PSNGR CAR 01 DRVR NONE 00 M UNK 000 00 000 UNK 00345 N N N N N 02/05/2011 MARION 3-LEG N N RAIN ANGL-OTH 01 NONE 0 STRGHT 02 1 14 INTER Sat 7A WOODBURN MN 0 CLEVELAND ST CN STOP SIGN N WET TURN PRVTE NE SW 000 00 WOODBURN UA 32.97 PACIFIC HY 99E 0.3 0 N DAWN INJ PSNGR CAR 01 DRVR INJC 37 F OR-Y 000 000 00 45 8 8.64 -122 50 42.25 008100100s00 1 OR<25 02 NONE 0 TURN-L PRVTE NW NE 000 00 000 PSNGR CAR 01 DRVR NONE 35 F OR-Y 02 OR<25 01942 N N N 06/17/2011 MARION 1 14 INTER 3-LEG N N CLR ANGL-OTH 01 NONE 0 TURN-L 02 Fri 4P WOODBURN MN 0 CLEVELAND ST CN STOP SIGN N DRY TURN PRVTE NW NE 015 00 32.97 PACIFIC HY 99E 0.3 0 N DAY PDO 000 WOODBURN UA PSNGR CAR 01 DRVR NONE 39 M OR-Y 028 02 45 8 8.64 -122 50 42.25 008100100S00 1 OR<25 02 NONE 0 STRGHT PRVTE NE SW 000 00 PSNGR CAR 01 DRVR NONE 25 F OR-Y 000 000 00 OR<25 03267 N N N 09/30/2011 MARION 1 14 INTER 3-LEG N N CLR ANGL-OTH 01 NONE 0 STRGHT 02 Fri 7P WOODBURN MN 0 CLEVELAND ST STOP SIGN N DRY ANGL 000 00 CN PRVTE NE SW WOODBURN UA 32.97 PACIFIC HY 99E 03 0 N DUSK PDO PSNGR CAR 01 DRVR NONE 35 M OR-Y 000 00 45 8 8.64 -122 50 42.25 008100100S00 1 OR<25 02 NONE 0 STRGHT PRVTE NW SE 000 0.0 PSNGR CAR 01 DRVR NONE 22 F OR-Y 028 000 02 OR<25 03678 NNN 10/31/2012 MARION 1 14 INTER 3-LEG N N RAIN ANGL-OTH 01 NONE 0 STRGHT 02 Wed 5P WOODBURN MN 0 CLEVELAND ST CN STOP SIGN N WET TURN PRVTE NE SW 000 00 WOODBURN UA 32.97 PACIFIC HY 99E 03 0 N DAY PDO PSNGR CAR 01 DRVR NONE 20 M OR-Y 000 000 0.0 45 8 8.64 -122 50 42.25 008100100s00 1 OR<25 02 NONE 0 TURN-L PRVTE NW NE 015 00 PSNGR CAR 01 DRVR NONE 17 F OR-Y 028 000 02 OR<25 02 04313 NNN 12/17/2012 MARION 1 14 INTER 3-LEG N N RAIN ANGL-OTH 01 NONE 0 TURN-L 6P WOODBURN MN 0 CLEVELAND ST CN STOP SIGN N WET TURN PRVTE NW NE 000 00 0 WOODBURN UA 32.97 PACIFIC HY 99E 03 N DLIT INJ PSNGR CAR 01 DRVR NONE 19 M OR-Y 028 02 45 8 8.64 -122 50 42.25 008100100S00 1 OR<25 02 PSNG INJC 00 F 000 00

S D

081 PACIFIC HIGHWAY EAST

#### OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CONTINUOUS SYSTEM CRASH LISTING

Cleveland St & OR 99E

January 1, 2011 through December 31, 2015

| PRSW  SER#EAUCODATE COUNTY INVESTELGHRDAY/TIME CITY UNLOC?DCSLK <i>LAT/LONG</i> URBAN AREA | RD# FC CONN # CMPT/MLG FIRST STREET MILEPNT SECOND STREET LRS INTERSECTION SEQ# | RD CHAR () DIRECT | LEGS TRAF- | OFFRD WTHR CRASH TY<br>RNDBT SURF COLL TY<br>DRVWY LIGHT SVRTY | P OWNER FROM                    | A S PRTC INJ G E LICNS PED P# TYPE SVRTY E X RES LOC |            | VENT CAUSE |
|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------|------------|----------------------------------------------------------------|---------------------------------|------------------------------------------------------|------------|------------|
|                                                                                            |                                                                                 |                   |            |                                                                | 02 NONE 0 STRGHT                | ,                                                    |            |            |
|                                                                                            |                                                                                 |                   |            |                                                                | PRVTE NE SW                     |                                                      | 000        | 00         |
|                                                                                            |                                                                                 |                   |            |                                                                | PSNGR CAR                       | 01 DRVR NONE 52 M OR-Y OR<25                         | 000 000    | 00         |
| 03675 Y N N N 10/22/2013 MARION                                                            | 1 14                                                                            | INTER             | 3-LEG N    | N CLR ANGL-OTH                                                 | 01 NONE 0 STRGHT                |                                                      |            | 02,30      |
| CITY Tue 8P WOODBURN                                                                       | MN 0 CLEVELAND ST                                                               | CN                |            | GN N DRY TURN                                                  | PRVTE NE SW                     |                                                      | 000        | 00         |
| WOODBURN UA<br>No 45 8 8.64 -122 50 42.25                                                  | 32.97 PACIFIC HY 99E 008100100S00 1                                             | 03                | 0          | N DLIT INJ                                                     | PSNGR CAR                       | 01 DRVR NONE 44 M OR-Y OR<25                         | 050 000    | 30         |
| 10 0 0.01 122 00 12.20                                                                     | 000100100000                                                                    |                   |            |                                                                |                                 | 02 PSNG INJC 18 F                                    | 000 000    | 00         |
|                                                                                            |                                                                                 |                   |            |                                                                | 02 NONE 0 TURN-L                | 1                                                    |            |            |
|                                                                                            |                                                                                 |                   |            |                                                                | PRVTE NW NE                     |                                                      | 015        | 00         |
|                                                                                            |                                                                                 |                   |            |                                                                | PSNGR CAR                       | 01 DRVR NONE 68 F OR-Y<br>OR<25                      | 028 000    | 02         |
| 04090 N N N 11/18/2013 MARION                                                              | 1 14                                                                            | INTER             | 3-LEG N    |                                                                | 01 NONE 0 STRGHT                |                                                      |            | 02         |
| NONE Mon 4P WOODBURN                                                                       | MN 0 CLEVELAND ST                                                               |                   |            | GN N WET ANGL                                                  | PRVTE NE SW                     |                                                      | 000        | 00         |
| WOODBURN UA<br>No 45 8 8.64 -122 50 42.25                                                  | 32.97 PACIFIC HY 99E 008100100S00 1                                             | 03                | 0          | N DAY PDO                                                      | PSNGR CAR                       | 01 DRVR NONE 56 M OR-Y OR<25                         | 000 000    | 00         |
|                                                                                            |                                                                                 |                   |            |                                                                | 02 NONE 0 STRGHT                | ,                                                    |            |            |
|                                                                                            |                                                                                 |                   |            |                                                                | PRVTE NW SE                     |                                                      | 000        | 00         |
|                                                                                            |                                                                                 |                   |            |                                                                | PSNGR CAR                       | 01 DRVR NONE 19 M OR-Y                               | 028 000    | 02         |
|                                                                                            |                                                                                 |                   |            |                                                                |                                 | OR<25                                                |            |            |
| 01485 N N N 05/05/2014 MARION                                                              | 1 14                                                                            | INTER             |            |                                                                | 01 NONE 0 TURN-L                | 1                                                    |            | 82 02      |
| CITY Mon 2P WOODBURN                                                                       | MN 0 CLEVELAND ST                                                               | CN                |            | N WET TURN                                                     | PRVTE NW NE                     | 01 DDUD THE 20 W HOND                                | 015        | 00         |
| WOODBURN UA<br>No 45 8 8.64 -122 50 42.25                                                  | 32.97 PACIFIC HY 99E 008100100S00 1                                             | 03                | 0          | N DAY INJ                                                      | PSNGR CAR                       | 01 DRVR INJC 32 M NONE<br>OR<25                      | 028 000 08 | 82 02      |
|                                                                                            |                                                                                 |                   |            |                                                                | 02 NONE 0 STRGHI                | •                                                    |            |            |
|                                                                                            |                                                                                 |                   |            |                                                                | PRVTE NE SW                     |                                                      | 000        | 00         |
|                                                                                            |                                                                                 |                   |            |                                                                | PSNGR CAR                       | 01 DRVR INJB 46 F OR-Y                               | 000 000    | 00         |
|                                                                                            |                                                                                 |                   |            |                                                                |                                 | OR<25<br>02 PSNG INJB 67 M                           | 000 000    | 00         |
| 02391 N N N N N 07/18/2014 MARION                                                          | 1 14                                                                            | INTER             | 3-LEG N    | N CLR ANGL-OTH                                                 | 01 NONE 0 STRGHT                | 1                                                    |            | 02         |
| CITY Fri 6P WOODBURN                                                                       | MN 0 CLEVELAND ST                                                               | CN                |            | SN N DRY TURN                                                  | PRVTE NE SW                     |                                                      | 000        | 00         |
| WOODBURN UA                                                                                | 32.97 PACIFIC HY 99E                                                            | 03                | 0          | N DAY INJ                                                      | PSNGR CAR                       | 01 DRVR INJC 27 M SUSP                               | 028 000    | 02         |
| No 45 8 8.64 -122 50 42.25                                                                 | 008100100S00 1                                                                  |                   |            |                                                                |                                 | OR<25                                                |            |            |
|                                                                                            |                                                                                 |                   |            |                                                                | 02 NONE 0 TURN-R<br>PRVTE NW SW |                                                      | 000        | 00         |
|                                                                                            |                                                                                 |                   |            |                                                                |                                 | 01 DRVR NONE 33 F OR-Y                               | 000 000    | 00         |
|                                                                                            |                                                                                 |                   |            |                                                                |                                 | OR<25                                                |            |            |
|                                                                                            |                                                                                 |                   |            |                                                                |                                 | 02 PSNG NONE 17 F                                    | 000 000    | 00         |
| 03383 N N N 09/30/2014 MARION                                                              |                                                                                 |                   |            |                                                                | 01 NONE 0 STRGHT                |                                                      | 0.00       |            |
|                                                                                            | MN 0 CLEVELAND ST                                                               |                   | STOP SIG   | N N WET TURN                                                   | PRVTE NE SW                     | 01 DRVR NONE 53 F OR-Y                               | 000        | 00         |
| No 45 8 8.64 -122 50 42.25                                                                 | 32.97 PACIFIC HY 99E 008100100S00 1                                             |                   | U          | N DAWN PDO                                                     | PSNGK CAK                       | OR<25                                                | 000 000    | 00         |
|                                                                                            | ÷                                                                               |                   |            |                                                                |                                 |                                                      |            |            |

081 PACIFIC HIGHWAY EAST

## OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

CONTINUOUS SYSTEM CRASH LISTING

### Cleveland St & OR 99E

January 1, 2011 through December 31, 2015

| S D P R S W SER# E A U C O DATE COUNTY INVEST E L G H R DAY/TIME CITY UNLOC? D C S L K LAT/LONG URBAN AREA | RD# FC CONN # CMPT/MLG FIRST STREET MILEPNT SECOND STREET LRS INTERSECTION SEQ# | RD CHAR (MEDI<br>DIRECT LE | EGS TRAF- RN            | FFRD WTHR CRASH TYP<br>NDBT SURF COLL TYP<br>RVWY LIGHT SVRTY | OWNER FROM                                   | A S PRTC INJ G E LICNS PED P# TYPE SVRTY E X RES LOC ERROR | ACTN EVENT     | CAUSE          |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------|-------------------------|---------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------|----------------|----------------|
|                                                                                                            |                                                                                 |                            |                         |                                                               | 02 UNKN 0 TURN-L<br>UNKN NW NE<br>UNKNOWN    | 01 DRVR NONE 00 U UNK 028<br>UNK                           | 000<br>000 082 | 00<br>02       |
| 03859 N N N 10/31/2014 MARION  NONE Fri 2P WOODBURN  WOODBURN UA  NO 45 8 8.64 -122 50 42.25               | 1 14<br>MN 0 CLEVELAND ST<br>32.97 PACIFIC HY 99E<br>008100100S00 1             | CN                         | LEG N<br>STOP SIGN<br>0 | N CLR ANGL-OTH<br>N DRY TURN<br>N DAY INJ                     | 01 NONE 0 STRGHT<br>PRVTE NE SW<br>PSNGR CAR | 01 DRVR INJC 51 F OR-Y 000<br>OR<25                        | 000<br>000     | 02<br>00<br>00 |
|                                                                                                            |                                                                                 |                            |                         |                                                               | 02 NONE 0 TURN-L<br>PRVTE NW NE<br>PSNGR CAR | 01 DRVR NONE 00 F UNK 028<br>OR<25                         | 000<br>000     | 00<br>02       |
| 04281 N N N N N 11/28/2014 MARION CITY Fri 9A WOODBURN WOODBURN UA No 45 8 8.64 -122 50 42.25              | 1 14<br>MN 0 CLEVELAND ST<br>32.97 PACIFIC HY 99E<br>008100100S00 1             | CN                         | LEG N<br>STOP SIGN      |                                                               | 01 NONE 0 TURN-L<br>PRVTE NW NE<br>PSNGR CAR | 01 DRVR NONE 26 F OR-Y 028<br>OR<25                        | 000<br>000     | 02<br>00<br>02 |
|                                                                                                            |                                                                                 |                            |                         |                                                               | 02 NONE 0 STRGHT<br>PRVTE NE SW<br>PSNGR CAR | 01 DRVR NONE 30 F OR-Y 000 OR<25                           | 000<br>000     | 00             |
| 01249 N N N N N 04/07/2015 MARION                                                                          | 1 16                                                                            | INTER 3-1                  | LEG N                   | N RAIN ANGL-OTH                                               | 01 NONE 0 TURN-L                             | 02 PSNG NO<5 03 M 000<br>03 PSNG NO<5 01 M 000             | 000<br>000     | 00<br>00<br>02 |
| CITY Tue 8P WOODBURN  WOODBURN UA  No 45 8 8.64 -122 50 42.25                                              | MN 0 CLEVELAND ST<br>32.97 PACIFIC HY 99E<br>008100100S00 1                     |                            | STOP SIGN               | N WET TURN<br>N DLIT INJ                                      |                                              | 01 DRVR NONE 23 M OR-Y 028<br>OR<25                        | 015 087<br>000 | 00<br>02       |
|                                                                                                            |                                                                                 |                            |                         |                                                               | 02 NONE 0 STRGHT<br>PRVTE NE SW<br>PSNGR CAR | 01 DRVR INJB 48 F OR-Y 000<br>OR<25                        | 000 087<br>000 | 00             |
| 03274 N N N N N 08/31/2015 MARION CITY Mon 6P WOODBURN WOODBURN UA No 45 8 8.64 -122 50 42.25              | 1 16<br>MN 0 CLEVELAND ST<br>32.97 PACIFIC HY 99E<br>008100100S00 1             | CN                         | LEG N<br>STOP SIGN      | N CLR ANGL-OTH<br>N DRY TURN<br>N DAY INJ                     | 01 NONE 0 TURN-L<br>PRVTE NW NE<br>PSNGR CAR | 01 DRVR INJC 16 M N-VAL 028<br>OR<25                       | 015<br>000     | 02<br>00<br>02 |
|                                                                                                            |                                                                                 |                            |                         |                                                               | 02 NONE 0 STRGHT<br>PRVTE NE SW<br>PSNGR CAR | 01 DRVR NONE 73 M OTH-Y 000 N-RES                          | 000<br>000     | 00             |
| 04071 N N N 10/22/2015 MARION CITY Thu 2P WOODBURN WOODBURN UA No 45 8 8.64 -122 50 42.25                  | 1 16<br>MN 0 CLEVELAND ST<br>32.97 PACIFIC HY 99E<br>008100100S00 1             | CN                         | LEG N<br>STOP SIGN      | N CLR ANGL-OTH<br>N DRY TURN<br>N DAY INJ                     | 01 NONE 0 TURN-L<br>PRVTE NW NE<br>PSNGR CAR |                                                            | 015<br>000     | 02<br>00<br>02 |

CDS380 9/6/2017 OREGON DEPARTMENT OF TRANSPORTATION DEVELOPMENT DIVISION PAGE: 5

## TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

CONTINUOUS SYSTEM CRASH LISTING

081 PACIFIC HIGHWAY EAST Cleveland St & OR 99E
January 1, 2011 through December 31, 2015

| S D                                  |                       |                                              |                                                |                  |
|--------------------------------------|-----------------------|----------------------------------------------|------------------------------------------------|------------------|
| P RSW                                | RD# FC CONN #         | INT-TYP                                      | SPCL USE                                       |                  |
| SER# E A U C O DATE COUNTY           | CMPT/MLG FIRST STREET | RD CHAR (MEDIAN) INT-REL OFFRD WTHR CRASH TY | YP TRLR QTY MOVE A S                           |                  |
| INVEST E L G H R DAY/TIME CITY       | MILEPNT SECOND STREET | DIRECT LEGS TRAF- RNDBT SURF COLL TYPE       | POWNER FROM PRTC INJ G E LICNS PED             |                  |
| UNLOC? D C S L K LAT/LONG URBAN AREA | LRS INTERSECTION SEQ# | LOCTN (#LANES) CNTL DRVWY LIGHT SVRTY        | V# VEH TYPE TO P# TYPE SVRTY E X RES LOC ERROR | ACTN EVENT CAUSE |
|                                      |                       |                                              |                                                |                  |
|                                      |                       |                                              | 02 NONE 0 STRGHT                               |                  |
|                                      |                       |                                              | PRVTE NE SW                                    | 000 00           |
|                                      |                       |                                              | PSNGR CAR 01 DRVR INJC 33 F OR-Y 000           | 000 00           |
|                                      |                       |                                              | OR<25                                          |                  |
|                                      |                       |                                              |                                                |                  |
| 03317 N N N 09/26/2013 MARION        | 1 14                  | INTER 3-LEG N N RAIN ANGL-OTH                | 01 NONE 0 STRGHT                               | 03               |
| CITY Thu 6P WOODBURN                 | MN 0 CLEVELAND ST     | CN STOP SIGN N WET ANGL                      | PRVTE NE SW                                    | 000 00           |
| WOODBURN UA                          | 32.97 PACIFIC HY 99E  | 04 0 N DAY INJ                               | PSNGR CAR 01 DRVR INJA 52 M OR-Y 000           | 000 00           |
| No 45 8 8.64 -122 50 42.25           | 008100100S00 1        |                                              | OR<25                                          |                  |
| 10 0 0,01 122 00 12,20               | 500100100500          |                                              | 01/120                                         |                  |
|                                      |                       |                                              | 02 NONE 0 TURN-L                               |                  |
|                                      |                       |                                              | PRVTE NW NE                                    | 000 00           |
|                                      |                       |                                              | PSNGR CAR 01 DRVR INJC 39 M OR-Y 021           | 000 03           |
|                                      |                       |                                              | OR>25                                          |                  |
|                                      |                       |                                              | 010/23                                         |                  |

# OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CRASH SUMMARIES BY YEAR BY COLLISION TYPE

Country Club Rd / Oregon Way & OR 214 Hillsboro-Silverton Hwy (140) January 1, 2011 through December 31, 2015

|                      |         | NON-    | PROPERTY | TOTAL   | DEOD! E | DEOD! E |        | DDV  | \A/ET |     |      | INITED  | INTER-  | 055  |
|----------------------|---------|---------|----------|---------|---------|---------|--------|------|-------|-----|------|---------|---------|------|
|                      | FATAL   | FATAL   | DAMAGE   |         | PEOPLE  | PEOPLE  |        | DRY  | WET   |     |      | INTER-  | SECTION | OFF- |
| COLLISION TYPE       | CRASHES | CRASHES | ONLY     | CRASHES | KILLED  | INJURED | TRUCKS | SURF | SURF  | DAY | DARK | SECTION | RELATED | ROAD |
| YEAR: 2015           |         |         |          |         |         |         |        |      |       |     |      |         |         |      |
| TURNING MOVEMENTS    | 0       | 2       | 1        | 3       | 0       | 3       | 0      | 3    | 0     | 3   | 0    | 3       | 0       | 0    |
| 2015 TOTAL           | 0       | 2       | 1        | 3       | 0       | 3       | 0      | 3    | 0     | 3   | 0    | 3       | 0       | 0    |
| YEAR: 2013           |         |         |          |         |         |         |        |      |       |     |      |         |         |      |
| REAR-END             | 0       | 0       | 2        | 2       | 0       | 0       | 0      | 1    | 1     | 2   | 0    | 2       | 0       | 0    |
| TURNING MOVEMENTS    | 0       | 1       | 0        | 1       | 0       | 1       | 0      | 0    | 1     | 1   | 0    | 1       | 0       | Ö    |
| 2013 TOTAL           | 0       | 1       | 2        | 3       | 0       | 1       | 0      | 1    | 2     | 3   | 0    | 3       | 0       | 0    |
| YEAR: 2012           |         |         |          |         |         |         |        |      |       |     |      |         |         |      |
| ANGLE                | 0       | 1       | 0        | 1       | 0       | 2       | 0      | 1    | 0     | 1   | 0    | 1       | 0       | 0    |
| REAR-END             | 0       | 4       | 0        | 4       | 0       | 6       | 0      | 2    | 2     | 4   | 0    | 4       | 0       | 0    |
| 2012 TOTAL           | 0       | 5       |          | 5       | 0       | 8       | 0      | 3    | 2     | 5   | 0    | 5       | 0       | 0    |
| YEAR: 2011           |         |         |          |         |         |         |        |      |       |     |      |         |         |      |
| FIXED / OTHER OBJECT | 0       | 1       | 0        | 1       | 0       | 2       | 0      | 1    | 0     | 1   | 0    | 1       | 0       | 1    |
| REAR-END             | 0       | 1       | 1        | 2       | 0       | 1       | 0      | 2    | 0     | 2   | Ô    | 2       | 0       | 0    |
| TURNING MOVEMENTS    | 0       | 0       | 1        | 1       | 0       | 0       | Ö      | 0    | 1     | 1   | 0    | 1       | Ô       | 0    |
| 2011 TOTAL           | 0       | 2       | 2        | 4       | 0       | 3       | 0      | 3    | 1     | 4   | Ö    | 4       | Ő       | 1    |
| FINAL TOTAL          | 0       | 10      | 5        | 15      | 0       | 15      | 0      | 10   | 5     | 15  | 0    | 15      | 0       | 1    |

CDS380 9/6/2017

140 HILLSBORO-SILVERTON

### PAGE: 1

## OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

CONTINUOUS SYSTEM CRASH LISTING

Country Club Rd / Oregon Way & OR 214 Hillsboro-Silverton Hwy (140) January 1, 2011 through December 31, 2015

| S D P R S W SER# E A U C O DATE COUNTY INVEST E L G H R DAY/TIME CITY UNLOC? D C S L K LAT/LONG URBAN AREA | RD# FC CONN # CMPT/MLG FIRST STREET MILEPNT SECOND STREET LRS INTERSECTION SEQ# | RD CHAR (MI<br>DIRECT | LEGS TRAF- RN         | FRD WTHR CRASH TYF<br>IDBT SURF COLL TYP<br>RVWY LIGHT SVRTY | OWNER FROM                                 | A S PRTC INJ G E LICNS PED P# TYPE SVRTY E X RES LOC ERRO | OR ACTN EVENT                             | CAUSE    |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------|-----------------------|--------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------|-------------------------------------------|----------|
| 01824 N N N N N 06/07/2011 MARION CITY Tue 2P WOODBURN WOODBURN UA                                         | 1 14<br>MN 0 HILLSBORO-SILV HY<br>37.14 OREGON WAY                              | INTER<br>E<br>05      | CROSS N<br>TRF SIGNAL | Y CLR FIX OBJ<br>N DRY FIX<br>N DAY INJ                      | 01 NONE 0 STRGHT<br>PRVTE W E<br>PSNGR CAR | 01 DRVR INJC 69 M OR-Y 080,                               | 040,059,053<br>000 040,059,053<br>081 028 |          |
| No 45 9 3.38 -122 52 23.90                                                                                 | 014000100800 1                                                                  |                       | · ·                   | 1, 2111 1110                                                 | I BII GILL                                 | OR>25<br>02 PSNG INJB 75 M 000                            | 000                                       | 00       |
| 80211 N N N 03/03/2012 MARION                                                                              | 1 14                                                                            | INTER                 | CROSS N               | N CLR S-1STOP                                                | 01 NONE 0 STRGHT                           | OZ TONO INOZ 75 II                                        |                                           | 07       |
| NONE Sat 5P WOODBURN                                                                                       | MN 0 COUNTRY CLUB RD                                                            | E                     |                       | N DRY REAR                                                   | PRVTE E W                                  | 01 DDVD NOVE 22 M OFFI V 026                              | 000                                       | 00       |
| WOODBURN UA<br>No 45 9 3.38 -122 52 23.90                                                                  | 37.14 HILLSBORO-SILV HY 014000100S00 1                                          | 06                    | 0                     | N DAY INJ                                                    | PSNGR CAR                                  | 01 DRVR NONE 23 M OTH-Y 026<br>OR<25                      | 000                                       | 07       |
|                                                                                                            |                                                                                 |                       |                       |                                                              | 02 NONE 0 STOP<br>PRVTE E W                |                                                           | 011                                       | 00       |
|                                                                                                            |                                                                                 |                       |                       |                                                              | PSNGR CAR                                  | 01 DRVR INJC 18 F OR-Y 000 OR<25                          | 000                                       | 00       |
| 01875 N N N N N 06/07/2012 MARION                                                                          | 1 14                                                                            |                       | CROSS N               | N CLR S-1STOP                                                | 01 NONE 0 STRGHT                           |                                                           |                                           | 07       |
| CITY Thu 10A WOODBURN WOODBURN UA                                                                          | MN 0 HILLSBORO-SILV HY 37.14 OREGON WAY                                         | E<br>06               | TRF SIGNAL            | N DRY REAR<br>N DAY INJ                                      | PRVTE E W<br>PSNGR CAR                     | 01 DRVR NONE 51 F OR-Y 043,                               | 000                                       | 00<br>07 |
| No 45 9 3.38 -122 52 23.90                                                                                 | 014000100800 1                                                                  |                       | · ·                   | 1, 2111 1110                                                 | I BII GILL                                 | OR<25                                                     | 020                                       | 0,       |
|                                                                                                            |                                                                                 |                       |                       |                                                              | 02 NONE 0 STOP<br>PRVTE E W                |                                                           | 011                                       | 00       |
|                                                                                                            |                                                                                 |                       |                       |                                                              | PSNGR CAR                                  | 01 DRVR INJC 31 M OR-Y 000 OR<25                          | 000                                       | 00       |
| 03493 N N N N N 10/16/2012 MARION                                                                          | 1 14                                                                            | INTER                 | CROSS N               | N CLD S-1STOP                                                | 01 NONE 0 STRGHT                           |                                                           | 013                                       | 07       |
| CITY Tue 4P WOODBURN WOODBURN UA                                                                           | MN 0 COUNTRY CLUB RD 37.14 HILLSBORO-SILV HY                                    | E<br>06               | TRF SIGNAL            | N WET REAR<br>N DAY INJ                                      | PRVTE E W<br>PSNGR CAR                     | 01 DRVR NONE 31 M OR-Y 043,                               | 000                                       | 00<br>07 |
| No 45 9 3.38 -122 52 23.90                                                                                 | 014000100S00 1                                                                  | 00                    | 0                     | N DAI ING                                                    | FSNGR CAR                                  | OR<25                                                     | 020 000                                   | 0 7      |
|                                                                                                            |                                                                                 |                       |                       |                                                              | 02 NONE 0 STOP<br>PRVTE E W                |                                                           | 011 013                                   | 00       |
|                                                                                                            |                                                                                 |                       |                       |                                                              | PSNGR CAR                                  | 01 DRVR INJC 39 M OTH-Y 000 OR<25                         | 000                                       | 00       |
|                                                                                                            |                                                                                 |                       |                       |                                                              | 03 NONE 0 STOP<br>PRVTE E W                |                                                           | 022                                       | 00       |
|                                                                                                            |                                                                                 |                       |                       |                                                              | PSNGR CAR                                  | 01 DRVR NONE 23 M OR-Y 000 OR>25                          | 000                                       | 00       |
|                                                                                                            |                                                                                 |                       |                       |                                                              |                                            | 02 PSNG INJC 46 M 000                                     | 000                                       | 00       |
| 04404 N N N N N 12/21/2012 MARION                                                                          | 1 14                                                                            |                       |                       |                                                              | 01 NONE 0 STRGHT<br>PRVTE E W              |                                                           | 0.00                                      | 07<br>00 |
|                                                                                                            |                                                                                 | 06                    | TRF SIGNAL            | N DAY INJ                                                    |                                            |                                                           | 000<br>026 000                            | 07       |
| No 45 9 3.38 -122 52 23.90                                                                                 | 014000100S00 1                                                                  |                       |                       |                                                              |                                            | OR>25<br>02 PSNG INJC 32 M 000                            | 000                                       | 00       |
|                                                                                                            |                                                                                 |                       |                       |                                                              | 02 NONE 0 STOP                             |                                                           |                                           |          |
|                                                                                                            |                                                                                 |                       |                       |                                                              | PRVTE E W                                  | 01 DRVR INJC 40 M OR-Y 000                                | 011<br>000                                | 00       |
|                                                                                                            |                                                                                 |                       |                       |                                                              | ISNGN CAR                                  | OR<25                                                     | 000                                       | 00       |

### OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CONTINUOUS SYSTEM CRASH LISTING

Country Club Rd / Oregon Way & OR 214 Hillsboro-Silverton Hwy (140)

| 140 HILLSBORO-SILVERTON | Country Club Rd / Oregon Way & OR 214 Hillsboro-Silverton Hwy (140)  January 1, 2011 through December 31, 2015 |
|-------------------------|----------------------------------------------------------------------------------------------------------------|
| S D                     | January 1, 2011 Chicough December 31, 2013                                                                     |

| PRSW SER#EAUCODATE COUNTY INVESTELGHRDAY/TIME CITY UNLOC?DCSLKLAT/LONG URBAN AREA | RD# FC CONN # CMPT/MLG FIRST STREET MILEPNT SECOND STREET LRS INTERSECTION SEQ# | RD CHAR (MEDI<br>DIRECT LE | GS TRAF- | OFFRD WTHR CRASH T<br>RNDBT SURF COLL TY<br>DRVWY LIGHT SVRTY | SPCL USE<br>YP TRLR QTY MOVE<br>P OWNER FROM<br>V# VEH TYPE TO | PRTC INJ      |                    |     | ACTN EVENT | CAUSE |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------|----------|---------------------------------------------------------------|----------------------------------------------------------------|---------------|--------------------|-----|------------|-------|
| 01292 N N N 04/23/2011 MARION                                                     | 1 14                                                                            | INTER CR                   | OSS N    | N CLR S-1STOP                                                 | 01 NONE 0 STRGHT                                               |               |                    |     |            | 07    |
| NONE Sat 6P WOODBURN                                                              | MN 0 HILLSBORO-SILV HY                                                          |                            |          | AL N DRY REAR                                                 | PRVTE W E                                                      |               |                    |     | 000        | 00    |
| WOODBURN UA<br>No 45 9 3.38 -122 52 23.90                                         | 37.14 OREGON WAY 014000100S00 1                                                 | 06                         | 0        | N DAY PDO                                                     | PSNGR CAR                                                      | 01 DRVR NONE  | 00 M OR-Y<br>OR<25 | 026 | 000        | 07    |
|                                                                                   |                                                                                 |                            |          |                                                               | 02 NONE 0 STOP                                                 |               |                    |     |            |       |
|                                                                                   |                                                                                 |                            |          |                                                               | PRVTE W E                                                      |               |                    |     | 011        | 00    |
|                                                                                   |                                                                                 |                            |          |                                                               | PSNGR CAR                                                      | 01 DRVR NONE  | 51 F OR-Y<br>OR>25 | 000 | 000        | 00    |
|                                                                                   |                                                                                 |                            |          |                                                               |                                                                | 02 PSNG NO<5  | 01 F               | 000 | 000        | 00    |
| 03347 N N N 10/06/2011 MARION                                                     | 1 14                                                                            | INTER CR                   | OSS N    | N CLR S-1STOP                                                 | 01 NONE 0 STRGHT                                               |               |                    |     |            | 07    |
| NONE Thu 4P WOODBURN                                                              | MN 0 HILLSBORO-SILV HY                                                          |                            | TRF SIGN | AL N DRY REAR                                                 | PRVTE W E                                                      |               |                    |     | 000        | 00    |
| WOODBURN UA<br>No 45 9 3.38 -122 52 23.90                                         | 37.14 OREGON WAY 014000100800 1                                                 | 06                         | 0        | N DAY INJ                                                     | PSNGR CAR                                                      | 01 DRVR NONE  | 25 F OR-Y<br>OR<25 | 026 | 000        | 07    |
|                                                                                   |                                                                                 |                            |          |                                                               | 02 NONE 1 STOP                                                 |               |                    |     |            |       |
|                                                                                   |                                                                                 |                            |          |                                                               | PRVTE W N                                                      |               |                    |     | 011        | 00    |
|                                                                                   |                                                                                 |                            |          |                                                               | PSNGR CAR                                                      | 01 DRVR INJC  | 40 F OR-Y<br>OR>25 | 000 | 000        | 00    |
| 01799 N N N 06/03/2013 MARION                                                     | 1 14                                                                            | INTER CR                   | OSS N    | N CLR S-1STOP                                                 | 01 NONE 0 STRGHT                                               |               |                    |     |            | 07    |
| CITY Mon 4P WOODBURN                                                              | MN 0 HILLSBORO-SILV HY                                                          |                            |          | AL N DRY REAR                                                 | PRVTE W E                                                      |               |                    |     | 000        | 00    |
| WOODBURN UA                                                                       | 37.14 OREGON WAY                                                                | 06                         | 0        | N DAY PDO                                                     | PSNGR CAR                                                      | 01 DRVR NONE  | 29 M OR-Y          | 026 | 000        | 07    |
| No 45 9 3.38 -122 52 23.90                                                        | 014000100S00 1                                                                  |                            |          |                                                               |                                                                |               | OR>25              |     |            |       |
|                                                                                   |                                                                                 |                            |          |                                                               | 02 NONE 0 STOP                                                 |               |                    |     |            |       |
|                                                                                   |                                                                                 |                            |          |                                                               | PRVTE W E                                                      |               |                    |     | 011 013    | 00    |
|                                                                                   |                                                                                 |                            |          |                                                               | PSNGR CAR                                                      | 01 DRVR NONE  | 23 F OR-Y          | 000 | 000        | 00    |
|                                                                                   |                                                                                 |                            |          |                                                               |                                                                |               | OR<25              |     |            |       |
|                                                                                   |                                                                                 |                            |          |                                                               | 03 NONE 0 STOP                                                 |               |                    |     |            |       |
|                                                                                   |                                                                                 |                            |          |                                                               | PRVTE W E                                                      |               |                    |     | 022        | 00    |
|                                                                                   |                                                                                 |                            |          |                                                               | PSNGR CAR                                                      | 01 DRVR NONE  |                    | 000 | 000        | 00    |
|                                                                                   |                                                                                 |                            |          |                                                               |                                                                |               | OR<25              |     |            |       |
|                                                                                   | 1 14                                                                            |                            |          |                                                               | 01 NONE 0 STRGHT                                               |               |                    |     |            | 07    |
| NONE Sat 8A WOODBURN                                                              | MN 0 HILLSBORO-SILV HY                                                          |                            |          | AL N WET REAR                                                 | PRVTE W E                                                      |               |                    |     | 000        | 00    |
| WOODBURN UA<br>No 45 9 3.38 -122 52 23.90                                         | 37.14 OREGON WAY<br>014000100S00 1                                              | 06                         | 0        | N DAY PDO                                                     | PSNGR CAR                                                      | 01 DRVR NONE  | 20 F OR-Y<br>OR<25 | 026 | 000        | 07    |
|                                                                                   |                                                                                 |                            |          |                                                               | 02 NONE 0 STOP                                                 |               |                    |     |            |       |
|                                                                                   |                                                                                 |                            |          |                                                               | PRVTE W E                                                      |               |                    |     | 011        | 00    |
|                                                                                   |                                                                                 |                            |          |                                                               | PSNGR CAR                                                      | 01 DRVR NONE  |                    | 000 | 000        | 00    |
|                                                                                   |                                                                                 |                            |          |                                                               |                                                                | 02 PSNG NO<5  | OR>25              | 000 | 000        | 00    |
|                                                                                   |                                                                                 |                            |          |                                                               |                                                                | 03 PSNG NO<5  |                    | 000 | 000        | 00    |
| 00000                                                                             |                                                                                 |                            |          |                                                               | 0.1                                                            |               |                    |     |            |       |
| 03821 N N N 11/11/2011 MARION NONE Fri 4P WOODBURN                                | 1 14<br>MN 0 HILLSBORO-SILV HY                                                  |                            |          | N RAIN ANGL-OTH<br>AL N WET TURN                              | 01 NONE 0 STRGHT<br>PRVTE E W                                  |               |                    |     | 000        | 04    |
|                                                                                   | 37.14 OREGON WAY                                                                |                            |          | N DAY PDO                                                     | PRVIE E W<br>PSNGR CAR                                         | 01 DRVR NONE  | 35 F OR-Y          | 020 | 000        | 04    |
| No 45 9 3.38 -122 52 23.90                                                        | 014000100S00 1                                                                  |                            | <u> </u> | 1, 2111 120                                                   | I DIVOIT OFFI                                                  | OI DIVIN MOME | OR<25              | 020 |            | 0.1   |
|                                                                                   |                                                                                 |                            |          |                                                               |                                                                |               |                    |     |            |       |

## OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

CONTINUOUS SYSTEM CRASH LISTING

140 HILLSBORO-SILVERTON Country Club Rd / Oregon Way & OR 214 Hillsboro-Silverton Hwy (140)

January 1, 2011 through December 31, 2015

| S D P R S W SER# E A U C O DATE COUNTY INVEST E L G H R DAY/TIME CITY UNLOC? D C S L K LAT/LONG URBAN AREA | RD# FC CONN # CMPT/MLG FIRST STREET MILEPNT SECOND STREET LRS INTERSECTION SEQ# | RD CHAR (MEDI<br>DIRECT LE | EGS TRAF- RI              | FFRD WTHR CRASH TYP<br>NDBT SURF COLL TYP<br>RVWY LIGHT SVRTY | OWNER FROM                                 | A S PRTC INJ G E LICNS PED P# TYPE SVRTY E X RES LOC ERRO | R ACTN EVENT          | CAUSE                |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------|---------------------------|---------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------|-----------------------|----------------------|
|                                                                                                            |                                                                                 |                            |                           |                                                               | 02 NONE 0 TURN-L<br>PRVTE S W<br>PSNGR CAR | 01 DRVR NONE 53 F OR-Y 000<br>OR<25                       | 000                   | 00                   |
| 02358 N N N 06/24/2015 MARION CITY Wed 2P WOODBURN WOODBURN UA No 45 9 3.38 -122 52 23.90                  | 1 14<br>MN 0 COUNTRY CLUB RD<br>37.14 HILLSBORO-SILV HY<br>014000100S00 1       | CN                         | ROSS N<br>TRF SIGNAL<br>0 |                                                               | 01 NONE 0 STRGHT PRVTE E W PSNGR CAR       |                                                           | 000                   | 04<br>00<br>00       |
|                                                                                                            |                                                                                 |                            |                           |                                                               | 02 NONE 0 TURN-L<br>PRVTE W N<br>PSNGR CAR | 01 DRVR INJC 74 F OR-Y 020,<br>OR<25                      | 000<br>004 000        | 0 0<br>0 4           |
| 04095 N N N 07/30/2015 MARION NO RPT Thu 10A WOODBURN WOODBURN UA No 45 9 3.38 -122 52 23.90               | 1 14<br>MN 0 COUNTRY CLUB RD<br>37.14 HILLSBORO-SILV HY<br>014000100S00 1       | CN                         | ROSS N<br>FLASHBCN-A<br>0 | N CLR O-1 L-TURN N DRY TURN N DAY INJ                         | 01 NONE 0 STRGHT<br>PRVTE E W<br>PSNGR CAR | 01 DRVR NONE 54 F OR-Y 000 OR<25                          | 000                   | 02<br>00<br>00       |
|                                                                                                            |                                                                                 |                            |                           |                                                               | 02 NONE 0 TURN-L<br>PRVTE W N<br>PSNGR CAR | 02 PSNG INJC 35 F 000<br>01 DRVR NONE 63 M OR-Y 028,      | 000<br>000<br>004 000 | 00<br>00<br>02       |
| 03457 N N N Y 09/10/2015 MARION CITY Thu 5P WOODBURN WOODBURN UA No 45 9 3.38 -122 52 23.90                | 1 14<br>MN 0 COUNTRY CLUB RD<br>37.14 HILLSBORO-SILV HY<br>014000100S00 1       | CN                         | ROSS N<br>TRF SIGNAL      | N CLR O-1 L-TURN<br>N DRY TURN<br>N DAY PDO                   | PRVTE W N                                  | OR>25  01 DRVR NONE 73 M OR-Y 028,                        | 000<br>004 000        | 02<br>00<br>02       |
| NO 45 9 3.30 -122 32 23.90                                                                                 | 014000100500                                                                    |                            |                           |                                                               | 02 NONE 0 STRGHT<br>PRVTE E W<br>PSNGR CAR |                                                           | 000                   | 00                   |
| 01723 N N N N N 05/23/2012 MARION CITY Wed 2P WOODBURN WOODBURN UA No 45 9 3.38 -122 52 23.90              | 1 14<br>MN 0 HILLSBORO-SILV HY<br>37.14 OREGON WAY<br>014000100S00 1            | CN                         | ROSS N<br>TRF SIGNAL      | N CLR ANGL-OTH N DRY ANGL N DAY INJ                           | PRVTE W E                                  |                                                           | 000<br>000            | 04<br>00<br>04       |
|                                                                                                            |                                                                                 |                            |                           |                                                               | 02 NONE 0 STRGHT<br>PRVTE N S<br>PSNGR CAR | 01 DRVR INJC 30 F OR-Y 000 OR<25                          | 000<br>000            | 00                   |
|                                                                                                            | 1 14<br>MN 0 HILLSBORO-SILV HY<br>37.14 OREGON WAY<br>014000100S00 1            | CN<br>04                   | TRF SIGNAL                | N CLR O-1 L-TURN N WET TURN N DAY INJ                         | PRVTE S N                                  | 01 DRVR NONE 80 M OR-Y 000 OR<25                          | 000<br>000<br>000     | 00<br>02<br>00<br>00 |

CDS380 9/6/2017

OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION
TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

02 PSNG INJC 47 F

000

PAGE: 4

00

CONTINUOUS SYSTEM CRASH LISTING

140 HILLSBORO-SILVERTON Country Club Rd / Oregon Way & OR 214 Hillsboro-Silverton Hwy (140)

January 1, 2011 through December 31, 2015

| S D                       |            |          |                   |         |          |         |             |           |             |        |               |           |           |            |       |
|---------------------------|------------|----------|-------------------|---------|----------|---------|-------------|-----------|-------------|--------|---------------|-----------|-----------|------------|-------|
| P RSW                     |            | RD# FC   | CONN #            |         | INT-TYP  |         |             |           | SPCL USE    |        |               |           |           |            |       |
| SER# E A U C O DATE       | COUNTY     | CMPT/MLG | FIRST STREET      | RD CHAR | (MEDIAN) | INT-REL | OFFRD WTHR  | CRASH TYP | TRLR QTY    | MOVE   |               | A S       |           |            |       |
| INVEST E L G H R DAY/TIME | CITY       | MILEPNT  | SECOND STREET     | DIRECT  | LEGS     | TRAF-   | RNDBT SURF  | COLL TYP  | OWNER       | FROM   | PRTC INJ      | G E LICNS | PED       |            |       |
| UNLOC? D C S L K LAT/LONG | URBAN AREA | LRS      | INTERSECTION SEQ# | LOCTN   | (#LANES) | CNTL    | DRVWY LIGHT | SVRTY     | V# VEH TYPE | TO     | P# TYPE SVRTY | E X RES   | LOC ERROR | ACTN EVENT | CAUSE |
| •                         |            |          |                   |         |          |         |             |           |             |        |               |           |           |            |       |
|                           |            |          |                   |         |          |         |             |           | 02 NONE 0   | TURN-L | ı             |           |           |            |       |
|                           |            |          |                   |         |          |         |             |           | PRVTE       | N E    |               |           |           | 000        | 00    |
|                           |            |          |                   |         |          |         |             |           | PSNGR CAR   |        | 01 DRVR NONE  | 23 M OR-Y | 004,028   | 000        | 02    |
|                           |            |          |                   |         |          |         |             |           |             |        |               | OR<25     |           |            |       |

# OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CRASH SUMMARIES BY YEAR BY COLLISION TYPE

Evergreen Rd & OR 214 Hillsboro-Silverton Hwy (140) January 1, 2011 through December 31, 2015

| COLLISION TYPE    | FATAL<br>CRASHES | NON-<br>FATAL<br>CRASHES | PROPERTY<br>DAMAGE<br>ONLY | TOTAL<br>CRASHES | PEOPLE<br>KILLED | PEOPLE<br>INJURED | TRUCKS | DRY<br>SURF | WET<br>SURF | DAY | DARK | INTER-<br>SECTION | INTER-<br>SECTION<br>RELATED | OFF-<br>ROAD |
|-------------------|------------------|--------------------------|----------------------------|------------------|------------------|-------------------|--------|-------------|-------------|-----|------|-------------------|------------------------------|--------------|
| YEAR: 2015        | CRASHES          | CNASHLS                  | ONLI                       | CRASHES          | KILLED           | INJURED           | IRUCKS | SURF        | SUKF        | DAT | DARK | SECTION           | KLLAILD                      | KUAD         |
| ANGLE             | 0                | 1                        | 0                          | 1                | 0                | 2                 | 0      | 1           | 0           | 1   | 0    | 1                 | 0                            | 0            |
| NON-COLLISION     | 0                | 1                        | 0                          | 1                | 0                | 1                 | 0      | 1           | 0           | 1   | 0    | 1                 | 0                            | 0            |
| REAR-END          | 0                | 0                        | 4                          | 4                | 0                | 0                 | 0      | 4           | 0           | 4   | 0    | 4                 | 0                            | 0            |
| TURNING MOVEMENTS | 0                | 8                        | 3                          | 11               | 0                | 18                | 0      | 7           | 4           | 8   | 3    | 11                | 0                            | 0            |
| 2015 TOTAL        | 0                | 10                       | 7                          | 17               | 0                | 21                | 0      | 13          | 4           | 14  | 3    | 17                | 0                            | 0            |
| YEAR: 2014        |                  |                          |                            |                  |                  |                   |        |             |             |     |      |                   |                              |              |
| REAR-END          | 0                | 1                        | 3                          | 4                | 0                | 1                 | 0      | 3           | 1           | 3   | 1    | 4                 | 0                            | 0            |
| TURNING MOVEMENTS | 0                | 1                        | 1                          | 2                | 0                | 2                 | 0      | 1           | 1           | 1   | 1    | 2                 | 0                            | 0            |
| 2014 TOTAL        | 0                | 2                        | 4                          | 6                | 0                | 3                 | 0      | 4           | 2           | 4   | 2    | 6                 | 0                            | 0            |
| YEAR: 2013        |                  |                          |                            |                  |                  |                   |        |             |             |     |      |                   |                              |              |
| PEDESTRIAN        | 0                | 1                        | 0                          | 1                | 0                | 1                 | 0      | 1           | 0           | 1   | 0    | 1                 | 0                            | 0            |
| REAR-END          | 0                | 2                        | 2                          | 4                | 0                | 3                 | 0      | 4           | 0           | 3   | 1    | 4                 | 0                            | 0            |
| TURNING MOVEMENTS | 0                | 1                        | 0                          | 1                | 0                | 2                 | 0      | 0           | 1           | 0   | 1    | 1                 | 0                            | 0            |
| 2013 TOTAL        | 0                | 4                        | 2                          | 6                | 0                | 6                 | 0      | 5           | 1           | 4   | 2    | 6                 | 0                            | 0            |
| YEAR: 2012        |                  |                          |                            |                  |                  |                   |        |             |             |     |      |                   |                              |              |
| ANGLE             | 0                | 1                        | 1                          | 2                | 0                | 1                 | 0      | 1           | 1           | 0   | 2    | 2                 | 0                            | 0            |
| BACKING           | 0                | 0                        | 1                          | 1                | 0                | 0                 | 0      | 0           | 1           | 1   | 0    | 1                 | 0                            | 0            |
| NON-COLLISION     | 0                | 0                        | 1                          | 1                | 0                | 0                 | 0      | 1           | 0           | 1   | 0    | 1                 | 0                            | 0            |
| REAR-END          | 0                | 2                        | 0                          | 2                | 0                | 2                 | 0      | 1           | 1           | 2   | 0    | 2                 | 0                            | 0            |
| TURNING MOVEMENTS | 0                | 0                        | 1                          | 1                | 0                | 0                 | 0      | 1           | 0           | 1   | 0    | 1                 | 0                            | 0            |
| 2012 TOTAL        | 0                | 3                        | 4                          | 7                | 0                | 3                 | 0      | 4           | 3           | 5   | 2    | 7                 | 0                            | 0            |
| YEAR: 2011        |                  |                          |                            |                  |                  |                   |        |             |             |     |      |                   |                              |              |
| REAR-END          | 0                | 1                        | 4                          | 5                | 0                | 5                 | 0      | 3           | 1           | 5   | 0    | 5                 | 0                            | 0            |
| TURNING MOVEMENTS | 0                | 2                        | 4                          | 6                | 0                | 2                 | 3      | 5           | 1           | 4   | 2    | 6                 | 0                            | 0            |
| 2011 TOTAL        | 0                | 3                        | 8                          | 11               | 0                | 7                 | 3      | 8           | 2           | 9   | 2    | 11                | 0                            | 0            |
| FINAL TOTAL       | 0                | 22                       | 25                         | 47               | 0                | 40                | 3      | 34          | 12          | 36  | 11   | 47                | 0                            | 0            |

CDS380 9/6/2017

## OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CONTINUOUS SYSTEM CRASH LISTING

140 HILLSBORO-SILVERTON

| S D P R S W SER# E A U C O DATE COUNTY INVEST E L G H R DAY/TIME CITY UNLOC? D C S L K LAT/LONG URBAN AREA | RD# FC CONN # CMPT/MLG FIRST STREET MILEPNT SECOND STREET LRS INTERSECTION SEQ# | RD CHAR (MEDI<br>DIRECT LE | EGS TRAF- RI              | FFRD WTHR CRASH TY<br>NDBT SURF COLL TYP<br>RVWY LIGHT SVRTY | OWNER FROM                                      | A S PRTC INJ G E LICNS PE P# TYPE SVRTY E X RES LO                |                                         | ENT CAUSE                       |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------|---------------------------|--------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------|---------------------------------|
| 02454 N N N 06/30/2015 MARION NONE Tue 10A WOODBURN WOODBURN UA No 45 9 3.52 -122 52 32.54                 | 1 14<br>MN 0 EVERGREEN RD<br>37.02 HILLSBORO-SILV HY<br>014000100S00 1          | UN                         | ROSS N<br>TRF SIGNAL<br>0 | N CLR S-1STOP<br>N DRY REAR<br>N DAY PDO                     | 01 NONE 0 STRGHT<br>PRVTE UN UN<br>PSNGR CAR    | 01 DRVR NONE 46 M OR-Y<br>UNK                                     | 000<br>026 000                          | 29<br>00<br>29                  |
|                                                                                                            |                                                                                 |                            |                           |                                                              | 02 NONE 0 STOP<br>PRVTE UN UN<br>PSNGR CAR      | 01 DRVR NONE 00 M UNK OR<25                                       | 011<br>000 000                          | 00<br>00                        |
| 04428 N N N N N 12/09/2013 MARION CITY Mon 3P WOODBURN WOODBURN UA No 45 9 3.52 -122 52 32.53              | 1 14<br>MN 0 EVERGREEN RD<br>37.02 HILLSBORO-SILV HY<br>014000100S00 1          | E                          | ROSS N<br>TRF SIGNAL<br>0 | N CLR PED<br>N DRY PED<br>N DAY INJ                          | 01 NONE 0 TURN-L PRVTE N E PSNGR CAR STRGHT N S | 01 DRVR NONE 59 F OR-Y OR<25 01 PED INJA 28 M 03                  | 000<br>029 000<br>1 000 035             | 02<br>00<br>02<br>00            |
| 02656 N N N N 08/16/2011 MARION NONE Tue 4P WOODBURN WOODBURN UA No 45 9 3.52 -122 52 32.54                | 1 14<br>MN 0 EVERGREEN RD<br>37.02 HILLSBORO-SILV HY<br>014000100S00 1          | E                          | -LEG N TRF SIGNAL         | N UNK S-1STOP<br>N UNK REAR<br>N DAY PDO                     | 01 NONE 0 STRGHT PRVTE E W PSNGR CAR            | 01 DRVR NONE 36 F OR-Y<br>OR<25                                   | 000<br>026 000                          | 07<br>00<br>07                  |
|                                                                                                            |                                                                                 |                            |                           |                                                              | 02 NONE 0 STOP<br>PRVTE E W<br>PSNGR CAR        | 01 DRVR NONE 20 F OR-Y<br>OR<25                                   | 011<br>000 000                          | 00<br>00                        |
| 03164 N N N 09/09/2011 MARION NONE Fri 4P WOODBURN WOODBURN UA No 45 9 3.52 -122 52 32.54                  | 1 14<br>MN 0 EVERGREEN RD<br>37.02 HILLSBORO-SILV HY<br>014000100S00 1          | E                          | -LEG N<br>TRF SIGNAL<br>0 | N CLR S-1STOP<br>N DRY REAR<br>N DAY INJ                     | 01 NONE 0 STRGHT<br>PRVTE E W<br>PSNGR CAR      | 01 DRVR NONE 26 F OR-Y<br>OR<25                                   | 000<br>026 000                          | 07<br>00<br>07                  |
|                                                                                                            |                                                                                 |                            |                           |                                                              | 02 NONE 0 STOP<br>PRVTE E W<br>PSNGR CAR        | 01 DRVR INJC 32 F OTH-Y OR<25 02 PSNG INJC 12 M 03 PSNG INJC 09 M | 011<br>000 000<br>000 000<br>000 000    | 00<br>00<br>00                  |
| CITY Thu 5P WOODBURN WOODBURN UA                                                                           | MN 0 EVERGREEN RD<br>37.02 HILLSBORO-SILV HY                                    | E                          | ROSS N<br>TRF SIGNAL      | N CLD S-1STOP N WET REAR N DAY INJ                           | 01 NONE 0 STRGHT<br>PRVTE E W<br>PSNGR CAR      | 04 PSNG INJC 05 F 05 PSNG INJC 06 M 01 DRVR NONE 23 M OR-Y        | 000 000<br>000 000<br>01 022<br>026 000 | 00<br>00<br>3<br>07<br>00<br>07 |
| No 45 9 3.52 -122 52 32.54                                                                                 | 014000100S00 1                                                                  |                            |                           |                                                              | 02 NONE 0 STOP<br>PRVTE E W<br>PSNGR CAR        | OR>25  01 DRVR INJC 40 F OR-Y OR<25                               | 011<br>000 000                          | 00<br>00                        |

OR<25

## OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CONTINUOUS SYSTEM CRASH LISTING

140 HILLSBORO-SILVERTON

45 9 3.52 -122 52 32.54

014000100S00

|                                                         |                                                                                |            | Janua   | .IY I, 20 | oii through                             | n pecember | 31, 2013                          |           |                           |        |        |         |            |                      |
|---------------------------------------------------------|--------------------------------------------------------------------------------|------------|---------|-----------|-----------------------------------------|------------|-----------------------------------|-----------|---------------------------|--------|--------|---------|------------|----------------------|
| S                                                       | RD# FC CONN # CMPT/MLG FIRST STREET MILEPNT SECOND STREET LRS INTERSECTION SEQ | DIRECT     |         | RAF- R    | OFFRD WTHR<br>RNDBT SURF<br>DRVWY LIGHT | COLL TYP   | SPCL USE<br>TRLR QTY I<br>OWNER : | FROM      | PRTC INJ<br>P# TYPE SVRTY |        |        | ERROR   | ACTN EVENT | CAUSE                |
|                                                         |                                                                                |            |         |           |                                         |            | 03 NONE 0 S                       | מיים כעיי |                           |        |        |         |            |                      |
|                                                         |                                                                                |            |         |           |                                         |            | PRVTE E                           |           |                           |        |        |         | 000        | 0.0                  |
|                                                         |                                                                                |            |         |           |                                         |            | PSNGR CAR                         |           | 01 DRVR NONE              | 19 F O | R-Y    | 026     | 000        | 07                   |
|                                                         |                                                                                |            |         |           |                                         |            |                                   |           |                           |        | R<25   |         |            |                      |
|                                                         |                                                                                |            |         |           |                                         |            |                                   |           | 02 PSNG NO<5              | 01 M   |        | 000     | 000        | 00                   |
|                                                         |                                                                                |            |         |           |                                         |            | 04 NONE 0 S                       | STOP      |                           |        |        |         |            |                      |
|                                                         |                                                                                |            |         |           |                                         |            | PRVTE E                           |           |                           |        |        |         | 011 013    | 00                   |
|                                                         |                                                                                |            |         |           |                                         |            | PSNGR CAR                         |           | 01 DRVR NONE              | 30 F O | R-Y    | 000     | 000        | 00                   |
|                                                         |                                                                                |            |         |           |                                         |            |                                   |           |                           | 0      |        |         |            |                      |
|                                                         |                                                                                |            |         |           |                                         |            |                                   |           | 02 PSNG NO<5              | 01 M   |        | 000     | 000        | 00                   |
| 02253 N N N N N 07/11/2012 MARION                       | 1 14                                                                           | INTER      | CROSS N |           | N CLR                                   | OVERTURN   | 01 NONE 0 S                       | STOP      |                           |        |        |         |            | 07                   |
| CITY Wed 7A WOODBURN                                    | MN 0 EVERGREEN RD                                                              | E          | TRI     | F SIGNAL  | L N DRY                                 | NCOL       | PRVTE W                           | √ E       |                           |        |        |         | 011        | 00                   |
| WOODBURN UA                                             | 37.02 HILLSBORO-SILV H                                                         |            | 0       |           | N DAY                                   | PDO        | MTRCYCLE                          |           | 01 DRVR NONE              |        |        | 043     | 000        | 07                   |
| No 45 9 3.52 -122 52 32.54                              | 014000100S00                                                                   | 1          |         |           |                                         |            |                                   |           |                           | 0      | R<25   |         |            |                      |
| 04185 N N N 11/26/2013 MARION                           | 1 14                                                                           | INTER      | CROSS N |           | N CLR                                   | S-1STOP    | 01 NONE 0 S                       | STRGHT    |                           |        |        |         |            | 07                   |
| NONE Tue 2P WOODBURN                                    | MN 0 EVERGREEN RD                                                              | E          | TRI     | F SIGNAL  | L N DRY                                 | REAR       | PRVTE E                           | E W       |                           |        |        |         | 000        | 00                   |
| WOODBURN UA                                             | 37.02 HILLSBORO-SILV H                                                         |            | 0       |           | N DAY                                   | INJ        | PSNGR CAR                         |           | 01 DRVR NONE              |        |        | 026     | 000        | 07                   |
| No 45 9 3.52 -122 52 32.53                              | 014000100S00                                                                   | 1          |         |           |                                         |            |                                   |           |                           | 0      | R<25   |         |            |                      |
|                                                         |                                                                                |            |         |           |                                         |            | 02 NONE 0 S                       |           |                           |        |        |         |            |                      |
|                                                         |                                                                                |            |         |           |                                         |            | PRVTE E                           |           |                           |        |        |         | 011        | 00                   |
|                                                         |                                                                                |            |         |           |                                         |            | PSNGR CAR                         |           | 01 DRVR INJA              |        |        | 000     | 000        | 00                   |
|                                                         |                                                                                |            |         |           |                                         |            |                                   |           | 02 PSNG INJC              |        | R<25   | 000     | 000        | 00                   |
|                                                         |                                                                                |            |         |           |                                         |            |                                   |           | 02 10110 11100            | , 0 11 |        |         |            |                      |
| 04540 N N N N N 12/16/2014 MARION CITY Tue 10P WOODBURN | 1 14<br>MN 0 EVERGREEN RD                                                      | INTER<br>E |         |           | N CLD<br>L N DRY                        |            | 01 NONE 0 S<br>PRVTE E            |           |                           |        |        |         | 116        | 27 <b>,</b> 07<br>00 |
| WOODBURN UA                                             | 37.02 HILLSBORO-SILV H                                                         |            | 0       |           | N DARK                                  |            |                                   |           | 01 DRVR NONE              | 26 M O | R-V    | 016,026 | 038 116    | 27,07                |
| No 45 9 3.52 -122 52 32.54                              | 014000100S00                                                                   |            | Ŭ       |           | N Dintt                                 | . 50       | I DIVOIT CITE                     |           | OI DIVIN NONE             |        | R<25   | 010,020 | 030 110    | 27,07                |
|                                                         |                                                                                |            |         |           |                                         |            | 00 27027                          |           |                           |        |        |         |            |                      |
|                                                         |                                                                                |            |         |           |                                         |            | 02 NONE 0 S<br>PRVTE E            |           |                           |        |        |         | 011        | 00                   |
|                                                         |                                                                                |            |         |           |                                         |            |                                   |           | 01 DRVR NONE              | 54 M O | R-Y    | 000     | 000        | 00                   |
|                                                         |                                                                                |            |         |           |                                         |            |                                   |           |                           |        | R<25   |         |            |                      |
| 02946 N N N 08/19/2011 MARION                           | 1 14                                                                           | INTER      | 3_IEC N |           | N CLR                                   | C_1 CT∩D   | 01 NONE 0 S                       | מיים כטיי |                           |        |        |         |            | 07                   |
| NONE Fri 3P WOODBURN                                    | MN 0 EVERGREEN RD                                                              | M          |         |           | L N DRY                                 |            | PRVTE W                           |           |                           |        |        |         | 000        | 00                   |
| WOODBURN UA                                             | 37.02 HILLSBORO-SILV H                                                         | IY 06      | 0       |           | N DAY                                   | PDO        | PSNGR CAR                         |           | 01 DRVR NONE              | 43 F O | R-Y    | 026     | 000        | 07                   |
| No 45 9 3.52 -122 52 32.54                              | 014000100S00                                                                   | 1          |         |           |                                         |            |                                   |           |                           | 0      | R>25   |         |            |                      |
|                                                         |                                                                                |            |         |           |                                         |            | 02 NONE 0 S                       | STOP      |                           |        |        |         |            |                      |
|                                                         |                                                                                |            |         |           |                                         |            | PRVTE W                           |           |                           |        |        |         | 011        | 00                   |
|                                                         |                                                                                |            |         |           |                                         |            | PSNGR CAR                         |           | 01 DRVR NONE              | 46 F O | R-Y    | 000     | 000        | 00                   |
|                                                         |                                                                                |            |         |           |                                         |            |                                   |           |                           | 0      | R>25   |         |            |                      |
| 03651 N N N 10/30/2011 MARION                           | 1 14                                                                           | INTER      | 3-LEG N |           | N CLD                                   | S-1STOP    | 01 NONE 0 S                       | STRGHT    |                           |        |        |         |            | 07                   |
| NONE Sun 2P WOODBURN                                    | MN 0 EVERGREEN RD                                                              | M          | TRI     | F SIGNAI  | L N WET                                 | REAR       | PRVTE W                           | √ E       |                           |        |        |         | 000        | 00                   |
| WOODBURN UA                                             | 37.02 HILLSBORO-SILV H                                                         | 17 06      | 0       |           | N DAY                                   | PDO        | PSNGR CAR                         |           | 01 DRVR NONE              | 16 F O | R-Y    | 026     | 000        | 07                   |
| 37 45 0 3 50 100 50 30 54                               | 01 40001 00000                                                                 | 1          |         |           |                                         |            |                                   |           |                           | _      | D 40 F |         |            |                      |

140 HILLSBORO-SILVERTON

45 9 3.52 -122 52 32.54

014000100S00

## OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CONTINUOUS SYSTEM CRASH LISTING

OR<25

|                                                                                                            |                                                                                 |                            | January 1, 20              | orr chrough becchiber                                         | 31, 2013                                   |                                                            |                   |                |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------|----------------------------|---------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------|-------------------|----------------|
| S D P R S W SER# E A U C O DATE COUNTY INVEST E L G H R DAY/TIME CITY UNLOC? D C S L K LAT/LONG URBAN AREA | RD# FC CONN # CMPT/MLG FIRST STREET MILEPNT SECOND STREET LRS INTERSECTION SEQ# | RD CHAR<br>DIRECT<br>LOCTN | LEGS TRAF- R               | FFRD WTHR CRASH TYP<br>NDBT SURF COLL TYP<br>RVWY LIGHT SVRTY | OWNER FROM                                 | A S PRTC INJ G E LICNS PED P# TYPE SVRTY E X RES LOC ERROR | ACTN EVENT        | CAUSE          |
|                                                                                                            |                                                                                 |                            |                            |                                                               | 02 NONE 0 STOP<br>PRVTE W E<br>PSNGR CAR   | 01 DRVR NONE 00 M OR-Y 000                                 | 011<br>000        | 00             |
| 02364 N N N N N N 07/19/2012 MARION CITY Thu 7P WOODBURN WOODBURN UA                                       | 1 14<br>MN 0 EVERGREEN RD<br>37.02 HILLSBORO-SILV HY                            | INTER<br>W                 | CROSS N<br>TRF SIGNAL      | N CLR S-1STOP N DRY REAR N DAY INJ                            | 01 NONE 0 STRGHT<br>PRVTE W E<br>PSNGR CAR | OR>25<br>01 DRVR NONE 61 M OR-Y 043,026                    | 013<br>000<br>000 | 07<br>00<br>07 |
| No 45 9 3.52 -122 52 32.54                                                                                 | 014000100S00 1                                                                  |                            |                            |                                                               |                                            | OR<25<br>02 PSNG INJA 60 F 000                             | 000               | 00             |
|                                                                                                            |                                                                                 |                            |                            |                                                               | 02 NONE 0 STOP PRVTE W E PSNGR CAR         | 01 DRVR NONE 24 M OR-Y 000                                 | 011 013<br>000    | 00             |
|                                                                                                            |                                                                                 |                            |                            |                                                               | 03 NONE 0 STOP PRVTE W E                   | OR<25                                                      | 022               | 00             |
|                                                                                                            |                                                                                 |                            |                            |                                                               | PSNGR CAR                                  | 01 DRVR NONE 23 M OR-Y 000<br>OR<25                        | 000               | 00             |
| 02695 N N N N 08/10/2013 MARION NONE Sat 7A WOODBURN WOODBURN UA                                           | 1 14<br>MN 0 EVERGREEN RD<br>37.02 HILLSBORO-SILV HY                            | INTER<br>W<br>06           | CROSS N<br>TRF SIGNAL<br>0 | N CLR S-1STOP N DRY REAR N DAY PDO                            | 01 NONE 0 STRGHT PRVTE W E PSNGR CAR       | 01 DRVR NONE 00 F UNK 026                                  | 013<br>000<br>000 | 07<br>00<br>07 |
| No 45 9 3.52 -122 52 32.53                                                                                 | 014000100S00 1                                                                  |                            |                            |                                                               | 02 NONE 0 STOP                             | OR<25                                                      | 011 010           | 0.0            |
|                                                                                                            |                                                                                 |                            |                            |                                                               | PRVTE W E<br>PSNGR CAR                     | 01 DRVR NONE 36 M OR-Y 000 OR<25                           | 011 013<br>000    | 00             |
|                                                                                                            |                                                                                 |                            |                            |                                                               | 03 NONE 0 STOP PRVTE W E PSNGR CAR         | 01 DRVR NONE 27 M OR-Y 000                                 | 022<br>000        | 00             |
| 02823 N N N 08/21/2013 MARION                                                                              | 1 14                                                                            | INTER                      | CROSS N                    | N CLR S-1STOP                                                 | 01 NONE 0 STRGHT                           | OR<25                                                      |                   | 07             |
| NONE Wed 5P WOODBURN WOODBURN UA No 45 9 3.52 -122 52 32.53                                                | MN 0 EVERGREEN RD<br>37.02 HILLSBORO-SILV HY<br>014000100S00 1                  | W<br>06                    | UNKNOWN<br>0               | N DRY REAR<br>N DAY INJ                                       | PRVTE W E<br>PSNGR CAR                     | 01 DRVR NONE 23 F OR-Y 026<br>OR>25                        | 000               | 00<br>07       |
|                                                                                                            |                                                                                 |                            |                            |                                                               | 02 NONE 0 STOP PRVTE W E                   | 01 DNID INIO 60 F 00 W                                     | 011               | 00             |
| 00430 N N N 02/07/2014 MARION                                                                              | 1 14                                                                            | INTER                      | 3-LEG N                    | N SNOW S-1STOP                                                | PSNGR CAR 01 NONE 0 STRGHT                 | 01 DRVR INJC 69 F OR-Y 000<br>OR<25                        | 000               | 00             |
| NONE Fri 1P WOODBURN                                                                                       | MN 0 EVERGREEN RD                                                               | M                          |                            | N SNO REAR                                                    | PRVTE W E                                  |                                                            | 000               | 00             |
| WOODBURN UA                                                                                                | 37.02 HILLSBORO-SILV HY                                                         | 06                         | 0                          | N DAY INJ                                                     |                                            | 01 DRVR NONE 48 F OR-Y 026                                 | 000               | 07             |
|                                                                                                            |                                                                                 |                            |                            |                                                               |                                            |                                                            |                   |                |

S D

140 HILLSBORO-SILVERTON

## OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

CONTINUOUS SYSTEM CRASH LISTING

| PRSW  SER#EAUCODATE COUNTY INVESTELGHRDAY/TIME CITY UNLOC?DCSLK LAT/LONG URBAN AREA | RD# FC CONN # CMPT/MLG FIRST STREET MILEPNT SECOND STREET LRS INTERSECTION SEQ# | RD CHAR<br>DIRECT<br>LOCTN | INT-TYP (MEDIAN) INT-REL LEGS TRAF- (#LANES) CNTL | RNDBT SUR |                 | SPCL USE P TRLR QTY MOVE OWNER FROM V# VEH TYPE TO | PRTC INJ       | A S<br>G E LICNS F<br>E X RES I |     | ACTN EVENT | CAUSE |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------|---------------------------------------------------|-----------|-----------------|----------------------------------------------------|----------------|---------------------------------|-----|------------|-------|
|                                                                                     |                                                                                 |                            |                                                   |           |                 | 02 NONE 0 STOP                                     |                |                                 |     | 0.1.1      | 0.0   |
|                                                                                     |                                                                                 |                            |                                                   |           |                 | PRVTE W E<br>PSNGR CAR                             | 01 DRVR INJC   | 20 M OD-V                       | 000 | 011<br>000 | 00    |
|                                                                                     |                                                                                 |                            |                                                   |           |                 | F3NGK CAK                                          | OI DRVK INCC   | OR<25                           | 000 | 000        | 00    |
| 02287 N N N 07/10/2014 MARION                                                       | 1 14                                                                            | INTER                      | CROSS N                                           |           | S-1STOP         | 01 NONE 0 STRGHT                                   |                |                                 |     |            | 07    |
| NONE Thu 8A WOODBURN                                                                | MN 0 EVERGREEN RD                                                               | W                          |                                                   | NAL N DRY |                 | PRVTE W E                                          | 01 DDIT 110115 | 00 5 050                        | 006 | 000        | 00    |
| WOODBURN UA<br>No 45 9 3.52 -122 52 32.54                                           | 37.02 HILLSBORO-SILV HY<br>014000100S00 1                                       | 06                         | 0                                                 | N DAY     | PDO             | PSNGR CAR                                          | 01 DRVR NONE   | OR<25                           | 026 | 000        | 07    |
|                                                                                     |                                                                                 |                            |                                                   |           |                 | 02 NONE 0 STOP                                     |                |                                 |     | 010        | 0.0   |
|                                                                                     |                                                                                 |                            |                                                   |           |                 | PRVTE W E<br>PSNGR CAR                             | 01 DRVR NONE   | 13 F OD-V                       | 000 | 012<br>000 | 00    |
|                                                                                     |                                                                                 |                            |                                                   |           |                 | FSNGK CAK                                          | OI DRVK NONE   | OR<25                           | 000 | 000        | 00    |
| 02960 N N N 08/05/2015 MARION                                                       | 1 14                                                                            | INTER                      | CROSS N                                           |           |                 | 01 NONE 0 STRGHT                                   |                |                                 |     |            | 29    |
| NONE Wed 5P WOODBURN                                                                | MN 0 EVERGREEN RD                                                               | M                          | TRF SIG                                           |           |                 | PRVTE W E                                          |                |                                 |     | 000        | 00    |
| WOODBURN UA<br>No 45 9 3.52 -122 52 32.54                                           | 37.02 HILLSBORO-SILV HY<br>014000100S00 1                                       | 06                         | 0                                                 | N DAY     | PDO             | PSNGR CAR                                          | 01 DRVR NONE   | 00 F OR-Y<br>OR>25              | 026 | 000        | 29    |
|                                                                                     |                                                                                 |                            |                                                   |           |                 | 02 NONE 0 STOP                                     |                |                                 |     |            |       |
|                                                                                     |                                                                                 |                            |                                                   |           |                 | PRVTE W E                                          |                |                                 |     | 011        | 00    |
|                                                                                     |                                                                                 |                            |                                                   |           |                 | PSNGR CAR                                          | 01 DRVR NONE   | 61 F OR-Y<br>OR<25              | 000 | 000        | 00    |
| 03040 N N N N N 09/13/2011 MARION                                                   | 1 14                                                                            | INTER                      | CROSS N                                           | N CLR     | O-1 L-TURN      | 0 01 NONE 0 STRGHT                                 |                |                                 |     |            | 04    |
| CITY Tue 5P WOODBURN                                                                | MN 0 EVERGREEN RD                                                               | CN                         | TRF SIG                                           | NAL N DRY | TURN            | PRVTE N S                                          |                |                                 |     | 000        | 00    |
| WOODBURN UA<br>No 45 9 3.52 -122 52 32.54                                           | 37.02 HILLSBORO-SILV HY 014000100S00 1                                          | 01                         | 0                                                 | N DAY     | INJ             | PSNGR CAR                                          | 01 DRVR INJB   | 23 M OTH-Y<br>OR>25             | 020 | 000        | 04    |
|                                                                                     |                                                                                 |                            |                                                   |           |                 | 02 NONE 0 TURN-L                                   |                |                                 |     |            |       |
|                                                                                     |                                                                                 |                            |                                                   |           |                 | PRVTE S W                                          |                |                                 |     | 000        | 00    |
|                                                                                     |                                                                                 |                            |                                                   |           |                 | PSNGR CAR                                          | 01 DRVR NONE   | 45 M OTH-Y<br>N-RES             | 000 | 000        | 00    |
| 00386 N N N N N 02/03/2012 MARION                                                   | 1 14                                                                            | INTER                      | CROSS N                                           | N CID     | ANCT -OTH       | 01 NONE 0 STRGHT                                   |                |                                 |     |            | 04    |
| CITY Fri 10P WOODBURN                                                               | MN 0 EVERGREEN RD                                                               | CN                         |                                                   | NAL N DRY |                 | PRVTE E W                                          |                |                                 |     | 000        | 00    |
| WOODBURN UA                                                                         | 37.02 HILLSBORO-SILV HY                                                         | 02                         | 0                                                 | N DLI     | r INJ           | PSNGR CAR                                          | 01 DRVR NONE   | 18 M OR-Y                       | 000 | 000        | 00    |
| No 45 9 3.52 -122 52 32.54                                                          | 014000100S00 1                                                                  |                            |                                                   |           |                 |                                                    |                | OR<25                           |     |            |       |
|                                                                                     |                                                                                 |                            |                                                   |           |                 | 02 NONE 0 STRGHT<br>PRVTE S N                      |                |                                 |     | 000        | 0.0   |
|                                                                                     |                                                                                 |                            |                                                   |           |                 | PSNGR CAR                                          | 01 DRVR NONE   | 18 M OR-Y                       | 020 | 000        | 02    |
|                                                                                     |                                                                                 |                            |                                                   |           |                 | 2011011 02111                                      |                | OR<25                           |     |            |       |
| 01010 N.N.N. 06/00/2012 Maprov                                                      | 1 14                                                                            | TMED                       | 2 I.E.C. N                                        | N. CTP    | G OWNER         | 01 NOVE 0 ECTY 7                                   | 02 PSNG INJC   | 21 F                            | 000 | 000        | 00    |
| 01910 N N N 06/09/2012 MARION NONE Sat 8P WOODBURN                                  | 1 14<br>MN 0 EVERGREEN RD                                                       | INTER<br>CN                | 3-LEG N<br>L-GRN-S                                |           | S-OTHER<br>TURN | 01 NONE 0 TURN-L<br>PRVTE E S                      |                |                                 |     | 000        | 08    |
| WOODBURN UA                                                                         | 37.02 HILLSBORO-SILV HY                                                         |                            | 0                                                 | N DAY     |                 |                                                    | 01 DRVR NONE   | 39 F OR-Y                       | 006 | 000        | 08    |
| No 45 9 3.52 -122 52 32.54                                                          | 014000100800 1                                                                  |                            |                                                   |           |                 |                                                    |                | UNK                             |     |            |       |

## OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

CONTINUOUS SYSTEM CRASH LISTING

## 140 HILLSBORO-SILVERTON Evergreen Rd & OR 214 Hillsboro-Silverton Hwy (140) January 1, 2011 through December 31, 2015

| S D P R S W SER# E A U C O DATE COUNTY INVEST E L G H R DAY/TIME CITY UNLOC? D C S L K LAT/LONG URBAN AREA | RD# FC CONN # CMPT/MLG FIRST STREET MILEPNT SECOND STREET LRS INTERSECTION SEQ# | RD CHAR<br>DIRECT<br>LOCTN | INT-TYP<br>(MEDIAN)<br>LEGS<br>(#LANES) | INT-REL<br>TRAF- | RNDBT SU | HR CRASH TY<br>RF COLL TYP<br>GHT SVRTY | OWNER            | TY MOVE<br>FROM |     | PRTC INJ   |      | E LICNS         |         | ACTN EVENT | CAUSE |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------|-----------------------------------------|------------------|----------|-----------------------------------------|------------------|-----------------|-----|------------|------|-----------------|---------|------------|-------|
|                                                                                                            |                                                                                 |                            |                                         |                  |          |                                         | 02 NONE          |                 | _   |            |      |                 |         |            |       |
|                                                                                                            |                                                                                 |                            |                                         |                  |          |                                         | PRVTE            | E S             |     |            |      |                 |         | 000        | 00    |
|                                                                                                            |                                                                                 |                            |                                         |                  |          |                                         | PSNGR C          | AR              | 01  | DRVR NONE  | 17 E | F OR-Y<br>OR<25 | 000     | 000        | 00    |
| 01776 N N N 05/16/2015 MARION                                                                              | 1 14                                                                            | INTER                      | CROSS                                   | N                | N CL     | R ANGL-OTH                              | 01 NONE          | 0 STRGHT        |     |            |      |                 |         |            | 04    |
| CITY Sat 9A WOODBURN                                                                                       | MN 0 EVERGREEN RD                                                               | CN                         |                                         | TRF SIGN         | AL N DR  | Z ANGL                                  | PRVTE            | S N             |     |            |      |                 |         | 000        | 00    |
| WOODBURN UA                                                                                                | 37.02 HILLSBORO-SILV HY                                                         | 02                         | 0                                       |                  | N DA     | Z INJ                                   | PSNGR C          | AR              | 01  | DRVR INJC  | 42 N | M OR-Y          | 000     | 000        | 00    |
| No 45 9 3.52 -122 52 32.54                                                                                 | 014000100S00 1                                                                  |                            |                                         |                  |          |                                         | 02 NONE          | 0 000000        | ,   |            |      | OR<25           |         |            |       |
|                                                                                                            |                                                                                 |                            |                                         |                  |          |                                         |                  | U SIRGHI<br>E W | L   |            |      |                 |         | 000        | 00    |
|                                                                                                            |                                                                                 |                            |                                         |                  |          |                                         | PSNGR C          |                 | 01  | DRVR INJC  | 83 1 | 4 OR-Y          | 020     | 000        | 04    |
|                                                                                                            |                                                                                 |                            |                                         |                  |          |                                         |                  |                 |     |            |      | OR<25           |         |            |       |
| 02012 N N N Y 06/05/2015 MARION                                                                            | 1 14                                                                            | INTER                      | CROSS                                   | N                |          | R O-1 L-TURI                            |                  |                 |     |            |      |                 |         |            | 02    |
| CITY Fri 12P WOODBURN WOODBURN UA                                                                          | MN 0 EVERGREEN RD                                                               |                            | 0                                       | TRF SIGN         |          |                                         | PRVTE<br>PSNGR C | E W             | 0.1 | DDIID NONE | 42.  | 4 OMII W        | 000     | 000        | 00    |
| No 45 9 3.52 -122 52 32.54                                                                                 | 37.02 HILLSBORO-SILV HY<br>014000100S00 1                                       | 02                         | U                                       |                  | N DA     | ( INJ                                   | PSNGR C          | AK              | 01  | DRVR NONE  | 43 P | N-RES           | 000     | 000        | 00    |
|                                                                                                            |                                                                                 |                            |                                         |                  |          |                                         | 02 NONE          | 0 TURN-L        | _   |            |      |                 |         |            |       |
|                                                                                                            |                                                                                 |                            |                                         |                  |          |                                         | PRVTE            | W N             |     |            |      |                 |         | 000        | 00    |
|                                                                                                            |                                                                                 |                            |                                         |                  |          |                                         | PSNGR C          | AR              | 01  | DRVR INJC  | 83 I | F OR-Y<br>OR<25 | 028,004 | 000        | 02    |
| 02934 N N N N N 08/04/2015 MARION                                                                          | 1 14                                                                            | INTER                      | CROSS                                   | N                | N CL     | R O-1 L-TURI                            | J 01 NONE        | 0 STRGHT        |     |            |      |                 |         |            | 02    |
| CITY Tue 11P WOODBURN                                                                                      | MN 0 EVERGREEN RD                                                               | CN                         |                                         | TRF SIGN         | AL N DR  | 7 TURN                                  | PRVTE            | E W             |     |            |      |                 |         | 000        | 00    |
| WOODBURN UA<br>No 45 9 3.52 -122 52 32.54                                                                  | 37.02 HILLSBORO-SILV HY 014000100S00 1                                          | 02                         | 0                                       |                  | N DL     | IT INJ                                  | PSNGR C          | AR              | 01  | DRVR INJC  | 60 I | F OR-Y<br>OR<25 | 000     | 000        | 00    |
|                                                                                                            |                                                                                 |                            |                                         |                  |          |                                         | 02 NONE          | 0 TURN-L        | _   |            |      |                 |         |            |       |
|                                                                                                            |                                                                                 |                            |                                         |                  |          |                                         | PRVTE            | W N             |     |            |      |                 |         | 000        | 00    |
|                                                                                                            |                                                                                 |                            |                                         |                  |          |                                         | PSNGR C          | AR              | 01  | DRVR INJC  | 30 N | OR-Y<br>OR<25   | 028,004 | 000        | 02    |
| 03313 N N N N N 09/01/2015 MARION                                                                          | 1 14                                                                            | INTER                      | CROSS                                   | N                | N CT.    | R O-1 L-TURI                            | J 01 NONE        | 0 STRGHT        | 7   |            |      |                 |         | 087        | 02    |
| CITY Tue 4P WOODBURN                                                                                       | MN 0 EVERGREEN RD                                                               | CN                         |                                         | TRF SIGN         |          |                                         |                  | E W             | -   |            |      |                 |         | 000 087    | 00    |
| WOODBURN UA                                                                                                | 37.02 HILLSBORO-SILV HY                                                         | 02                         | 0                                       |                  | N DA     | Z INJ                                   | PSNGR C          | AR              | 01  | DRVR NONE  | 51 N | M OR-Y          | 000     | 000        | 00    |
| No 45 9 3.52 -122 52 32.54                                                                                 | 014000100S00 1                                                                  |                            |                                         |                  |          |                                         |                  |                 |     |            |      | OR<25           |         |            |       |
|                                                                                                            |                                                                                 |                            |                                         |                  |          |                                         | 02 NONE          |                 |     |            |      |                 |         |            |       |
|                                                                                                            |                                                                                 |                            |                                         |                  |          |                                         | PRVTE            | W N             |     |            |      |                 |         | 000 087    | 00    |
|                                                                                                            |                                                                                 |                            |                                         |                  |          |                                         | PSNGR C          | AR              | 01  | DRVR INJB  | 84 I | F OR-Y<br>OR<25 | 028,004 | 000        | 02    |
| 04302 N N N Y 11/04/2015 MARION                                                                            | 1 14                                                                            | INTER                      | CROSS                                   | N                | N CL     | R O-1 L-TURI                            | 01 NONE          | 0 U-TURN        | J   |            |      |                 |         |            | 02    |
| CITY Wed 3P WOODBURN                                                                                       | MN 0 EVERGREEN RD                                                               | CN                         |                                         | TRF SIGN         |          |                                         | PRVTE            | W W             |     |            |      |                 |         | 000        | 00    |
| WOODBURN UA                                                                                                | 37.02 HILLSBORO-SILV HY                                                         | 02                         | 0                                       |                  | N DA     | Z PDO                                   | PSNGR C          | AR              | 01  | DRVR NONE  | 20 N |                 | 028     | 000        | 02    |
| No 45 9 3.52 -122 52 32.54                                                                                 | 014000100800 1                                                                  |                            |                                         |                  |          |                                         |                  |                 |     |            |      | OR>25           |         |            |       |

## OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CONTINUOUS SYSTEM CRASH LISTING

140 HILLSBORO-SILVERTON

| S D P R S W SER# E A U C O DATE COUNTY INVEST E L G H R DAY/TIME CITY UNLOC? D C S L K LAT/LONG URBAN AREA | RD# FC CONN # CMPT/MLG FIRST STREET MILEPNT SECOND STREET LRS INTERSECTION SEQ# | RD CHAR (1<br>DIRECT |       | TRAF-          |                  | R CRASH TYE<br>F COLL TYP<br>HT SVRTY | SPCL USE TRLR QTY MOTO OWNER FRO V# VEH TYPE TO | ROM | PRTC INJ<br>P# TYPE SVRTY    | A S<br>G E LICNS<br>E X RES |         | ACTN EVENT | CAUSE                |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------|-------|----------------|------------------|---------------------------------------|-------------------------------------------------|-----|------------------------------|-----------------------------|---------|------------|----------------------|
|                                                                                                            |                                                                                 |                      |       |                |                  |                                       | 02 NONE 0 STF<br>PRVTE E<br>PSNGR CAR           | W   | 01 DRVR NONE                 | 74 M OR-Y<br>OR<25          | 000     | 000<br>000 | 00<br>00             |
| 00448 N N N 02/12/2011 MARION  NO RPT Sat 8P WOODBURN  WOODBURN UA  No 45 9 3.52 -122 52 32.54             | 1 14<br>MN 0 EVERGREEN RD<br>37.02 HILLSBORO-SILV HY<br>014000100S00 1          | INTER<br>CN<br>03    |       | N<br>TRF SIGNA | L N DRY          |                                       | 01 NONE 1 TUF<br>PRVTE W<br>SEMI TOW            | S   | 01 DRVR NONE                 | 24 M OTH-Y<br>N-RES         | 006     | 000        | 08<br>00<br>08       |
|                                                                                                            |                                                                                 |                      |       |                |                  |                                       | 02 NONE 0 STF<br>PRVTE W<br>PSNGR CAR           | E   | 01 DRVR INJB                 | 24 M OR-Y<br>OR<25          | 000     | 000<br>000 | 00                   |
| 00748 N N N N N 03/08/2011 MARION CITY Tue 6P WOODBURN WOODBURN UA No 45 9 3.52 -122 52 32.54              | 1 14<br>MN 0 EVERGREEN RD<br>37.02 HILLSBORO-SILV HY<br>014000100S00 1          | INTER<br>CN<br>03    |       | N<br>TRF SIGNA |                  | TURN                                  | 01 NONE 1 TUF<br>PRVTE W<br>SEMI TOW            | S   | 01 DRVR NONE                 | 57 M OTH-Y N-RES            | 000     | 000<br>000 | 27,06<br>00<br>00    |
|                                                                                                            |                                                                                 |                      |       |                |                  |                                       | 02 NONE 0 STF<br>PRVTE W<br>PSNGR CAR           | E   | 01 DRVR NONE                 | 24 F OR-Y OR<25             | 016,031 | 031<br>000 | 00<br>27 <b>,</b> 06 |
| 02649 N N N 08/15/2011 MARION                                                                              | 1 14                                                                            | INTER                | 3-LEG | N              | N CLR            | O-1 L-TURN                            | 01 NONE 0 STF                                   | 1   | 02 PSNG NO<5<br>03 PSNG NO<5 |                             | 000     | 000        | 0 0<br>0 0<br>0 4    |
| CITY Mon 7P WOODBURN  WOODBURN UA  No 45 9 3.52 -122 52 32.54                                              | MN 0 EVERGREEN RD<br>37.02 HILLSBORO-SILV HY<br>014000100S00 1                  | CN<br>03             | 0     | TRF SIGNA      | L N DRY<br>N DAY |                                       | PRVTE W<br>PSNGR CAR                            |     | 01 DRVR NONE                 | 29 M OR-Y<br>OR>25          | 000     | 000        | 00                   |
|                                                                                                            |                                                                                 |                      |       |                |                  |                                       | 02 NONE 0 TUR<br>PRVTE E<br>PSNGR CAR           | S   | 01 DRVR NONE                 | 94 M OR-Y<br>OR<25          | 004,020 | 000        | 0 0<br>0 4           |
| 00633 N N N N N 02/28/2013 MARION CITY Thu 8P WOODBURN WOODBURN UA No 45 9 3.52 -122 52 32.53              | 1 14<br>MN 0 EVERGREEN RD<br>37.02 HILLSBORO-SILV HY<br>014000100S00 1          | INTER<br>CN<br>03    |       | N<br>TRF SIGNA |                  | TURN                                  | 01 NONE 0 STF<br>PRVTE W<br>PSNGR CAR           | E   | 01 DRVR INJC                 | 41 F OR-Y<br>OR<25          | 000     | 000<br>000 | 02<br>00<br>00       |
|                                                                                                            |                                                                                 |                      |       |                |                  |                                       | 02 NONE 0 TUF<br>PRVTE E<br>PSNGR CAR           | S   | 01 DRVR INJC                 | 62 M OTH-Y<br>N-RES         | 004,028 | 000<br>000 | 00<br>02             |
| CITY Thu 6P WOODBURN                                                                                       | 1 14 MN 0 EVERGREEN RD 37.02 HILLSBORO-SILV HY                                  | CN                   |       | N<br>L-GRN-SIG | N WET            | TURN                                  | 01 NONE 0 STF<br>PRVTE W<br>PSNGR CAR           | E   | 01 DRVR NONE                 |                             | 000     | 000        | 04<br>00<br>00       |
| No 45 9 3.52 -122 52 32.54                                                                                 | 014000100800 1                                                                  |                      | ŭ     |                | 221              |                                       |                                                 |     | 02 PSNG INJC                 | OR<25                       | 000     | 000        | 00                   |

#### OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CONTINUOUS SYSTEM CRASH LISTING

140 HILLSBORO-SILVERTON Evergreen Rd & OR 214 Hillsboro-Silverton Hwy (140)

January 1, 2011 through December 31, 2015

| S D P R S W SER# E A U C O DATE COUNTY INVEST E L G H R DAY/TIME CITY UNLOC? D C S L K LAT/LONG URBAN AREA | RD# FC CONN # CMPT/MLG FIRST STREET MILEPNT SECOND STREET LRS INTERSECTION SEQ# | RD CHAR (ME<br>DIRECT |         | RAF- RNI |        | CRASH TYP<br>COLL TYP<br>T SVRTY | SPCL USE<br>TRLR QTY<br>OWNER<br>V# VEH TYPE | MOVE<br>FROM | PRTC INJ                     | A S<br>G E LICNS PE<br>E X RES LO |         | ACTN EVENT | CAUSE |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------|---------|----------|--------|----------------------------------|----------------------------------------------|--------------|------------------------------|-----------------------------------|---------|------------|-------|
|                                                                                                            |                                                                                 |                       |         |          |        |                                  | 02 NONE C                                    | TIIRNI-T.    |                              |                                   |         |            |       |
|                                                                                                            |                                                                                 |                       |         |          |        |                                  | PRVTE                                        |              |                              |                                   |         | 000        | 00    |
|                                                                                                            |                                                                                 |                       |         |          |        |                                  | PSNGR CAR                                    |              | 01 DRVR INJC                 | 33 M OR-Y<br>OR<25                | 020     | 000        | 04    |
|                                                                                                            |                                                                                 |                       |         |          |        |                                  |                                              |              | 02 PSNG NO<5                 | 04 F                              | 000     | 000        | 00    |
|                                                                                                            |                                                                                 |                       |         |          |        |                                  |                                              |              | 03 PSNG NO<5                 | 01 M                              | 000     | 000        | 00    |
| 03889 N N N Y 11/01/2014 MARION                                                                            | 1 14                                                                            | INTER                 | 3-LEG N |          | N CLD  | S-STRGHT                         | 01 NONE C                                    | STRGHT       |                              |                                   |         |            | 07    |
| CITY Sat 3P WOODBURN                                                                                       | MN 0 EVERGREEN RD                                                               | CN                    | TR      | F SIGNAL | N DRY  | REAR                             | PRVTE                                        | W E          |                              |                                   |         | 000        | 00    |
| WOODBURN UA<br>No 45 9 3.52 -122 52 32.54                                                                  | 37.02 HILLSBORO-SILV HY 014000100S00 1                                          | 03                    | 0       |          | N DAY  | PDO                              | PSNGR CAR                                    |              | 01 DRVR NONE                 | 19 M OR-Y<br>OR<25                | 042     | 000        | 07    |
|                                                                                                            |                                                                                 |                       |         |          |        |                                  | 02 NONE C                                    | STRGHT       |                              |                                   |         |            |       |
|                                                                                                            |                                                                                 |                       |         |          |        |                                  | PRVTE                                        |              |                              |                                   |         | 000        | 00    |
|                                                                                                            |                                                                                 |                       |         |          |        |                                  | PSNGR CAR                                    |              | 01 DRVR NONE                 | 65 F OR-Y<br>OR<25                | 000     | 000        | 00    |
| 02576 N N N N N 07/08/2015 MARION                                                                          | 1 14                                                                            | INTER                 | CROSS N |          | N CLR  | O-1 L-TURN                       | 01 NONE 0                                    | STRGHT       |                              |                                   |         |            | 02    |
| CITY Wed 11A WOODBURN                                                                                      | MN 0 EVERGREEN RD                                                               | CN                    |         | F SIGNAL |        |                                  |                                              | W E          |                              |                                   |         | 000        | 00    |
| WOODBURN UA                                                                                                | 37.02 HILLSBORO-SILV HY                                                         | 03                    | 0       |          | N DAY  | INJ                              | PSNGR CAR                                    |              | 01 DRVR NONE                 | 24 F OR-Y                         | 000     | 000        | 00    |
| No 45 9 3.52 -122 52 32.54                                                                                 | 014000100S00 1                                                                  |                       |         |          |        |                                  |                                              |              |                              | OR<25                             |         |            |       |
|                                                                                                            |                                                                                 |                       |         |          |        |                                  | 02 NONE C                                    |              |                              |                                   |         |            |       |
|                                                                                                            |                                                                                 |                       |         |          |        |                                  | PRVTE                                        |              |                              |                                   |         | 000        | 00    |
|                                                                                                            |                                                                                 |                       |         |          |        |                                  | PSNGR CAR                                    |              | 01 DRVR INJB                 | 41 F OR-Y<br>OR<25                | 028,004 | 000        | 02    |
| 03023 N N N 08/09/2015 MARION                                                                              | 1 14                                                                            | INTER                 | CROSS N |          | N CLR  | O-1 L-TURN                       | 01 NONE C                                    | STRGHT       |                              |                                   |         |            | 02    |
| CITY Sun 11P WOODBURN                                                                                      | MN 0 EVERGREEN RD                                                               | CN                    | TR      | F SIGNAL | N DRY  | TURN                             | PRVTE                                        | W E          |                              |                                   |         | 000        | 00    |
| WOODBURN UA<br>No 45 9 3.52 -122 52 32.54                                                                  | 37.02 HILLSBORO-SILV HY 014000100S00 1                                          | 03                    | 0       |          | N DLIT | PDO                              | PSNGR CAR                                    |              | 01 DRVR NONE                 | 58 M OR-Y<br>OR<25                | 000     | 000        | 00    |
|                                                                                                            |                                                                                 |                       |         |          |        |                                  | 02 NONE C                                    | TURN-I       |                              |                                   |         |            |       |
|                                                                                                            |                                                                                 |                       |         |          |        |                                  |                                              | E S          |                              |                                   |         | 000        | 00    |
|                                                                                                            |                                                                                 |                       |         |          |        |                                  | PSNGR CAR                                    |              | 01 DRVR NONE                 | 32 F OR-Y<br>OR<25                | 028,004 | 000        | 02    |
| 03582 N N N Y 09/19/2015 MARION                                                                            | 1 14                                                                            | INTER                 | CROSS N |          | N CLR  | NON-COLL                         | 01 NONE 0                                    | STRGHT       |                              |                                   |         | 092,001    | 26    |
| CITY Sat 11A WOODBURN                                                                                      | MN 0 EVERGREEN RD                                                               | CN                    |         | F SIGNAL |        |                                  |                                              | W E          |                              |                                   |         | 007 092    | 26    |
| WOODBURN UA                                                                                                | 37.02 HILLSBORO-SILV HY                                                         | 03                    | 0       |          | N DAY  | INJ                              | MTRCYCLE                                     |              | 01 DRVR INJB                 | 58 M OR-Y                         | 000     | 000        | 26    |
| No 45 9 3.52 -122 52 32.54                                                                                 | 014000100S00 1                                                                  |                       |         |          |        |                                  |                                              |              |                              | OR<25                             |         |            |       |
| 03695 N N N Y 09/26/2015 MARION                                                                            | 1 14                                                                            | INTER                 | CROSS N |          | N CLR  | O-1 L-TURN                       | 01 NONE C                                    | STRGHT       |                              |                                   |         |            | 02    |
| CITY Sat 6P WOODBURN                                                                                       | MN 0 EVERGREEN RD                                                               | CN                    |         | F SIGNAL |        |                                  | PRVTE                                        |              |                              |                                   |         | 000        | 00    |
| WOODBURN UA<br>No 45 9 3.52 -122 52 32.54                                                                  | 37.02 HILLSBORO-SILV HY<br>014000100S00 1                                       | 03                    | 0       |          | N DAY  | INJ                              | PSNGR CAR                                    |              | 01 DRVR INJB                 | OR<25                             | 000     | 000        | 00    |
|                                                                                                            |                                                                                 |                       |         |          |        |                                  |                                              |              | 02 PSNG INJB                 |                                   | 000     | 000        | 00    |
|                                                                                                            |                                                                                 |                       |         |          |        |                                  |                                              |              | 03 PSNG INJB<br>04 PSNG INJB |                                   | 000     | 000        | 00    |
|                                                                                                            |                                                                                 |                       |         |          |        |                                  |                                              |              | 05 PSNG NO<5                 |                                   | 000     | 000        | 00    |
|                                                                                                            |                                                                                 |                       |         |          |        |                                  |                                              |              |                              |                                   |         |            |       |

#### PAGE: 8 OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

CONTINUOUS SYSTEM CRASH LISTING

| S D P R S W SER# E A U C O DATE COUNTY INVEST E L G H R DAY/TIME CITY UNLOC? D C S L K LAT/LONG URBAN AREA | RD# FC CONN # CMPT/MLG FIRST STREET MILEPNT SECOND STREET LRS INTERSECTION SEQ# | RD CHAR<br>DIRECT<br>LOCTN | INT-TYP<br>(MEDIAN)<br>LEGS<br>(#LANES) | INT-REL<br>TRAF- | RNDBT SUF          | R CRASH T<br>F COLL TY | SPCL USE YP TRLR QTY MO' P OWNER FR: V# VEH TYPE TO | ROM  | PRTC INJ       |                    |         | ACTN EVENT | CAUSE    |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------|-----------------------------------------|------------------|--------------------|------------------------|-----------------------------------------------------|------|----------------|--------------------|---------|------------|----------|
|                                                                                                            |                                                                                 |                            |                                         |                  |                    |                        | 02 NONE 0 TUF                                       | RN-L |                |                    |         |            |          |
|                                                                                                            |                                                                                 |                            |                                         |                  |                    |                        | PRVTE E                                             | S    |                |                    |         | 000        | 00       |
|                                                                                                            |                                                                                 |                            |                                         |                  |                    |                        | PSNGR CAR                                           | (    | 01 DRVR INJC   | 58 M OR-Y<br>OR<25 | 000     | 000        | 00       |
|                                                                                                            |                                                                                 |                            |                                         |                  |                    |                        |                                                     | (    | 02 PSNG INJB   |                    |         | 000        | 02       |
| 04378 N N N 11/07/2015 MARION                                                                              | 1 14                                                                            | INTER                      | CROSS                                   | N                |                    |                        | RN 01 NONE 0 ST                                     |      |                |                    |         |            | 02       |
| CITY Sat 6P WOODBURN                                                                                       | MN 0 EVERGREEN RD                                                               | CN                         |                                         | TRF SIGN         | NAL N WET          |                        | PRVTE W                                             |      |                |                    |         | 000        | 00       |
| WOODBURN UA<br>No 45 9 3.52 -122 52 32.54                                                                  | 37.02 HILLSBORO-SILV HY 014000100S00 1                                          | 03                         | 0                                       |                  | N DLI              | T INJ                  | PSNGR CAR                                           | (    | 01 DRVR NONE   | 34 M OR-Y<br>OR<25 | 000     | 000        | 00       |
|                                                                                                            |                                                                                 |                            |                                         |                  |                    |                        |                                                     | (    | 02 PSNG INJC   | 26 M               | 000     | 000        | 00       |
|                                                                                                            |                                                                                 |                            |                                         |                  |                    |                        |                                                     | (    | 03 PSNG INJC   | 16 M               | 000     | 000        | 00       |
|                                                                                                            |                                                                                 |                            |                                         |                  |                    |                        | 02 NONE 0 TUE                                       |      |                |                    |         | 000        | 00       |
|                                                                                                            |                                                                                 |                            |                                         |                  |                    |                        | PRVTE E                                             |      | 21 DDIID TILTO | 00 = 00 ::         | 000 004 |            |          |
|                                                                                                            |                                                                                 |                            |                                         |                  |                    |                        | PSNGR CAR                                           |      | 01 DRVR INJC   | OR<25              |         | 000        | 02       |
|                                                                                                            |                                                                                 |                            |                                         |                  |                    |                        |                                                     | (    | 02 PSNG INJC   | 05 M               | 000     | 000        | 00       |
| 04387 N N N 11/07/2015 MARION                                                                              | 1 14                                                                            | INTER                      | CROSS                                   | N                | N RAI              | N O-1 L-TU             | RN 01 NONE 0 STE                                    | RGHT |                |                    |         |            | 02       |
| CITY Sat 3P WOODBURN                                                                                       | MN 0 EVERGREEN RD                                                               | CN                         |                                         | TRF SIGN         | NAL N WET          | TURN                   | PRVTE W                                             | E    |                |                    |         | 000        | 00       |
| WOODBURN UA<br>No 45 9 3.52 -122 52 32.54                                                                  | 37.02 HILLSBORO-SILV HY 014000100S00 1                                          | 03                         | 0                                       |                  | N DAY              | PDO                    | PSNGR CAR                                           | (    | 01 DRVR NONE   | 62 F OR-Y<br>OR<25 | 000     | 000        | 00       |
|                                                                                                            |                                                                                 |                            |                                         |                  |                    |                        | 02 NONE 0 TUE                                       | RN-I |                |                    |         |            |          |
|                                                                                                            |                                                                                 |                            |                                         |                  |                    |                        | PRVTE E                                             |      |                |                    |         | 000        | 00       |
|                                                                                                            |                                                                                 |                            |                                         |                  |                    |                        | PSNGR CAR                                           | (    | 01 DRVR NONE   | 20 F OR-Y<br>OR<25 | •       | 000        | 02       |
|                                                                                                            |                                                                                 |                            |                                         |                  |                    |                        |                                                     |      |                |                    |         |            |          |
| 04534 N N N 11/17/2015 MARION CITY Tue 11A WOODBURN                                                        | 1 14<br>MN 0 EVERGREEN RD                                                       | INTER<br>CN                |                                         |                  | N RAI<br>NAL N WET |                        | RN 01 NONE 0 STF<br>PRVTE W                         |      |                |                    |         | 000        | 02<br>00 |
| WOODBURN UA                                                                                                | 37.02 HILLSBORO-SILV HY                                                         | 03                         | 0                                       |                  | N DAY              |                        | PSNGR CAR                                           |      | 01 DRVR INJC   | 45 M OD-V          | 000     | 000        | 00       |
| No 45 9 3.52 -122 52 32.54                                                                                 | 014000100S00 1                                                                  | 03                         | O                                       |                  | N DAI              | INO                    | FSNGR CAR                                           | (    | JI DAVA INUC   | OR<25              |         | 000        | 00       |
|                                                                                                            |                                                                                 |                            |                                         |                  |                    |                        | 02 NONE 0 TUE                                       | RN-L |                |                    |         |            |          |
|                                                                                                            |                                                                                 |                            |                                         |                  |                    |                        | PRVTE E                                             | S    |                |                    |         | 000        | 00       |
|                                                                                                            |                                                                                 |                            |                                         |                  |                    |                        | PSNGR CAR                                           | (    | 01 DRVR NONE   | 60 F OR-Y<br>OR<25 | 004,028 | 000        | 02       |
| 05001 N N N 12/13/2015 MARION                                                                              | 1 14                                                                            | INTER                      | CROSS                                   | N                | דוכת זון           | м ∩=1 т_птт            | RN 01 NONE 0 TUE                                    | DN_T |                |                    |         |            | 02       |
| CITY Sun 4P WOODBURN                                                                                       | MN 0 EVERGREEN RD                                                               | CN                         |                                         |                  | NAL N WET          |                        | RN UI NONE U TUF<br>PRVTE E                         |      |                |                    |         | 000        | 00       |
| WOODBURN UA                                                                                                | 37.02 HILLSBORO-SILV HY                                                         | 03                         | 0                                       | 1111 0101        | N DAY              |                        | PSNGR CAR                                           |      | 01 DRVR INJA   | 59 F OR-Y          | 028,004 | 000        | 02       |
| No 45 9 3.52 -122 52 32.54                                                                                 | 014000100800 1                                                                  | 00                         | Ŭ                                       |                  | I DAI              | 1110                   | I SNOTC CITE                                        |      | JI DIWIT INON  | OR<25              | •       |            | 02       |
|                                                                                                            |                                                                                 |                            |                                         |                  |                    |                        | 02 NONE 0 STE                                       | RGHT |                |                    |         |            |          |
|                                                                                                            |                                                                                 |                            |                                         |                  |                    |                        | PRVTE W                                             | E    |                |                    |         | 000        | 00       |
|                                                                                                            |                                                                                 |                            |                                         |                  |                    |                        | PSNGR CAR                                           | (    | 01 DRVR INJC   | 27 M NONE          | 000     | 000        | 00       |
|                                                                                                            |                                                                                 |                            |                                         |                  |                    |                        |                                                     |      |                | OR<25              |         |            |          |

140 HILLSBORO-SILVERTON

9/6/2017

CDS380

## OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

CONTINUOUS SYSTEM CRASH LISTING

| S D P R S W  SER# E A U C O DATE COUNTY INVEST E L G H R DAY/TIME CITY UNLOC? D C S L K LAT/LONG URBAN AREA | RD# FC CONN # CMPT/MLG FIRST STREET MILEPNT SECOND STREET LRS INTERSECTION SEQ# | RD CHAR<br>DIRECT<br>LOCTN | LEGS TRAF-  | OFFRD WTHR CRASH TY<br>RNDBT SURF COLL TYP<br>DRVWY LIGHT SVRTY |                             | A S PRTC INJ G E LICNS P# TYPE SVRTY E X RES |     | ACTN EVENT | CAUSE      |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------|-------------|-----------------------------------------------------------------|-----------------------------|----------------------------------------------|-----|------------|------------|
| 01124 N N N N N 04/10/2011 MARION                                                                           | 1 14                                                                            | INTER                      | 3-LEG N     | N CLD ANGL-OTH                                                  | 01 NONE 0 STRGHT            | •                                            |     | 000        | 04         |
| CITY Sun 7A WOODBURN  WOODBURN UA                                                                           | MN 0 EVERGREEN RD  37.02 HILLSBORO-SILV HY                                      | CN<br>04                   | 0 TRF SIGNA | AL N WET TURN<br>N DAY PDO                                      | PRVTE W E<br>PSNGR CAR      | 01 DRVR NONE 53 F OR-Y                       | 020 | 000        | 0 0<br>0 4 |
| No 45 9 3.52 -122 52 32.54                                                                                  | 014000100800 1                                                                  |                            |             |                                                                 |                             | OR<25                                        |     |            |            |
|                                                                                                             |                                                                                 |                            |             |                                                                 | 02 NONE 0 TURN-I            | 1                                            |     |            |            |
|                                                                                                             |                                                                                 |                            |             |                                                                 | PRVTE S W<br>PSNGR CAR      | 01 DDVD NONE 61 M OD V                       | 000 | 000        | 00         |
|                                                                                                             |                                                                                 |                            |             |                                                                 | PSNGR CAR                   | 01 DRVR NONE 61 M OR-Y<br>OR<25              |     | 000        | 00         |
| 04063 N N N N N 11/30/2012 MARION                                                                           | 1 14                                                                            | INTER                      |             | N RAIN ANGL-OTH                                                 |                             |                                              |     |            | 04         |
| CITY Fri 9P WOODBURN                                                                                        | MN 0 EVERGREEN RD                                                               | CN                         |             | AL N WET ANGL                                                   | PRVTE S W                   |                                              |     | 000        | 00         |
| WOODBURN UA<br>No 45 9 3.52 -122 52 32.54                                                                   | 37.02 HILLSBORO-SILV HY<br>014000100S00 1                                       | 04                         | 0           | N DLIT PDO                                                      | PSNGR CAR                   | 01 DRVR NONE 28 F OR-Y<br>OR>25              | 000 | 000        | 00         |
|                                                                                                             |                                                                                 |                            |             |                                                                 | 02 NONE 0 STRGHT            | 1                                            |     |            |            |
|                                                                                                             |                                                                                 |                            |             |                                                                 | PRVTE W E                   |                                              |     | 000        | 00         |
|                                                                                                             |                                                                                 |                            |             |                                                                 | PSNGR CAR                   | 01 DRVR NONE 21 F OR-Y<br>OR>25              | 020 | 000        | 04         |
| 00105 N N N 01/05/2013 MARION                                                                               | 1 14                                                                            | INTER                      | 3-LEG N     | N CLR S-1STOP                                                   | 01 NONE 0 TURN-I            | 1                                            |     | 004        | 07         |
| NONE Sat 7P WOODBURN                                                                                        | MN 0 EVERGREEN RD                                                               | CN                         | TRF SIGNA   | AL N DRY REAR                                                   | PRVTE S W                   |                                              |     | 000        | 00         |
| WOODBURN UA<br>No 45 9 3.52 -122 52 32.53                                                                   | 37.02 HILLSBORO-SILV HY<br>014000100S00 1                                       | 04                         | 0           | N DLIT PDO                                                      | PSNGR CAR                   | 01 DRVR NONE 00 U UNK<br>UNK                 | 026 | 000        | 07         |
|                                                                                                             |                                                                                 |                            |             |                                                                 | 02 NONE 0 STOP<br>PRVTE S W |                                              |     | 013 004    | 00         |
|                                                                                                             |                                                                                 |                            |             |                                                                 | PSNGR CAR                   | 01 DRVR NONE 25 M OR-Y<br>OR<25              | 000 | 000        | 00         |
| 02511 N N N 07/28/2014 MARION                                                                               | 1 14                                                                            | INTER                      | CROSS N     | N CLR ANGL-OTH                                                  | 01 NONE 0 TURN-F            | 8                                            |     |            | 02         |
| CITY Mon 11A WOODBURN                                                                                       | MN 0 EVERGREEN RD                                                               | CN                         | TRF SIGNA   | AL N DRY TURN                                                   | PRVTE S E                   |                                              |     | 000        | 00         |
| WOODBURN UA<br>No 45 9 3.52 -122 52 32.54                                                                   | 37.02 HILLSBORO-SILV HY 014000100S00 1                                          | 04                         | 0           | N DAY PDO                                                       | PSNGR CAR                   | 01 DRVR NONE 75 F OR-Y OR<25                 | 028 | 000        | 02         |
|                                                                                                             |                                                                                 |                            |             |                                                                 | 02 NONE 0 STRGHT            |                                              |     |            |            |
|                                                                                                             |                                                                                 |                            |             |                                                                 | PRVTE W E                   |                                              |     | 000        | 00         |
|                                                                                                             |                                                                                 |                            |             |                                                                 | PSNGR CAR                   | 01 DRVR NONE 52 M OR-Y                       | 000 | 000        | 00         |
|                                                                                                             |                                                                                 |                            |             |                                                                 |                             | OR<25                                        |     |            |            |

# OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CRASH SUMMARIES BY YEAR BY COLLISION TYPE

## Garfield St / Young St & Front St January 1, 2011 through December 31, 2015

| COLLISION TYPE    | FATAL<br>CRASHES | NON-<br>FATAL<br>CRASHES | PROPERTY<br>DAMAGE<br>ONLY | TOTAL<br>CRASHES | PEOPLE<br>KILLED | PEOPLE<br>INJURED | TRUCKS   | DRY<br>SURF | WET<br>SURF | DAY   | DARK       | INTER-<br>SECTION | INTER-<br>SECTION<br>RELATED |   |
|-------------------|------------------|--------------------------|----------------------------|------------------|------------------|-------------------|----------|-------------|-------------|-------|------------|-------------------|------------------------------|---|
| YEAR: 2015        | 010101120        | 000                      | 0.12.                      | 014/01/120       | TULLED           | HOORED            | 11100110 | 00111       | 00111       | D/ (1 | D) ii ii i | CLOTION           |                              |   |
| ANGLE             | 0                | 1                        | 0                          | 1                | 0                | 1                 | 0        | 1           | 0           | 1     | 0          | 1                 | 0                            | 0 |
| TURNING MOVEMENTS | 0                | 0                        | 1                          | 1                | 0                | 0                 | 0        | 1           | Ö           | 1     | 0          | 1                 | 0                            | 0 |
| 2015 TOTAL        | Ö                | 1                        | 1                          | 2                | 0                | 1                 | Ö        | 2           | Ö           | 2     | Ö          | 2                 | Ö                            | Ö |
| V545 0044         |                  |                          |                            |                  |                  |                   |          |             |             |       |            |                   |                              |   |
| YEAR: 2014        | •                |                          | •                          |                  | •                |                   | •        |             | •           |       |            |                   | •                            |   |
| ANGLE             | 0                | 1                        | 0                          | 1                | 0                | 1                 | 0        | 1           | 0           | 1     | 0          | 1                 | 0                            | 0 |
| 2014 TOTAL        | 0                | 1                        | 0                          | 1                | 0                | 1                 | 0        | 1           | 0           | 1     | 0          | 1                 | 0                            | 0 |
| YEAR: 2013        |                  |                          |                            |                  |                  |                   |          |             |             |       |            |                   |                              |   |
| TURNING MOVEMENTS | 0                | 1                        | 0                          | 1                | 0                | 1                 | 0        | 1           | 0           | 1     | 0          | 1                 | 0                            | 0 |
| 2013 TOTAL        | 0                | 1                        | 0<br>0                     | 1                | 0                | 1                 | 0<br>0   | 1           | 0<br>0      | 1     | 0          | 1                 | Ö                            | Ö |
|                   |                  |                          |                            |                  |                  |                   |          |             |             |       |            |                   |                              |   |
| YEAR: 2012        |                  |                          |                            |                  |                  |                   |          |             |             |       |            |                   |                              |   |
| TURNING MOVEMENTS | 0                | 0                        | 2<br>2                     | 2                | 0                | 0                 | 0        | 1           | 1           | 1     | 1          | 2                 | 0                            | 0 |
| 2012 TOTAL        | 0                | 0                        | 2                          | 2                | 0                | 0                 | 0        | 1           | 1           | 1     | 1          | 2                 | 0                            | 0 |
| YEAR: 2011        |                  |                          |                            |                  |                  |                   |          |             |             |       |            |                   |                              |   |
| ANGLE             | 0                | 0                        | 1                          | 1                | 0                | 0                 | 0        | 1           | 0           | 1     | 0          | 1                 | 0                            | 0 |
| 2011 TOTAL        | 0                | 0                        | 1                          | 1                | 0                | 0                 | 0        | 1           | 0           | 1     | 0          | 1                 | 0                            | 0 |
|                   |                  |                          |                            |                  |                  |                   |          |             |             |       |            |                   |                              |   |
| FINAL TOTAL       | 0                | 3                        | 4                          | 7                | 0                | 3                 | 0        | 6           | 1           | 6     | 1          | 7                 | 0                            | 0 |

CITY OF WOODBURN, MARION COUNTY

#### PAGE: 1

## OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

OR<25

URBAN NON-SYSTEM CRASH LISTING

### Garfield St / Young St & Front St January 1, 2011 through December 31, 2015

S D P RSW CITY STREET INT-TYP SPCL USE FIRST STREET RD CHAR TRLR OTY MOVE A S E A U C O DATE (MEDIAN) INT-REL OFF-RD WTHR CRASH TYP INVEST E L G H R DAY/TIME FC SECOND STREET DIRECT LEGS TRAF-RNDBT SURF COLL TYP OWNER FROM PRTC INJ G E LICNS PED DISTNC INTERSECTION SEQ # LOCTN (#LANES) CONTL DRVWY LIGHT SVRTY V# VEH TYPE TO P# TYPE SVRTY E X RES LOC ERROR CAUSE UNLOC? D C S L K LAT/LONG ACTN EVENT 03912 N N N 11/18/2012 16 FRONT ST INTER 3-LEG N N CLD ANGL-OTH 01 NONE 0 TURN-L 08 NO RPT Sun 7P 0 GARFIELD ST SE STOP SIGN N WET TURN PRVTE NE SE 000 00 45 8 32.17 -122 51 24.33 1 06 0 N DLIT PDO PSNGR CAR 01 DRVR NONE 33 M OTH-Y 002,007 000 08 02 NONE 0 STOP 011 PRVTE SE NW 00 000 000 00 PSNGR CAR 01 DRVR NONE 00 U UNK 02533 N N N 07/28/2013 16 FRONT ST INTER CROSS N N CLR O-OTHER 01 NONE 0 TURN-L 03 NO RPT 5P 0 GARFIELD ST CN STOP SIGN N DRY TURN PRVTE NW NE 000 00 Sun 45 8 32.17 -122 51 24.33 1 02 0 N DAY INJ PSNGR CAR 01 DRVR NONE 38 M NONE 021 000 03 02 NONE 0 TURN-R PRVTE SE NE 000 00 000 PSNGR CAR 01 DRVR INJB 71 F OR-Y 000 00 OR<2.5 07/20/2011 16 02324 N N N FRONT ST INTER CROSS N N CLR ANGL-OTH 01 NONE 0 STRGHT 02 NO RPT GARFIELD ST CN STOP SIGN N DRY ANGL PRVTE NE SW 015 00 45 8 32.21 -122 51 24.29 03 0 N DAY PDO PSNGR CAR 01 DRVR NONE 50 M OR-Y 028 000 02 OR<25 02 NONE 0 STRGHT PRVTE SE NW 000 00 PSNGR CAR 000 00 01 DRVR NONE 26 M OR-Y 000 OR<25 N N N N N 08/01/2015 16 TMTFR CROSS N N CLR 01 NONE 0 STRGHT 091 02 FRONT ST ANGL-OTH CITY Sat 4P 0 GARFIELD ST CN STOP SIGN N DRY ANGL PRVTE NW SE 000 00 45 8 32.16 -122 51 24.34 03 0 N DAY INJ PSNGR CAR 01 DRVR NONE 92 M OR-Y 000 000 00 OR<25 02 NONE 0 STRGHT PRVTE NE SW 000 091 00 PSNGR CAR 01 DRVR NONE 19 M NONE 000 02 02 PSNG INJA 23 M 000 000 00 INTER CROSS 01 NONE 0 STRGHT 01607 N N N N N 05/15/2014 16 FRONT ST N CLR ANGL-OTH 02 000 Thu 3P YOUNG ST CN STOP SIGN N DRY ANGL PRVTE NE SW 00 45 8 32.16 -122 51 24.34 01 0 N DAY INJ PSNGR CAR 01 DRVR NONE 18 M OR-Y 028 000 02 OR<25 02 NONE 0 STRGHT 000 PRVTE SE NW 00 PSNGR CAR 01 DRVR INJC 46 M OR-Y 000 000 00 01 NONE 0 STRGHT 091 02 N N N N N 09/10/2015 16 FRONT ST INTER CROSS N N CLR ANGL-OTH SW NE 000 0.0 Thu 8A 0 YOUNG ST CN STOP SIGN N DRY TURN PRVTE 45 8 32.16 -122 51 24.34 1 02 0 N DAY PDO PSNGR CAR 01 DRVR NONE 15 F NONE 028 000 02

CDS380 8/31/2017

## OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

PAGE: 2

URBAN NON-SYSTEM CRASH LISTING

CITY OF WOODBURN, MARION COUNTY

Garfield St / Young St & Front St

January 1, 2011 through December 31, 2015

| S D            |              |        |                    |         |          |          |        |       |           |           |         |     |      |         |    |         |     |       |            |       |
|----------------|--------------|--------|--------------------|---------|----------|----------|--------|-------|-----------|-----------|---------|-----|------|---------|----|---------|-----|-------|------------|-------|
| P R S          | W            |        | CITY STREET        |         | INT-TYP  |          |        |       |           | SPCL U    | SE      |     |      |         |    |         |     |       |            |       |
| SER# E A U C   | O DATE       |        | FIRST STREET       | RD CHAR | (MEDIAN) | INT-REL  | OFF-RD | WTHR  | CRASH TYP | TRLR Q    | TY MOVE | E.  |      |         | A  | S       |     |       |            |       |
| INVEST E L G H | R DAY/TIME   | FC     | SECOND STREET      | DIRECT  | LEGS     | TRAF-    | RNDBT  | SURF  | COLL TYP  | OWNER     | FROM    | 1   | PRT  | C INJ   | G  | E LICNS | PED |       |            |       |
| UNLOC? D C S L | K LAT/LONG   | DISTNC | INTERSECTION SEQ # | LOCTN   | (#LANES) | CONTL    | DRVWY  | LIGHT | SVRTY     | V# VEH TY | PE TO   | P#  | TYPI | E SVRTY | Έ  | X RES   | LOC | ERROR | ACTN EVENT | CAUSE |
|                |              |        |                    |         |          |          |        |       |           | 00 NONE   | 0 EIID  |     |      |         |    |         |     |       |            |       |
|                |              |        |                    |         |          |          |        |       |           | 02 NONE   | 0 TURN  |     |      |         |    |         |     |       |            |       |
|                |              |        |                    |         |          |          |        |       |           | PRVTE     | SE      | SW  |      |         |    |         |     |       | 000 091    | 00    |
|                |              |        |                    |         |          |          |        |       |           | PSNGR CA  | AR      | 01  | DRVI | R NONE  | 44 | F OR-Y  |     | 000   | 000        | 00    |
|                |              |        |                    |         |          |          |        |       |           |           |         |     |      |         |    | OR<25   |     |       |            |       |
| 00794 N N N    | 03/02/2012   | 16     | FRONT ST           | INTER   | CROSS    | N        | N      | CLR   | ANGL-OTH  | 01 NONE   | 0 STRG  | SHT |      |         |    |         |     |       |            | 03    |
| NONE           | Fri 4P       | 0      | YOUNG ST           | CN      |          | STOP SIG | GN N   | DRY   | TURN      | PRVTE     | SW      | NE  |      |         |    |         |     |       | 000        | 00    |
| No 45 8 32.    | 17 -122 51 2 | 4.33   | 1                  | 04      | 0        |          | N      | DAY   | PDO       | PSNGR CA  | AR      | 01  | DRVI | R NONE  | 19 | M OR-Y  |     | 021   | 000        | 03    |
|                |              |        |                    |         |          |          |        |       |           |           |         |     |      |         |    | OR<25   |     |       |            |       |
|                |              |        |                    |         |          |          |        |       |           | 02 NONE   | 0 TURN  | 1-L |      |         |    |         |     |       |            |       |
|                |              |        |                    |         |          |          |        |       |           | PRVTE     | SE      | SW  |      |         |    |         |     |       | 000        | 00    |
|                |              |        |                    |         |          |          |        |       |           | PSNGR CA  | λR      | 01  | DRVI | R NONE  | 40 | M OR-Y  |     | 000   | 000        | 00    |
|                |              |        |                    |         |          |          |        |       |           |           |         |     |      |         |    | OR<25   |     |       |            |       |

# OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CRASH SUMMARIES BY YEAR BY COLLISION TYPE

## Gatch St

January 1, 2011 through December 31, 2015

| COLLISION TYPE                                                                      | FATAL<br>CRASHES | NON-<br>FATAL<br>CRASHES | PROPERTY<br>DAMAGE<br>ONLY | TOTAL<br>CRASHES      | PEOPLE<br>KILLED | PEOPLE<br>INJURED     | TRUCKS           | DRY<br>SURF           | WET<br>SURF      | DAY                   | DARK             | INTER-<br>SECTION     | INTER-<br>SECTION<br>RELATED | OFF-<br>ROAD     |
|-------------------------------------------------------------------------------------|------------------|--------------------------|----------------------------|-----------------------|------------------|-----------------------|------------------|-----------------------|------------------|-----------------------|------------------|-----------------------|------------------------------|------------------|
| YEAR: 2015<br>TURNING MOVEMENTS<br>2015 TOTAL                                       | 0<br>0           | 2 2                      | 0<br>0                     | 2 2                   | 0                | 3                     | 0<br>0           | 2<br>2                | 0<br>0           | 1<br>1                | 1<br>1           | 1<br>1                | 0<br>0                       | 0<br>0           |
| YEAR: 2014<br>SIDESWIPE - MEETING<br>TURNING MOVEMENTS<br>2014 TOTAL                | 0<br>0<br>0      | 0<br>1<br>1              | 1<br>1<br>2                | 1<br>2<br>3           | 0<br>0<br>0      | 0<br>1<br>1           | 0<br>0<br>0      | 1<br>1<br>2           | 0<br>0<br>0      | 0<br>2<br>2           | 1<br>0<br>1      | 0<br>1<br>1           | 0<br>0<br>0                  | 0<br>0<br>0      |
| YEAR: 2013<br>ANGLE<br>2013 TOTAL                                                   | 0                | 0                        | 2 2                        | 2 2                   | 0<br>0           | 0                     | 0                | 2<br>2                | 0<br>0           | 1                     | 1                | 1<br>1                | 0<br>0                       | 0                |
| YEAR: 2012<br>ANGLE<br>FIXED / OTHER OBJECT<br>PEDESTRIAN<br>REAR-END<br>2012 TOTAL | 0<br>0<br>0<br>0 | 0<br>0<br>2<br>1<br>3    | 1<br>1<br>0<br>0<br>2      | 1<br>1<br>2<br>1<br>5 | 0<br>0<br>0<br>0 | 0<br>0<br>2<br>1<br>3 | 0<br>0<br>0<br>0 | 1<br>1<br>1<br>1<br>4 | 0<br>0<br>1<br>0 | 1<br>1<br>1<br>1<br>4 | 0<br>0<br>1<br>0 | 1<br>1<br>1<br>1<br>4 | 0<br>0<br>0<br>0             | 0<br>1<br>0<br>0 |
| FINAL TOTAL                                                                         | 0                | 6                        | 6                          | 12                    | 0                | 7                     | 0                | 10                    | 1                | 8                     | 4                | 7                     | 0                            | 1                |

CITY OF WOODBURN, MARION COUNTY

#### PAGE: 1 9/6/2017 OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION

TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

## URBAN NON-SYSTEM CRASH LISTING

Gatch St

January 1, 2011 through December 31, 2015 S D

| INVEST | P R S W E A U C O E L G H R D C S L K | DAY/TIME   | FC<br>DISTNC | CITY STREET<br>FIRST STREET<br>SECOND STREET<br>INTERSECTION SEQ # | RD CHAR<br>DIRECT<br>LOCTN | INT-TYP<br>(MEDIAN)<br>LEGS<br>(#LANES) | TRAF-        |      | SURF | CRASH TYP<br>COLL TYP<br>SVRTY | SPCL USE<br>TRLR QTY<br>OWNER<br>V# VEH TYPE | FROM   |          |      | A S<br>G E LICNS<br>E X RES |         | ACTN EVENT | CAUSE |
|--------|---------------------------------------|------------|--------------|--------------------------------------------------------------------|----------------------------|-----------------------------------------|--------------|------|------|--------------------------------|----------------------------------------------|--------|----------|------|-----------------------------|---------|------------|-------|
|        |                                       | 05/02/2014 |              | GATCH ST                                                           | STRGHT                     |                                         | N            |      | CLR  | PRKD MV                        | 01 NONE 0                                    |        |          |      |                             |         |            | 32,05 |
| CITY   |                                       | Fri 10P    |              | CLEVELAND ST                                                       | NE                         | (NONE)                                  | NONE         |      | DRY  | SS-M                           | PRVTE                                        | NE SW  |          |      |                             |         | 000        | 00    |
| No     | 45 8 17.05                            | -122 50 58 | . 29         | 1                                                                  | 07                         | (02)                                    |              | N    | DLIT | PDO                            | PSNGR CAR                                    |        | 01 DRVR  | NONE | 34 M OR-Y<br>OR<25          | 052,080 | 000        | 32,05 |
|        |                                       |            |              |                                                                    |                            |                                         |              |      |      |                                | 02 NONE 0                                    | PRKD-P |          |      |                             |         |            |       |
|        |                                       |            |              |                                                                    |                            |                                         |              |      |      |                                | PRVTE                                        | SW NE  |          |      |                             |         | 008        | 00    |
|        |                                       |            |              |                                                                    |                            |                                         |              |      |      |                                | PSNGR CAR                                    |        |          |      |                             |         |            |       |
|        | N N N                                 | 11/06/2015 |              | GATCH ST                                                           | ALLEY                      |                                         | N            |      | CLR  | ANGL-OTH                       | 01 NONE 0                                    |        |          |      |                             |         |            | 02,17 |
| CITY   |                                       | Fri 12P    |              | JOHNSON ST                                                         | NE                         | (NONE)                                  | NONE         |      | DRY  | TURN                           | PRVTE                                        |        | 0.1      |      | 50                          | 222     | 000        | 00    |
| No     | 45 8 28.40                            | -122 50 52 | . 40         | 1                                                                  | 08                         | (02)                                    |              | N    | DAY  | INJ                            | PSNGR CAR                                    |        | 01 DRVR  | NONE | 50 M OR-Y<br>OR<25          | 028     | 028        | 02,17 |
|        |                                       |            |              |                                                                    |                            |                                         |              |      |      |                                | 02 NONE 0                                    | STRGHT |          |      |                             |         |            |       |
|        |                                       |            |              |                                                                    |                            |                                         |              |      |      |                                | PRVTE                                        | NE SW  |          |      |                             |         | 000        | 00    |
|        |                                       |            |              |                                                                    |                            |                                         |              |      |      |                                | PSNGR CAR                                    |        | 01 DRVR  | INJC | 62 M OR-Y                   | 000     | 000        | 00    |
|        |                                       |            |              |                                                                    |                            |                                         |              |      |      |                                |                                              |        |          |      | OR<25                       |         |            |       |
| 01304  | N N N Y                               | 04/22/2014 | 17           | GATCH ST                                                           | INTER                      | 3-LEG                                   | N            | N    | CLR  | O-1 L-TURN                     | 01 NONE 0                                    | TURN-L |          |      |                             |         |            | 02    |
| CITY   |                                       | Tue 3P     | 0            | JOHNSON ST                                                         | CN                         |                                         | STOP SI      | GN N | DRY  | TURN                           | PRVTE                                        | NE E   |          |      |                             |         | 000        | 00    |
| No     | 45 8 27.06                            | -122 50 52 | . 79         | 1                                                                  | 04                         | 0                                       |              | N    | DAY  | INJ                            | PSNGR CAR                                    |        | 01 DRVR  | NONE | 18 M NONE                   | 004,028 | 000        | 02    |
|        |                                       |            |              |                                                                    |                            |                                         |              |      |      |                                |                                              |        |          |      | OR<25                       |         |            |       |
|        |                                       |            |              |                                                                    |                            |                                         |              |      |      |                                | 02 NONE 0                                    |        |          |      |                             |         |            |       |
|        |                                       |            |              |                                                                    |                            |                                         |              |      |      |                                | PRVTE                                        | SW NE  |          |      |                             |         | 000        | 00    |
|        |                                       |            |              |                                                                    |                            |                                         |              |      |      |                                | PSNGR CAR                                    |        | 01 DRVR  | INJB | 18 M NONE<br>OR<25          | 000     | 000        | 00    |
| 04220  | N N N                                 | 11/23/2014 | 17           | GATCH ST                                                           | ALLEY                      |                                         | N            | N    | UNK  | S-1TURN                        | 01 NONE 0                                    | STRCHT |          |      |                             |         |            | 06    |
| NONE   | 14 14 14                              | Sun 1P     |              | LINCOLN ST                                                         | S                          | (NONE)                                  | UNKNOWN      |      | UNK  | TURN                           |                                              | N S    |          |      |                             |         | 000        | 00    |
| No     | 45 8 32.26                            | -122 50 52 |              | 1                                                                  | 08                         | (110112)                                | 011111101111 |      | DAY  | PDO                            | PSNGR CAR                                    |        | 01 DRVR  | NONE | 76 M OR-Y                   | 032     | 000        | 06    |
| 1.0    | 10 0 02.20                            | 122 00 02  |              | -                                                                  |                            | (02)                                    |              |      | 2111 | 120                            | TOTAL OTHER                                  |        | 01 21001 |      | OR<25                       | 002     |            |       |
|        |                                       |            |              |                                                                    |                            |                                         |              |      |      |                                | 02 NONE 0                                    | TURN-L |          |      |                             |         |            |       |
|        |                                       |            |              |                                                                    |                            |                                         |              |      |      |                                | PRVTE                                        | N E    |          |      |                             |         | 019        | 00    |
|        |                                       |            |              |                                                                    |                            |                                         |              |      |      |                                | PSNGR CAR                                    |        | 01 DRVR  | NONE | 00 F OR-Y                   | 000     | 000        | 00    |
|        |                                       |            |              |                                                                    |                            |                                         |              |      |      |                                |                                              |        |          |      | UNK                         |         |            |       |
| 04132  | N N N Y N                             | 11/21/2013 | 17           | GATCH ST                                                           | INTER                      | CROSS                                   | N            | N    | CLR  | ANGL-OTH                       | 01 NONE 0                                    | STRGHT |          |      |                             |         |            | 03    |
| CITY   |                                       | Thu 5P     | 0            | LINCOLN ST                                                         | CN                         |                                         | STOP SI      | GN N | DRY  | ANGL                           | PRVTE                                        | N S    |          |      |                             |         | 000        | 00    |
| No     | 45 8 34.48                            | -122 50 52 | .53          | 1                                                                  | 01                         | 0                                       |              | N    | DUSK | PDO                            | PSNGR CAR                                    |        | 01 DRVR  | NONE | 36 F NONE                   | 021     | 000        | 03    |
|        |                                       |            |              |                                                                    |                            |                                         |              |      |      |                                |                                              |        |          |      | OR<25                       |         |            |       |
|        |                                       |            |              |                                                                    |                            |                                         |              |      |      |                                | 02 NONE 0                                    |        |          |      |                             |         |            |       |
|        |                                       |            |              |                                                                    |                            |                                         |              |      |      |                                | PRVTE                                        |        |          |      |                             |         | 000        | 00    |
|        |                                       |            |              |                                                                    |                            |                                         |              |      |      |                                | PSNGR CAR                                    |        | 01 DRVR  | NONE | 47 M OR-Y                   | 000     | 000        | 00    |
|        |                                       |            |              |                                                                    |                            |                                         |              |      |      |                                |                                              |        |          |      | OR<25                       |         |            |       |
|        | N N N                                 | 02/23/2012 |              | GATCH ST                                                           | INTER                      | CROSS                                   |              |      | CLR  | ANGL-OTH                       | 01 NONE 0                                    |        |          |      |                             |         |            | 02    |
| NONE   |                                       | Thu 7A     |              | LINCOLN ST                                                         | CN                         |                                         | STOP SI      |      | DRY  | ANGL                           |                                              | S SW   |          |      |                             | 017 000 | 000        | 00    |
| No     | 45 8 34.48                            | -122 50 52 | .53          | 1                                                                  | 02                         | 0                                       |              | N    | DAY  | PDO                            | PSNGR CAR                                    |        | U1 DRVR  | NONE | 20 M OR-Y                   | 017,028 | 000        | 02    |
|        |                                       |            |              |                                                                    |                            |                                         |              |      |      |                                |                                              |        |          |      | OR<25                       |         |            |       |

CITY OF WOODBURN, MARION COUNTY

## OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

URBAN NON-SYSTEM CRASH LISTING

Gatch St

January 1, 2011 through December 31, 2015

|       |                                               |                                      |              |                                                                    |                            |                                         |                          |                          | ,                                     | , , ,                                        |                          |                           |                        |    |       |                               |                            |
|-------|-----------------------------------------------|--------------------------------------|--------------|--------------------------------------------------------------------|----------------------------|-----------------------------------------|--------------------------|--------------------------|---------------------------------------|----------------------------------------------|--------------------------|---------------------------|------------------------|----|-------|-------------------------------|----------------------------|
| INVES | S D P R S W E A U C O T E L G H R P D C S L K | DAY/TIME                             | FC<br>DISTNC | CITY STREET<br>FIRST STREET<br>SECOND STREET<br>INTERSECTION SEQ # | RD CHAR<br>DIRECT<br>LOCTN | INT-TYP<br>(MEDIAN)<br>LEGS<br>(#LANES) | INT-REL OFF<br>TRAF- RND | BT SURI                  | R CRASH TYP<br>F COLL TYP<br>HT SVRTY | SPCL USE<br>TRLR QTY<br>OWNER<br>V# VEH TYPE | MOVE<br>FROM             | PRTC INJ<br>P# TYPE SVRTY | G E LICNS              |    | ROR   | ACTN EVENT                    | CAUSE                      |
|       |                                               |                                      |              |                                                                    |                            |                                         |                          |                          |                                       | 02 NONE C<br>PRVTE<br>PSNGR CAR              | SW NE                    |                           | 34 F OR-Y<br>OR<25     | 00 | 0     | 000<br>000                    | 00<br>00                   |
| NONE  | N N N<br>45 8 34.45                           | 02/19/2015<br>Thu 6A<br>5 -122 50 52 | 0            | GATCH ST<br>LINCOLN ST<br>1                                        | INTER<br>CN<br>03          | CROSS<br>0                              | N<br>STOP SIGN           | N CLD<br>N DRY<br>N DAWN | TURN                                  | 01 NONE C<br>PRVTE<br>PSNGR CAR              | TURN-L<br>E S            | 01 DRVR INJC              | OR<25                  |    | 8,004 | 000                           | 02<br>00<br>02             |
|       |                                               |                                      |              |                                                                    |                            |                                         |                          |                          |                                       | 02 UNKN (<br>UNKN<br>UNKNOWN                 | ) STRGHT<br>W E          |                           |                        | 00 |       | 000                           | 00                         |
| CITY  | N N N N N N 45 8 20.53                        | Wed 5P                               | 0            | GATCH ST<br>YOUNG ST<br>1                                          | INTER<br>SE<br>05          | 4-LEG<br>0                              | N<br>UNKNOWN             | N CLR<br>N DRY<br>N DLI  | PED                                   | 01 NONE (<br>PRVTE<br>PSNGR CAR              | SE NW                    |                           | OR<25                  |    |       | 000<br>000                    | 02<br>00<br>02<br>00       |
| NO RP | N N N<br>T<br>45 8 20.53                      | 07/06/2012<br>Fri 5P<br>-122 50 55   | 0            | GATCH ST<br>YOUNG ST<br>1                                          | INTER<br>SE<br>06          | 4-LEG<br>0                              | N<br>UNKNOWN             | Y CLR<br>N DRY<br>N DAY  | FIX OBJ<br>FIX<br>PDO                 | 01 NONE C<br>PRVTE<br>PSNGR CAR              | SW NE<br>STRGHT<br>SE NW |                           |                        | 08 | 0,081 | 040,058<br>000 040,058<br>000 | 10<br>00<br>10             |
| CITY  | N N N N N N 45 8 19.01                        | Fri 2P                               | 125          | GATCH ST<br>YOUNG ST<br>1                                          | STRGHT<br>SW<br>08         | (NONE)                                  | N<br>NONE                | N RAIN<br>N WET<br>N DAY | PED                                   | 01 NONE C<br>PRVTE<br>PSNGR CAR              | SW NE                    | 01 DRVR NONE              | 34 F N-VAL<br>OR<25    | 00 |       | 000                           | 02,18,19<br>00<br>00       |
| CITY  | N N N N N N 45 8 20.53                        | Fri 8A                               | 0            | GATCH ST<br>YOUNG ST                                               | INTER<br>NW<br>06          | CROSS<br>0                              | N<br>NONE                | N CLR<br>N DRY<br>N DAY  | S-OTHER<br>REAR<br>INJ                | 01 NONE C<br>PRVTE<br>PSNGR CAR              | SE NW                    |                           | 20 M OR-Y              | 04 | 3,042 | 043<br>000<br>000             | 02,18,19<br>07<br>00<br>07 |
|       |                                               |                                      |              |                                                                    |                            |                                         |                          |                          |                                       | 02 NONE C<br>PRVTE<br>PSNGR CAR              | NW SE                    | 02 PSNG INJC              | 25 M<br>57 M OR-Y      | 00 |       | 000<br>006<br>000             | 00                         |
| CITY  | N N N<br>45 8 22.30                           | Mon 4P                               | 357          | GATCH ST<br>YOUNG ST<br>1                                          | ALLEY<br>NW<br>08          | (NONE)                                  |                          | N CLR<br>N DRY<br>N DAY  | ANGL                                  | 01 NONE (<br>PRVTE<br>PSNGR CAR              | NW SE                    |                           | OR<25  18 M OR-Y OR>25 | 00 | 0     | 000                           | 02<br>00<br>00             |
|       |                                               |                                      |              |                                                                    |                            |                                         |                          |                          |                                       | 02 NONE C<br>PRVTE<br>PSNGR CAR              | SW NE                    |                           | 18 M OR-Y<br>OR<25     |    | 8     | 018<br>000                    | 00<br>02                   |

# OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CRASH SUMMARIES BY YEAR BY COLLISION TYPE

## Hardcastle Ave & Front St January 1, 2011 through December 31, 2015

|                   | FATAL   | NON-<br>FATAL | PROPERTY<br>DAMAGE | TOTAL   | PEOPLE | PEOPLE  |        | DRY  | WET  |     |      | INTER-  | INTER-<br>SECTION | OFF- |
|-------------------|---------|---------------|--------------------|---------|--------|---------|--------|------|------|-----|------|---------|-------------------|------|
| COLLISION TYPE    | CRASHES | CRASHES       | ONLY               | CRASHES | KILLED | INJURED | TRUCKS | SURF | SURF | DAY | DARK | SECTION | RELATED           | ROAD |
| YEAR: 2015        |         |               |                    |         |        |         |        |      |      |     |      |         |                   |      |
| TURNING MOVEMENTS | 0       | 1             | 0                  | 1       | 0      | 1       | 0      | 1    | 0    | 1   | 0    | 1       | 0                 | 0    |
| 2015 TOTAL        | 0       | 1             | 0                  | 1       | 0      | 1       | 0      | 1    | 0    | 1   | 0    | 1       | 0                 | 0    |
| YEAR: 2014        |         |               |                    |         |        |         |        |      |      |     |      |         |                   |      |
| TURNING MOVEMENTS | 0       | 0             | 1                  | 1       | 0      | 0       | 0      | 1    | 0    | 0   | 1    | 1       | 0                 | 0    |
| 2014 TOTAL        | 0       | 0             | 1                  | 1       | 0      | 0       | 0      | 1    | 0    | 0   | 1    | 1       | 0                 | 0    |
| YEAR: 2012        |         |               |                    |         |        |         |        |      |      |     |      |         |                   |      |
| REAR-END          | 0       | 1             | 0                  | 1       | 0      | 3       | 0      | 1    | 0    | 1   | 0    | 1       | 0                 | 0    |
| 2012 TOTAL        | 0       | 1             | 0                  | 1       | 0      | 3       | 0      | 1    | 0    | 1   | 0    | 1       | 0                 | 0    |
| YEAR: 2011        |         |               |                    |         |        |         |        |      |      |     |      |         |                   |      |
| ANGLE             | 0       | 0             | 1                  | 1       | 0      | 0       | 0      | 1    | 0    | 1   | 0    | 1       | 0                 | 0    |
| 2011 TOTAL        | 0       | 0             | 1                  | 1       | 0      | 0       | 0      | 1    | 0    | 1   | 0    | 1       | 0                 | 0    |
| FINAL TOTAL       | 0       | 2             | 2                  | 4       | 0      | 4       | 0      | 4    | 0    | 3   | 1    | 4       | 0                 | 0    |

CITY OF WOODBURN, MARION COUNTY

#### PAGE: 1

#### OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

OR<25

URBAN NON-SYSTEM CRASH LISTING

Hardcastle Ave & Front St

January 1, 2011 through December 31, 2015

S D P RSW CITY STREET INT-TYP SPCL USE SER# E A U C O DATE FIRST STREET RD CHAR (MEDIAN) INT-REL OFF-RD WTHR CRASH TYP TRLR OTY MOVE A S INVEST E L G H R DAY/TIME FC SECOND STREET DIRECT LEGS TRAF- RNDBT SURF COLL TYP OWNER FROM PRTC INJ G E LICNS PED UNLOC? D C S L K LAT/LONG DISTNC INTERSECTION SEO # LOCTN (#LANES) CONTL DRVWY LIGHT SVRTY V# VEH TYPE TO P# TYPE SVRTY E X RES LOC ERROR ACTN EVENT CAUSE 04535 N N N N N 12/15/2011 17 FRONT ST INTER 3-LEG N N CLD TRAIN 01 NONE 0 TURN-L 015,017 14 Thu 10A 0 HARDCASTLE AVE E WW W/ GATE N DRY ANGL PRVTE NE E 013 017 00 45 8 45.42 -122 51 7.99 1 0.5 0 N DAY PDO PSNGR CAR 01 DRVR NONE 84 M N-VAL 009,025 000 14 03189 N N N 09/21/2012 16 FRONT ST INTER 3-LEG N N CLR S-1STOP 01 NONE 0 STRGHT 07 N DRY 000 NONE Fri 7A 0 HARDCASTLE AVE SW STOP SIGN REAR PRVTE SW NE 00 No 45 8 45.41 -122 51 8.01 1 0.6 0 N DAY INJ PSNGR CAR 01 DRVR NONE 48 F OR-Y 026 000 0.7 OR<25 02 NONE 0 STOP PRVTE SW NE 011 00 PSNGR CAR 01 DRVR INJC 34 F OR-Y 000 000 00 OR<25 02 PSNG INJC 14 M 000 000 00 03 PSNG INJC 11 F 000 000 00 01785 N N N 04/04/2014 16 INTER N CLR 01 NONE 0 TURN-L 02 FRONT ST 3-LEG N ANGL-OTH Fri 8P 0 HARDCASTLE AVE CN STOP SIGN N DRY TURN PRVTE E SW 015 00 No 45 8 45.24 -122 51 8.05 0.1 0 N DUSK PDO PSNGR CAR 028 000 02 01 DRVR NONE 23 M OR-Y OR<25 02 NONE 0 TURN-L PRVTE NE E 000 00 PSNGR CAR 01 DRVR NONE 30 M OR-Y 000 000 00 OR<25 01427 N N N 04/20/2015 16 FRONT ST INTER 3-LEG N N CLR ANGL-OTH 01 NONE 0 STRGHT 02 Mon 8A 0 HARDCASTLE AVE CN STOP SIGN N DRY TURN PRVTE SW NE 000 00 45 8 45.24 -122 51 8.05 1 0.2 0 N DAY PSNGR CAR 01 DRVR NONE 18 M OR-Y 000 02 INJ 028 OR<25 02 NONE 0 TURN-L PRVTE E SW 000 00 PSNGR CAR 01 DRVR INJC 24 F OR-Y 000 000 00

# OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CRASH SUMMARIES BY YEAR BY COLLISION TYPE

## Hardcastle Ave & OR 99E

January 1, 2011 through December 31, 2015

| COLLISION TYPE  YEAR: 2015  REAR-END  TURNING MOVEMENTS 2015 TOTAL | FATAL<br>CRASHES<br>0<br>0<br>0 | NON-<br>FATAL<br>CRASHES<br>1<br>1<br>1<br>2 | PROPERTY<br>DAMAGE<br>ONLY<br>0<br>0<br>0 | TOTAL<br>CRASHES<br>1<br>1<br>1<br>2 | PEOPLE<br>KILLED<br>0<br>0<br>0 | PEOPLE<br>INJURED  1 1 2 | TRUCKS  0 0 0 0  | DRY<br>SURF<br>1<br>0<br>1 | WET<br>SURF<br>0<br>0<br>0 | DAY 1 1 2        | DARK<br>0<br>0<br>0 | INTER-<br>SECTION  1 1 2 | INTER-<br>SECTION<br>RELATED  0 0 0 | OFF-<br>ROAD<br>0<br>0<br>0 |
|--------------------------------------------------------------------|---------------------------------|----------------------------------------------|-------------------------------------------|--------------------------------------|---------------------------------|--------------------------|------------------|----------------------------|----------------------------|------------------|---------------------|--------------------------|-------------------------------------|-----------------------------|
| YEAR: 2014<br>ANGLE<br>TURNING MOVEMENTS<br>2014 TOTAL             | 0<br>0<br>0                     | 0<br>0<br>0                                  | 1<br>2<br>3                               | 1<br>2<br>3                          | 0<br>0<br>0                     | 0<br>0<br>0              | 0<br>1<br>1      | 1<br>2<br>3                | 0<br>0<br>0                | 1<br>1<br>2      | 0<br>1<br>1         | 1<br>2<br>3              | 0<br>0<br>0                         | 0<br>0<br>0                 |
| YEAR: 2013<br>ANGLE<br>BACKING<br>REAR-END<br>2013 TOTAL           | 0<br>0<br>0<br>0                | 0<br>0<br>1<br>1                             | 1<br>1<br>0<br>2                          | 1<br>1<br>1<br>3                     | 0<br>0<br>0<br>0                | 0<br>0<br>1<br>1         | 0<br>0<br>0<br>0 | 1<br>1<br>0<br>2           | 0<br>0<br>1<br>1           | 1<br>0<br>0<br>1 | 0<br>1<br>1<br>2    | 1<br>1<br>1<br>3         | 0<br>0<br>0<br>0                    | 0<br>0<br>0                 |
| YEAR: 2012<br>REAR-END<br>TURNING MOVEMENTS<br>2012 TOTAL          | 0<br>0<br>0                     | 1<br>2<br>3                                  | 0<br>0<br>0                               | 1<br>2<br>3                          | 0<br>0<br>0                     | 2<br>3<br>5              | 0<br>0<br>0      | 1<br>0<br>1                | 0<br>2<br>2                | 1<br>1<br>2      | 0<br>1<br>1         | 1<br>2<br>3              | 0<br>0<br>0                         | 0<br>0<br>0                 |
| YEAR: 2011 PEDESTRIAN REAR-END TURNING MOVEMENTS 2011 TOTAL        | 0<br>0<br>0                     | 1<br>1<br>0<br>2                             | 0<br>0<br>1<br>1                          | 1<br>1<br>1<br>3                     | 0<br>0<br>0                     | 1<br>1<br>0<br>2         | 0<br>0<br>0      | 1<br>1<br>0<br>2           | 0<br>0<br>1<br>1           | 1<br>1<br>1<br>3 | 0<br>0<br>0<br>0    | 1<br>1<br>1<br>3         | 0<br>0<br>0                         | 0<br>0<br>0<br>0            |
| FINAL TOTAL                                                        | 0                               | 8                                            | 6                                         | 14                                   | 0                               | 10                       | 1                | 9                          | 4                          | 10               | 4                   | 14                       | 0                                   | 0                           |

## OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CONTINUOUS SYSTEM CRASH LISTING

081 PACIFIC HIGHWAY EAST

#### Hardcastle Ave & OR 99E January 1, 2011 through December 31, 2015

S D RD# FC CONN # P RSW INT-TYP SPCL USE SER# E A U C O DATE COUNTY CMPT/MLG FIRST STREET RD CHAR (MEDIAN) INT-REL OFFRD WTHR CRASH TYP TRLR QTY MOVE A S INVEST E L G H R DAY/TIME CITY MILEPNT SECOND STREET DIRECT LEGS TRAF- RNDBT SURF COLL TYP OWNER FROM PRTC INJ G E LICNS PED INTERSECTION SEO# (#LANES) CNTL V# VEH TYPE TO P# TYPE SVRTY E X RES LOC ERROR ACTN EVENT CAUSE UNLOC? D C S L K LAT/LONG URBAN AREA LOCTN DRVWY LIGHT SVRTY 02654 NNN 08/15/2011 MARION 1 14 INTER CROSS N N CLR S-1STOP 01 NONE 0 STRGHT 07 NONE Mon 4P WOODBURN 0 HARDCASTLE AVE NE TRF SIGNAL N DRY REAR PRVTE NE SW 000 00 WOODBURN UA 32.19 PACIFIC HY 99E 06 Ω N DAY INJ PSNGR CAR 01 DRVR NONE 30 M OR-Y 026 000 07 45 8 43.03 -122 50 11.43 008100100S00 1 OR<25 02 NONE 0 STOP PRVTE NE SW 011 00 PSNGR CAR 01 DRVR INJC 65 M OR-Y 000 000 00 OR<25 09/15/2012 MARION 1 14 CROSS N 01 NONE 0 STRGHT 07 03101 N N N TNTER N CLR S-1STOP Sat 2P WOODBURN NONE MN 0 HARDCASTLE AVE NE TRF SIGNAL N DRY REAR PRVTE NE SW 000 00 06 Ω 000 07 WOODBURN UA 32.19 PACIFIC HY 99E N DAY INJ PSNGR CAR 01 DRVR NONE 61 M OR-Y 026 45 8 43.03 -122 50 11.43 008100100s00 1 OR>25 02 NONE 0 STOP PRVTE NE SW 011 00 PSNGR CAR 01 DRVR INJC 31 F OR-Y 000 000 00 OR>25 02 PSNG INJC 35 M 000 000 00 03 PSNG NO<5 04 M 000 000 00 00270 NNN 01/25/2013 MARION 1 14 INTER CROSS N N CLR O-1STOP 01 NONE 0 BACK 10 MN 0 HARDCASTLE AVE TRF SIGNAL N DRY BACK NONE Fri 6P WOODBURN NE PRVTE SW NE 000 00 WOODBURN UA 32.19 PACIFIC HY 99E 06 0 N DLIT PDO PSNGR CAR 01 DRVR NONE 50 F OR-Y 011 000 10 45 8 43.03 -122 50 11.43 008100100S00 1 OR<25 02 NONE 0 STOP 00 PRVTE NE SW 011 PSNGR CAR 01 DRVR NONE 42 M OR-Y 000 00 OR<25 02887 N N N N N 08/26/2013 MARION 1 14 CROSS N 32 INTER N RAIN S-1STOP 01 NONE 0 STRGHT MN 0 HARDCASTLE AVE CITY Mon 9P WOODBURN NE TRF SIGNAL N WET REAR PRVTE NE SW 000 00 06 0 PSNGR CAR 000 32 WOODBURN UA 32.19 PACIFIC HY 99E N DLIT INJ 01 DRVR NONE 37 M SUSP 052,026 45 8 43.03 -122 50 11.43 008100100s00 1 OR<25 02 NONE 0 STOP PRVTE 011 00 000 PSNGR CAR 01 DRVR INJC 50 F OR-Y 000 00 OR<25 02443 NYY 07/29/2011 MARION 1 14 CROSS N N CLR PED 01 NONE 0 STRGHT 02,10 Fri 1P WOODBURN MN 0 HARDCASTLE AVE 00 TRF SIGNAL N DRY PED PRVTE S N 000 0 WOODBURN UA 32.19 PACIFIC HY 99E N DAY INJ PSNGR CAR 01 DRVR NONE 71 M UNK 000 02 45 8 43.03 -122 50 11.43 008100100S00 1 OR<25 STRGHT 01 PED INJA 06 F 01 000 0.0 W E

S D

081 PACIFIC HIGHWAY EAST

## OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

#### CONTINUOUS SYSTEM CRASH LISTING

Hardcastle Ave & OR 99E

| PRSW  SER# EAUCODATE COUNTY  INVESTELGHR DAY/TIME CITY  UNLOC? DCSLK LAT/LONG URBAN AREA | RD# FC CONN # CMPT/MLG FIRST STREET MILEPNT SECOND STREET LRS INTERSECTION SEQ# | RD CHAR<br>DIRECT<br>LOCTN | INT-TYP<br>(MEDIAN)<br>LEGS<br>(#LANES) | TRAF- RI        | NDBT SURF | CRASH TYE<br>COLL TYP<br>T SVRTY | SPCL USE TRLR QTY MOV OWNER FRO V# VEH TYPE TO | MO   |           | NJ    | A S<br>G E LICNS<br>E X RES |         | ACTN EVENT | CAUSE          |
|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------|-----------------------------------------|-----------------|-----------|----------------------------------|------------------------------------------------|------|-----------|-------|-----------------------------|---------|------------|----------------|
| 03196 N N N 08/17/2015 MARION CITY Mon 5P WOODBURN                                       | 1 14<br>MN 0 HARDCASTLE AVE                                                     | INTER<br>SW                |                                         | N<br>TRF SIGNAL |           |                                  | 01 NONE 0 STRO                                 |      |           |       |                             |         | 000        | 17 <b>,</b> 29 |
| WOODBURN UA                                                                              | 32.19 PACIFIC HY 99E                                                            | 06                         | 0                                       |                 | N DAY     |                                  | PSNGR CAR                                      |      | ו מעמת 1  | IONE  | 52 M OR-Y                   | 026     | 028        | 17,29          |
| No 45 8 43.03 -122 50 11.43                                                              | 008100100S00 1                                                                  | 00                         | Ü                                       |                 | N DAI     | 1140                             | I SNOW CAR                                     | O    | I DIVIC I | VOIVE | OR<25                       | 020     | 020        | 17,23          |
|                                                                                          |                                                                                 |                            |                                         |                 |           |                                  | 02 NONE 0 STOP                                 |      |           |       |                             |         | 011        | 00             |
|                                                                                          |                                                                                 |                            |                                         |                 |           |                                  | PSNGR CAR                                      | 0    | 1 DRVR I  | NJC   | 35 M OTH-Y<br>OR<25         | 000     | 000        | 00             |
| 04513 N N N 12/26/2011 MARION                                                            | 1 14                                                                            | INTER                      |                                         | N               |           |                                  | 01 NONE 0 TUR                                  |      |           |       |                             |         |            | 02             |
| NONE Mon 12P WOODBURN                                                                    | MN 0 HARDCASTLE AVE                                                             | CN                         |                                         | TRF SIGNAL      |           |                                  | PRVTE NE                                       |      | 1 DDIID 1 |       | 00 = 05 ;;                  | 000     | 016        | 00             |
| WOODBURN UA<br>No 45 8 43.03 -122 50 11.43                                               | 32.19 PACIFIC HY 99E<br>008100100S00 1                                          | 01                         | 0                                       |                 | N DAY     | PDO                              | PSNGR CAR                                      | U    | I DKVK N  | IONE  | OR<25                       | 028     | 000        | 02             |
|                                                                                          |                                                                                 |                            |                                         |                 |           |                                  | 02 NONE 0 STRO                                 |      |           |       |                             |         | 000        | 0.0            |
|                                                                                          |                                                                                 |                            |                                         |                 |           |                                  | PSNGR CAR                                      |      | 1 DRVR N  | IONE  | 60 M OR-Y                   | 000     | 000        | 00             |
|                                                                                          |                                                                                 |                            |                                         |                 |           |                                  |                                                |      |           |       | OR<25                       |         |            |                |
| 00345 N N N N N 01/29/2012 MARION                                                        | 1 14                                                                            | INTER                      |                                         |                 |           |                                  | 01 NONE 0 STRO                                 |      |           |       |                             |         | 0.00       | 04             |
| STATE Sun 2P WOODBURN WOODBURN UA                                                        | MN 0 HARDCASTLE AVE                                                             | CN<br>01                   |                                         | TRF SIGNAL      |           |                                  | PRVTE NE                                       |      | 1 DD11D N | ONE   | 22 M OD V                   | 030     | 000        | 00             |
| No 45 8 43.03 -122 50 11.43                                                              | 32.19 PACIFIC HY 99E<br>008100100S00 1                                          | 01                         | 0                                       |                 | N DAY     | INJ                              | PSNGR CAR                                      | U    | I DKVK N  | IONE  | OR<25                       | 020     | 000        | 04             |
|                                                                                          |                                                                                 |                            |                                         |                 |           |                                  | 02 NONE 0 TURN                                 |      |           |       |                             |         |            |                |
|                                                                                          |                                                                                 |                            |                                         |                 |           |                                  | PRVTE E                                        |      | 1 DDIID 1 |       | 21 - 25 -                   | 0.00    | 000        | 00             |
|                                                                                          |                                                                                 |                            |                                         |                 |           |                                  | PSNGR CAR                                      |      |           |       | 31 F OR-Y<br>OR>25          | 000     | 000        | 00             |
|                                                                                          |                                                                                 |                            |                                         |                 |           |                                  |                                                | 0    | 2 PSNG 1  | NJC   | 55 F                        | 000     | 000        | 00             |
|                                                                                          |                                                                                 | INTER                      |                                         |                 |           |                                  | 01 NONE 0 TUR                                  |      |           |       |                             |         | 000        | 08             |
| NONE Thu 7A WOODBURN WOODBURN UA                                                         | MN 0 HARDCASTLE AVE                                                             | CN<br>01                   | 0                                       | TRF SIGNAL      |           |                                  | PRVTE NE                                       |      | 1 DD11D T | N TO  | 40 E OD V                   | 097     | 000        | 00             |
| No 45 8 43.03 -122 50 11.43                                                              | 32.19 PACIFIC HY 99E 008100100S00 1                                             | 01                         | U                                       |                 | N DAWN    | INU                              | PSNGR CAR                                      | U    | I DRVR I  | NJC   | 48 F OR-Y<br>OR<25          | 097     | 000        | 00             |
|                                                                                          |                                                                                 |                            |                                         |                 |           |                                  |                                                | 0    | 2 PSNG I  | NJC   | 12 F                        | 000     | 000        | 00             |
|                                                                                          |                                                                                 |                            |                                         |                 |           |                                  | 02 NONE 0 TURI                                 |      |           |       |                             |         | 000        | 00             |
|                                                                                          |                                                                                 |                            |                                         |                 |           |                                  | PSNGR CAR                                      |      | 1 DRVR N  | IONE. | 00 H HNK                    | 097     | 000        | 00             |
|                                                                                          |                                                                                 |                            |                                         |                 |           |                                  | 1511611 01111                                  | ŭ    | 2 21010   | .01.2 | UNK                         | 03.     |            |                |
|                                                                                          | 1 14                                                                            | INTER                      |                                         |                 |           |                                  | 01 NONE 0 TUR                                  |      |           |       |                             |         |            | 02             |
| CITY Wed 1P WOODBURN                                                                     | MN 0 HARDCASTLE AVE                                                             | CN                         |                                         | TRF SIGNAL      |           |                                  | PRVTE SW                                       |      |           |       |                             | 000 004 | 000        | 00             |
| WOODBURN UA<br>No 45 8 43.03 -122 50 11.43                                               | 32.19 PACIFIC HY 99E<br>008100100S00 1                                          | 01                         | 0                                       |                 | N DAY     | INJ                              | PSNGR CAR                                      | 0    | I DRVR N  | IONE  | 86 M OR-Y<br>OR<25          | 028,004 | 000        | 02             |
|                                                                                          |                                                                                 |                            |                                         |                 |           |                                  | 02 NONE 0 STR                                  | RGHT |           |       |                             |         |            |                |
|                                                                                          |                                                                                 |                            |                                         |                 |           |                                  | PRVTE NE                                       |      |           |       |                             |         | 000        | 00             |
|                                                                                          |                                                                                 |                            |                                         |                 |           |                                  | PSNGR CAR                                      | 0    | 1 DRVR I  | NJC   | 34 M OR-Y<br>OR<25          | 000     | 000        | 00             |

081 PACIFIC HIGHWAY EAST

### OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

OR<25

CONTINUOUS SYSTEM CRASH LISTING

Hardcastle Ave & OR 99E January 1, 2011 through December 31, 2015

S D P RSW RD# FC CONN # INT-TYP SER# E A U C O DATE CMPT/MLG FIRST STREET RD CHAR (MEDIAN) INT-REL OFFRD WTHR CRASH TYP TRLR QTY MOVE COUNTY A S PRTC INJ G E LICNS PED INVEST E L G H R DAY/TIME CITY MILEPNT SECOND STREET DIRECT LEGS TRAF- RNDBT SURF COLL TYP OWNER FROM UNLOC? D C S L K LAT/LONG URBAN AREA INTERSECTION SEQ# LOCTN (#LANES) CNTL DRVWY LIGHT SVRTY V# VEH TYPE TO P# TYPE SVRTY E X RES LOC ERROR ACTN EVENT CAUSE 00948 N N N N N 03/28/2013 MARION 1 14 INTER CROSS N N CLR ANGL-OTH 01 NONE 0 STRGHT 04 Thu 9A WOODBURN MN 0 HARDCASTLE AVE TRF SIGNAL N DRY ANGL PRVTE E W 000 00 0 WOODBURN UA 32.19 PACIFIC HY 99E 02 N DAY PDO PSNGR CAR 01 DRVR NONE 43 M NONE 000 00 No 45 8 43.03 -122 50 11.43 008100100S00 1 OR<25 02 PSNG NO<5 01 M 000 00 03 PSNG NO<5 01 F 000 000 00 02 NONE 0 STRGHT PRVTE SW NE 000 00 PSNGR CAR 01 DRVR NONE 16 M OR-Y 000 04 OR<25 03222 N N N 09/19/2014 MARION 1 14 INTER CROSS N N CLR ANGL-OTH 01 NONE 0 STRGHT 04 NO RPT Fri 1P WOODBURN MN 0 HARDCASTLE AVE CN TRF SIGNAL N DRY ANGL PRVTE NE SW 000 00 0 PSNGR CAR WOODBURN UA 32.19 PACIFIC HY 99E 03 N DAY PDO 01 DRVR NONE 49 F OR-Y 097 000 00 No 45 8 43.03 -122 50 11.43 008100100S00 1 OR<25 02 NONE 0 STRGHT PRVTE W E 000 00 PSNGR CAR 01 DRVR NONE 26 M OR-Y 000 00 OR<25 00625 N N N N N 02/22/2014 MARION 1 14 INTER CROSS N N CLR O-1 L-TURN 01 NONE 0 TURN-L 02 Sat 9P WOODBURN MN 0 HARDCASTLE AVE CN FLASHBCN-A N DRY TURN PRVTE NE E 000 00 WOODBURN UA 32.19 PACIFIC HY 99E 04 0 N DLIT PDO PSNGR CAR 01 DRVR NONE 17 F OR-Y 028 000 02 45 8 43.03 -122 50 11.43 008100100S00 1 OR<25 02 NONE 0 STRGHT 00 PRVTE SW NE 000 00 PSNGR CAR 01 DRVR NONE 31 F OR-Y 000 0.00

#### OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CRASH SUMMARIES BY YEAR BY COLLISION TYPE

### Hayes St

January 1, 2011 through December 31, 2015

| COLLISION TYPE YEAR: 2015                                                         | FATAL<br>CRASHES | NON-<br>FATAL<br>CRASHES | PROPERTY<br>DAMAGE<br>ONLY | CRASHES          | PEOPLE<br>KILLED | PEOPLE<br>INJURED | TRUCKS           | DRY<br>SURF      | WET<br>SURF      | DAY              | DARK             | INTER-<br>SECTION | INTER-<br>SECTION<br>RELATED |                  |
|-----------------------------------------------------------------------------------|------------------|--------------------------|----------------------------|------------------|------------------|-------------------|------------------|------------------|------------------|------------------|------------------|-------------------|------------------------------|------------------|
| FIXED / OTHER OBJECT<br>2015 TOTAL                                                | 0                | 1                        | 1                          | 2<br>2           | 0                | 1                 | 0<br>0           | 1                | 1                | 0<br>0           | 2<br>2           | 1                 | 0<br>0                       | 2<br>2           |
| YEAR: 2014 ANGLE REAR-END TURNING MOVEMENTS 2014 TOTAL                            | 0<br>0<br>0<br>0 | 1<br>0<br>1<br>2         | 0<br>2<br>4<br>6           | 1<br>2<br>5<br>8 | 0<br>0<br>0<br>0 | 1<br>0<br>1<br>2  | 0<br>0<br>0<br>0 | 1<br>1<br>3<br>5 | 0<br>0<br>2<br>2 | 0<br>2<br>5<br>7 | 1<br>0<br>0<br>1 | 1<br>1<br>3<br>5  | 0<br>0<br>0<br>0             | 0<br>0<br>0      |
| YEAR: 2013<br>FIXED / OTHER OBJECT<br>REAR-END<br>TURNING MOVEMENTS<br>2013 TOTAL | 0<br>0<br>0<br>0 | 1<br>0<br>1<br>2         | 0<br>2<br>1<br>3           | 1<br>2<br>2<br>5 | 0<br>0<br>0      | 1<br>0<br>1<br>2  | 0<br>0<br>0<br>0 | 1<br>2<br>2<br>5 | 0<br>0<br>0      | 1<br>2<br>2<br>5 | 0<br>0<br>0<br>0 | 0<br>2<br>2<br>4  | 0<br>0<br>0<br>0             | 1<br>0<br>0<br>1 |
| YEAR: 2012<br>ANGLE<br>PARKING MOVEMENTS<br>2012 TOTAL                            | 0<br>0<br>0      | 0<br>0<br>0              | 1<br>1<br>2                | 1<br>1<br>2      | 0<br>0<br>0      | 0<br>0<br>0       | 0<br>0<br>0      | 1<br>1<br>2      | 0<br>0<br>0      | 1<br>1<br>2      | 0<br>0<br>0      | 1<br>0<br>1       | 0<br>0<br>0                  | 0<br>0<br>0      |
| YEAR: 2011<br>ANGLE<br>REAR-END<br>TURNING MOVEMENTS<br>2011 TOTAL                | 0<br>0<br>0<br>0 | 0<br>1<br>1<br>2         | 1<br>0<br>0<br>1           | 1<br>1<br>1<br>3 | 0<br>0<br>0<br>0 | 0<br>1<br>2<br>3  | 0<br>0<br>0      | 0<br>1<br>0<br>1 | 0<br>0<br>1<br>1 | 1<br>1<br>1<br>3 | 0<br>0<br>0<br>0 | 1<br>1<br>1<br>3  | 0<br>0<br>0                  | 0<br>0<br>0<br>0 |
| FINAL TOTAL                                                                       | 0                | 7                        | 13                         | 20               | 0                | 8                 | 0                | 14               | 4                | 17               | 3                | 14                | 0                            | 3                |

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

#### URBAN NON-SYSTEM CRASH LISTING

PAGE: 1

#### Hayes St

January 1, 2011 through December 31, 2015

CITY OF WOODBURN, MARION COUNTY

|                                                                                                  |                                                           |                            |                                         | 11 11 1                                  | ,                        | ,                         | , , ,                                        |                 |                           |                             |                  |                       |                      |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------|-----------------------------------------|------------------------------------------|--------------------------|---------------------------|----------------------------------------------|-----------------|---------------------------|-----------------------------|------------------|-----------------------|----------------------|
| S D P R S W  SER# E A U C O DATE  INVEST E L G H R DAY/TIME FC  UNLOC? D C S L K LAT/LONG DISTNC | CITY STREET FIRST STREET SECOND STREET INTERSECTION SEQ # | RD CHAR<br>DIRECT<br>LOCTN | INT-TYP<br>(MEDIAN)<br>LEGS<br>(#LANES) | INT-REL OFF-<br>TRAF- RNDB<br>CONTL DRVW |                          | COLL TYP                  | SPCL USE<br>TRLR QTY<br>OWNER<br>V# VEH TYPE | FROM            | PRTC INJ<br>P# TYPE SVRTY | A S<br>G E LICNS<br>E X RES | PED<br>LOC ERROR | ACTN EVENT            | CAUSE                |
| 00394 N N N 02/03/2012 17<br>NONE Fri 3P 0<br>No 45 8 46.35 -122 52 14.94                        | CASCADE DR<br>W HAYES ST<br>1                             | INTER<br>CN<br>02          | CROSS<br>0                              | STOP SIGN                                | N CLR<br>N DRY<br>N DAY  | ANGL-OTH<br>ANGL<br>PDO   | 01 NONE 0<br>PRVTE<br>PSNGR CAR              | STRGHT<br>E W   | 01 DRVR NONE              | 87 M OR-Y<br>OR<25          | 097              | 000<br>000            | 03<br>00<br>00       |
|                                                                                                  |                                                           |                            |                                         |                                          |                          |                           |                                              | E W             | 01 DRVR NONE              | 75 F OR-Y<br>OR<25          | 097              | 000                   | 00<br>00             |
| 00153 N N N 01/16/2011 17<br>CITY Sun 1P 0<br>No 45 8 50.71 -122 52 32.62                        | EVERGREEN RD<br>HAYES ST<br>1                             | INTER<br>CN<br>04          | CROSS<br>0                              | STOP SIGN                                | N CLD<br>N WET<br>N DAY  | O-1 L-TURN<br>TURN<br>INJ | 01 NONE 0<br>PRVTE<br>PSNGR CAR              | S N             | 01 DRVR NONE              | 42 F OTH-Y<br>N-RES         | 021              | 000                   | 03<br>00<br>03       |
|                                                                                                  |                                                           |                            |                                         |                                          |                          |                           | 02 NONE 0<br>PRVTE<br>PSNGR CAR              | TURN-L<br>N E   | 01 DRVR INJC              | OR<25                       | 000              | 015<br>000            | 00                   |
| 01321 N N N 04/16/2014 17<br>NO RPT Wed 9P 0<br>No 45 8 50.61 -122 52 32.71                      | EVERGREEN RD<br>HAYES ST<br>1                             | INTER<br>CN<br>04          | 3-LEG<br>0                              | STOP SIGN                                | N CLR<br>N DRY<br>N DLIT | ANGL-OTH<br>ANGL<br>INJ   | 01 NONE 0<br>PRVTE<br>PSNGR CAR              | S N             | 02 PSNG INJB 01 DRVR NONE |                             | 000              | 000                   | 00<br>03<br>00<br>03 |
|                                                                                                  |                                                           |                            |                                         |                                          |                          |                           | 02 NONE 0<br>PRVTE<br>PSNGR CAR              | W E             | 01 DRVR INJB              | 43 F OR-Y OR<25             | 000              | 000<br>000            | 00<br>00             |
| 00676 N N N 02/03/2011 19<br>NONE Thu 3P 0<br>No 45 8 42.64 -122 51 35.76                        | HAYES ST<br>5TH ST<br>1                                   | INTER<br>CN<br>02          | CROSS<br>0                              | STOP SIGN                                | N UNK<br>N UNK<br>N DAY  | ANGL-OTH<br>ANGL<br>PDO   | 01 NONE 0<br>PRVTE<br>PSNGR CAR              | SE NW           | 01 DRVR NONE              | 74 F OR-Y<br>OR<25          | 000              | 000                   | 02<br>00<br>00       |
|                                                                                                  |                                                           |                            |                                         |                                          |                          |                           | 02 NONE 0<br>PRVTE<br>PSNGR CAR              | SW NE           | 01 DRVR NONE              | 54 F OR-Y<br>OR<25          | 028              | 015<br>000            | 00<br>02             |
| 00097 N N N N N 01/11/2015 17 CITY Sun 2A 48 No 45 8 47.64 -122 52 22.94                         | HAYES ST<br>CLACKAMAS CIR<br>1                            | STRGHT<br>SE<br>05         | (NONE)                                  | NONE                                     | Y FOG<br>N WET<br>N DLIT | FIX OBJ<br>FIX<br>INJ     | 01 NONE 0<br>PRVTE<br>PSNGR CAR              | STRGHT<br>NW SE | 01 DRVR INJC              | 31 M OR-Y OR<25             | 081              | 091<br>000 091<br>028 | 17<br>00<br>17       |
| 00201 N N N Y 01/20/2014 17<br>NO RPT Mon 4P 224<br>No 45 8 46.17 -122 52 1.89                   | HAYES ST<br>COZY WAY<br>1                                 | ALLEY<br>W<br>07           | (NONE)                                  | UNKNOWN                                  | N CLR<br>N DRY<br>N DAY  | S-OTHER<br>TURN<br>INJ    | 01 NONE 0<br>PRVTE<br>PSNGR CAR              | E S             | 01 DRVR INJC              | 22 F OR-Y<br>OR<25          | 019,042          | 019<br>000            | 29<br>00<br>29       |
|                                                                                                  |                                                           |                            |                                         |                                          |                          |                           | 02 NONE 0<br>PRVTE<br>PSNGR CAR              | E S             | 01 DRVR NONE              | 70 M OR-Y<br>OR<25          | 000              | 019<br>000            | 00<br>00             |

#### 9/6/2017 PAGE: 2 OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION

TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

#### URBAN NON-SYSTEM CRASH LISTING

Hayes St

| S D                                                      |                                                           |                            |                                         | -                        | , .            | ,               | ,                                            |               |               |                             |         |            |       |
|----------------------------------------------------------|-----------------------------------------------------------|----------------------------|-----------------------------------------|--------------------------|----------------|-----------------|----------------------------------------------|---------------|---------------|-----------------------------|---------|------------|-------|
| P R S W SER# E A U C O DATE INVEST E L G H R DAY/TIME FC | CITY STREET FIRST STREET SECOND STREET INTERSECTION SEQ # | RD CHAR<br>DIRECT<br>LOCTN | INT-TYP<br>(MEDIAN)<br>LEGS<br>(#LANES) | INT-REL OFF<br>TRAF- RND |                | COLL TYP        | SPCL USE<br>TRLR QTY<br>OWNER<br>V# VEH TYPE | FROM          |               | A S<br>G E LICNS<br>E X RES |         | ACTN EVENT | CAUSE |
| 00785 N N N 03/04/2012 16                                | HAYES ST                                                  | STRGHT                     |                                         | N                        | N CLR          | PRKD MV         | 01 NONE 0                                    | PARKNG        |               |                             |         |            | 02    |
| NONE Sun 11A 69                                          | FRONT ST                                                  | NE                         | (NONE)                                  | UNKNOWN                  | N DRY          | PARK            | PRVTE                                        | SW NE         |               |                             |         | 008        | 00    |
| No 45 8 34.58 -122 51 21.35                              | 1                                                         | 07                         |                                         |                          | N DAY          | PDO             | PSNGR CAR                                    |               | 01 DRVR NONE  | 48 M OR-Y                   | 018,028 | 000        | 02    |
|                                                          |                                                           |                            | (02)                                    |                          |                |                 |                                              |               |               | OR<25                       |         |            |       |
|                                                          |                                                           |                            |                                         |                          |                |                 | 02 NONE 0                                    | STRGHT        |               |                             |         |            |       |
|                                                          |                                                           |                            |                                         |                          |                |                 | PRVTE                                        | SW NE         |               |                             |         | 000        | 00    |
|                                                          |                                                           |                            |                                         |                          |                |                 | PSNGR CAR                                    |               | 01 DRVR NONE  |                             | 000     | 000        | 00    |
|                                                          |                                                           |                            |                                         |                          |                |                 |                                              |               |               | OR<25                       |         |            |       |
| 03141 N N N 09/14/2013 16                                | HAYES ST                                                  | INTER                      | CROSS                                   | N                        | N CLD          | S-1STOP         | 01 NONE 0                                    | STRGHT        |               |                             |         |            | 07    |
| CITY Sat 12P 0                                           | SETTLEMIER AVE                                            | NE                         |                                         | NONE                     | N DRY          | REAR            | PRVTE                                        | NE SW         |               |                             |         | 000        | 00    |
| No 45 8 44.61 -122 51 39.01                              | 1                                                         | 06                         | 0                                       |                          | N DAY          | PDO             | PSNGR CAR                                    |               | 01 DRVR NONE  |                             | 026     | 000        | 07    |
|                                                          |                                                           |                            |                                         |                          |                |                 |                                              |               |               | OR<25                       |         |            |       |
|                                                          |                                                           |                            |                                         |                          |                |                 | 02 NONE 0                                    |               |               |                             |         | 010        | 00    |
|                                                          |                                                           |                            |                                         |                          |                |                 | PRVTE<br>PSNGR CAR                           | NE SW         | 01 DRVR NONE  | 47 F OR-V                   | 000     | 012<br>000 | 00    |
|                                                          |                                                           |                            |                                         |                          |                |                 | F SNGIN CAIN                                 |               | OI DRVK NONE  | 0R<25                       | 000     | 000        | 00    |
| 00871 NNNNN 03/17/2014 16                                | HAVEC CH                                                  | TMEED                      | CROSS                                   | N                        | N CID          | c 1cmon         | 01 NONE 0                                    | CMDCIIM       |               |                             |         |            | 07    |
| CITY Mon 5P 0                                            | HAYES ST<br>SETTLEMIER AVE                                | INTER<br>NE                | CRUSS                                   | N<br>STOP SIGN           | N CLR<br>N DRY | S-1STOP<br>REAR | PRVTE                                        | NE SW         |               |                             |         | 000        | 00    |
| No 45 8 44.63 -122 51 38.96                              | 1                                                         | 06                         | 0                                       | 0101 0101                | N DAY          | PDO             | PSNGR CAR                                    |               | 01 DRVR NONE  | 41 M OR-Y                   | 026     | 000        | 07    |
|                                                          |                                                           |                            |                                         |                          |                |                 |                                              |               |               | OR<25                       |         |            |       |
|                                                          |                                                           |                            |                                         |                          |                |                 | 02 NONE 0                                    | STOP          |               |                             |         |            |       |
|                                                          |                                                           |                            |                                         |                          |                |                 | PRVTE                                        | NE SW         |               |                             |         | 012        | 00    |
|                                                          |                                                           |                            |                                         |                          |                |                 | PSNGR CAR                                    |               | 01 DRVR NONE  | 24 F OR-Y                   | 000     | 000        | 00    |
|                                                          |                                                           |                            |                                         |                          |                |                 |                                              |               | 00            | OR<25                       | 000     | 000        | 0.0   |
|                                                          |                                                           |                            |                                         |                          |                |                 |                                              |               | 02 PSNG NO<5  | 01 M                        | 000     | 000        | 00    |
| 02138 N N N 06/28/2013 16                                | HAYES ST                                                  | INTER                      | 3-LEG                                   |                          | N CLR          | S-1STOP         | 01 NONE 0                                    |               |               |                             |         |            | 07    |
| NONE Fri 3P 0                                            | SETTLEMIER AVE                                            | SW                         |                                         | UNKNOWN                  | N DRY          | REAR            | PRVTE                                        | SW NE         |               |                             |         | 000        | 00    |
| No 45 8 45.75 -122 51 38.62                              | 1                                                         | 06                         | 0                                       |                          | N DAY          | PDO             | PSNGR CAR                                    |               | 01 DRVR NONE  | 40 M OR-Y<br>OR<25          | 026     | 000        | 07    |
|                                                          |                                                           |                            |                                         |                          |                |                 |                                              |               |               | OR<25                       |         |            |       |
|                                                          |                                                           |                            |                                         |                          |                |                 | 02 NONE 0<br>PRVTE                           | STOP<br>SW NE |               |                             |         | 012        | 00    |
|                                                          |                                                           |                            |                                         |                          |                |                 | PSNGR CAR                                    | SW NE         | 01 DRVR NONE  | 22 F OR-V                   | 000     | 000        | 00    |
|                                                          |                                                           |                            |                                         |                          |                |                 | I BIVOIC CAIC                                |               | OI DIVIN NONE | OR<25                       | 000     | 000        | 00    |
| 00416 Y N N N N 02/06/2014 16                            | HAYES ST                                                  | INTER                      | 3-LEG                                   | N                        | N SNOW         | ANGL-STP        | 01 NONE 0                                    | TIIDM_D       |               |                             |         | 124        | 01    |
| CITY Thu 4P 0                                            | SETTLEMIER AVE                                            | NM                         | J-TEG                                   | STOP SIGN                | N SNOW         | TURN            | PRVTE                                        | NE NW         |               |                             |         | 000 124    | 00    |
| No 45 8 45.72 -122 51 38.66                              | 2                                                         | 06                         | 0                                       |                          | N DAY          | PDO             | PSNGR CAR                                    |               | 01 DRVR NONE  | 42 M OR-Y                   | 047,080 | 017        | 01    |
|                                                          |                                                           |                            |                                         |                          |                |                 |                                              |               |               | OR<25                       |         |            |       |
|                                                          |                                                           |                            |                                         |                          |                |                 | 02 NONE 0                                    | STOP          |               |                             |         |            |       |
|                                                          |                                                           |                            |                                         |                          |                |                 | PRVTE                                        |               |               |                             |         | 011        | 00    |
|                                                          |                                                           |                            |                                         |                          |                |                 | PSNGR CAR                                    |               | 01 DRVR NONE  | 47 F OR-Y                   | 000     | 000        | 00    |
|                                                          |                                                           |                            |                                         |                          |                |                 |                                              |               |               | OR<25                       |         |            |       |
| 01186 N N N Y 04/13/2014 16                              | HAYES ST                                                  | INTER                      | CROSS                                   | N                        | N CLR          | O-1 L-TURN      | 01 NONE 0                                    | STRGHT        |               |                             |         |            | 02    |
| CITY Sun 6P 0                                            | SETTLEMIER AVE                                            | CN                         |                                         | STOP SIGN                |                |                 | PRVTE                                        |               |               |                             |         | 000        | 00    |
| No 45 8 44.63 -122 51 38.96                              | 1                                                         | 01                         | 0                                       |                          | N DAY          | PDO             | PSNGR CAR                                    |               | 01 DRVR NONE  |                             | 000     | 000        | 00    |
|                                                          |                                                           |                            |                                         |                          |                |                 |                                              |               |               | OR<25                       |         |            |       |

## OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

URBAN NON-SYSTEM CRASH LISTING

#### Hayes St

|            | S D                    |                      |              |                                  |                 |                  |              |                |                   |                      |            |      |         |        |                      |           |            |          |
|------------|------------------------|----------------------|--------------|----------------------------------|-----------------|------------------|--------------|----------------|-------------------|----------------------|------------|------|---------|--------|----------------------|-----------|------------|----------|
| "          | P RSW                  |                      |              | CITY STREET                      |                 | INT-TYP          |              |                |                   | SPCL USE             |            |      |         |        |                      |           |            |          |
|            | EAUCO                  |                      | EC           | FIRST STREET                     | RD CHAR         |                  | INT-REL OFF- |                |                   | TRLR QTY             |            |      | DDMC :  | T N T  | A S                  | DED       |            |          |
|            | E L G H R<br>D C S L K |                      | FC<br>DISTNC | SECOND STREET INTERSECTION SEQ # | DIRECT<br>LOCTN | LEGS<br>(#LANES) | TRAF- RNDI   |                | COLL TYP<br>SVRTY | OWNER<br>V# VEH TYPE | FROM<br>TO | P#   |         |        | G E LICNS<br>E X RES |           | ACTN EVENT | CAUSE    |
| 0112001    | D O D E R              | DAT/ DOIVO           | DIGING       | INTERCEDITION DEQ                | 200111          | (    DIIIVDO )   | 001112 21111 |                | . 571111          | VII VBII 1111        |            | ± 11 | 11111   | OVICE  | 2 11 1(110           | EGG ERROR | MOIN BVBNI | CHOOL    |
|            |                        |                      |              |                                  |                 |                  |              |                |                   | 02 NONE 0            | TURN-L     |      |         |        |                      |           |            |          |
|            |                        |                      |              |                                  |                 |                  |              |                |                   | PRVTE                | SW NW      |      |         |        |                      |           | 000        | 00       |
|            |                        |                      |              |                                  |                 |                  |              |                |                   | PSNGR CAR            |            | 01   | DRVR 1  | NONE   | 22 F N-VAL           | 004,028   | 000        | 02       |
|            |                        |                      |              |                                  |                 |                  |              |                |                   |                      |            |      |         |        | OR<25                |           |            |          |
| 03655      | NNNY                   | 10/17/2014           | 16           | HAYES ST                         | INTER           | CROSS            | N            | N RATN         | O-1 L-TURN        | 01 NONE 0            | TURN-I     |      |         |        |                      |           |            | 02       |
| CITY       |                        |                      | 0            | SETTLEMIER AVE                   | CN              |                  |              | N WET          | TURN              | PRVTE                | NW NE      |      |         |        |                      |           | 000        | 00       |
| No         | 45 8 45.72             | -122 51 38           | .66          | 1                                | 02              | 1                |              | Y DAY          | PDO               | PSNGR CAR            |            | 01   | DRVR 1  | NONE   | 33 F NONE            | 000       | 000        | 00       |
|            |                        |                      |              |                                  |                 |                  |              |                |                   |                      |            |      |         |        | OR<25                |           |            |          |
|            |                        |                      |              |                                  |                 |                  |              |                |                   | 02 NONE 0            | TIIDM_T    |      |         |        |                      |           |            |          |
|            |                        |                      |              |                                  |                 |                  |              |                |                   | PRVTE                | SE SW      |      |         |        |                      |           | 018        | 00       |
|            |                        |                      |              |                                  |                 |                  |              |                |                   | PSNGR CAR            | 02 0       |      | DRVR 1  | NONE.  | 25 F OR-Y            | 028       | 000        | 02       |
|            |                        |                      |              |                                  |                 |                  |              |                |                   | 1011011 01111        |            | 0.1  | 211111  | .,01,2 | OR<25                | 020       |            | 0.2      |
|            |                        |                      |              |                                  |                 |                  |              |                |                   |                      |            | 02   | PSNG 1  | NO<5   |                      | 000       | 000        | 00       |
| 04.655     |                        | 05/05/0011           | 1.0          |                                  |                 | 0                |              |                |                   | 0.1                  |            |      |         |        |                      |           |            | 0.5      |
| 01675      | N N N                  | 05/25/2011           |              | HAYES ST                         | INTER           | 3-LEG            |              | N CLD          | S-1STOP           | 01 NONE 0            |            |      |         |        |                      |           | 000        | 07       |
| CITY<br>No | 15 0 15 70             | Wed 5P<br>-122 51 38 | 0            | SETTLEMIER AVE                   | CN<br>03        | 0                | UNKNOWN      | N DRY<br>N DAY | REAR<br>INJ       | PRVTE<br>PSNGR CAR   | NE SW      | 0.1  | ו מזממ  | NONE   | 17 F OR-Y            | 026       | 000        | 00<br>07 |
| NO         | 45 0 45.70             | -122 31 30           | .01          | ī                                | 0.5             | U                |              | N DAI          | INU               | PSNGR CAR            |            | 01   | DRVR I  | NONE   | 0R<25                | 026       | 000        | 0 /      |
|            |                        |                      |              |                                  |                 |                  |              |                |                   |                      |            |      |         |        | 01(12)               |           |            |          |
|            |                        |                      |              |                                  |                 |                  |              |                |                   | 02 NONE 0            |            |      |         |        |                      |           |            |          |
|            |                        |                      |              |                                  |                 |                  |              |                |                   | PRVTE                | NE SW      |      |         |        |                      |           | 011        | 00       |
|            |                        |                      |              |                                  |                 |                  |              |                |                   | PSNGR CAR            |            | 01   | DRVR :  | INJC   | 52 F OR-Y            | 000       | 000        | 00       |
|            |                        |                      |              |                                  |                 |                  |              |                |                   |                      |            |      |         |        | OR<25                |           |            |          |
| 03105      | N N N                  | 09/08/2014           | 17           | HAYES ST                         | STRGHT          |                  | N            | N CLR          | S-1STOP           | 01 NONE 0            | STRGHT     |      |         |        |                      |           |            | 07       |
| NONE       |                        | Mon 7A               | 78           | SMITH DR                         | W               | (NONE)           | UNKNOWN      | N UNK          | REAR              | PRVTE                | W E        |      |         |        |                      |           | 000        | 00       |
| No         | 45 8 46.00             | -122 51 54           | .26          | 1                                | 08              |                  |              | N DAY          | PDO               | PSNGR CAR            |            | 01   | DRVR 1  | NONE   | 20 F OR-Y            | 026       | 000        | 07       |
|            |                        |                      |              |                                  |                 | (02)             |              |                |                   |                      |            |      |         |        | OR<25                |           |            |          |
|            |                        |                      |              |                                  |                 |                  |              |                |                   | 02 UNKN 0            | STOP       |      |         |        |                      |           |            |          |
|            |                        |                      |              |                                  |                 |                  |              |                |                   | UNKN                 | W E        |      |         |        |                      |           | 011        | 00       |
|            |                        |                      |              |                                  |                 |                  |              |                |                   | UNKNOWN              |            | 01   | DRVR 1  | NONE   | 00 U UNK             | 000       | 000        | 00       |
|            |                        |                      |              |                                  |                 |                  |              |                |                   |                      |            |      |         |        | UNK                  |           |            |          |
| 03309      | N N N                  | 09/25/2013           | 17           | HAYES ST                         | INTER           | 3-LEG            | N            | N CLR          | ANGL-OTH          | 01 NONE 0            | TURN-L     |      |         |        |                      |           |            | 02       |
| NO RPT     |                        |                      | 0            | SMITH DR                         | CN              |                  |              | N DRY          | TURN              | PRVTE                | s W        |      |         |        |                      |           | 015        | 00       |
| No         | 45 8 45.99             | -122 51 52           | .77          | 1                                | 01              | 0                |              | N DAY          | INJ               | PSNGR CAR            |            | 01   | DRVR 1  | NONE   | 18 M OR-Y            | 028       | 000        | 02       |
|            |                        |                      |              |                                  |                 |                  |              |                |                   |                      |            |      |         |        | OR<25                |           |            |          |
|            |                        |                      |              |                                  |                 |                  |              |                |                   | 02 NONE 0            | TIDN_T     |      |         |        |                      |           |            |          |
|            |                        |                      |              |                                  |                 |                  |              |                |                   | PRVTE                | E S        |      |         |        |                      |           | 000        | 00       |
|            |                        |                      |              |                                  |                 |                  |              |                |                   | PSNGR CAR            |            | 0.1  | DRVR -  | TNJB   | 53 F OTH-Y           | 000       | 000        | 00       |
|            |                        |                      |              |                                  |                 |                  |              |                |                   | 1011011 01111        |            | 0.1  | 211111  | -11.02 | N-RES                | 000       |            |          |
| 00015      |                        | 00/06/0016           | 1.7          |                                  |                 | 2                |              |                |                   | 01 200-              | am=        |      |         |        |                      |           |            | 0.0      |
|            |                        | 09/26/2013           |              | HAYES ST                         | INTER           |                  | N CHOD CICN  |                |                   | 01 NONE 0            |            |      |         |        |                      |           | 015        | 02       |
| CITY       |                        | Thu 6P -122 51 52    |              | SMITH DR<br>1                    | CN<br>02        |                  | STOP SIGN    | N DRY<br>N DAY |                   | PRVTE                |            | 0.1  | י פוזפח | NONE   | 18 M OR-Y            | 028       | 015<br>000 | 00<br>02 |
| INO        | 43 0 45.99             | -122 31 52           | • / /        | 1                                | UZ              | U                |              | N DAI          | FDO               | FONGK CAK            |            | UΙ   | אאערן   | NOINE  | 0R<25                | 020       | 000        | UZ       |
|            |                        |                      |              |                                  |                 |                  |              |                |                   |                      |            |      |         |        | UR\23                |           |            |          |
|            |                        |                      |              |                                  |                 |                  |              |                |                   | 02 NONE 0            |            |      |         |        |                      |           |            |          |
|            |                        |                      |              |                                  |                 |                  |              |                |                   | PRVTE                |            | 0.1  |         |        | 53 B 089             | 200       | 000        | 00       |
|            |                        |                      |              |                                  |                 |                  |              |                |                   | PSNGR CAR            |            | UΙ   | טאעא 1  | NONE   | 53 F OTH-Y           | 000       | 000        | 00       |
|            |                        |                      |              |                                  |                 |                  |              |                |                   |                      |            |      |         |        | N-RES                |           |            |          |

#### PAGE: 4

OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

URBAN NON-SYSTEM CRASH LISTING

Hayes St

| S D P R S W  SER# E A U C O DATE  INVEST E L G H R DAY/TIME FC  UNLOC? D C S L K LAT/LONG DISTNO | CITY STREET FIRST STREET SECOND STREET : INTERSECTION SEQ # | RD CHAR ( | INT-TYP<br>(MEDIAN)<br>LEGS<br>(#LANES) |           | FF-RD WTH<br>NDBT SUF<br>RVWY LIG | F COLL TYP | SPCL USE<br>TRLR QTY<br>OWNER<br>V# VEH TYPE | MOVE<br>FROM<br>TO | PRTC INJ<br>P# TYPE SVRTY | A S<br>G E LICNS<br>E X RES | PED<br>LOC ERROR | ACTN EVENT  | CAUSE |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------|-----------------------------------------|-----------|-----------------------------------|------------|----------------------------------------------|--------------------|---------------------------|-----------------------------|------------------|-------------|-------|
| 01934 N N N Y 06/11/2014 17                                                                      | W HAYES ST                                                  | ALLEY     |                                         | N         | N CLF                             | S-1TURN    | 01 NONE 0                                    | STRGHT             |                           |                             |                  |             | 06    |
| CITY Wed 2P 482                                                                                  | CASCADE DR                                                  | E         | (NONE)                                  | NONE      | N DRY                             | TURN       | PRVTE                                        | E W                |                           |                             |                  | 000         | 00    |
| No 45 8 46.17 -122 52 8.09                                                                       | 1                                                           | 05        | (02)                                    |           | N DAY                             | PDO        | PSNGR CAR                                    |                    | 01 DRVR NONE              | 17 M OR-Y<br>OR<25          | 032              | 000         | 06    |
|                                                                                                  |                                                             |           |                                         |           |                                   |            | 02 NONE 0                                    | TURN-L             |                           |                             |                  |             |       |
|                                                                                                  |                                                             |           |                                         |           |                                   |            | PRVTE                                        | E S                |                           |                             |                  | 019         | 00    |
|                                                                                                  |                                                             |           |                                         |           |                                   |            | OTHER                                        |                    | 01 DRVR NONE              | 47 M OR-Y<br>OR<25          | 000              | 000         | 00    |
| 00639 N N N 02/20/2015 19                                                                        | W HAYES ST                                                  | INTER     | 3-LEG                                   | N         | Y CLF                             | FIX OBJ    | 01 NONE 0                                    | STRGHT             |                           |                             |                  | 062         | 16    |
| CITY Fri 2A 0                                                                                    | W HARVARD DR                                                | N         |                                         | STOP SIGN | N DRY                             | FIX        | PRVTE                                        | UN UN              |                           |                             |                  | 000 062     | 00    |
| No 45 8 50.64 -122 52 44.37                                                                      | 1                                                           | 06        | 0                                       |           | N DLI                             | T PDO      | PSNGR CAR                                    |                    | 01 DRVR NONE              | 30 F EXP<br>OR<25           | 081              | 025         | 16    |
| 03646 N N N N N 10/20/2013 19                                                                    | W HAYES ST                                                  | STRGHT    |                                         | N         | Y CLF                             | FIX OBJ    | 01 NONE 0                                    | STRGHT             |                           |                             |                  | 040,062     | 27    |
| CITY Sun 6P 300                                                                                  | W HARVARD DR                                                | E         | (NONE)                                  | UNKNOWN   | N DRY                             | FIX        | PRVTE                                        | E W                |                           |                             |                  | 000 040,062 | 00    |
| No 45 8 50.77 -122 52 39.82                                                                      | 1                                                           | 07        | (02)                                    |           | N DAY                             | INJ        | PSNGR CAR                                    |                    | 01 DRVR INJC              | 27 M NONE<br>OR<25          | 016,080,081      | 017         | 27    |
|                                                                                                  |                                                             |           |                                         |           |                                   |            |                                              |                    | 02 PSNG NO<5              | 04 M                        | 000              | 000         | 00    |

# OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CRASH SUMMARIES BY YEAR BY COLLISION TYPE

### Lincoln St & Front St

January 1, 2011 through December 31, 2015

| COLLISION TYPE | FATAL<br>CRASHES | NON-<br>FATAL<br>CRASHES | PROPERTY<br>DAMAGE<br>ONLY | TOTAL<br>CRASHES | PEOPLE<br>KILLED | PEOPLE<br>INJURED | TRUCKS | DRY<br>SURF | WET<br>SURF | DAY | DARK | INTER-<br>SECTION | INTER-<br>SECTION<br>RELATED | OFF-<br>ROAD |
|----------------|------------------|--------------------------|----------------------------|------------------|------------------|-------------------|--------|-------------|-------------|-----|------|-------------------|------------------------------|--------------|
| YEAR: 2015     | 0.0.020          |                          |                            | 000              |                  |                   |        |             |             |     | 2,   | 020               |                              |              |
| ANGLE          | 0                | 0                        | 1                          | 1                | 0                | 0                 | 0      | 1           | 0           | 1   | 0    | 1                 | 0                            | 0            |
| 2015 TOTAL     | 0                | 0                        | 1                          | 1                | 0                | 0                 | 0      | 1           | 0           | 1   | 0    | 1                 | 0                            | 0            |
| YEAR: 2012     |                  |                          |                            |                  |                  |                   |        |             |             |     |      |                   |                              |              |
| ANGLE          | 0                | 0                        | 1                          | 1                | 0                | 0                 | 0      | 1           | 0           | 1   | 0    | 1                 | 0                            | 0            |
| REAR-END       | Ö                | 1                        | 0                          | 1                | 0                | 1                 | Ö      | 0           | 1           | 0   | 1    | 1                 | Ö                            | Ö            |
| 2012 TOTAL     | 0                | 1                        | 1                          | 2                | 0                | 1                 | 0      | 1           | 1           | 1   | 1    | 2                 | 0                            | 0            |
| YEAR: 2011     |                  |                          |                            |                  |                  |                   |        |             |             |     |      |                   |                              |              |
| ANGLE          | 0                | 2                        | 0                          | 2                | 0                | 3                 | 0      | 2           | 0           | 1   | 1    | 2                 | 0                            | 0            |
| 2011 TOTAL     | 0                | 2                        | 0                          | 2                | 0                | 3                 | 0      | 2           | 0           | 1   | 1    | 2                 | 0                            | 0            |
| FINAL TOTAL    | 0                | 3                        | 2                          | 5                | 0                | 4                 | 0      | 4           | 1           | 3   | 2    | 5                 | 0                            | 0            |

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

#### PAGE: 1

### OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT URBAN NON-SYSTEM CRASH LISTING

#### Lincoln St & Front St

| S D P R S W  SER# E A U C O DATE  INVEST E L G H R DAY/TIME FC  UNLOC? D C S L K LAT/LONG DISTNO | CITY STREET FIRST STREET SECOND STREET C INTERSECTION SEQ # | RD CHAR<br>DIRECT<br>LOCTN | LEGS       | INT-REL OFF<br>TRAF- RND<br>CONTL DRV | BT SURF                  | COLL TYP                | SPCL USE<br>TRLR QTY<br>OWNER<br>V# VEH TYPE | FROM          | PRTC INJ<br>P# TYPE SVRTY | A S<br>G E LICNS<br>E X RES |         | ACTN EVENT                | CAUSE                |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------|------------|---------------------------------------|--------------------------|-------------------------|----------------------------------------------|---------------|---------------------------|-----------------------------|---------|---------------------------|----------------------|
| 04338 N N N N 12/18/2012 17<br>CITY Tue 7A 0<br>No 45 8 37.96 -122 51 17.19                      | FRONT ST<br>LINCOLN ST<br>1                                 | INTER<br>SW<br>06          | CROSS<br>0 | N<br>STOP SIGN                        | N CLD<br>N WET<br>N DAWN | S-1STOP<br>REAR<br>INJ  | 01 NONE 0<br>PRVTE<br>PSNGR CAR              | SW NE         | 01 DRVR NONE              | 26 M OTH-Y<br>N-RES         | 017,026 | 013<br>000<br>000         | 10<br>00<br>10       |
|                                                                                                  |                                                             |                            |            |                                       |                          |                         | 02 NONE 0<br>PRVTE<br>PSNGR CAR              | SW NE         | 01 DRVR NONE              | 24 F OR-Y<br>OR<25          | 000     | 011 013<br>000            | 00                   |
|                                                                                                  |                                                             |                            |            |                                       |                          |                         | 03 NONE 0<br>PRVTE<br>PSNGR CAR              | SW NE         | 01 DRVR INJC              | 51 M OR-Y<br>OR>25          | 000     | 022<br>000                | 00                   |
| 02629 N Y N 08/13/2011 16 CITY Sat 3A 0 No 45 8 37.97 -122 51 17.17                              | FRONT ST<br>LINCOLN ST<br>1                                 | INTER<br>CN<br>01          | CROSS<br>0 | N<br>STOP SIGN                        | N CLD<br>N DRY<br>N DLIT | ANGL-OTH<br>ANGL<br>INJ | 01 NONE 0<br>PRVTE<br>PSNGR CAR              | NE SW         | 01 DRVR NONE              | 20 M OR-Y<br>OR<25          | 051,021 | 040,062,100<br>000<br>000 | 33,03<br>00<br>33,03 |
|                                                                                                  |                                                             |                            |            |                                       |                          |                         | 02 NONE 0<br>PRVTE<br>PSNGR CAR              | STRGHT<br>E W | 01 DRVR INJB 02 PSNG INJB | OR<25                       | 000     | 000<br>000                | 00                   |
| 00113 N N N 01/11/2012 16<br>NO RPT Wed 11A 0<br>No 45 8 37.96 -122 51 17.19                     | FRONT ST<br>LINCOLN ST<br>1                                 | INTER<br>CN<br>02          | CROSS<br>0 | N<br>STOP SIGN                        | N CLR<br>N DRY<br>N DAY  | ANGL-OTH<br>ANGL<br>PDO | 01 NONE 0<br>PRVTE<br>PSNGR CAR              | SW NE         | 01 DRVR NONE              |                             | 000     | 000                       | 02<br>00<br>00       |
|                                                                                                  |                                                             |                            |            |                                       |                          |                         | 02 NONE 0<br>PRVTE<br>PSNGR CAR              | NW SE         | 01 DRVR NONE              | 63 M OR-Y<br>OR<25          | 028     | 015<br>000                | 00<br>02             |
| 01519 N N N N N 04/26/2015 16<br>CITY Sun 9A 0<br>No 45 8 37.92 -122 51 17.14                    | FRONT ST<br>LINCOLN ST<br>1                                 | INTER<br>CN<br>03          | CROSS<br>0 |                                       | N CLR<br>N DRY<br>N DAY  | ANGL-OTH<br>ANGL<br>PDO | 01 NONE 0<br>PRVTE<br>PSNGR CAR              | NW SE         | 01 DRVR NONE              | 46 M OR-Y<br>OR<25          | 000     | 000                       | 02<br>00<br>00       |
|                                                                                                  |                                                             |                            |            |                                       |                          |                         | 02 NONE 0<br>PRVTE<br>PSNGR CAR              | NE SW         | 01 DRVR NONE              | 25 F OR-Y<br>OR<25          | 000     | 000                       | 00                   |
| 01818 N N N N N 06/06/2011 16<br>CITY Mon 9A 0<br>No 45 8 37.97 -122 51 17.17                    | FRONT ST<br>LINCOLN ST<br>1                                 | INTER<br>CN<br>04          | CROSS<br>0 | N<br>STOP SIGN                        |                          | ANGL                    | 01 NONE 0<br>PRVTE<br>PSNGR CAR              | NW SE         | 01 DRVR NONE              | 32 M OR-Y<br>OR<25          | 000     | 015<br>000                | 03<br>00<br>00       |
|                                                                                                  |                                                             |                            |            |                                       |                          |                         | 02 NONE 0<br>PRVTE<br>PSNGR CAR              | SW NE         | 01 DRVR INJC              | 21 F OTH-Y<br>N-RES         | 021     | 000                       | 00<br>03             |

# OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CRASH SUMMARIES BY YEAR BY COLLISION TYPE

#### Lincoln St & OR 99E

January 1, 2011 through December 31, 2015

| COLLISION TYPE YEAR: 2015                     | FATAL<br>CRASHES | NON-<br>FATAL<br>CRASHES | PROPERTY<br>DAMAGE<br>ONLY | TOTAL<br>CRASHES | PEOPLE<br>KILLED | PEOPLE<br>INJURED | TRUCKS | DRY<br>SURF | WET<br>SURF | DAY         | DARK | INTER-<br>SECTION | INTER-<br>SECTION<br>RELATED |        |
|-----------------------------------------------|------------------|--------------------------|----------------------------|------------------|------------------|-------------------|--------|-------------|-------------|-------------|------|-------------------|------------------------------|--------|
| TURNING MOVEMENTS<br>2015 TOTAL               | 0                | 0                        | 1                          | 1                | 0                | 0                 | 0<br>0 | 0<br>0      | 1           | 0<br>0      | 1    | 1                 | 0<br>0                       | 0<br>0 |
| YEAR: 2014 PEDESTRIAN REAR-END 2014 TOTAL     | 0 0              | 1<br>1<br>2              | 0 0                        | 1<br>1<br>2      | 0 0              | 1<br>1<br>2       | 0 0    | 1<br>1<br>2 | 0<br>0<br>0 | 1<br>1<br>2 | 0 0  | 1<br>1<br>2       | 0 0                          | 0 0    |
| YEAR: 2013<br>TURNING MOVEMENTS<br>2013 TOTAL | 0 0              | 1                        | 2 2                        | 3 3              | 0                | 2<br>2            | 0      | 1           | 2 2         | 2 2         | 1    | 3                 | 0 0                          | 0      |
| YEAR: 2012<br>REAR-END<br>2012 TOTAL          | 0                | 1                        | 1<br>1                     | 2 2              | 0                | 2 2               | 2 2    | 1<br>1      | 1<br>1      | 1<br>1      | 1    | 2 2               | 0<br>0                       | 0      |
| YEAR: 2011<br>REAR-END<br>2011 TOTAL          | 0                | 1                        | 1<br>1                     | 2 2              | 0                | 2 2               | 0      | 2<br>2      | 0           | 2 2         | 0    | 2<br>2            | 0<br>0                       | 0      |
| FINAL TOTAL                                   | 0                | 5                        | 5                          | 10               | 0                | 8                 | 2      | 6           | 4           | 7           | 3    | 10                | 0                            | 0      |

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

## OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CONTINUOUS SYSTEM CRASH LISTING

081 PACIFIC HIGHWAY EAST

#### Lincoln St & OR 99E January 1, 2011 through December 31, 2015

S D P R S W RD# FC CONN # INT-TYP SPCL USE

| P R S W  SER# E A U C O DATE COUNTY INVEST E L G H R DAY/TIME CITY UNLOC? D C S L K LAT/LONG URBAN AREA | RD# FC CONN # CMPT/MLG FIRST STREET MILEPNT SECOND STREET LRS INTERSECTION SEQ# | RD CHAR (MEI<br>DIRECT I | LEGS TRAF- R         | FFRD WTHR CRASH TY<br>NDBT SURF COLL TYP<br>RVWY LIGHT SVRTY | OWNER FROM       |              | A S<br>G E LICNS PED<br>E X RES LOC ERROR | ACTN EVENT | CAUSE    |
|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------|----------------------|--------------------------------------------------------------|------------------|--------------|-------------------------------------------|------------|----------|
| 01142 N N N 04/11/2011 MARION NONE Mon 8A WOODBURN                                                      | 1 14<br>MN 0 LINCOLN ST                                                         |                          | ROSS N<br>TRF SIGNAL |                                                              | 01 NONE 0 STRGHT |              |                                           | 000        | 07<br>00 |
|                                                                                                         |                                                                                 |                          |                      |                                                              |                  |              | 00 7 07 "                                 |            | 07       |
| WOODBURN UA<br>No 45 8 33.48 -122 50 20.08                                                              | 32.41 PACIFIC HY 99E 008100100S00 1                                             | 06                       | 0                    | N DAY PDO                                                    | PSNGR CAR        | UI DRVR NONE | 20 F OR-Y 026<br>OR<25                    | 000        | 0 /      |
|                                                                                                         |                                                                                 |                          |                      |                                                              | 02 NONE 0 STOP   |              |                                           |            |          |
|                                                                                                         |                                                                                 |                          |                      |                                                              | PRVTE NE SW      |              |                                           | 011        | 00       |
|                                                                                                         |                                                                                 |                          |                      |                                                              | PSNGR CAR        | 01 DRVR NONE | 31 M OR-Y 000<br>OR>25                    | 000        | 00       |
| 04507 N N N 12/31/2012 MARION                                                                           | 1 14                                                                            | INTER C                  | ROSS N               | N CLD S-1STOP                                                | 01 NONE 0 STRGHT | י            |                                           |            | 07       |
| CITY Mon 11A WOODBURN                                                                                   | MN 0 LINCOLN ST                                                                 |                          | TRF SIGNAL           |                                                              | PRVTE NE SW      |              |                                           | 000        | 00       |
| WOODBURN UA<br>No 45 8 33.48 -122 50 20.08                                                              | 32.41 PACIFIC HY 99E 008100100S00 1                                             |                          | 0                    |                                                              | PSNGR CAR        | 01 DRVR NONE | 34 F OR-Y 026<br>OR<25                    | 000        | 07       |
|                                                                                                         |                                                                                 |                          |                      |                                                              | 02 NONE 1 STOP   |              |                                           |            |          |
|                                                                                                         |                                                                                 |                          |                      |                                                              | PRVTE NE SW      |              |                                           | 011        | 00       |
|                                                                                                         |                                                                                 |                          |                      |                                                              | SEMI TOW         | 01 DRVR NONE | 31 M OR-Y 000<br>OR<25                    | 000        | 00       |
| 03475 N N N N N 10/06/2014 MARION                                                                       | 1 14                                                                            | INTER C                  | ROSS N               | N CLR S-1STOP                                                | 01 NONE 0 STRGHT | Г            |                                           |            | 07       |
| CITY Mon 11A WOODBURN                                                                                   | MN 0 LINCOLN ST                                                                 | NE                       | TRF SIGNAL           | N DRY REAR                                                   | PRVTE NE SW      |              |                                           | 000        | 00       |
| WOODBURN UA<br>No 45 8 33.48 -122 50 20.08                                                              | 32.41 PACIFIC HY 99E 008100100800 1                                             | 06                       | 0                    | N DAY INJ                                                    | PSNGR CAR        |              | 91 M OR-Y 043,026<br>OR<25                | 000        | 07       |
|                                                                                                         |                                                                                 |                          |                      |                                                              |                  | 02 PSNG INJC | 58 F 000                                  | 000        | 00       |
|                                                                                                         |                                                                                 |                          |                      |                                                              | 02 UNKN 0 STOP   |              |                                           |            |          |
|                                                                                                         |                                                                                 |                          |                      |                                                              | UNKN NE SW       |              |                                           | 011        | 00       |
|                                                                                                         |                                                                                 |                          |                      |                                                              | UNKNOWN          | UI DRVR NONE | 00 U UNK 000                              | 000        | 00       |
| 01354 N N N 04/28/2011 MARION                                                                           | 1 14                                                                            | INTER C                  | ROSS N               | N CLR S-1STOP                                                | 01 NONE 0 STRGHT | Г            |                                           |            | 07       |
| NONE Thu 5P WOODBURN                                                                                    | MN 0 LINCOLN ST                                                                 | SW                       | UNKNOWN              | N DRY REAR                                                   | PRVTE NE SW      |              |                                           | 000        | 00       |
| WOODBURN UA<br>No 45 8 33.48 -122 50 20.08                                                              | 32.41 PACIFIC HY 99E 008100100S00 1                                             | 05                       | 0                    | Y DAY INJ                                                    | PSNGR CAR        | 01 DRVR NONE | 00 F OR-Y 026<br>OR<25                    | 000        | 07       |
|                                                                                                         |                                                                                 |                          |                      |                                                              | 02 NONE 0 STOP   |              |                                           |            |          |
|                                                                                                         |                                                                                 |                          |                      |                                                              | PRVTE NE SW      |              |                                           | 011        | 00       |
|                                                                                                         |                                                                                 |                          |                      |                                                              | PSNGR CAR        | 01 DRVR INJC | 33 F OR-Y 000<br>OR<25                    | 000        | 00       |
|                                                                                                         |                                                                                 |                          |                      |                                                              |                  | 02 PSNG INJC | 04 M 000                                  | 000        | 00       |
| 03639 N N N N N 10/16/2014 MARION                                                                       |                                                                                 |                          | ROSS N               | N CLD PED                                                    | 01 NONE 0 TURN-I |              |                                           |            | 02       |
| CITY Thu 7A WOODBURN                                                                                    | MN 0 LINCOLN ST                                                                 |                          | TRF SIGNAL           |                                                              | PRVTE E SW       |              |                                           | 000        | 00       |
| WOODBURN UA<br>No 45 8 33.48 -122 50 20.08                                                              | 32.41 PACIFIC HY 99E 008100100S00 1                                             | 05                       | 0                    | N DAY INJ                                                    | PSNGR CAR        | 01 DRVR NONE | 31 M OTH-Y 029<br>N-RES                   | 000        | 02       |
|                                                                                                         |                                                                                 |                          |                      |                                                              | STRGHT<br>W E    |              | 48 F 01 000                               | 000        | 00       |

081 PACIFIC HIGHWAY EAST

S D

### OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

CONTINUOUS SYSTEM CRASH LISTING

#### Lincoln St & OR 99E January 1, 2011 through December 31, 2015

P RSW RD# FC CONN # CMPT/MLG FIRST STREET RD CHAR (MEDIAN) INT-REL OFFRD WTHR CRASH TYP TRLR QTY MOVE SER# E A U C O DATE COUNTY A S PRTC INJ G E LICNS PED INVEST E L G H R DAY/TIME CITY MILEPNT SECOND STREET DIRECT LEGS TRAF- RNDBT SURF COLL TYP OWNER FROM INTERSECTION SEQ# V# VEH TYPE TO P# TYPE SVRTY E X RES LOC ERROR CAUSE UNLOC? D C S L K LAT/LONG URBAN AREA LOCTN (#LANES) CNTL DRVWY LIGHT SVRTY ACTN EVENT 00295 N N N 01/24/2012 MARION 1 14 INTER 07 CROSS N N RAIN S-1STOP 01 NONE 0 STRGHT NO RPT Tue 6A WOODBURN MN 0 LINCOLN ST TRF SIGNAL N WET REAR PRVTE 000 00 WOODBURN UA 32.41 PACIFIC HY 99E 0 N DLIT INJ PSNGR CAR 000 07 01 DRVR INJC 67 F OR-Y 45 8 33.48 -122 50 20.08 008100100S00 1 OR<25 02 NONE 0 STOP PRVTE SW NE 011 013 00 PSNGR CAR 01 DRVR INJB 26 F OR-Y 000 000 00 OR<25 03 NONE 1 STOP PRVTE SW NE 022 00 000 SEMI TOW 01 DRVR NONE 61 M OR-Y 000 00 00560 NNN 02/22/2013 MARION 1 14 INTER CROSS N N RAIN O-1 L-TURN 01 NONE 0 STRGHT 02 MN 0 LINCOLN ST Fri 7P WOODBURN CN TRF SIGNAL N WET TURN PRVTE NE SW 000 00 0 WOODBURN UA 32.41 PACIFIC HY 99E 01 N DLIT PDO PSNGR CAR 01 DRVR NONE 00 M UNK 000 000 00 45 8 33.48 -122 50 20.08 008100100S00 1 UNK 02 NONE 0 TURN-L PRVTE SW W 000 00 PSNGR CAR 01 DRVR NONE 27 M OR-Y 004,028 000 02 OR<25 03572 N N N N N 10/14/2013 MARION 1 14 INTER CROSS N N CLR O-1 L-TURN 01 NONE 0 STRGHT 02 TRF SIGNAL N DRY TURN MN 0 LINCOLN ST 00 Mon 3P WOODBURN CN PRVTE NE SW 000 WOODBURN UA 32.41 PACIFIC HY 99E 01 0 N DAY PDO PSNGR CAR 01 DRVR NONE 51 M OR-Y 000 00 45 8 33.48 -122 50 20.08 008100100S00 1 OR<25 02 NONE 0 TURN-L PRVTE SW W 000 0.0 PSNGR CAR 01 DRVR NONE 57 F OR-Y 004,028 000 02 OR<25 00267 N N N N N 01/25/2013 MARION 1 14 INTER CROSS N N CLD ANGL-OTH 01 NONE 0 STRGHT 04 Fri 11A WOODBURN MN 0 LINCOLN ST CN TRF SIGNAL N WET TURN PRVTE 000 00 WOODBURN UA 32.41 PACIFIC HY 99E 03 0 N DAY INJ PSNGR CAR 01 DRVR NONE 48 M SUSP 020 000 04 45 8 33.48 -122 50 20.08 008100100s00 1 OR<25 02 PSNG INJC 00 F 000 00 02 NONE 0 TURN-L PRVTE W NE 000 00 PSNGR CAR 01 DRVR INJC 59 M OR-Y 000 000 00 OR<25 04927 N N N N N 12/08/2015 MARION 1 14 INTER CROSS N N RAIN O-1 L-TURN 01 NONE 0 STRGHT 02 Tue 10P WOODBURN 0 LINCOLN ST CN TRF SIGNAL N WET TURN PRVTE 000 00 04 PSNGR CAR 00 WOODBURN UA 32.41 PACIFIC HY 99E 0 N DLIT PDO 01 DRVR NONE 56 M OR-Y 000 45 8 33.48 -122 50 20.08 008100100s00 1 OR<25

CDS380 9/6/2017 OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION PAGE: 3

TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

CONTINUOUS SYSTEM CRASH LISTING

081 PACIFIC HIGHWAY EAST Lincoln St & OR 99E January 1, 2011 through December 31, 2015

S D

RD# FC CONN # P RSW INT-TYP SPCL USE SER# E A U C O DATE CMPT/MLG FIRST STREET RD CHAR (MEDIAN) INT-REL OFFRD WTHR CRASH TYP TRLR QTY MOVE COUNTY A S INVEST E L G H R DAY/TIME CITY MILEPNT SECOND STREET DIRECT LEGS TRAF- RNDBT SURF COLL TYP OWNER FROM PRTC INJ G E LICNS PED UNLOC? D C S L K LAT/LONG URBAN AREA LRS INTERSECTION SEQ# LOCTN (#LANES) CNTL DRVWY LIGHT SVRTY V# VEH TYPE TO P# TYPE SVRTY E X RES LOC ERROR ACTN EVENT CAUSE

02 NONE 0 TURN-L PRVTE NE E 000 00 PSNGR CAR 02 01 DRVR NONE 24 M OR-Y 028,004 000

OR<25

# OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CRASH SUMMARIES BY YEAR BY COLLISION TYPE

Meridian Dr / 5th St & OR 214 January 1, 2011 through December 31, 2015

|                   | FATAL   | NON-<br>FATAL | PROPERTY<br>DAMAGE | TOTAL   | PEOPLE | PEOPLE  |        | DRY    | WET    |        |        | INTER-  | INTER-<br>SECTION | OFF- |
|-------------------|---------|---------------|--------------------|---------|--------|---------|--------|--------|--------|--------|--------|---------|-------------------|------|
| COLLISION TYPE    | CRASHES | CRASHES       | ONLY               | CRASHES | KILLED | INJURED | TRUCKS | SURF   | SURF   | DAY    | DARK   | SECTION | RELATED           |      |
| YEAR: 2015        |         |               |                    |         |        |         |        |        |        |        |        |         |                   |      |
| REAR-END          | 0       | 1             | 0                  | 1       | 0      | 3       | 0      | 0      | 1      | 1      | 0      | 1       | 0                 | 0    |
| 2015 TOTAL        | 0       | 1             | 0                  | 1       | 0      | 3       | 0      | 0      | 1      | 1      | 0      | 1       | 0                 | 0    |
| YEAR: 2014        |         |               |                    |         |        |         |        |        |        |        |        |         |                   |      |
| REAR-END          | 0       | 1             | 1                  | 2       | 0      | 1       | 0      | 1      | 1      | 2      | 0      | 2       | 0                 | 0    |
| 2014 TOTAL        | 0       | 1             | 1                  | 2<br>2  | 0<br>0 | 1       | 0<br>0 | 1      | 1      | 2<br>2 | 0<br>0 | 2<br>2  | 0<br>0            | 0    |
| YEAR: 2013        |         |               |                    |         |        |         |        |        |        |        |        |         |                   |      |
| REAR-END          | 0       | 0             | 1                  | 1       | 0      | 0       | 0      | 0      | 1      | 1      | 0      | 1       | 0                 | 0    |
| TURNING MOVEMENTS | 0       | 1             | 1                  | 2       | 0      | 1       | 0      |        | 0      | 2      | 0      | 2       | 0                 | 0    |
| 2013 TOTAL        | 0       | 1             | 2                  | 2       | 0      | 1       | 0      | 2<br>2 | 1      | 2<br>3 | 0      | 3       | 0                 | 0    |
| YEAR: 2012        |         |               |                    |         |        |         |        |        |        |        |        |         |                   |      |
| REAR-END          | 0       | 1             | 1                  | 2       | 0      | 1       | 0      | 2      | 0      | 2      | 0      | 2       | 0                 | 0    |
| 2012 TOTAL        | 0       | 1             | 1                  | 2       | 0      | 1       | 0<br>0 | 2<br>2 | 0<br>0 | 2<br>2 | 0      | 2<br>2  | 0                 | 0    |
| YEAR: 2011        |         |               |                    |         |        |         |        |        |        |        |        |         |                   |      |
| REAR-END          | 0       | 1             | 0                  | 1       | 0      | 2       | 0      | 1      | 0      | 1      | 0      | 1       | 0                 | 0    |
| 2011 TOTAL        | 0       | 1             | 0                  | 1       | 0      | 2<br>2  | 0      | 1      | 0      | 1      | 0      | 1       | 0                 | 0    |
| FINAL TOTAL       | 0       | 5             | 4                  | 9       | 0      | 8       | 0      | 6      | 3      | 9      | 0      | 9       | 0                 | 0    |

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

S D

## OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CONTINUOUS SYSTEM CRASH LISTING

140 HILLSBORO-SILVERTON

#### Meridian Dr / 5th St & OR 214 January 1, 2011 through December 31, 2015

| P R S W  SER# E A U C O DATE COUNTY  INVEST E L G H R DAY/TIME CITY  UNLOC? D C S L K LAT/LONG URBAN AREA | RD# FC CONN # CMPT/MLG FIRST STREET MILEPNT SECOND STREET LRS INTERSECTION SEQ# | RD CHAR (MEI<br>DIRECT 1 | LEGS TRAF- RI | FFRD WTHR CRASH TYP<br>NDBT SURF COLL TYP<br>RVWY LIGHT SVRTY | OWNER FROM                    | A S PRTC INJ G E LICNS PE TYPE SVRTY E X RES LO |             | ACTN EVENT | CAUSE          |
|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------|---------------|---------------------------------------------------------------|-------------------------------|-------------------------------------------------|-------------|------------|----------------|
| 03173 N N N N N 09/20/2012 MARION                                                                         | 1 14                                                                            |                          | CROSS N       | N CLR S-1STOP                                                 | 01 NONE 0 STRGHT              |                                                 |             |            | 07,27          |
| CITY Thu 3P WOODBURN                                                                                      |                                                                                 | NE                       | UNKNOWN       | N DRY REAR                                                    | PRVTE NE SW                   |                                                 |             | 000        | 00             |
| WOODBURN UA<br>No 45 9 1.51 -122 51 15.64                                                                 | 38.13 MERIDIAN DR<br>014000100S00 1                                             | 06                       | 0             | N DAY INJ                                                     | PSNGR CAR                     | 01 DRVR NONE 17 M OR-Y<br>OR<25                 | 043,016,026 | 000        | 07,27          |
|                                                                                                           |                                                                                 |                          |               |                                                               | 02 NONE 0 STOP                |                                                 |             |            |                |
|                                                                                                           |                                                                                 |                          |               |                                                               | PRVTE NE SW                   |                                                 |             | 011        | 00             |
|                                                                                                           |                                                                                 |                          |               |                                                               | PSNGR CAR                     | 01 DRVR INJC 25 M OR-Y<br>OR<25                 | 000         | 000        | 00             |
| 04354 N N N 11/06/2014 MARION                                                                             | 1 14                                                                            |                          |               |                                                               | 01 NONE 0 STRGHT              |                                                 |             |            | 07             |
| NONE Thu 10A WOODBURN                                                                                     | MN 0 HILLSBORO-SILV HY                                                          |                          | TRF SIGNAL    |                                                               | PRVTE NE SW                   |                                                 |             | 000        | 00             |
| WOODBURN UA<br>No 45 9 1.51 -122 51 15.64                                                                 | 38.13 MERIDIAN DR<br>014000100S00 1                                             | 06                       | 0             | N DAY PDO                                                     | PSNGR CAR                     | 01 DRVR NONE 22 F OR-Y OR<25                    | 026         | 000        | 07             |
|                                                                                                           |                                                                                 |                          |               |                                                               | 02 NONE 0 STOP                |                                                 |             |            |                |
|                                                                                                           |                                                                                 |                          |               |                                                               | PRVTE NE SW                   |                                                 |             | 011        | 00             |
|                                                                                                           |                                                                                 |                          |               |                                                               | PSNGR CAR                     | 01 DRVR NONE 00 F OR-Y UNK                      | 000         | 000        | 00             |
| 03664 N N N 10/31/2011 MARION                                                                             | 1 14                                                                            | INTER 3                  | B-LEG N       | N CLR S-1STOP                                                 | 01 NONE 0 STRGHT              |                                                 |             |            | 07             |
| NO RPT Mon 4P WOODBURN                                                                                    | MN 0 HILLSBORO-SILV HY                                                          | E                        | TRF SIGNAL    | N DRY REAR                                                    | PRVTE E W                     |                                                 |             | 000        | 00             |
| WOODBURN UA<br>No 45 9 1.51 -122 51 15.64                                                                 | 38.13 MERIDIAN DR<br>014000100S00 1                                             | 06                       | 0             | N DAY INJ                                                     | PSNGR CAR                     | 01 DRVR NONE 00 U UNK<br>UNK                    | 026         | 000        | 07             |
|                                                                                                           |                                                                                 |                          |               |                                                               | 02 NONE 0 STOP                |                                                 |             |            |                |
|                                                                                                           |                                                                                 |                          |               |                                                               | PRVTE E W                     |                                                 |             | 011        | 00             |
|                                                                                                           |                                                                                 |                          |               |                                                               | PSNGR CAR                     | 01 DRVR INJC 38 F OR-Y OR<25                    | 000         | 000        | 00             |
|                                                                                                           |                                                                                 |                          |               |                                                               |                               | 02 PSNG INJC 06 M                               | 000         | 000        | 00             |
| 03944 N N N N N 11/05/2014 MARION                                                                         | 1 14                                                                            | INTER C                  | CROSS N       | N CLD S-1STOP                                                 | 01 NONE 0 STRGHT              |                                                 |             | 013        | 07             |
| CITY Wed 3P WOODBURN                                                                                      |                                                                                 |                          | TRF SIGNAL    |                                                               | PRVTE SE NW                   |                                                 |             | 000        | 00             |
| WOODBURN UA<br>No 45 9 1.51 -122 51 15.64                                                                 | 38.13 5TH ST<br>014000100S00 1                                                  | 06                       | 0             | N DAY INJ                                                     | PSNGR CAR                     | 01 DRVR NONE 36 F OR-Y OR<25                    | 043,026     | 000        | 07             |
|                                                                                                           |                                                                                 |                          |               |                                                               | 02 NONE 0 STOP                |                                                 |             |            |                |
|                                                                                                           |                                                                                 |                          |               |                                                               | PRVTE SE NW                   |                                                 |             | 011 013    | 00             |
|                                                                                                           |                                                                                 |                          |               |                                                               | PSNGR CAR                     | 01 DRVR NONE 63 M OR-Y OR<25                    | 000         | 000        | 00             |
|                                                                                                           |                                                                                 |                          |               |                                                               | 03 NONE 0 STOP<br>PRVTE SE NW |                                                 |             | 022        | 00             |
|                                                                                                           |                                                                                 |                          |               |                                                               |                               | 01 DRVR INJC 52 M OR-Y                          | 000         | 022        | 00             |
|                                                                                                           |                                                                                 |                          |               |                                                               |                               | OR<25                                           |             | · ·-       |                |
| 05032 N N N 12/14/2015 MARION                                                                             |                                                                                 |                          |               | N CLD S-1STOP                                                 |                               |                                                 |             | 0.00       | 32,07          |
| STATE Mon 3P WOODBURN                                                                                     | MN 0 HILLSBORO-SILV HY                                                          |                          | STOP SIGN     |                                                               | PRVTE SE NW                   | O1 DDVD NONE 24 M OD "                          | 052 026     | 000        | 00             |
| WOODBURN UA<br>No 45 9 1.51 -122 51 15.64                                                                 | 38.13 5TH ST<br>014000100S00 1                                                  | Ub                       | U             | N LAY INJ                                                     | PSNGK CAR                     | 01 DRVR NONE 24 M OR-Y OR<25                    | 052,026     | 000        | 32 <b>,</b> 07 |
| 11 9 1.01 122 01 10.01                                                                                    | 111111111111111111111111111111111111111                                         |                          |               |                                                               |                               | 02 PSNG INJC 22 M                               | 000         | 000        | 00             |

## OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

CONTINUOUS SYSTEM CRASH LISTING

Meridian Dr / 5th St & OR 214 January 1, 2011 through December 31, 2015

| S D P R S W SER# E A U C O DATE COUNTY INVEST E L G H R DAY/TIME CITY UNLOC? D C S L K LAT/LONG URBAN AREA | RD# FC CONN # CMPT/MLG FIRST STREET MILEPNT SECOND STREET LRS INTERSECTION SEQ# | RD CHAR (MI<br>DIRECT | LEGS TRAF- R   | FFRD WTHR CRASH TY<br>NDBT SURF COLL TYP<br>RVWY LIGHT SVRTY |                                 | A S PRTC INJ G E LICNS PED P# TYPE SVRTY E X RES LOC ERROR | ACTN EVENT | CAUSE    |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------|----------------|--------------------------------------------------------------|---------------------------------|------------------------------------------------------------|------------|----------|
|                                                                                                            |                                                                                 |                       |                |                                                              | 02 NONE 0 STOP                  |                                                            |            |          |
|                                                                                                            |                                                                                 |                       |                |                                                              | PRVTE SE NW                     |                                                            | 012        | 00       |
|                                                                                                            |                                                                                 |                       |                |                                                              | PSNGR CAR                       | 01 DRVR INJC 78 M OR-Y 000<br>OR<25                        | 000        | 00       |
|                                                                                                            |                                                                                 |                       |                |                                                              |                                 | 02 PSNG INJC 74 F 000                                      | 000        | 00       |
| 03281 N N N 09/23/2013 MARION                                                                              | 1 14                                                                            | INTER                 | CROSS N        | N RAIN S-1STOP                                               | 01 NONE 0 STRGHT                |                                                            | 013        | 07       |
| NO RPT Mon 5P WOODBURN                                                                                     | MN 0 HILLSBORO-SILV HY                                                          |                       |                | N WET REAR                                                   | PRVTE W E                       |                                                            | 000        | 00       |
| WOODBURN UA<br>No 45 9 1.51 -122 51 15.64                                                                  | 38.13 MERIDIAN DR<br>014000100S00 1                                             | 06                    | 0              | N DAY PDO                                                    | PSNGR CAR                       | 01 DRVR NONE 19 F OR-Y 026<br>OR<25                        | 000        | 07       |
|                                                                                                            |                                                                                 |                       |                |                                                              | 02 NONE 0 STOP                  |                                                            |            |          |
|                                                                                                            |                                                                                 |                       |                |                                                              | PRVTE W E                       |                                                            | 011 013    | 00       |
|                                                                                                            |                                                                                 |                       |                |                                                              | PSNGR CAR                       | 01 DRVR NONE 78 M OR-Y 000<br>OR<25                        | 000        | 00       |
|                                                                                                            |                                                                                 |                       |                |                                                              | 03 NONE 0 STOP                  |                                                            |            |          |
|                                                                                                            |                                                                                 |                       |                |                                                              | PRVTE W E                       | 01 DRVR NONE 00 F OR-Y 000                                 | 022<br>000 | 00       |
|                                                                                                            |                                                                                 |                       |                |                                                              | I SNOW CAR                      | UNK                                                        | 000        | 00       |
| 01209 N N N 04/09/2012 MARION                                                                              | 1 14                                                                            |                       | CROSS N        |                                                              | 01 NONE 0 STRGHT                |                                                            | 000        | 07,10    |
| NONE Mon 5P WOODBURN WOODBURN UA                                                                           | MN 0 HILLSBORO-SILV HY 38.13 MERIDIAN DR                                        |                       | STOP SIGN<br>0 | N DRY REAR<br>N DAY PDO                                      | PRVTE SW NE<br>PSNGR CAR        | 01 DRVR NONE 29 F OR-Y 026                                 | 000        | 00<br>07 |
| No 45 9 1.51 -122 51 15.64                                                                                 | 014000100S00 1                                                                  | 02                    | Ü              | N DAT 100                                                    | I SNOW CAR                      | OR<25                                                      | 000        | 0 /      |
|                                                                                                            |                                                                                 |                       |                |                                                              | 02 NONE 0 STOP<br>PRVTE SW NE   |                                                            | 011        | 00       |
|                                                                                                            |                                                                                 |                       |                |                                                              |                                 | 01 DRVR NONE 38 F OR-Y 009                                 | 000        | 10       |
|                                                                                                            |                                                                                 |                       |                |                                                              |                                 | OR<25                                                      |            |          |
| 04500 N N N N N 12/14/2013 MARION                                                                          | 1 14                                                                            |                       | CROSS N        |                                                              | N 01 NONE 0 STRGHT              |                                                            |            | 04       |
| CITY Sat 1P WOODBURN WOODBURN UA                                                                           | MN 0 HILLSBORO-SILV HY 38.13 MERIDIAN DR                                        | CN<br>03              | L-GRN-SIG      | N DRY TURN<br>N DAY PDO                                      | PRVTE SW NE                     | 01 DRVR NONE 75 M OR-Y 000                                 | 000        | 00       |
| No 45 9 1.51 -122 51 15.64                                                                                 | 014000100S00 1                                                                  | 03                    | U              | N DAI PDO                                                    | FSNGR CAR                       | OR<25                                                      | 000        | 00       |
|                                                                                                            |                                                                                 |                       |                |                                                              | 02 NONE 0 TURN-I<br>PRVTE NE SE |                                                            | 000        | 00       |
|                                                                                                            |                                                                                 |                       |                |                                                              |                                 | 01 DRVR NONE 74 F OR-Y 020,004                             | 000        | 00       |
|                                                                                                            |                                                                                 |                       |                |                                                              | I SNOW CITY                     | OR<25                                                      |            |          |
| 02339 N N N N N 07/13/2013 MARION CITY Sat 6A WOODBURN                                                     | 1 14<br>MN 0 HILLSBORO-SILV HY                                                  |                       |                | N CLR ANGL-OTH<br>N DRY TURN                                 | 01 NONE 0 STRGHT<br>PRVTE SW NE |                                                            | 000        | 04       |
| WOODBURN UA                                                                                                | 38.13 MERIDIAN DR                                                               | 04                    | 0              | N DAY INJ                                                    | PSNGR CAR                       | 01 DRVR NONE 74 M OR-Y 020                                 | 000        | 04       |
| No 45 9 1.51 -122 51 15.64                                                                                 | 014000100800 1                                                                  |                       |                |                                                              |                                 | OR<25                                                      | , , ,      |          |
|                                                                                                            |                                                                                 |                       |                |                                                              | 02 NONE 0 TURN-I<br>PRVTE SE SW |                                                            | 000        | 00       |
|                                                                                                            |                                                                                 |                       |                |                                                              |                                 | 01 DRVR INJB 21 M OR-Y 000                                 | 000        | 00       |
|                                                                                                            |                                                                                 |                       |                |                                                              |                                 | OR<25                                                      |            |          |

# OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CRASH SUMMARIES BY YEAR BY COLLISION TYPE

OR 214 & Front - Hood CN January 1, 2011 through December 31, 2015

| COLLISION TYPE    | FATAL   | NON-<br>FATAL<br>CRASHES | PROPERTY<br>DAMAGE<br>ONLY |         | PEOPLE | PEOPLE  | TDUCKS | DRY  | WET  | DAV | DADK | INTER-  | INTER-<br>SECTION<br>RELATED | OFF- |
|-------------------|---------|--------------------------|----------------------------|---------|--------|---------|--------|------|------|-----|------|---------|------------------------------|------|
| COLLISION TYPE    | CRASHES | CRASHES                  | UNLT                       | CRASHES | KILLED | INJURED | TRUCKS | SURF | SURF | DAY | DARK | SECTION | RELATED                      | ROAD |
| YEAR: 2015        |         |                          |                            |         |        |         |        |      |      |     |      |         |                              |      |
| TURNING MOVEMENTS | 0       | 0                        | 1                          | 1       | 0      | 0       | 0      | 1    | 0    | 0   | 1    | 1       | 0                            | 0    |
| 2015 TOTAL        | 0       | 0                        | 1                          | 1       | 0      | 0       | 0      | 1    | 0    | 0   | 1    | 1       | 0                            | 0    |
| YEAR: 2013        |         |                          |                            |         |        |         |        |      |      |     |      |         |                              |      |
| TURNING MOVEMENTS | 0       | 1                        | 0                          | 1       | 0      | 2       | 0      | 0    | 1    | 1   | 0    | 1       | 0                            | 0    |
| 2013 TOTAL        | 0       | 1                        | 0                          | 1       | 0      | 2       | 0      | 0    | 1    | 1   | 0    | 1       | 0                            | 0    |
| YEAR: 2012        |         |                          |                            |         |        |         |        |      |      |     |      |         |                              |      |
| BACKING           | 0       | 0                        | 1                          | 1       | 0      | 0       | 0      | 0    | 1    | 1   | 0    | 1       | 0                            | 0    |
| REAR-END          | 0       | 0                        | 1                          | 1       | 0      | 0       | 0      | 1    | 0    | 1   | 0    | 1       | 0                            | 0    |
| 2012 TOTAL        | 0       | 0                        | 2                          | 2       | 0      | 0       | 0      | 1    | 1    | 2   | 0    | 2       | 0                            | 0    |
|                   | ŭ       | ū                        | -                          | -       | ·      | Ü       | ŭ      |      | •    | _   | ·    | _       | ŭ                            | Ŭ    |
| YEAR: 2011        |         |                          |                            |         |        |         |        |      |      |     |      |         |                              |      |
| BACKING           | 0       | 0                        | 1                          | 1       | 0      | 0       | 0      | 1    | 0    | 1   | 0    | 1       | 0                            | 0    |
| REAR-END          | 0       | 1                        | 0                          | 1       | 0      | 2       | 0      | 0    | 1    | 1   | 0    | 1       | 0                            | 0    |
| TURNING MOVEMENTS | 0       | 0                        | 1                          | 1       | 0      | 0       | 0      | 1    | 0    | 0   | 1    | 1       | 0                            | 0    |
| 2011 TOTAL        | 0       | 1                        | 2                          | 3       | 0      | 2       | 0      | 2    | 1    | 2   | 1    | 3       | 0                            | 0    |
| FINAL TOTAL       | 0       | 2                        | 5                          | 7       | 0      | 4       | 0      | 4    | 3    | 5   | 2    | 7       | 0                            | 0    |

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

CDS380 9/7/2017

#### PAGE: 1

#### OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CONTINUOUS SYSTEM CRASH LISTING

140 HILLSBORO-SILVERTON

OR 214 & Front - Hood CN January 1, 2011 through December 31, 2015

| S D P R S W  SER# E A U C O DATE COUNTY INVEST E L G H R DAY/TIME CITY UNLOC? D C S L K LAT/LONG URBAN AREA | RD# FC CONN # CMPT/MLG FIRST STREET MILEPNT SECOND STREET LRS INTERSECTION SEQ# | INT-T<br>RD CHAR (MEDIAN<br>DIRECT LEGS<br>LOCTN (#LANE | ) INT-REL ( | DFFRD WTHR CRASH TY<br>RNDBT SURF COLL TYP<br>DRVWY LIGHT SVRTY |                                  |              | A S<br>G E LICNS PEI<br>E X RES LOC |         | ACTN EVENT | CAUSE    |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------|-------------|-----------------------------------------------------------------|----------------------------------|--------------|-------------------------------------|---------|------------|----------|
| 03866 Y N N N 11/02/2013 MARION                                                                             | 1 14                                                                            | INTER 3-LE                                              |             | N CLD ANGL-OTH                                                  | 01 NONE 0 TURN-I                 | 1            |                                     |         | 124        | 01       |
| CITY Sat 9A WOODBURN                                                                                        | MN 0 FRONT - HOOD CN                                                            |                                                         | STOP SIGN   |                                                                 | PRVTE NE E                       |              |                                     |         | 000 124    | 00       |
| WOODBURN UA<br>No 45 9 7.03 -122 50 46.33                                                                   | 38.56 HILLSBORO-SILV HY<br>014000100S00 1                                       | 06 1                                                    |             | N DAY INJ                                                       | PSNGR CAR                        | 01 DRVR NONE | 18 M OR-Y<br>OR<25                  | 047,080 | 000        | 01       |
|                                                                                                             |                                                                                 |                                                         |             |                                                                 | 02 NONE 0 STRGHT                 | 1            |                                     |         |            |          |
|                                                                                                             |                                                                                 |                                                         |             |                                                                 | PRVTE E W                        |              |                                     |         | 000        | 00       |
|                                                                                                             |                                                                                 |                                                         |             |                                                                 | PSNGR CAR                        | 01 DRVR INJC | 34 M OR-Y<br>OR>25                  | 000     | 000        | 00       |
|                                                                                                             |                                                                                 |                                                         |             |                                                                 |                                  | 02 PSNG INJC | 40 M                                | 000     | 000        | 00       |
| 02979 N N N 09/08/2011 MARION                                                                               | 1 14                                                                            | INTER 3-LE                                              | G N         | N CLR O-1 L-TUR                                                 | N 01 NONE 0 TURN-I               |              |                                     |         |            | 02       |
| NONE Thu 6A WOODBURN                                                                                        | MN 0 FRONT - HOOD CN                                                            |                                                         | UNKNOWN     | N DRY TURN                                                      | PRVTE W NE                       |              |                                     |         | 000        | 00       |
| WOODBURN UA                                                                                                 | 38.56 HILLSBORO-SILV HY                                                         | 02 1                                                    |             | N DAWN PDO                                                      | PSNGR CAR                        | 01 DRVR NONE | 24 M OR-Y                           | 004,028 | 000        | 02       |
| No 45 9 7.03 -122 50 46.33                                                                                  | 014000100S00 1                                                                  |                                                         |             |                                                                 |                                  |              | OR<25                               |         |            |          |
|                                                                                                             |                                                                                 |                                                         |             |                                                                 | 02 NONE 0 STRGHT                 | 1            |                                     |         |            |          |
|                                                                                                             |                                                                                 |                                                         |             |                                                                 | PRVTE E W                        |              |                                     |         | 000        | 00       |
|                                                                                                             |                                                                                 |                                                         |             |                                                                 | PSNGR CAR                        | 01 DRVR NONE | 31 F OR-Y<br>OR<25                  | 000     | 000        | 00       |
| 04060                                                                                                       | 1 14                                                                            |                                                         |             | V 01D 0 1 1 MVD                                                 | . 01 0                           |              |                                     |         |            | 0.0      |
| 04060 N N N 10/22/2015 MARION CITY Thu 7A WOODBURN                                                          | 1 14<br>MN 0 FRONT - HOOD CN                                                    |                                                         | N STOP SICN | N CLR O-1 L-TUR<br>N DRY TURN                                   | N 01 NONE 0 TURN-I<br>PRVTE W NE |              |                                     |         | 000        | 02<br>00 |
| WOODBURN UA                                                                                                 | 38.56 HILLSBORO-SILV HY                                                         |                                                         | SIOI SION   |                                                                 | PSNGR CAR                        |              | 24 M OR-V                           | 028,004 | 000        | 02       |
| No 45 9 7.03 -122 50 46.33                                                                                  | 014000100800 1                                                                  | 02 1                                                    |             | IV DAWN 1 DO                                                    | I SNOW CAN                       | OI DRVR NONE | OR<25                               | 020,004 | 000        | 02       |
|                                                                                                             |                                                                                 |                                                         |             |                                                                 | 02 NONE 0 STRGHT                 | 1            |                                     |         |            |          |
|                                                                                                             |                                                                                 |                                                         |             |                                                                 | PRVTE E W                        |              |                                     |         | 000        | 00       |
|                                                                                                             |                                                                                 |                                                         |             |                                                                 | PSNGR CAR                        | 01 DRVR NONE | 28 M OR-Y                           | 000     | 000        | 00       |
|                                                                                                             |                                                                                 |                                                         |             |                                                                 |                                  |              | OR<25                               |         |            |          |

# OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CRASH SUMMARIES BY YEAR BY COLLISION TYPE

#### OR 214 & OR 211 & OR 99E

January 1, 2011 through December 31, 2015

| COLLISION TYPE                                               | FATAL<br>CRASHES | NON-<br>FATAL<br>CRASHES | PROPERTY<br>DAMAGE<br>ONLY | TOTAL<br>CRASHES       | PEOPLE<br>KILLED | PEOPLE<br>INJURED      | TRUCKS                | DRY<br>SURF           | WET<br>SURF      | DAY                   | DARK             | INTER-<br>SECTION      | INTER-<br>SECTION<br>RELATED | OFF-<br>ROAD     |
|--------------------------------------------------------------|------------------|--------------------------|----------------------------|------------------------|------------------|------------------------|-----------------------|-----------------------|------------------|-----------------------|------------------|------------------------|------------------------------|------------------|
| YEAR: 2015 ANGLE BACKING REAR-END TURNING MOVEMENTS          | 0<br>0<br>0<br>0 | 1<br>1<br>1<br>0         | 0<br>0<br>7<br>1           | 1<br>1<br>8<br>1       | 0<br>0<br>0      | 4<br>1<br>1<br>0       | 0<br>0<br>2<br>1      | 0<br>0<br>6<br>1      | 1<br>1<br>2<br>0 | 0<br>1<br>6<br>1      | 1<br>0<br>2<br>0 | 1<br>1<br>8<br>1       | 0<br>0<br>0                  | 0<br>0<br>0      |
| 2015 TOTAL YEAR: 2014 HEAD-ON PEDESTRIAN REAR-END 2014 TOTAL | 0<br>0<br>0<br>0 | 3<br>1<br>2<br>1<br>4    | 8<br>0<br>0<br>1<br>1      | 11<br>1<br>2<br>2<br>5 | 0<br>0<br>0<br>0 | 6<br>2<br>2<br>6<br>10 | 3<br>0<br>0<br>0<br>0 | 7<br>1<br>2<br>1<br>4 | 0<br>0<br>1<br>1 | 8<br>1<br>2<br>2<br>5 | 0<br>0<br>0<br>0 | 11<br>1<br>2<br>2<br>5 | 0<br>0<br>0<br>0             | 0<br>0<br>0<br>0 |
| YEAR: 2013<br>REAR-END<br>TURNING MOVEMENTS<br>2013 TOTAL    | 0<br>0<br>0      | 4<br>1<br>5              | 4<br>1<br>5                | 8<br>2<br>10           | 0<br>0<br>0      | 5<br>1<br>6            | 0<br>0<br>0           | 6<br>1<br>7           | 2<br>1<br>3      | 5<br>1<br>6           | 3<br>1<br>4      | 8<br>2<br>10           | 0<br>0<br>0                  | 0<br>0<br>0      |
| YEAR: 2012<br>REAR-END<br>2012 TOTAL                         | 0                | 1<br>1                   | 1<br>1                     | 2 2                    | 0                | 1<br>1                 | 0<br>0                | 2<br>2                | 0<br>0           | 2<br>2                | 0                | 2<br>2                 | 0<br>0                       | 0<br>0           |
| YEAR: 2011<br>REAR-END<br>TURNING MOVEMENTS<br>2011 TOTAL    | 0<br>0<br>0      | 3<br>0<br>3              | 2<br>2<br>4                | 5<br>2<br>7            | 0<br>0<br>0      | 4<br>0<br>4            | 0<br>0<br>0           | 3<br>0<br>3           | 2<br>2<br>4      | 3<br>0<br>3           | 2<br>2<br>4      | 5<br>2<br>7            | 0<br>0<br>0                  | 0<br>0<br>0      |
| FINAL TOTAL                                                  | 0                | 16                       | 19                         | 35                     | 0                | 27                     | 3                     | 23                    | 12               | 24                    | 11               | 35                     | 0                            | 0                |

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

## OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CONTINUOUS SYSTEM CRASH LISTING

081 PACIFIC HIGHWAY EAST

#### OR 214 & OR 211 & OR 99E

| S D P R S W  SER# E A U C O DATE COUNTY INVEST E L G H R DAY/TIME CITY UNLOC? D C S L K LAT/LONG URBAN AREA | RD# FC CONN # CMPT/MLG FIRST STREET MILEPNT SECOND STREET LRS INTERSECTION SEQ# | RD CHAR<br>DIRECT<br>LOCTN | LEGS TRAF- | OFFRD WTHR CRASH TY<br>RNDBT SURF COLL TYP<br>DRVWY LIGHT SVRTY | SPCL USE TP TRLR QTY MOVE OWNER FROM V# VEH TYPE TO |               | A S<br>G E LICNS PED<br>E X RES LOC |         | ACTN EVENT | CAUSE |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------|------------|-----------------------------------------------------------------|-----------------------------------------------------|---------------|-------------------------------------|---------|------------|-------|
| 02222 N N N 07/05/2014 MARION                                                                               | 1 14                                                                            | INTER                      | CROSS N    | N CLR S-1STOP                                                   | 01 NONE 0 STRGHT                                    | ī             |                                     |         | 013        | 07    |
| CITY Sat 2P WOODBURN                                                                                        | MN 0 HILLSBORO-SILV HY                                                          | NE                         | L-GRN-SIG  | N DRY REAR                                                      | PRVTE NE SW                                         |               |                                     |         | 000        | 00    |
| WOODBURN UA<br>No 45 9 4.66 -122 49 52.38                                                                   | 31.70 PACIFIC HY 99E<br>008100100S00 1                                          | 06                         | 1          | N DAY INJ                                                       | PSNGR CAR                                           | 01 DRVR NONE  | 46 M NONE<br>OR<25                  | 043,026 | 000        | 07    |
|                                                                                                             |                                                                                 |                            |            |                                                                 | 02 NONE 0 STOP                                      |               |                                     |         |            |       |
|                                                                                                             |                                                                                 |                            |            |                                                                 | PRVTE NE SW                                         |               |                                     |         | 012 013    | 00    |
|                                                                                                             |                                                                                 |                            |            |                                                                 | PSNGR CAR                                           | 01 DRVR INJC  | 32 F OR-Y<br>OR<25                  | 000     | 000        | 00    |
|                                                                                                             |                                                                                 |                            |            |                                                                 |                                                     | 02 PSNG INJC  | 08 M                                | 000     | 000        | 00    |
|                                                                                                             |                                                                                 |                            |            |                                                                 |                                                     | 03 PSNG INJC  | 11 F                                | 000     | 000        | 00    |
|                                                                                                             |                                                                                 |                            |            |                                                                 |                                                     | 04 PSNG INJC  |                                     | 000     | 000        | 00    |
|                                                                                                             |                                                                                 |                            |            |                                                                 |                                                     | 05 PSNG INJC  | 23 F                                | 000     | 000        | 00    |
|                                                                                                             |                                                                                 |                            |            |                                                                 | 03 NONE 0 STOP                                      |               |                                     |         | 222        | 0.0   |
|                                                                                                             |                                                                                 |                            |            |                                                                 | PRVTE NE SW                                         |               |                                     |         | 022        | 00    |
|                                                                                                             |                                                                                 |                            |            |                                                                 | PSNGR CAR                                           | 01 DRVR INJC  | 73 F OR-Y<br>OR<25                  | 000     | 000        | 00    |
| 02591 N N N N N 08/02/2014 MARION                                                                           | 1 14                                                                            | INTER                      | CROSS N    | N CLR O-1STOP                                                   | 01 NONE 0 STRGHT                                    | ľ             |                                     |         |            | 10    |
| CITY Sat 12P WOODBURN                                                                                       | MN 0 HILLSBORO-SILV HY                                                          | NE                         | TRF SIGNA  | L N DRY HEAD                                                    | PRVTE SW NE                                         |               |                                     |         | 000        | 00    |
| WOODBURN UA<br>No 45 9 4.66 -122 49 52.38                                                                   | 31.70 PACIFIC HY 99E<br>008100100S00 1                                          | 06                         | 1          | N DAY INJ                                                       | PSNGR CAR                                           | 01 DRVR INJC  | 36 M SUSP<br>OR<25                  | 080     | 000        | 10    |
|                                                                                                             |                                                                                 |                            |            |                                                                 | 02 NONE 0 STOP                                      |               |                                     |         |            |       |
|                                                                                                             |                                                                                 |                            |            |                                                                 | PRVTE NE SW                                         |               |                                     |         | 011        | 00    |
|                                                                                                             |                                                                                 |                            |            |                                                                 | PSNGR CAR                                           | 01 DRVR INJB  | 56 F OR-Y<br>OR<25                  | 000     | 000        | 00    |
| 03793 N N N 10/26/2014 MARION                                                                               | 1 14                                                                            | INTER                      | CROSS N    | N RAIN S-1STOP                                                  | 01 NONE 0 STRGHT                                    | י             |                                     |         |            | 07    |
| NO RPT Sun 4P WOODBURN                                                                                      | MN 0 HILLSBORO-SILV HY                                                          |                            |            | L N WET REAR                                                    | PRVTE NE SW                                         |               |                                     |         | 000        | 00    |
| WOODBURN UA<br>No 45 9 4.66 -122 49 52.38                                                                   | 31.70 PACIFIC HY 99E 008100100S00 1                                             | 06                         | 1          | N DAY PDO                                                       | PSNGR CAR                                           | 01 DRVR NONE  | 00 M OR-Y<br>UNK                    | 026     | 000        | 07    |
|                                                                                                             |                                                                                 |                            |            |                                                                 | 02 NONE 0 STOP                                      |               |                                     |         |            |       |
|                                                                                                             |                                                                                 |                            |            |                                                                 | PRVTE NE SW                                         |               |                                     |         | 011        | 00    |
|                                                                                                             |                                                                                 |                            |            |                                                                 | PSNGR CAR                                           | 01 DRVR NONE  | 37 F OR-Y<br>OR<25                  | 000     | 000        | 00    |
| 02858 N N N 07/24/2015 MARION                                                                               | 1 14                                                                            | INTER                      | CROSS N    | N CLR S-1STOP                                                   | 01 NONE 0 STRGHT                                    | ,             |                                     |         |            | 29    |
| NONE Fri UNK WOODBURN                                                                                       | MN 0 HILLSBORO-SILV HY                                                          |                            | TRF SIGNA  |                                                                 | PRVTE NE SW                                         |               |                                     |         | 000        | 00    |
| WOODBURN UA                                                                                                 | 31.70 PACIFIC HY 99E                                                            | 06                         | 1          | N DAY PDO                                                       | PSNGR CAR                                           |               | 51 F OR-V                           | 026     | 000        | 29    |
| No 45 9 4.66 -122 49 52.38                                                                                  | 008100100S00 1                                                                  | 00                         | ÷          | N DAI EDO                                                       | I DNOW CAN                                          | OT DIVIN MONE | OR<25                               | 020     | 000        | 23    |
|                                                                                                             |                                                                                 |                            |            |                                                                 | 02 NONE 0 STOP                                      |               |                                     |         |            |       |
|                                                                                                             |                                                                                 |                            |            |                                                                 | PRVTE NE SW                                         |               |                                     |         | 011        | 00    |
|                                                                                                             |                                                                                 |                            |            |                                                                 | PSNGR CAR                                           | 01 DRVR NONE  | 00 M OR-Y<br>UNK                    | 000     | 000        | 00    |

S D

081 PACIFIC HIGHWAY EAST

#### OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

CONTINUOUS SYSTEM CRASH LISTING

OR 214 & OR 211 & OR 99E

| PRSW  SER# EAUCODATE COUNTY INVESTELGHR DAY/TIME CITY UNLOC? DCSLK LAT/LONG URBAN AREA | RD# FC CONN # CMPT/MLG FIRST STREET MILEPNT SECOND STREET LRS INTERSECTION SEQ# | RD CHAR (MED<br>DIRECT L | EGS TRAF-           | OFFRD WTHR CRASH TY<br>RNDBT SURF COLL TYP<br>DRVWY LIGHT SVRTY | OWNER FROM                      | A S PRTC INJ G E LICNS PED P# TYPE SVRTY E X RES LOC | ERROR ACTN EVENT   | CAUSE    |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------|---------------------|-----------------------------------------------------------------|---------------------------------|------------------------------------------------------|--------------------|----------|
| 03475 N Y N N N 09/11/2015 MARION CITY Fri 8P WOODBURN                                 | 1 14<br>MN 0 HILLSBORO-SILV HY                                                  |                          | ROSS N<br>TRF SIGNA | N CLR S-1STOP<br>AL N DRY REAR                                  | 01 NONE 0 STRGHT<br>PRVTE NE SW |                                                      | 013<br>000         | 07<br>00 |
| WOODBURN UA<br>No 45 9 4.66 -122 49 52.38                                              | 31.70 PACIFIC HY 99E<br>008100100S00 1                                          | 06                       | 1                   | N DLIT PDO                                                      | PSNGR CAR                       | 01 DRVR NONE 67 M OR-Y<br>OR<25                      | 043,026 000        | 07       |
|                                                                                        |                                                                                 |                          |                     |                                                                 | 02 NONE 0 STOP PRVTE NE SW      |                                                      | 011 013            | 00       |
|                                                                                        |                                                                                 |                          |                     |                                                                 | PSNGR CAR                       | 01 DRVR NONE 27 F OR-Y OR<25                         | 000 022            | 00       |
|                                                                                        |                                                                                 |                          |                     |                                                                 |                                 |                                                      | 000 000            | 00       |
|                                                                                        |                                                                                 |                          |                     |                                                                 | 03 UNKN 0 STOP<br>UNKN NE SW    |                                                      | 011                | 00       |
|                                                                                        |                                                                                 |                          |                     |                                                                 | PSNGR CAR                       | 01 DRVR NONE 00 U UNK<br>UNK                         | 000 000            | 00       |
| 03823 N N N 11/12/2012 MARION<br>NO RPT Mon 8A WOODBURN                                | 1 14<br>MN 0 WOODBURN-ESTACADA F                                                |                          | ROSS N              | N CLR S-1STOP<br>G N DRY REAR                                   | 01 NONE 0 STRGHT<br>PRVTE S N   |                                                      | 000                | 07<br>00 |
| NO RF1 MON 6A WOODBURN UA                                                              |                                                                                 |                          | 1 R-GRN-S10         | N DAY PDO                                                       | PSNGR CAR                       | 01 DRVR NONE 00 M OR-Y                               | 026 000            | 07       |
| No 45 9 4.66 -122 49 52.38                                                             | 008100100S00 1                                                                  |                          |                     |                                                                 |                                 | OR<25                                                |                    |          |
|                                                                                        |                                                                                 |                          |                     |                                                                 | 02 NONE 0 STOP<br>PRVTE S N     |                                                      | 011                | 00       |
|                                                                                        |                                                                                 |                          |                     |                                                                 | PSNGR CAR                       | 01 DRVR NONE 65 M OR-Y OR>25                         | 000 000            | 00       |
| 00115 Y N N N N 01/11/2013 MARION                                                      | 1 14                                                                            |                          | ROSS N              |                                                                 | 01 NONE 0 STRGHT                |                                                      |                    | 01       |
| CITY Fri 4A WOODBURN<br>WOODBURN UA                                                    | MN 0 WOODBURN-ESTACADA F<br>31.70 PACIFIC HY 99E                                |                          | TRF SIGNA           | AL N ICE REAR<br>N DLIT INJ                                     | PRVTE S N<br>PSNGR CAR          | 01 DRVR NONE 34 F OR-Y                               | 000<br>047,026 000 | 00<br>01 |
| No 45 9 4.66 -122 49 52.38                                                             | 008100100s00 1                                                                  |                          |                     |                                                                 |                                 | OR<25                                                |                    |          |
|                                                                                        |                                                                                 |                          |                     |                                                                 | 02 NONE 0 STOP<br>PRVTE S N     |                                                      | 011                | 00       |
|                                                                                        |                                                                                 |                          |                     |                                                                 | PSNGR CAR                       | 01 DRVR INJC 36 M OR-Y OR<25                         | 000                | 00       |
| 00538 N N N 02/20/2013 MARION                                                          | 1 14                                                                            |                          |                     |                                                                 | 01 NONE 0 STRGHT                |                                                      |                    | 27       |
| NONE Wed 5P WOODBURN WOODBURN UA                                                       | MN 0 WOODBURN-ESTACADA F<br>31.70 PACIFIC HY 99E                                |                          | TRF SIGNA           | AL N DRY REAR<br>N DUSK PDO                                     | PRVTE S N<br>PSNGR CAR          | 01 DRVR NONE 27 M OR-Y                               | 000<br>016,026 000 | 00<br>27 |
| No 45 9 4.66 -122 49 52.38                                                             | 008100100S00 1                                                                  |                          | -                   | 1. 2001. 120                                                    | 200000 0000                     | OR<25                                                | 010,020            | 2,       |
|                                                                                        |                                                                                 |                          |                     |                                                                 | 02 NONE 0 STOP<br>PRVTE S N     |                                                      | 011                | 00       |
|                                                                                        |                                                                                 |                          |                     |                                                                 | PSNGR CAR                       | 01 DRVR NONE 62 M OTH-Y N-RES                        | 000 000            | 00       |
| 02555 N N N N N 07/29/2013 MARION                                                      | 1 14                                                                            |                          | ·LEG N              |                                                                 | 01 NONE 0 TURN-R                |                                                      |                    | 02       |
| CITY Mon 9A WOODBURN WOODBURN UA                                                       | MN 0 HILLSBORO-SILV HY 31.70 PACIFIC HY 99E                                     |                          | STOP SIGN           | N DRY TURN<br>N DAY PDO                                         | PRVTE W SW<br>PSNGR CAR         | 01 DRVR NONE 19 F OR-Y                               | 015<br>028         | 00<br>02 |
| No 45 9 4.66 -122 49 52.38                                                             | 008100100S00 1                                                                  | * *                      |                     | 250                                                             |                                 | OR<25                                                |                    | ÷        |

081 PACIFIC HIGHWAY EAST

## OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

CONTINUOUS SYSTEM CRASH LISTING

OR 214 & OR 211 & OR 99E

| S D P R S SER# E A U C INVEST E L G H UNLOC? D C S L | O DATE<br>R DAY/TIME |             | - , -              | CONN # FIRST STREET SECOND STREET INTERSECTION SEQ# | RD CHAR<br>DIRECT<br>LOCTN |       | INT-REL (    | RNDBT SUF | IR CRASH TY<br>RF COLL TYP<br>GHT SVRTY | OWNER                | MOVE<br>FROM  | PRTC INJ<br>P# TYPE SVRTY | G E LICNS           |         | ACTN EVENT | CAUSE    |
|------------------------------------------------------|----------------------|-------------|--------------------|-----------------------------------------------------|----------------------------|-------|--------------|-----------|-----------------------------------------|----------------------|---------------|---------------------------|---------------------|---------|------------|----------|
|                                                      |                      |             |                    |                                                     |                            |       |              |           |                                         | 02 NONE (            | ) STRGHT      |                           |                     |         |            |          |
|                                                      |                      |             |                    |                                                     |                            |       |              |           |                                         | PRVTE                | NE SW         |                           |                     |         | 000        | 00       |
|                                                      |                      |             |                    |                                                     |                            |       |              |           |                                         | PSNGR CAR            | l.            | 01 DRVR NONE              | 26 F OR-Y<br>OR<25  | 000     | 000        | 00       |
| 00208 N N N                                          | 01/21/2011           | MARION      | 1 14               |                                                     | INTER                      | CROSS | N            | N CLD     | S-1STOP                                 | 01 NONE (            | TURN-R        |                           |                     |         |            | 07       |
| NONE                                                 | Fri 10A              | WOODBURN    | MN 0               | HILLSBORO-SILV HY                                   | SW                         |       | STOP SIGN    | N WET     | REAR                                    | PRVTE                | W SW          |                           |                     |         | 000        | 00       |
| No 45 9                                              | 4.66 -122            |             | 31.70<br>008100100 | PACIFIC HY 99E<br>0800 1                            | 09                         | 1     |              | N DAY     | INJ                                     | PSNGR CAR            | L             | 01 DRVR NONE              | 32 M OR-Y<br>OR<25  | 026     | 000        | 07       |
|                                                      |                      |             |                    |                                                     |                            |       |              |           |                                         | 02 NONE (            | ) STOP        |                           |                     |         |            |          |
|                                                      |                      |             |                    |                                                     |                            |       |              |           |                                         | PRVTE                |               |                           |                     |         | 011        | 00       |
|                                                      |                      |             |                    |                                                     |                            |       |              |           |                                         | PSNGR CAR            |               | 01 DRVR INJC              | 63 F OR-Y<br>OR<25  | 000     | 000        | 00       |
| 02716 NNNN                                           | N 08/13/2014         | MARTON      | 1 14               |                                                     | INTER                      | CROSS | N            | N CLR     | PED                                     | 01 NONE (            | ) STRGHT      |                           |                     |         |            | 02       |
| CITY                                                 | Wed 2P               |             |                    | HILLSBORO-SILV HY                                   |                            |       | STOP SIGN    |           |                                         | PRVTE                |               |                           |                     |         | 015        | 00       |
|                                                      |                      | WOODBURN UA |                    | PACIFIC HY 99E                                      | 09                         | 1     |              | N DAY     | INJ                                     | PSNGR CAR            |               | 01 DRVR NONE              |                     |         | 000        | 02       |
| No 45 9                                              | 4.66 -122            | 49 52.38    | 008100100          | 0800 1                                              |                            |       |              |           |                                         |                      | STRGHT<br>W E | 01 PED INJC               | OR<25               |         | 000        | 00       |
| 03521 NNNN                                           | N 10/10/2012         | MADION      | 1 14               |                                                     | TAMEED                     | anoaa | 27           | N GID     | 0 1 1 8110                              | I O1 NONE            | OMPON         |                           |                     |         |            | 0.2      |
| CITY                                                 | Thu 6A               |             | 1 14<br>MN 0       | HILLSBORO-SILV HY                                   | INTER<br>CN                |       | TRF SIGNA    |           |                                         | N 01 NONE (<br>PRVTE | E W           |                           |                     |         | 000        | 02<br>00 |
| 0111                                                 | 1110 011             | WOODBURN UA |                    | PACIFIC HY 99E                                      | 02                         |       | 1111 0101111 |           |                                         |                      |               | 01 DRVR INJC              | 33 M OR-Y           | 000     | 000        | 00       |
| No 45 9                                              | 4.66 -122            |             | 008100100          |                                                     |                            | _     |              |           |                                         |                      |               |                           | OR<25               |         |            |          |
|                                                      |                      |             |                    |                                                     |                            |       |              |           |                                         | 02 NONE (            | ) TURN-I      |                           |                     |         |            |          |
|                                                      |                      |             |                    |                                                     |                            |       |              |           |                                         | PRVTE                |               |                           |                     |         | 000        | 00       |
|                                                      |                      |             |                    |                                                     |                            |       |              |           |                                         | PSNGR CAR            | L             | 01 DRVR NONE              | 23 M OR-Y<br>OR>25  | 004,028 | 000        | 02       |
| 01709 N N N                                          | 05/11/2015           | MARTON      | 1 14               |                                                     | INTER                      | CROSS | N            | N CLR     | ANGIOTH                                 | 01 NONE (            | ) TURN-R      |                           |                     |         |            | 02       |
| CITY                                                 | Mon 12P              |             |                    | WOODBURN-ESTACADA H                                 |                            |       | TRF SIGNA    |           |                                         | PRVTE                |               |                           |                     |         | 000        | 00       |
| No 45 9                                              | 4.66 -122            |             | 31.70<br>008100100 | PACIFIC HY 99E<br>DS00 1                            | 02                         | 1     |              | N DAY     | PDO                                     | PSNGR CAR            |               | 01 DRVR NONE              | 19 F OR-Y<br>OR<25  | 028     | 000        | 02       |
|                                                      |                      |             |                    |                                                     |                            |       |              |           |                                         | 02 NONE 1            | STRGHT        |                           |                     |         |            |          |
|                                                      |                      |             |                    |                                                     |                            |       |              |           |                                         | PRVTE                |               |                           |                     |         | 000        | 00       |
|                                                      |                      |             |                    |                                                     |                            |       |              |           |                                         | SEMI TOW             |               | 01 DRVR NONE              | 30 M OTH-Y<br>N-RES | 000     | 000        | 00       |
| 04469 N N N                                          | 11/13/2015           | MARTON      | 1 14               |                                                     | TNTER                      | CROSS | N            | N RAT     | N ANGT-OTH                              | 01 NONE (            | ) STRGHT      |                           |                     |         | 013        | 27,04    |
|                                                      | Fri 8P               |             |                    | WOODBURN-ESTACADA H                                 |                            |       | TRF SIGNA    |           |                                         | PRVTE                |               |                           |                     |         | 000        | 00       |
|                                                      |                      | WOODBURN UA | 31.70              | PACIFIC HY 99E                                      | 02                         |       |              |           |                                         |                      |               | 01 DRVR NONE              |                     |         | 038        | 27,04    |
| No 45 9                                              | 4.00 -122            | 49 5∠.38    | 008100100          | 0\$00 1                                             |                            |       |              |           |                                         |                      |               | 02 PSNG INJC              | OR<25               | 000     | 000        | 00       |
|                                                      |                      |             |                    |                                                     |                            |       |              |           |                                         | 02 NONE (            | ) STRGHT      |                           |                     |         |            |          |
|                                                      |                      |             |                    |                                                     |                            |       |              |           |                                         | PRVTE                |               |                           |                     |         | 000 013    | 00       |
|                                                      |                      |             |                    |                                                     |                            |       |              |           |                                         | PSNGR CAR            |               | 01 DRVR INJC              | 49 M OR-Y<br>OR<25  |         | 022        | 00       |

081 PACIFIC HIGHWAY EAST

#### PAGE: 4

CDS380 9/6/2017 OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

CONTINUOUS SYSTEM CRASH LISTING

OR 214 & OR 211 & OR 99E

| S D                                  |                        |                                             |                                                       |            |
|--------------------------------------|------------------------|---------------------------------------------|-------------------------------------------------------|------------|
| P RSW                                | RD# FC CONN #          | INT-TYP                                     | SPCL USE                                              |            |
| SER# E A U C O DATE COUNTY           | CMPT/MLG FIRST STREET  | RD CHAR (MEDIAN) INT-REL OFFRD WTHR CRASH : |                                                       |            |
| INVEST E L G H R DAY/TIME CITY       | MILEPNT SECOND STREET  | DIRECT LEGS TRAF- RNDBT SURF COLL TY        |                                                       |            |
| UNLOC? D C S L K LAT/LONG URBAN AREA | LRS INTERSECTION SEQ#  | LOCTN (#LANES) CNTL DRVWY LIGHT SVRTY       | V# VEH TYPE TO P# TYPE SVRTY E X RES LOC ERROR ACTN E | VENT CAUSE |
|                                      |                        |                                             | 02 PSNG INJC 10 M 000 000                             | 00         |
|                                      |                        |                                             | 03 PSNG INJC 17 M 000 000                             | 00         |
|                                      |                        |                                             | 03 NONE 0 STRGHT                                      |            |
|                                      |                        |                                             | PRVTE S N 000                                         | 00         |
|                                      |                        |                                             | PSNGR CAR 01 DRVR NONE 71 M OR-Y 000 000              | 00         |
|                                      |                        |                                             | OR<25                                                 |            |
| 00703 N N N 03/03/2011 MARION        | 1 14                   | INTER CROSS N N RAIN 0-1 L-TU               | RN 01 NONE 0 TURN-L                                   | 04         |
| CITY Thu 6A WOODBURN                 | MN 0 WOODBURN-ESTACADA | H CN TRF SIGNAL N WET TURN                  | PRVTE NE E 000                                        | 00         |
| WOODBURN UA                          | 31.70 PACIFIC HY 99E   | 04 1 N DAWN PDO                             | PSNGR CAR 01 DRVR NONE 54 M OR-Y 000 000              | 00         |
| No 45 9 4.66 -122 49 52.38           | 008100100S00 1         |                                             | OR<25                                                 |            |
|                                      |                        |                                             | 02 NONE 0 STRGHT                                      |            |
|                                      |                        |                                             | PRVTE SW NE 000                                       | 00         |
|                                      |                        |                                             | PSNGR CAR 01 DRVR NONE 33 F OR-Y 020 000              | 04         |
|                                      |                        |                                             | OR<25                                                 |            |

## OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

CONTINUOUS SYSTEM CRASH LISTING

OR 214 & OR 211 & OR 99E January 1, 2011 through December 31, 2015

| S D P R S W SER# E A U C O DATE COUNTY INVEST E L G H R DAY/TIME CITY UNLOC? D C S L K LAT/LONG URBAN AREA | RD# FC CONN # CMPT/MLG FIRST STREET MILEPNT SECOND STREET LRS INTERSECTION SEQ# | RD CHAR<br>DIRECT<br>LOCTN | LEGS TRAF- I | DFFRD WTHR CRASH TY<br>RNDBT SURF COLL TYP<br>DRVWY LIGHT SVRTY |                  | A S PRTC INJ G E LICNS P P# TYPE SVRTY E X RES L |     | ACTN EVENT | CAUSE |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------|--------------|-----------------------------------------------------------------|------------------|--------------------------------------------------|-----|------------|-------|
| 01047 N N N 04/06/2013 MARION                                                                              | 1 14                                                                            | INTER                      | CROSS N      | N CLR S-1STOP                                                   | 01 NONE 0 STRGHT |                                                  |     |            | 07    |
| NONE Sat 9A WOODBURN                                                                                       | MN 0 HILLSBORO-SILV HY                                                          | M                          | TRF SIGNA    | L N DRY REAR                                                    | PRVTE W E        |                                                  |     | 000        | 00    |
| WOODBURN UA<br>No 45 9 4.70 -122 49 53.90                                                                  | 39.27 PACIFIC HY 99E 014000100S00 1                                             | 06                         | 0            | N DAY PDO                                                       | PSNGR CAR        | 01 DRVR NONE 00 M OR-Y<br>UNK                    | 026 | 000        | 07    |
|                                                                                                            |                                                                                 |                            |              |                                                                 | 02 NONE 0 STOP   |                                                  |     |            |       |
|                                                                                                            |                                                                                 |                            |              |                                                                 | PRVTE W E        |                                                  |     | 011        | 00    |
|                                                                                                            |                                                                                 |                            |              |                                                                 | PSNGR CAR        | 01 DRVR NONE 64 F OR-Y<br>OR<25                  | 000 | 000        | 00    |
| 00013 N N N 01/04/2011 MARION                                                                              | 1 14                                                                            | INTER                      | CROSS N      | N CLR S-1STOP                                                   | 01 NONE 0 STRGHT |                                                  |     |            | 07    |
| NONE Tue 7P WOODBURN                                                                                       | MN 0 HILLSBORO-SILV HY                                                          | M                          | TRF SIGNA    | L N DRY REAR                                                    | PRVTE W E        |                                                  |     | 000        | 00    |
| WOODBURN UA<br>No 45 9 4.68 -122 49 53.14                                                                  | 39.28 PACIFIC HY 99E 014000100S00 1                                             | 06                         | 1            | N DLIT INJ                                                      | PSNGR CAR        | 01 DRVR NONE 42 F OR-Y<br>OR<25                  | 026 | 000        | 07    |
|                                                                                                            |                                                                                 |                            |              |                                                                 | 02 NONE 0 STOP   |                                                  |     |            |       |
|                                                                                                            |                                                                                 |                            |              |                                                                 | PRVTE W E        |                                                  |     | 011        | 00    |
|                                                                                                            |                                                                                 |                            |              |                                                                 | PSNGR CAR        | 01 DRVR INJC 39 F OR-Y<br>OR<25                  | 000 | 000        | 00    |
| 00688 N N N 03/05/2013 MARION                                                                              | 1 14                                                                            | INTER                      | CROSS N      | N RAIN S-1STOP                                                  | 01 NONE 0 TURN-R |                                                  |     |            | 07    |
| NO RPT Tue 6P WOODBURN                                                                                     | MN 0 HILLSBORO-SILV HY                                                          | SW                         | R-GRN-SIG    | N WET REAR                                                      | PRVTE W S        |                                                  |     | 000        | 00    |
| WOODBURN UA<br>No 45 9 4.66 -122 49 52.38                                                                  | 39.29 PACIFIC HY 99E 014000100S00 1                                             | 09                         | 1            | N DUSK PDO                                                      | PSNGR CAR        | 01 DRVR NONE 27 F OR-Y OR<25                     | 026 | 000        | 07    |
|                                                                                                            |                                                                                 |                            |              |                                                                 | 02 NONE 0 STOP   |                                                  |     |            |       |
|                                                                                                            |                                                                                 |                            |              |                                                                 | PRVTE W S        | 04 64                                            | 000 | 013        | 00    |
|                                                                                                            |                                                                                 |                            |              |                                                                 | PSNGR CAR        | 01 DRVR NONE 61 M OR-Y<br>OR<25                  | 000 | 000        | 00    |
| 01463 N N N 05/08/2013 MARION                                                                              | 1 14                                                                            | INTER                      | CROSS N      | N CLR S-1STOP                                                   | 01 NONE 0 TURN-R |                                                  |     |            | 07    |
| NONE Wed 12P WOODBURN                                                                                      | MN 0 HILLSBORO-SILV HY                                                          | SW                         |              | N DRY REAR                                                      | PRVTE W S        |                                                  |     | 000        | 00    |
| WOODBURN UA<br>No 45 9 4.66 -122 49 52.38                                                                  | 39.29 PACIFIC HY 99E<br>014000100S00 1                                          | 09                         | 1            | N DAY INJ                                                       | PSNGR CAR        | 01 DRVR NONE 76 F OR-Y<br>OR>25                  | 026 | 000        | 07    |
|                                                                                                            |                                                                                 |                            |              |                                                                 | 02 NONE 0 STOP   |                                                  |     |            |       |
|                                                                                                            |                                                                                 |                            |              |                                                                 | PRVTE W S        |                                                  |     | 013        | 00    |
|                                                                                                            |                                                                                 |                            |              |                                                                 | PSNGR CAR        | 01 DRVR INJC 60 F OR-Y OR<25                     | 000 | 000        | 00    |
|                                                                                                            |                                                                                 |                            |              |                                                                 |                  | 02 PSNG INJC 51 F                                | 000 | 000        | 00    |
|                                                                                                            |                                                                                 | INTER                      |              |                                                                 | 01 NONE 0 TURN-R |                                                  |     |            | 07    |
| NONE Wed 11A WOODBURN                                                                                      | MN 0 HILLSBORO-SILV HY                                                          |                            |              | N DRY REAR                                                      | PRVTE W SW       |                                                  |     | 000        | 00    |
| WOODBURN UA<br>No 45 9 4.66 -122 49 52.38                                                                  | 39.29 PACIFIC HY 99E<br>014000100S00 1                                          | 09                         | 1            | N DAY PDO                                                       | PSNGR CAR        | 01 DRVR NONE 00 F UNK<br>UNK                     | 026 | 000        | 07    |
|                                                                                                            |                                                                                 |                            |              |                                                                 | 02 NONE 0 STOP   |                                                  |     |            |       |
|                                                                                                            |                                                                                 |                            |              |                                                                 | PRVTE W SW       |                                                  |     | 011        | 00    |
|                                                                                                            |                                                                                 |                            |              |                                                                 | PSNGR CAR        | 01 DRVR NONE 63 F OR-Y                           | 000 | 000        | 00    |
|                                                                                                            |                                                                                 |                            |              |                                                                 |                  | OR<25                                            |     |            |       |

### OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

CONTINUOUS SYSTEM CRASH LISTING

#### OR 214 & OR 211 & OR 99E

| S D P R S W SER# E A U C O DATE COUNTY INVEST E L G H R DAY/TIME CITY UNLOC? D C S L K LAT/LONG URBAN AREA | RD# FC CONN # CMPT/MLG FIRST STREET MILEPNT SECOND STREET LRS INTERSECTION SEQ# | RD CHAR ( | INT-TYP<br>(MEDIAN) I<br>LEGS T<br>(#LANES) C | TRAF- RN  |        | CRASH TYP<br>COLL TYP<br>I SVRTY | SPCL USE TRLR QTY MOVE OWNER FROM V# VEH TYPE TO |                           | G E LICNS PE       |             | ACTN EVENT | CAUSE          |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------|-----------------------------------------------|-----------|--------|----------------------------------|--------------------------------------------------|---------------------------|--------------------|-------------|------------|----------------|
| 00457 N N N N N 02/12/2011 MARION                                                                          | 1 14                                                                            | INTER     | CROSS N                                       |           | N RAIN | S-OTHER                          | 01 NONE 0 TURN-L                                 |                           |                    |             |            | 08             |
| CITY Sat 7P WOODBURN                                                                                       | MN 0 HILLSBORO-SILV HY                                                          | W         | TI                                            | RF SIGNAL | N WET  | TURN                             | PRVTE SW W                                       |                           |                    |             | 000        | 00             |
| WOODBURN UA<br>No 45 9 4.66 -122 49 52.38                                                                  | 39.29 PACIFIC HY 99E<br>014000100S00 1                                          | 05        | 1                                             |           | N DLIT | PDO                              | PSNGR CAR                                        | 01 DRVR NONE              | 29 F OR-Y<br>OR<25 | 001,007     | 000        | 08             |
|                                                                                                            |                                                                                 |           |                                               |           |        |                                  | 02 NONE 0 TURN-L                                 |                           |                    |             |            |                |
|                                                                                                            |                                                                                 |           |                                               |           |        |                                  | PRVTE SW W                                       |                           |                    |             | 000        | 00             |
|                                                                                                            |                                                                                 |           |                                               |           |        |                                  | PSNGR CAR                                        | 01 DRVR NONE              | 61 F OR-Y<br>OR<25 | 000         | 000        | 00             |
| 02293 N N N N N 07/17/2011 MARION                                                                          | 1 14                                                                            | INTER     | CROSS N                                       |           | N RAIN | S-1STOP                          | 01 NONE 0 STRGHT                                 |                           |                    |             |            | 32,07          |
| STATE Sun 2P WOODBURN                                                                                      | MN 0 HILLSBORO-SILV HY                                                          |           |                                               | RF SIGNAL |        |                                  | PRVTE W E                                        |                           |                    |             | 000        | 00             |
| WOODBURN UA<br>No 45 9 4.66 -122 49 52.38                                                                  | 39.29 PACIFIC HY 99E<br>014000100S00 1                                          | 06        | 1                                             |           | N DAY  | PDO                              | PSNGR CAR                                        | 01 DRVR NONE              | 23 M SUSP<br>OR<25 | 052,043,026 | 000        | 32 <b>,</b> 07 |
|                                                                                                            |                                                                                 |           |                                               |           |        |                                  | 02 NONE 0 STOP                                   |                           |                    |             |            |                |
|                                                                                                            |                                                                                 |           |                                               |           |        |                                  | PRVTE W E                                        |                           |                    |             | 011        | 00             |
|                                                                                                            |                                                                                 |           |                                               |           |        |                                  | PSNGR CAR                                        | 01 DRVR NONE              | 33 M OR-Y<br>OR<25 | 000         | 000        | 00             |
| 02573 N N N 08/10/2011 MARION                                                                              | 1 14                                                                            | INTER     | CROSS N                                       |           | N CLR  |                                  | 01 NONE 0 STRGHT                                 |                           |                    |             |            | 07             |
| NONE Wed 2P WOODBURN                                                                                       | MN 0 HILLSBORO-SILV HY                                                          |           |                                               | RF SIGNAL |        |                                  | PRVTE W E                                        |                           |                    |             | 000        | 00             |
| WOODBURN UA<br>No 45 9 4.66 -122 49 52.38                                                                  | 39.29 PACIFIC HY 99E<br>014000100S00 1                                          | 06        | 1                                             |           | N DAY  | INJ                              | PSNGR CAR                                        | 01 DRVR NONE              | 90 F OR-Y<br>OR<25 | 026         | 000        | 07             |
|                                                                                                            |                                                                                 |           |                                               |           |        |                                  | 02 NONE 0 STOP                                   |                           |                    |             | 0.1.1      | 0.0            |
|                                                                                                            |                                                                                 |           |                                               |           |        |                                  | PRVTE W E                                        | 01 DDID THE               | 40 5 05 11         | 000         | 011        | 00             |
|                                                                                                            |                                                                                 |           |                                               |           |        |                                  | PSNGR CAR                                        | 01 DRVR INJC 02 PSNG INJC | OR<25              | 000         | 000        | 00             |
|                                                                                                            |                                                                                 |           |                                               |           |        |                                  |                                                  | 02 15NG 1NGC              | 01 1               | 000         | 000        |                |
| 01912 N N N 06/10/2012 MARION                                                                              | 1 14                                                                            | INTER     | CROSS N                                       |           | N CLR  |                                  | 01 NONE 0 STRGHT                                 |                           |                    |             | 000        | 27             |
| NONE Sun 6P WOODBURN                                                                                       | MN 0 HILLSBORO-SILV HY                                                          | w<br>06   |                                               | RF SIGNAL |        |                                  | PRVTE W E                                        | 01 DDID NONE              | 16 8 088 4         | 016 006     | 000        | 00<br>27       |
| WOODBURN UA<br>No 45 9 4.66 -122 49 52.38                                                                  | 39.29 PACIFIC HY 99E<br>014000100S00 1                                          | 06        | I                                             |           | N DAI  | INU                              | PSNGR CAR                                        | OI DRVR NONE              | N-RES              | 016,026     | 000        | 21             |
|                                                                                                            |                                                                                 |           |                                               |           |        |                                  | 02 NONE 0 STOP                                   |                           |                    |             | 011        | 0.0            |
|                                                                                                            |                                                                                 |           |                                               |           |        |                                  | PRVTE W E                                        | 01 DDID TNID              | 25 E OD V          | 0.00        | 011        | 00             |
|                                                                                                            |                                                                                 |           |                                               |           |        |                                  | PSNGR CAR                                        | 01 DRVR INJB              | OR<25              | 000         | 000        | 00             |
|                                                                                                            | 1 14                                                                            |           | CROSS N                                       |           |        |                                  | 01 NONE 0 STRGHT                                 |                           |                    |             |            | 29             |
| NONE Mon UNK WOODBURN                                                                                      | MN 0 HILLSBORO-SILV HY                                                          |           |                                               | RF SIGNAL |        |                                  | PRVTE W E                                        | 01                        |                    | 000         | 000        | 00             |
| WOODBURN UA<br>No 45 9 4.66 -122 49 52.38                                                                  | 39.29 PACIFIC HY 99E<br>014000100S00 1                                          | 06        | 0                                             |           | N DAY  | PDO                              | PSNGR CAR                                        | U1 DRVR NONE              | 00 U UNK<br>UNK    | 026         | 000        | 29             |
|                                                                                                            |                                                                                 |           |                                               |           |        |                                  | 02 NONE 0 STOP                                   |                           |                    |             |            |                |
|                                                                                                            |                                                                                 |           |                                               |           |        |                                  | PRVTE W E                                        |                           |                    |             | 011        | 00             |
|                                                                                                            |                                                                                 |           |                                               |           |        |                                  | PSNGR CAR                                        | 01 DRVR NONE              | 45 M OR-Y<br>UNK   | 000         | 000        | 00             |

#### PAGE: 7

#### CDS380 9/6/2017 OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

#### CONTINUOUS SYSTEM CRASH LISTING

OR 214 & OR 211 & OR 99E

| S D                                  |                        |                |                             |                  |                                 |                  |  |
|--------------------------------------|------------------------|----------------|-----------------------------|------------------|---------------------------------|------------------|--|
| P RSW                                | RD# FC CONN #          | INT-           | -TYP                        | SPCL USE         |                                 |                  |  |
| SER# E A U C O DATE COUNTY           | CMPT/MLG FIRST STREET  | RD CHAR (MEDIA |                             |                  | A S                             |                  |  |
| INVEST E L G H R DAY/TIME CITY       | MILEPNT SECOND STREET  | DIRECT LEG     |                             |                  | PRTC INJ G E LICNS PED          |                  |  |
| UNLOC? D C S L K LAT/LONG URBAN AREA | LRS INTERSECTION SEQ#  | LOCTN (#LAN    | NES) CNTL DRVWY LIGHT SVRTY | V# VEH TYPE TO   | P# TYPE SVRTY E X RES LOC ERROR | ACTN EVENT CAUSE |  |
|                                      |                        |                |                             |                  |                                 |                  |  |
| 01653 N N N N N 05/07/2015 MARION    | 1 14                   | INTER CRO      | DSS N N CLR S-1STOP         | 01 NONE 0 STRGHT |                                 | 07               |  |
| CITY Thu 2P WOODBURN                 | MN 0 HILLSBORO-SILV HY | M              | TRF SIGNAL N DRY REAR       | PRVTE W E        |                                 | 000 00           |  |
| WOODBURN UA                          | 39.29 PACIFIC HY 99E   | 06             | 1 N DAY PDO                 | PSNGR CAR        | 01 DRVR NONE 23 M OR-Y 043,026  | 000 07           |  |
| No 45 9 4.66 -122 49 52.38           | 014000100S00 1         |                |                             |                  | OR<25                           |                  |  |
|                                      |                        |                |                             |                  |                                 |                  |  |
|                                      |                        |                |                             | 02 NONE 0 STOP   |                                 |                  |  |
|                                      |                        |                |                             | PRVTE W E        |                                 | 011 00           |  |
|                                      |                        |                |                             | PSNGR CAR        | 01 DRVR NONE 42 M OR-Y 000      | 000 00           |  |
|                                      |                        |                |                             |                  | OR>25                           |                  |  |
|                                      |                        |                |                             |                  |                                 |                  |  |
| 05183 N N N N N 12/23/2015 MARION    | 1 14                   | INTER CRO      | OSS N N RAIN O-1STOP        | 01 NONE 0 BACK   |                                 | 10               |  |
| CITY Wed 1P WOODBURN                 | MN 0 HILLSBORO-SILV HY | W              | TRF SIGNAL N WET BACK       | PRVTE E W        |                                 | 000 00           |  |
| WOODBURN UA                          | 39.29 PACIFIC HY 99E   | 06             | 1 N DAY INJ                 | PSNGR CAR        | 01 DRVR NONE 58 M OR-Y 011      | 000 10           |  |
| No 45 9 4.66 -122 49 52.38           | 014000100S00 1         |                |                             |                  | OR<25                           |                  |  |
| 10 10 1 1.00 122 13 32.30            | 011000100000           |                |                             |                  | OIX 25                          |                  |  |
|                                      |                        |                |                             | 02 NONE 0 STOP   |                                 |                  |  |
|                                      |                        |                |                             | PRVTE W E        |                                 | 011 00           |  |
|                                      |                        |                |                             | PSNGR CAR        | 01 DRVR INJC 31 F OR-Y 000      | 000 00           |  |
|                                      |                        |                |                             | I STORE OFFICE   | OR<25                           |                  |  |
|                                      |                        |                |                             |                  | 01/12/3                         |                  |  |

161 WOODBURN-ESTACADA

## OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

CONTINUOUS SYSTEM CRASH LISTING

#### OR 214 & OR 211 & OR 99E

| S D P R S W SER# E A U C O DATE COUNTY INVEST E L G H R DAY/TIME CITY UNLOC? D C S L K LAT/LONG URBAN AREA | RD# FC CONN # CMPT/MLG FIRST STREET RD CHAR MILEPNT SECOND STREET DIRECT LRS INTERSECTION SEQ# LOCTN | INT-TYP R (MEDIAN) INT-REL OFFRD WTHR CRASH TY LEGS TRAF- RNDBT SURF COLL TYP (#LANES) CNTL DRVWY LIGHT SVRTY |                                                                         | ACTN EVENT CAUSE               |
|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------|
| 04291 N N N 12/13/2011 MARION NONE Tue 9P WOODBURN WOODBURN UA No 45 9 4.66 -122 49 52.38                  | 1 14 INTER MN 0 WOODBURN-ESTACADA H E 0.00 PACIFIC HY 99E 06 016100100S00 1                          | CROSS N N CLR S-1STOP TRF SIGNAL N DRY REAR O N DLIT PDO                                                      | 01 NONE 0 STRGHT PRVTE E W PSNGR CAR 01 DRVR NONE 00 M OTH-Y 026 N-RES  | 07<br>000<br>000<br>07         |
|                                                                                                            |                                                                                                      |                                                                                                               | 02 NONE 0 STOP PRVTE E W PSNGR CAR 01 DRVR NONE 17 F OR-Y 000 OR<25     | 011 00<br>000 00               |
| 00037 N N N 01/04/2013 MARION NONE Fri 3P WOODBURN WOODBURN UA NO 45 9 4.66 -122 49 52.38                  | 1 14 INTER MN 0 WOODBURN-ESTACADA H E 0.00 PACIFIC HY 99E 06 016100100S00 1                          | CROSS N N CLR S-1STOP TRF SIGNAL N DRY REAR O N DAY INJ                                                       | 01 NONE 0 STRGHT PRVTE E W PSNGR CAR 01 DRVR NONE 00 M OR-Y 026 OR<25   | 07<br>000<br>000<br>07         |
|                                                                                                            |                                                                                                      |                                                                                                               | 02 NONE 0 STOP PRVTE E W PSNGR CAR 01 DRVR INJB 38 M OR-Y 000 OR<25     | 011 00<br>000 00               |
| 02652 N N N 08/09/2013 MARION CITY Fri 8P WOODBURN WOODBURN UA No 45 9 4.66 -122 49 52.38                  | 1 14 INTER MN 0 WOODBURN-ESTACADA H E 0.00 PACIFIC HY 99E 06 016100100S00 1                          | CROSS N N CLD S-1STOP TRF SIGNAL N DRY REAR O N DAY INJ                                                       | 01 NONE 0 STRGHT PRVTE E W PSNGR CAR 01 DRVR NONE 00 U UNK 026 UNK      | 07<br>000<br>000<br>07         |
|                                                                                                            |                                                                                                      |                                                                                                               | 02 NONE 0 STOP PRVTE E W PSNGR CAR 01 DRVR INJC 44 M OR-Y 000 OR<25     | 011 00<br>000 00               |
| 01950 N N N N N 06/13/2014 MARION CITY Fri 10A WOODBURN WOODBURN UA NO 45 9 4.66 -122 49 52.38             | 1 14 INTER MN 0 WOODBURN-ESTACADA H E 0.00 PACIFIC HY 99E 06 016100100S00 1                          | CROSS N N CLR PED UNKNOWN N DRY PED 1 N DAY INJ                                                               | 01 NONE 0 TURN-R PRVTE E N PSNGR CAR 01 DRVR NONE 17 F OR-Y 029 OR<25   | 02<br>000 00<br>000 02         |
| 01257 N N N N N 04/08/2015 MARION CITY Wed 7A WOODBURN                                                     | 1 16 INTER<br>MN 0 WOODBURN-ESTACADA H E                                                             | CROSS N N CLD S-1STOP TRF SIGNAL N WET REAR                                                                   | STRGHT 01 PED INJB 15 M 01 000 S N 01 NONE 1 STRGHT PRVTE E W           | 000 00<br>054 07<br>000 054 00 |
| WOODBURN UA<br>No 45 9 4.66 -122 49 52.38                                                                  | 0.00 PACIFIC HY 99E 06<br>016100100S00 1                                                             | 0 N DAY INJ                                                                                                   | SEMI TOW 01 DRVR NONE 67 M OR-Y 043,026 OR<25  02 NONE 0 STOP PRVTE E W | 000 07                         |
|                                                                                                            | 1 16 INTER                                                                                           | CROSS N N CLR S-1STOP                                                                                         |                                                                         | 29                             |
| NO RPT Sun 5P WOODBURN  WOODBURN UA  No 45 9 4.66 -122 49 52.38                                            | MN 0 WOODBURN-ESTACADA H E 0.00 PACIFIC HY 99E 06 016100100S00 1                                     | TRF SIGNAL N DRY REAR 0 N DAY PDO                                                                             | PRVTE E W PSNGR CAR 01 DRVR NONE 29 F OR-Y 026 OR<25                    | 000 00<br>000 29               |

161 WOODBURN-ESTACADA

#### PAGE: 9

CDS380 9/6/2017 OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

CONTINUOUS SYSTEM CRASH LISTING

OR 214 & OR 211 & OR 99E

| S D                                                                 |                                             |                                |                           |                             |                               |            |       |
|---------------------------------------------------------------------|---------------------------------------------|--------------------------------|---------------------------|-----------------------------|-------------------------------|------------|-------|
| P R S W                                                             | RD# FC CONN #                               | INT-TY                         |                           | SPCL USE                    |                               |            |       |
| SER# E A U C O DATE COUNTY INVEST E L G H R DAY/TIME CITY           | CMPT/MLG FIRST STREET MILEPNT SECOND STREET | RD CHAR (MEDIAN<br>DIRECT LEGS |                           |                             | A S<br>PRTC INJ G E LICNS PED |            |       |
| INVEST E L G H R DAY/TIME CITY UNLOC? D C S L K LAT/LONG URBAN AREA | LRS INTERSECTION SEO#                       |                                | S) CNTL DRVWY LIGHT SVRTY |                             | TYPE SVRTY E X RES LOC ERROR  | ACTN EVENT | CAUSE |
| ONLOC: D C D E R DAT/ LONG ORDAN AREA                               | INTERODETION SIGN                           | LOCIN (#DAND                   | S) CNIL DRVWI LIGHT SVRII | V# VBII 1111 10 1#          | TITE SVICT E A RES LOC BRIOR  | ACIN DVDNI | CAUDE |
|                                                                     |                                             |                                |                           | 02 NONE 0 STOP              |                               |            |       |
|                                                                     |                                             |                                |                           | PRVTE E W                   |                               | 011        | 00    |
|                                                                     |                                             |                                |                           | PSNGR CAR 01                | DRVR NONE 49 M OR-Y 000       | 000        | 00    |
|                                                                     |                                             |                                |                           | I BNOIC CITY 01             | OR<25                         | 000        | 00    |
|                                                                     |                                             |                                |                           |                             | 01.120                        |            |       |
| 01586 N N N 04/18/2015 MARION                                       | 1 16                                        | INTER CROSS                    | S N N CLR S-1STOP         | 01 NONE 0 STRGHT            |                               |            | 29    |
| NONE Sat 7P WOODBURN                                                | MN 0 WOODBURN-ESTACADA H                    | H E                            | TRF SIGNAL N DRY REAR     | PRVTE E W                   |                               | 000        | 00    |
| WOODBURN UA                                                         | 0.00 PACIFIC HY 99E                         | 06 0                           | N DUSK PDO                | PSNGR CAR 01                | DRVR NONE 29 F OR-Y 026       | 000        | 29    |
| No 45 9 4.66 -122 49 52.38                                          | 016100100S00 1                              |                                |                           |                             | OR<25                         |            |       |
|                                                                     |                                             |                                |                           | 00 2027                     |                               |            |       |
|                                                                     |                                             |                                |                           | 02 NONE 0 STOP<br>PRVTE E W |                               | 011        | 00    |
|                                                                     |                                             |                                |                           |                             |                               |            |       |
|                                                                     |                                             |                                |                           | PSNGR CAR 01                | DRVR NONE 21 F OR-Y 000       | 000        | 00    |
|                                                                     |                                             |                                |                           |                             | OR<25                         |            |       |
| 01713 N N N N N 05/12/2015 MARION                                   | 1 16                                        | INTER CROSS                    | S N N CLD S-1STOP         | 01 NONE 0 STRGHT            |                               |            | 07    |
| CITY Tue 11A WOODBURN                                               | MN 0 WOODBURN-ESTACADA H                    | H E                            | TRF SIGNAL N WET REAR     | PRVTE E W                   |                               | 000        | 00    |
| WOODBURN UA                                                         | 0.00 PACIFIC HY 99E                         | 06 1                           | N DAY PDO                 | PSNGR CAR 01                | DRVR NONE 48 M OR-Y 043,026   | 000        | 07    |
| No 45 9 4.66 -122 49 52.38                                          | 016100100S00 1                              |                                |                           |                             | OR<25                         |            |       |
|                                                                     |                                             |                                |                           |                             |                               |            |       |
|                                                                     |                                             |                                |                           | 02 NONE 1 STOP              |                               |            |       |
|                                                                     |                                             |                                |                           | PRVTE E W                   |                               | 011        | 00    |
|                                                                     |                                             |                                |                           | SEMI TOW 01                 | DRVR NONE 23 M OR-Y 000       | 000        | 00    |
|                                                                     |                                             |                                |                           |                             | OR<25                         |            |       |
|                                                                     |                                             |                                |                           |                             |                               |            |       |

# OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CRASH SUMMARIES BY YEAR BY COLLISION TYPE

Park Ave & OR 214 Hillsboro-Silverton Hwy (140) January 1, 2011 through December 31, 2015

|                        | FATAL   | NON-<br>FATAL | PROPERTY<br>DAMAGE | TOTAL   | PEOPLE | PEOPLE  |        | DRY  | WET  |     |      | INTER-  | INTER-<br>SECTION | OFF- |
|------------------------|---------|---------------|--------------------|---------|--------|---------|--------|------|------|-----|------|---------|-------------------|------|
| COLLISION TYPE         | CRASHES | CRASHES       | ONLY               | CRASHES | KILLED | INJURED | TRUCKS | SURF | SURF | DAY | DARK | SECTION | RELATED           | ROAD |
| YEAR: 2015             |         |               |                    |         |        |         |        |      |      |     |      |         |                   |      |
| ANGLE                  | 0       | 1             | 1                  | 2       | 0      | 1       | 0      | 1    | 1    | 1   | 1    | 2       | 0                 | 0    |
| REAR-END               | 0       | 1             | 1                  | 2       | 0      | 2       | 0      | 2    | 0    | 2   | 0    | 2       | 0                 | 0    |
| 2015 TOTAL             | 0       | 2             | 2                  | 4       | 0      | 3       | 0      | 3    | 1    | 3   | 1    | 4       | 0                 | 0    |
| YEAR: 2014             |         |               |                    |         |        |         |        |      |      |     |      |         |                   |      |
| REAR-END               | 0       | 1             | 1                  | 2       | 0      | 1       | 0      | 2    | 0    | 2   | 0    | 2       | 0                 | 0    |
| TURNING MOVEMENTS      | 0       | 0             | 1                  | 1       | 0      | 0       | 0      | 1    | 0    | 1   | 0    | 1       | 0                 | 0    |
| 2014 TOTAL             | 0       | 1             | 2                  | 3       | 0      | 1       | 0      | 3    | 0    | 3   | 0    | 3       | 0                 | 0    |
| YEAR: 2013             |         |               |                    |         |        |         |        |      |      |     |      |         |                   |      |
| ANGLE                  | 0       | 0             | 1                  | 1       | 0      | 0       | 0      | 1    | 0    | 0   | 1    | 1       | 0                 | 0    |
| REAR-END               | 0       | 1             | 1                  | 2       | 0      | 4       | 0      | 1    | 1    | 2   | 0    | 2       | 0                 | 0    |
| SIDESWIPE - OVERTAKING | 0       | 1             | 0                  | 1       | 0      | 5       | 0      | 1    | 0    | 1   | 0    | 1       | 0                 | 0    |
| TURNING MOVEMENTS      | 0       | 1             | 0                  | 1       | 0      | 3       | 0      | 1    | 0    | 1   | 0    | 1       | 0                 | 0    |
| 2013 TOTAL             | 0       | 3             | 2                  | 5       | 0      | 12      | 0      | 4    | 1    | 4   | 1    | 5       | 0                 | 0    |
| YEAR: 2012             |         |               |                    |         |        |         |        |      |      |     |      |         |                   |      |
| REAR-END               | 0       | 1             | 0                  | 1       | 0      | 1       | 0      | 1    | 0    | 1   | 0    | 1       | 0                 | 0    |
| 2012 TOTAL             | 0       | 1             | 0                  | 1       | 0      | 1       | 0      | 1    | 0    | 1   | 0    | 1       | 0                 | 0    |
| YEAR: 2011             |         |               |                    |         |        |         |        |      |      |     |      |         |                   |      |
| ANGLE                  | 0       | 0             | 1                  | 1       | 0      | 0       | 0      | 1    | 0    | 1   | 0    | 1       | 0                 | 0    |
| REAR-END               | 0       | 0             | 2                  | 2       | 0      | 0       | 0      | 2    | 0    | 2   | 0    | 2       | 0                 | 0    |
| 2011 TOTAL             | 0       | 0             | 3                  | 3       | 0      | 0       | 0      | 3    | 0    | 3   | 0    | 3       | 0                 | 0    |
| FINAL TOTAL            | 0       | 7             | 9                  | 16      | 0      | 17      | 0      | 14   | 2    | 14  | 2    | 16      | 0                 | 0    |

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

CDS380 9/6/2017

## OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CONTINUOUS SYSTEM CRASH LISTING

PAGE: 1

140 HILLSBORO-SILVERTON

Park Ave & OR 214 Hillsboro-Silverton Hwy (140) January 1, 2011 through December 31, 2015

| S D P R S W  SER# E A U C O DATE COUNTY INVEST E L G H R DAY/TIME CITY UNLOC? D C S L K LAT/LONG URBAN AREA | RD# FC CONN # CMPT/MLG FIRST STREET MILEPNT SECOND STREET LRS INTERSECTION SEQ# | DIRECT LEG | AN) INT-REL OF<br>GS TRAF- RI | FFRD WTHR CRASH TYI<br>NDBT SURF COLL TYP<br>RVWY LIGHT SVRTY | OWNER FROM                                 | A S<br>PRTC INJ G E LICNS<br>P# TYPE SVRTY E X RES          |                   | ACTN EVENT        | CAUSE                |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------|-------------------------------|---------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------|-------------------|-------------------|----------------------|
| 00703 N N N N N 02/27/2012 MARION CITY Mon 12P WOODBURN WOODBURN UA No 45 9 5.57 -122 50 27.82              | 1 14<br>MN 0 HILLSBORO-SILV HY<br>38.82 PARK AVE<br>014000100S00 1              | E          | EG N<br>SP PED SIG            | N CLR S-1STOP<br>N DRY REAR<br>N DAY INJ                      | 01 NONE 0 STRGHT<br>PRVTE W E<br>PSNGR CAR | 01 DRVR NONE 61 F OR-Y OR>25                                |                   | 000               | 07<br>00<br>07       |
|                                                                                                             |                                                                                 |            |                               |                                                               | 02 NONE 0 STOP<br>PRVTE W E<br>PSNGR CAR   | 01 DRVR INJC 35 F OR-Y<br>OR>25                             |                   | 011<br>000        | 00<br>00             |
| 04196 N N N 11/26/2013 MARION CITY Tue 1P WOODBURN WOODBURN UA No 45 9 5.57 -122 50 27.82                   | 1 14<br>MN 0 HILLSBORO-SILV HY<br>38.82 PARK AVE<br>014000100S00 1              | E          | EG N<br>UNKNOWN               | N CLR S-STRGHT<br>N DRY SS-O<br>N DAY INJ                     | 01 NONE 0 STRGHT<br>PRVTE E W<br>PSNGR CAR | 01 DRVR NONE 39 M OR-Y OR<25                                |                   | 000               | 32,13<br>00<br>32,13 |
|                                                                                                             |                                                                                 |            |                               |                                                               | 02 NONE 0 STRGHT<br>PRVTE E W<br>PSNGR CAR | 01 DRVR INJC 40 M OR-Y OR<25                                | 000               | 000               | 00<br>00             |
| 02442 N.N.N.N.N.07/22/2014 MADTON                                                                           | 1 14                                                                            | INTER 3-L  | eg n                          | N CID C-1SHOD                                                 | 01 NONE 0 CEDCUM                           | 03 PSNG INJC 09 F<br>04 PSNG INJC 01 M<br>05 PSNG INJC 32 F | 000<br>000<br>000 | 000<br>000<br>000 | 00<br>00<br>00<br>00 |
| 02443 N N N N N 07/22/2014 MARION CITY Tue 3P WOODBURN WOODBURN UA No 45 9 5.57 -122 50 27.82               | 1 14<br>MN 0 HILLSBORO-SILV HY<br>38.82 PARK AVE<br>014000100S00 1              | E          | STOP SIGN                     | N CLR S-1STOP N DRY REAR N DAY INJ                            | 01 NONE 0 STRGHT PRVTE E W PSNGR CAR       | 01 DRVR NONE 00 U UNK                                       | 026               | 000 089           | 07<br>24<br>07       |
|                                                                                                             |                                                                                 |            |                               |                                                               | 02 NONE 0 STOP<br>PRVTE E W<br>PSNGR CAR   | 01 DRVR INJB 59 F OR-Y<br>OR<25                             | 000               | 011<br>000        | 00                   |
| 01827 N N N 05/20/2015 MARION NONE Wed 11A WOODBURN WOODBURN UA No 45 9 5.57 -122 50 27.82                  | 1 14<br>MN 0 HILLSBORO-SILV HY<br>38.82 PARK AVE<br>014000100S00 1              | E          | EG N<br>SP PED SIG            | N CLR S-1STOP<br>N DRY REAR<br>N DAY PDO                      | 01 NONE 0 STRGHT<br>PRVTE E W<br>PSNGR CAR | 01 DRVR NONE 36 F OR-Y OR<25                                | 026               | 004<br>000<br>000 | 29<br>00<br>29       |
|                                                                                                             |                                                                                 |            |                               |                                                               | 02 NONE 0 STOP                             | 02 PSNG NO<5 02 M<br>03 PSNG NO<5 04 M                      | 000<br>000        | 000               | 00                   |
| 02207 N.N.N. 00/04/2015 Madron                                                                              | 1 14                                                                            | TNITED 2 T | EC N                          | N CID & 1000D                                                 |                                            | 01 DRVR NONE 89 M OR-Y<br>OR<25                             |                   | 011 004<br>000    | 00<br>00<br>07       |
| 03207 N N N                                                                                                 | 1 14<br>MN 0 HILLSBORO-SILV HY<br>38.82 PARK AVE<br>014000100S00 1              | E<br>06 0  |                               | N CLR S-1STOP N DRY REAR N DAY INJ                            | 01 NONE 0 STRGHT PRVTE E W PSNGR CAR       | 01 DRVR NONE 37 M OR-Y OR<25                                |                   | 004               | 00<br>07             |

## OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CONTINUOUS SYSTEM CRASH LISTING

140 HILLSBORO-SILVERTON

#### Park Ave & OR 214 Hillsboro-Silverton Hwy (140) January 1, 2011 through December 31, 2015

| S D P R S W SER# E A U C O DATE COUNTY INVEST E L G H R DAY/TIME CITY UNLOC? D C S L K LAT/LONG URBAN AREA | RD# FC CONN # CMPT/MLG FIRST STREET MILEPNT SECOND STREET LRS INTERSECTION SEQ# | RD CHAR<br>DIRECT<br>LOCTN |                       | OFFRD WTHR CRASH TYP<br>RNDBT SURF COLL TYP<br>ORVWY LIGHT SVRTY | SPCL USE TRLR QTY MOVE OWNER FROM V# VEH TYPE TO | A S PRTC INJ G E LICNS PED P# TYPE SVRTY E X RES LOC ERROR | ACTN EVENT     | CAUSE          |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------|-----------------------|------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------|----------------|----------------|
|                                                                                                            |                                                                                 |                            |                       |                                                                  | 02 NONE 0 STOP<br>PRVTE E W<br>PSNGR CAR         | 01 DRVR INJC 70 F OR-Y 000                                 | 011 004<br>000 | 00<br>00       |
|                                                                                                            |                                                                                 |                            |                       |                                                                  |                                                  | OR<25<br>02 PSNG INJC 64 F 000                             | 000            | 00             |
| 04441 N N N 12/23/2011 MARION NONE Fri 11A WOODBURN                                                        | 1 14<br>MN 0 HILLSBORO-SILV HY                                                  |                            |                       | N CLR S-1STOP G N DRY REAR N DAY PDO                             | 01 NONE 0 STRGHT PRVTE W E                       | 01 DDVD NOVE 44 F 0D V 016 006                             | 004            | 27<br>00       |
| WOODBURN UA<br>No 45 9 5.57 -122 50 27.82                                                                  | 38.82 PARK AVE<br>014000100S00 1                                                | 06                         | 0                     | N DAY PDO                                                        | PSNGR CAR                                        | 01 DRVR NONE 44 F OR-Y 016,026<br>OR<25                    | 000            | 27             |
|                                                                                                            |                                                                                 |                            |                       |                                                                  | 02 NONE 0 STOP PRVTE W E PSNGR CAR               | 01 DRVR NONE 62 F OR-Y 000                                 | 011 004<br>000 | 00             |
|                                                                                                            |                                                                                 |                            |                       |                                                                  | FSNGR CAR                                        | 01 DRVR NONE 62 F OR-Y 000<br>OR<25                        | 000            | 00             |
| 00314 N N N 01/28/2013 MARION NO RPT Mon 2P WOODBURN                                                       | 1 14<br>MN 0 HILLSBORO-SILV HY                                                  | INTER<br>W                 | 3-LEG N<br>SP PED SIG | N RAIN S-1STOP<br>S N WET REAR                                   | 01 NONE 0 STRGHT PRVTE W E                       |                                                            | 004            | 07<br>00       |
| WOODBURN UA<br>No 45 9 5.57 -122 50 27.82                                                                  | 38.82 PARK AVE<br>014000100S00 1                                                | 06                         | 0                     | N DAY PDO                                                        | PSNGR CAR                                        | 01 DRVR NONE 29 M OR-Y 026<br>OR>25                        | 000            | 07             |
|                                                                                                            |                                                                                 |                            |                       |                                                                  | 02 NONE 0 STOP<br>PRVTE W E                      |                                                            | 011 004        | 00             |
|                                                                                                            |                                                                                 |                            |                       |                                                                  | PSNGR CAR                                        | 01 DRVR NONE 35 M OR-Y 000<br>OR<25                        | 000            | 00             |
| 02198 N N N N N 07/02/2013 MARION CITY Tue 12P WOODBURN                                                    | 1 14<br>MN 0 HILLSBORO-SILV HY                                                  | INTER<br>W                 | 3-LEG N<br>SP PED SIG | N CLR S-1STOP<br>G N DRY REAR                                    | 01 NONE 0 STRGHT PRVTE W E                       |                                                            | 004            | 07 <b>,</b> 27 |
| WOODBURN UA<br>No 45 9 5.57 -122 50 27.82                                                                  | 38.82 PARK AVE<br>014000100S00 1                                                | 06                         | 0                     | N DAY INJ                                                        | PSNGR CAR                                        | 01 DRVR INJC 41 F OTH-Y 043,016,02<br>OR<25                | 6 000          | 07,27          |
|                                                                                                            |                                                                                 |                            |                       |                                                                  | 02 NONE 0 STOP<br>PRVTE W E                      |                                                            | 011 004        | 00             |
|                                                                                                            |                                                                                 |                            |                       |                                                                  | PSNGR CAR                                        | 01 DRVR INJC 38 F EXP 000 OR>25                            | 000            | 00             |
|                                                                                                            |                                                                                 |                            |                       |                                                                  |                                                  | 02 PSNG INJC 20 F 000<br>03 PSNG INJC 14 F 000             | 000            | 00             |
| 02895 N N N 08/25/2014 MARION NO RPT Mon 4P WOODBURN                                                       | 1 14<br>MN 0 HILLSBORO-SILV HY                                                  | INTER<br>W                 | 3-LEG N<br>STOP SIGN  | N CLR S-1STOP<br>N DRY REAR                                      | 01 NONE 0 STRGHT PRVTE W E                       |                                                            | 004            | 07<br>00       |
| WOODBURN UA<br>No 45 9 5.57 -122 50 27.82                                                                  | 38.82 PARK AVE<br>014000100S00 1                                                | 06                         | 0                     | N DAY PDO                                                        | PSNGR CAR                                        | 01 DRVR NONE 31 M OR-Y 026<br>OR<25                        | 000            | 07             |
|                                                                                                            |                                                                                 |                            |                       |                                                                  | 02 NONE 0 STOP<br>PRVTE W E                      |                                                            | 011 004        | 00             |
|                                                                                                            |                                                                                 |                            |                       |                                                                  | PSNGR CAR                                        | 01 DRVR NONE 20 M OR-Y 000<br>OR<25                        | 000            | 00             |
| 01908 N N N 06/14/2011 MARION CITY Tue 4P WOODBURN                                                         | 1 14<br>MN 0 HILLSBORO-SILV HY                                                  |                            | 3-LEG N<br>REG-SIGN   |                                                                  | 01 NONE 0 STRGHT PRVTE E W                       |                                                            | 004            | 07<br>00       |
| WOODBURN UA<br>No 45 9 5.57 -122 50 27.82                                                                  | 38.82 PARK AVE<br>014000100S00 1                                                | 01                         | 0                     | N DAY PDO                                                        | PSNGR CAR                                        | 01 DRVR NONE 85 M OR-Y 043,026<br>OR<25                    | 000            | 07             |

S D

## OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

CONTINUOUS SYSTEM CRASH LISTING

140 HILLSBORO-SILVERTON Park Ave & OR 214 Hillsboro-Silverton Hwy (140)

January 1, 2011 through December 31, 2015

| S D P R S W SER# E A U C O DATE COUNTY INVEST E L G H R DAY/TIME CITY UNLOC? D C S L K LAT/LONG URBAN AREA | RD# FC CONN # CMPT/MLG FIRST STREET MILEPNT SECOND STREET LRS INTERSECTION SEQ# | DIRECT LE | AN) INT-REL (<br>GS TRAF- 1 | OFFRD WTHR CRA<br>RNDBT SURF CO<br>DRVWY LIGHT SVI | LL TYP OWNER                                 | FROM   |             | A S<br>G E LICNS P<br>E X RES L |             | ACTN EVENT     | CAUSE                |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------|-----------------------------|----------------------------------------------------|----------------------------------------------|--------|-------------|---------------------------------|-------------|----------------|----------------------|
|                                                                                                            |                                                                                 |           |                             |                                                    | 02 NONE 0 S<br>PRVTE E<br>PSNGR CAR          | E W    | 1 DRVR NONE | 42 M OR-Y<br>OR<25              | 000         | 011 004<br>000 | 00                   |
| 02597 N N N N N N 08/04/2013 MARION CITY Sun 10P WOODBURN WOODBURN UA No 45 9 5.57 -122 50 27.82           | 1 14<br>MN 0 HILLSBORO-SILV HY<br>38.82 PARK AVE<br>014000100S00 1              | CN        | EG N<br>STOP SIGN           | N CLR ANGI<br>N DRY ANGI<br>N DLIT PDO             |                                              | E W    | 1 DRVR NONE | 49 F OR-Y<br>OR<25              | 000         | 000            | 03<br>00<br>00       |
|                                                                                                            |                                                                                 |           |                             |                                                    | 02 NONE 0 S<br>PRVTE S<br>PSNGR CAR          | S N    | 1 DRVR NONE | 46 F OR-Y<br>OR<25              | 021         | 000            | 00                   |
| 01091 N N N N N 03/25/2015 MARION CITY Wed 2P WOODBURN WOODBURN UA No 45 9 5.57 -122 50 27.82              | 1 14<br>MN 0 HILLSBORO-SILV HY<br>38.82 PARK AVE<br>014000100S00 1              | CN        | EG N<br>STOP SIGN           | N CLD ANGI<br>N DRY ANGI<br>Y DAY INJ              |                                              | E W    | 1 DRVR INJC | 55 F OR-Y<br>OR<25              | 000         | 000            | 02<br>00<br>00       |
|                                                                                                            |                                                                                 |           |                             |                                                    | 02 NONE 0 S<br>PRVTE S<br>PSNGR CAR          | S N    | 1 DRVR NONE | 26 F OR-Y<br>OR<25              | 028         | 019<br>000     | 00<br>02             |
| CITY Fri 5P WOODBURN WOODBURN UA                                                                           | 1 14<br>MN 0 HILLSBORO-SILV HY<br>38.82 PARK AVE<br>014000100S00 1              | CN        | EG N<br>UNKNOWN             | N CLR 0-1<br>N DRY TURN<br>N DAY INJ               | L-TURN 01 NONE 0 1<br>N PRVTE E<br>PSNGR CAR | E S    | 1 DRVR INJC | 23 F N-VAL<br>OR<25             | 052,004,028 | 000            | 32,02<br>00<br>32,02 |
| No 45 9 5.57 -122 50 27.82                                                                                 | 014000100500 1                                                                  |           |                             |                                                    | 02 NONE 0 S<br>PRVTE V<br>PSNGR CAR          | W E    | 1 DRVR INJB | 53 M OR-Y                       | 000         | 000            | 00                   |
| 02254 N N N N N 07/14/2011 MARION CITY Thu 1P WOODBURN                                                     | 1 14<br>MN 0 HILLSBORO-SILV HY                                                  |           |                             | N CLR ANGI<br>N DRY ANGI                           | L-OTH 01 NONE 0 S                            | STRGHT | 2 PSNG INJB | OR<25<br>45 F                   | 000         | 000            | 00<br>02<br>00       |
|                                                                                                            | 38.82 PARK AVE<br>014000100S00 1                                                |           | 0                           | N DAY PDO                                          | PSNGR CAR                                    | STRGHT | 1 DRVR NONE | 61 M OR-Y<br>OR<25              | 000         | 000            | 00                   |
| 01690 N N N N N 05/22/2014 MARION                                                                          | 1 14                                                                            | INTER 3-1 | EG N                        | N CLD AMCI                                         | PRVTE S PSNGR CAR L-OTH 01 NONE 0 1          | 0      | 1 DRVR NONE | 59 F OR-Y<br>OR<25              | 028         | 000            | 00<br>02<br>02       |
| NONE Thu 6A WOODBURN WOODBURN UA No 45 9 5.57 -122 50 27.82                                                | MN 0 HILLSBORO-SILV HY  38.82 PARK AVE  014000100S00 1                          | CN        |                             | N DRY TURI<br>N DAY PDO                            | N PRVTE S                                    | S W    | 1 DRVR NONE | 78 F OR-Y<br>OR<25              | 028         | 000            | 00 02                |

CDS380 9/6/2017

## OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

PAGE: 4

TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

CONTINUOUS SYSTEM CRASH LISTING

140 HILLSBORO-SILVERTON Park Ave & OR 214 Hillsboro-Silverton Hwy (140)

January 1, 2011 through December 31, 2015

| S D                                  |                        |                                         |                                                   |                  |
|--------------------------------------|------------------------|-----------------------------------------|---------------------------------------------------|------------------|
| P RSW                                | RD# FC CONN #          | INT-TYP                                 | SPCL USE                                          |                  |
| SER# E A U C O DATE COUNTY           | CMPT/MLG FIRST STREET  | RD CHAR (MEDIAN) INT-REL OFFRD WTHR CRA | SH TYP TRLR QTY MOVE A S                          |                  |
| INVEST E L G H R DAY/TIME CITY       | MILEPNT SECOND STREET  | DIRECT LEGS TRAF- RNDBT SURF COL        | L TYP OWNER FROM PRTC INJ G E LICNS PED           |                  |
| UNLOC? D C S L K LAT/LONG URBAN AREA | LRS INTERSECTION SEQ#  | LOCTN (#LANES) CNTL DRVWY LIGHT SVR     | TY V# VEH TYPE TO P# TYPE SVRTY E X RES LOC ERROR | ACTN EVENT CAUSE |
|                                      |                        |                                         |                                                   |                  |
|                                      |                        |                                         | 02 NONE 0 STRGHT                                  |                  |
|                                      |                        |                                         | PRVTE W E                                         | 000 00           |
|                                      |                        |                                         | PSNGR CAR 01 DRVR NONE 55 M OR-Y 000              | 000 00           |
|                                      |                        |                                         | OR<25                                             |                  |
|                                      |                        |                                         |                                                   |                  |
| 00462 N N N 02/08/2015 MARION        | 1 14                   | INTER 3-LEG N N RAIN ANGL               | -OTH 01 NONE 0 STRGHT                             | 02               |
| NO RPT Sun 3A WOODBURN               | MN 0 HILLSBORO-SILV HY | CN STOP SIGN N WET ANGL                 | PRVTE W E                                         | 000 00           |
| WOODBURN UA                          | 38.82 PARK AVE         | 04 0 Y DLIT PDO                         | PSNGR CAR 01 DRVR NONE 49 M OR-Y 000              | 000 00           |
| No 45 9 5.57 -122 50 27.82           | 014000100S00 1         |                                         | OR<25                                             |                  |
|                                      |                        |                                         |                                                   |                  |
|                                      |                        |                                         | 02 NONE 0 STRGHT                                  |                  |
|                                      |                        |                                         | PRVTE S N                                         | 019 00           |
|                                      |                        |                                         | PSNGR CAR 01 DRVR NONE 27 M OR-Y 028              | 000 02           |
|                                      |                        |                                         | OR<25                                             |                  |

#### PAGE: 1

# OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CRASH SUMMARIES BY YEAR BY COLLISION TYPE

Parr Rd & Settlemier Ave
January 1, 2011 through December 31, 2015

|                   | FATAL   | NON-<br>FATAL | PROPERTY<br>DAMAGE | TOTAL   | PEOPLE | PEOPLE  |        | DRY  | WET  |     |      | INTER-  | INTER-<br>SECTION | OFF- |
|-------------------|---------|---------------|--------------------|---------|--------|---------|--------|------|------|-----|------|---------|-------------------|------|
| COLLISION TYPE    | CRASHES | CRASHES       | ONLY               | CRASHES | KILLED | INJURED | TRUCKS | SURF | SURF | DAY | DARK | SECTION | RELATED           | ROAD |
| YEAR: 2015        |         |               |                    |         |        |         |        |      |      |     |      |         |                   |      |
| TURNING MOVEMENTS | 0       | 1             | 0                  | 1       | 0      | 1       | 0      | 1    | 0    | 1   | 0    | 1       | 0                 | 0    |
| 2015 TOTAL        | 0       | 1             | 0                  | 1       | 0      | 1       | 0      | 1    | 0    | 1   | 0    | 1       | 0                 | 0    |
| YEAR: 2014        |         |               |                    |         |        |         |        |      |      |     |      |         |                   |      |
| ANGLE             | 0       | 1             | 0                  | 1       | 0      | 2       | 0      | 0    | 1    | 0   | 1    | 1       | 0                 | 0    |
| 2014 TOTAL        | 0       | 1             | 0                  | 1       | 0      | 2       | 0      | 0    | 1    | 0   | 1    | 1       | 0                 | 0    |
| FINAL TOTAL       | 0       | 2             | 0                  | 2       | 0      | 3       | 0      | 1    | 1    | 1   | 1    | 2       | 0                 | 0    |

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

#### PAGE: 1

#### OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

URBAN NON-SYSTEM CRASH LISTING

Parr Rd & Settlemier Ave

| S D                              |                      |         |          |           |        |            |             |        |             |             |           |            |       |
|----------------------------------|----------------------|---------|----------|-----------|--------|------------|-------------|--------|-------------|-------------|-----------|------------|-------|
| P R S W                          | CITY STREET          |         | INT-TYP  |           |        |            | SPCL USE    |        |             |             |           |            |       |
| SER# E A U C O DATE              | FIRST STREET         | RD CHAR | (MEDIAN) |           |        |            | ~           | MOVE   |             | A S         |           |            |       |
| INVEST E L G H R DAY/TIME FC     | SECOND STREET        | DIRECT  | LEGS     |           | DBT SU |            | OWNER       | FROM   | PRTC INC    |             |           |            |       |
| UNLOC? D C S L K LAT/LONG DISTNO | C INTERSECTION SEQ # | LOCTN   | (#LANES) | CONTL DR  | VWY LI | HT SVRTY   | V# VEH TYPE | TO     | P# TYPE SVE | TY E X RES  | LOC ERROR | ACTN EVENT | CAUSE |
| 04688 N N N N N 12/27/2014 16    | PARR ST              | INTER   | CROSS    | N         | N RA   | N ANGL-OTH | 01 NONE 0   | STRGHT |             |             |           |            | 27,03 |
| CITY Sat 5P 0                    | SETTLEMIER AVE       | CN      |          | STOP SIGN | N WE   | ' ANGL     | PRVTE       | W E    |             |             |           | 000        | 00    |
| No 45 8 9.29 -122 51 54.33       | 1                    | 03      | 0        |           | N DL   | T INJ      | PSNGR CAR   |        | 01 DRVR NON | E 32 M OR-Y | 016,021   | 030        | 27,03 |
|                                  |                      |         |          |           |        |            |             |        |             | OR<25       |           |            |       |
|                                  |                      |         |          |           |        |            |             |        | 02 PSNG NO  | 5 01 F      | 000       | 000        | 00    |
|                                  |                      |         |          |           |        |            | 02 NONE 0   | STRGHT |             |             |           |            |       |
|                                  |                      |         |          |           |        |            | PRVTE       | NE SW  |             |             |           | 000        | 00    |
|                                  |                      |         |          |           |        |            | PSNGR CAR   |        | 01 DRVR NON | E 64 M OR-Y | 000       | 000        | 00    |
|                                  |                      |         |          |           |        |            |             |        |             | OR<25       | 000       |            | 0.0   |
|                                  |                      |         |          |           |        |            |             |        | 02 PSNG INJ |             | 000       | 000        | 00    |
|                                  |                      |         |          |           |        |            |             |        | 03 PSNG INC | B 18 F      | 000       | 000        | 00    |
| 01296 N N N N N 04/10/2015 16    | PARR ST              | INTER   | CROSS    | N         | N CL   | R ANGL-OTH | 01 NONE 0   | TURN-R |             |             |           | 093        | 27,02 |
| CITY Fri 7A 0                    | SETTLEMIER AVE       | CN      |          | STOP SIGN | N DR   | TURN       | PRVTE       | W SW   |             |             |           | 000        | 00    |
| No 45 8 9.25 -122 51 54.35       | 1                    | 03      | 0        |           | N DA   | INJ        | PSNGR CAR   |        | 01 DRVR NON | E 21 F OR-Y | 016,028   | 038 093    | 27,02 |
|                                  |                      |         |          |           |        |            |             |        | 02 PSNG NO< | OR<25       | 000       | 000        | 00    |
|                                  |                      |         |          |           |        |            |             |        | UZ FSNG NO  | J 01 M      | 000       | 000        | 00    |
|                                  |                      |         |          |           |        |            | 02 NONE 0   | STRGHT |             |             |           |            |       |
|                                  |                      |         |          |           |        |            | PRVTE       | NE SW  |             |             |           | 000        | 00    |
|                                  |                      |         |          |           |        |            | PSNGR CAR   |        | 01 DRVR NON | E 32 M OR-Y | 000       | 000        | 00    |
|                                  |                      |         |          |           |        |            |             |        | 02 DONG IN  | OR<25       | 000       | 000        | 0.0   |
|                                  |                      |         |          |           |        |            |             |        | 02 PSNG INC | C JZ F      | 000       | 000        | 00    |

# OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CRASH SUMMARIES BY YEAR BY COLLISION TYPE

# Willow St

January 1, 2011 through December 31, 2015

|                | FATAL   | NON-<br>FATAL | PROPERTY<br>DAMAGE |         | PEOPLE | PEOPLE  |        | DRY  | WET  |     |      | INTER-  | INTER-<br>SECTION | OFF-        |
|----------------|---------|---------------|--------------------|---------|--------|---------|--------|------|------|-----|------|---------|-------------------|-------------|
| COLLISION TYPE | CRASHES | CRASHES       | ONLY               | CRASHES | KILLED | INJURED | TRUCKS | SURF | SURF | DAY | DARK | SECTION | RELATED           | <u>ROAD</u> |
| YEAR: 2014     |         |               |                    |         |        |         |        |      |      |     |      |         |                   |             |
| REAR-END       | 0       | 0             | 1                  | 1       | 0      | 0       | 0      | 0    | 1    | 1   | 0    | 1       | 0                 | 0           |
| 2014 TOTAL     | 0       | 0             | 1                  | 1       | 0      | 0       | 0      | 0    | 1    | 1   | 0    | 1       | 0                 | 0           |
| YEAR: 2013     |         |               |                    |         |        |         |        |      |      |     |      |         |                   |             |
| BACKING        | 0       | 0             | 1                  | 1       | 0      | 0       | 0      | 1    | 0    | 1   | 0    | 0       | 0                 | 0           |
| 2013 TOTAL     | 0       | 0             | 1                  | 1       | 0      | 0       | 0      | 1    | 0    | 1   | 0    | 0       | 0                 | 0           |
| YEAR: 2012     |         |               |                    |         |        |         |        |      |      |     |      |         |                   |             |
| REAR-END       | 0       | 1             | 0                  | 1       | 0      | 1       | 0      | 1    | 0    | 0   | 1    | 0       | 0                 | 1           |
| 2012 TOTAL     | 0       | 1             | 0                  | 1       | 0      | 1       | 0      | 1    | 0    | 0   | 1    | 0       | 0                 | 1           |
| FINAL TOTAL    | 0       | 1             | 2                  | 3       | 0      | 1       | 0      | 2    | 1    | 2   | 1    | 1       | 0                 | 1           |

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

CDS380 9/6/2017 OREGON DEPARTMENT OF TRANSPORTATION DEVELOPMENT DIVISION PAGE: 1

TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CONTINUOUS SYSTEM CRASH LISTING

140 HILLSBORO-SILVERTON Willow St

January 1, 2011 through December 31, 2015

| S D P R S W  SER# E A U C O DATE COUNTY INVEST E L G H R DAY/TIME CITY UNLOC? D C S L K LAT/LONG URBAN AREA | RD# FC CONN # CMPT/MLG FIRST STREET MILEPNT SECOND STREET LRS INTERSECTION SEQ# | DIRECT LEGS TRAF- RNDBT | SPCL USE  D WTHR CRASH TYP TRLR QTY MOVE T SURF COLL TYP OWNER FROM Y LIGHT SVRTY V# VEH TYPE TO | A S<br>PRTC INJ G E LICNS PED<br># TYPE SVRTY E X RES LOC ERROR | ACTN EVENT CAUSE   |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------|
| 03967 Y N N 11/06/2014 MARION CITY Thu 7A WOODBURN                                                          | 1 14<br>MN 0 HILLSBORO-SILV HY                                                  |                         | RAIN S-1TURN 01 NONE 0 STRGHT                                                                    |                                                                 | 30,27,07<br>000 00 |
| WOODBURN UA                                                                                                 | 36.24 WILLOW AVE                                                                |                         |                                                                                                  | 01 DRVR NONE 58 M OR-Y 016,050,042                              |                    |
| No 45 9 3.49 -122 53 31.34                                                                                  | 014000100S00 1                                                                  |                         |                                                                                                  | OR<25                                                           |                    |
|                                                                                                             |                                                                                 |                         | 02 NONE 0 TURN-L                                                                                 |                                                                 |                    |
|                                                                                                             |                                                                                 |                         | PRVTE W N                                                                                        |                                                                 | 000 00             |
|                                                                                                             |                                                                                 |                         | PSNGR CAR                                                                                        | 01 DRVR NONE 25 F OR-Y 000                                      | 000 00             |
|                                                                                                             |                                                                                 |                         |                                                                                                  | OR<25                                                           |                    |
|                                                                                                             |                                                                                 |                         |                                                                                                  | 02 PSNG NO<5 04 M 000                                           | 000 00             |

# OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CRASH SUMMARIES BY YEAR BY COLLISION TYPE

Woodland Ave & OR 214 Hillsboro-Silverton Hwy (140) January 1, 2011 through December 31, 2015

|                   |         |         | PROPERTY |         |        |         |        |      |      |     |      |         | INTER-  |      |
|-------------------|---------|---------|----------|---------|--------|---------|--------|------|------|-----|------|---------|---------|------|
|                   | FATAL   | FATAL   | DAMAGE   | TOTAL   | PEOPLE | PEOPLE  |        | DRY  | WET  |     |      | INTER-  | SECTION | OFF- |
| COLLISION TYPE    | CRASHES | CRASHES | ONLY     | CRASHES | KILLED | INJURED | TRUCKS | SURF | SURF | DAY | DARK | SECTION | RELATED | ROAD |
| YEAR: 2014        |         |         |          |         |        |         |        |      |      |     |      |         |         |      |
| ANGLE             | 0       | 0       | 1        | 1       | 0      | 0       | 0      | 1    | 0    | 1   | 0    | 1       | 0       | 0    |
| TURNING MOVEMENTS | 0       | 0       | 1        | 1       | 0      | 0       | 0      | 1    | 0    | 0   | 1    | 1       | 0       | 0    |
| 2014 TOTAL        | 0       | 0       | 2        | 2       | 0      | 0       | 0      | 2    | 0    | 1   | 1    | 2       | 0       | 0    |
| FINAL TOTAL       | 0       | 0       | 2        | 2       | 0      | 0       | 0      | 2    | 0    | 1   | 1    | 2       | 0       | 0    |

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

CDS380 9/6/2017

# OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION PAGE: 1

TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT
CONTINUOUS SYSTEM CRASH LISTING

140 HILLSBORO-SILVERTON Woodland Ave & OR 214 Hillsboro-Silverton Hwy (140)
January 1, 2011 through December 31, 2015

| S   D   P   R S W   RD# FC   CONN #     |                     | SPCL USE  L OFFRD WTHR CRASH TYP TRLR QTY MOVE RNDBT SURF COLL TYP OWNER FROM DRVWY LIGHT SVRTY V# VEH TYPE TO | A S PRTC INJ G E LICNS PED P# TYPE SVRTY E X RES LOC ERROR | ACTN EVENT CAUSE |
|-----------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------|
| 01097 N N N 04/05/2014 MARION 1 14      | INTER 3-LEG N       | N CLR ANGL-OTH 01 NONE 0 STRGHT                                                                                |                                                            | 04               |
| NONE Sat 10A WOODBURN MN 0 HILLSBOR     | O-SILV HY CN TRF SI | GNAL N DRY ANGL PRVTE E W                                                                                      |                                                            | 000 00           |
| WOODBURN UA 36.52 WOODLAND              | AVE 01 0            | N DAY PDO PSNGR CAR                                                                                            | 01 DRVR NONE 48 F OR-Y 097                                 | 000 00           |
| No 45 9 3.71 -122 53 10.85 014000100S00 | 1                   |                                                                                                                | OR<25                                                      |                  |
|                                         |                     | 02 NONE 0 STRGHT                                                                                               |                                                            |                  |
|                                         |                     | PRVTE N S                                                                                                      |                                                            | 000 00           |
|                                         |                     | PSNGR CAR                                                                                                      | 01 DRVR NONE 00 M UNK 097                                  | 000 00           |
|                                         |                     | 201010 01110                                                                                                   | UNK                                                        |                  |
|                                         |                     |                                                                                                                |                                                            |                  |
| 00672 N N N 02/27/2014 MARION 1 14      | INTER CROSS N       | N CLR S-OTHER 01 NONE 0 U-TURN                                                                                 |                                                            | 08               |
| NONE Thu 7P WOODBURN MN 0 HILLSBOR      | O-SILV HY CN TRF SI | GNAL N DRY TURN PRVTE W W                                                                                      |                                                            | 000 00           |
| WOODBURN UA 36.52 WOODLAND              | AVE 03 0            | N DLIT PDO PSNGR CAR                                                                                           | 01 DRVR NONE 23 F OR-Y 008,006                             | 000 08           |
| No 45 9 3.71 -122 53 10.85 014000100S00 | 1                   |                                                                                                                | OR<25                                                      |                  |
|                                         |                     | 02 NONE 0 TURN-L                                                                                               |                                                            |                  |
|                                         |                     | PRVTE W N                                                                                                      |                                                            | 000 00           |
|                                         |                     | PSNGR CAR                                                                                                      | 01 DRVR NONE 00 M UNK 000                                  | 000 00           |
|                                         |                     | 1011011 01111                                                                                                  | UNK                                                        |                  |

# OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CRASH SUMMARIES BY YEAR BY COLLISION TYPE

#### Young St & OR 99E

January 1, 2011 through December 31, 2015

|                                       |         |         |          | , ,     | `      | -       | •      |        |      |     |      |         |         |        |
|---------------------------------------|---------|---------|----------|---------|--------|---------|--------|--------|------|-----|------|---------|---------|--------|
|                                       |         | NON-    | PROPERTY |         |        |         |        |        |      |     |      |         | INTER-  |        |
|                                       | FATAL   | FATAL   | DAMAGE   | TOTAL   | PEOPLE | PEOPLE  |        | DRY    | WET  |     |      | INTER-  | SECTION | OFF-   |
| COLLISION TYPE                        | CRASHES | CRASHES | ONLY     | CRASHES | KILLED | INJURED | TRUCKS | SURF   | SURF | DAY | DARK | SECTION | RELATED | ROAD   |
| YEAR: 2015                            |         |         |          |         |        |         |        |        |      |     |      |         |         |        |
| ANGLE                                 | 0       | 2       | 0        | 2       | 0      | 3       | 0      | 2      | 0    | 1   | 1    | 2       | 0       | 0      |
| REAR-END                              | 0       | 0       | 1        | 1       | 0      | 0       | 0      | 0      | 1    | 0   | 1    | 1       | 0       | 0      |
| TURNING MOVEMENTS                     | 0       | 2       | 3        | 5       | 0      | 2       | 2      | 2      | 3    | 3   | 2    | 5       | 0       | 0      |
| 2015 TOTAL                            | 0       | 4       | 4        | 8       | 0      | 5       | 2      | 4      | 4    | 4   | 4    | 8       | 0       | 0      |
| VEAD: 2014                            |         |         |          |         |        |         |        |        |      |     |      |         |         |        |
| YEAR: 2014<br>ANGLE                   | 0       | 0       | 0        | 0       | 0      | 2       | 0      | 4      | 4    | 2   | 0    | 0       | 0       | 0      |
| PEDESTRIAN                            | 0       | 2       | 0        | 2       | 0      | 3       | 0      | 1      | 1    | 2   | 0    | 2       | 0<br>0  | 0<br>0 |
| REAR-END                              | 0       | 1       | 0        | 1       | 0      | 2       | 0      | 0      | 1    | 1   | 0    | 1       | 0       | 0      |
| TURNING MOVEMENTS                     | 0       | 0       | 3        | 3       | 0      | 0       | 0      | 2      | 1    | 1   | 2    | 3       | 0       | 0      |
| 2014 TOTAL                            | 0       | 4       | 3        | 7       | 0      | 6       | 0      | 4      | 3    | 4   | 3    | 7       | 0       | 0      |
| 2014 101AL                            | O .     | 7       | 3        | •       | O      | O .     | O      | 7      | 3    | 7   | 0    | ,       | O       | O      |
| YEAR: 2013                            |         |         |          |         |        |         |        |        |      |     |      |         |         |        |
| ANGLE                                 | 0       | 3       | 0        | 3       | 0      | 4       | 0      | 3      | 0    | 2   | 1    | 3       | 0       | 0      |
| FIXED / OTHER OBJECT                  | 0       | 0       | 1        | 1       | 0      | 0       | 0      | 1      | 0    | 1   | 0    | 1       | 0       | 1      |
| TURNING MOVEMENTS                     | 0       | 1       | 1        | 2       | 0      | 1       | 0      | 1      | 1    | 2   | 0    | 2       | 0       | 0      |
| 2013 TOTAL                            | 0       | 4       | 2        | 6       | 0      | 5       | 0      | 5      | 1    | 5   | 1    | 6       | 0       | 1      |
| YEAR: 2012                            |         |         |          |         |        |         |        |        |      |     |      |         |         |        |
| ANGLE                                 | 0       | 0       | 2        | 2       | 0      | 0       | 0      | 1      | 1    | 0   | 2    | 2       | 0       | 0      |
| REAR-END                              | 0       | 1       | 1        | 2       | 0      | 1       | 0      | 1      | Ó    | 2   | 0    | 2       | 0       | 0      |
| SIDESWIPE - OVERTAKING                | 0       | 0       | 1        | 1       | 0      | 0       | 1      | 1      | 0    | 1   | 0    | 1       | 0       | 0      |
| TURNING MOVEMENTS                     | 0       | 1       | 2        | 3       | Ö      | 1       | 0      | 1      | 2    | 1   | 2    | 3       | Ö       | Ö      |
| 2012 TOTAL                            | 0       | 2       | 6        | 8       | 0      | 2       | 1      | 4      | 3    | 4   | 4    | 8       | 0       | 0      |
| VEAD - 0044                           |         |         |          |         |        |         |        |        |      |     |      |         |         |        |
| YEAR: 2011                            |         | _       | _        | _       | _      | _       |        |        |      | _   |      | _       | _       |        |
| ANGLE                                 | 0       | 0       | 2        | 2       | 0      | 0       | 0      | 1      | 1    | 2   | 0    | 2       | 0       | 0      |
| BACKING                               | 0       | 0       | 1        | 1       | 0      | 0       | 0      | 1      | 0    | 0   | 1    | 1       | 0       | 0      |
| REAR-END                              | 0       | 1       | 0        | 1       | 0      | 1       | 0      | 1      | 0    | 1   | 0    | 1       | 0       | 0      |
| TURNING MOVEMENTS                     | 0       | 3       | 0        | 3       | 0      | 5       | 0      | 3<br>6 | 0    | 1   | 2    | 3       | 0<br>0  | 0<br>0 |
| 2011 TOTAL                            | Ü       | 4       | 3        | 7       | U      | 6       | U      | О      | 1    | 4   | 3    | 1       | U       | U      |
| FINAL TOTAL                           | 0       | 18      | 18       | 36      | 0      | 24      | 3      | 23     | 12   | 21  | 15   | 36      | 0       | 1      |
| · · · · · · · · · · · · · · · · · · · | •       | . •     |          | •       | ·      |         | •      | _,     |      |     |      |         | •       |        |

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

# OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CONTINUOUS SYSTEM CRASH LISTING

081 PACIFIC HIGHWAY EAST

#### Young St & OR 99E January 1, 2011 through December 31, 2015

| S D P R S W SER# E A U C O DATE COUNTY INVEST E L G H R DAY/TIME CITY UNLOC? D C S L K LAT/LONG URBAN AREA | RD# FC CONN # CMPT/MLG FIRST STREET MILEPNT SECOND STREET LRS INTERSECTION SEQ# | DIRECT            | LEGS TRAF- F               | RNDBT SURF COLL TYP                       | SPCL USE P TRLR QTY MOVE OWNER FROM V# VEH TYPE TO |                           | G E LICNS PE       |         | ACTN EVENT                           | CAUSE                            |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------|----------------------------|-------------------------------------------|----------------------------------------------------|---------------------------|--------------------|---------|--------------------------------------|----------------------------------|
| 00833 N N N 03/06/2015 MARION CITY Fri 8A WOODBURN WOODBURN UA No 45 8 13.29 -122 50 38.07                 | 1 14<br>MN 0 PACIFIC HY 99E<br>32.87 YOUNG ST<br>008100100S00 1                 | INTER<br>NE<br>05 | CROSS N<br>TRF SIGNAI      | N FOG S-OTHER N DRY TURN N DAY PDO        | 01 NONE 1 TURN-R<br>PRVTE SE NE<br>SEMI TOW        | 01 DRVR NONE              | 35 M SUSP<br>N-RES | 006     | 000                                  | 08<br>00<br>08                   |
|                                                                                                            |                                                                                 |                   |                            |                                           | 02 NONE 0 TURN-R<br>PRVTE SE NE<br>PSNGR CAR       | 01 DRVR NONE 02 PSNG NO<5 | OR<25              | 000     | 000                                  | 00<br>00                         |
| 03671 N Y N N N 10/18/2014 MARION CITY Sat 8P WOODBURN WOODBURN UA No 45 8 13.29 -122 50 38.07             | 1 14<br>MN 0 PACIFIC HY 99E<br>32.87 YOUNG ST<br>008100100S00 1                 | INTER<br>NE<br>06 | CROSS N<br>TRF SIGNAI<br>0 | N CLR PED<br>L N DRY PED<br>N DLIT INJ    |                                                    | 01 DRVR NONE              |                    | 000     | 000                                  | 04,18,19<br>00<br>00<br>04,18,19 |
| 04645 N N N N N 12/23/2014 MARION CITY Tue 8A WOODBURN WOODBURN UA No 45 8 13.29 -122 50 38.07             | 1 14<br>MN 0 PACIFIC HY 99E<br>32.87 YOUNG ST<br>008100100S00 1                 | INTER<br>NE<br>06 | CROSS N<br>TRF SIGNAI      | N CLD S-1STOP<br>N WET REAR<br>N DAY INJ  | NW SE  01 NONE 0 STRGHT PRVTE NE SW PSNGR CAR      |                           |                    | 043,026 | 000                                  | 07<br>00<br>07                   |
|                                                                                                            |                                                                                 |                   |                            |                                           | 02 NONE 0 STOP<br>PRVTE NE SW<br>PSNGR CAR         | 01 DRVR INJC              | OR<25              | 000     | 011<br>000                           | 00                               |
| 04655 N N N N N 12/27/2013 MARION CITY Fri 1P WOODBURN WOODBURN UA No 45 8 13.29 -122 50 38.07             | 1 14<br>MN 0 PACIFIC HY 99E<br>32.87 YOUNG ST<br>008100100S00 1                 | INTER<br>SW<br>05 | CROSS N<br>TRF SIGNAI      |                                           | 01 NONE 0 STRGHT<br>PRVTE NE SW<br>PSNGR CAR       |                           |                    | 080,081 | 000<br>092,053<br>007 092,053<br>000 | 00<br>26<br>26<br>00             |
| 02317 N N N 07/19/2011 MARION NONE Tue 1P WOODBURN WOODBURN UA No 45 8 13.29 -122 50 38.07                 | 1 14<br>MN 0 PACIFIC HY 99E<br>32.87 YOUNG ST<br>008100100S00 1                 | INTER<br>SW<br>06 | N<br>L-GRN-SIG             | N CLR ANGL-OTH<br>N DRY ANGL<br>Y DAY PDO | 01 NONE 0 STRGHT<br>PRVTE NW SE<br>PSNGR CAR       |                           | 45 F OR-Y<br>OR>25 | 028     | 018<br>000                           | 02<br>00<br>02                   |
|                                                                                                            |                                                                                 |                   |                            |                                           | 02 NONE 0 STOP<br>PRVTE SW NE<br>PSNGR CAR         | 01 DRVR NONE              | 42 M OR-Y<br>OR>25 | 000     | 011<br>000                           | 00<br>00                         |
| 02917 N N N 09/04/2011 MARION NONE Sun 12P WOODBURN WOODBURN UA No 45 8 13.29 -122 50 38.07                | 1 14<br>MN 0 PACIFIC HY 99E<br>32.87 YOUNG ST<br>008100100S00 1                 | INTER<br>SW<br>06 | CROSS N<br>TRF SIGNAI<br>0 | N CLR S-1STOP<br>N DRY REAR<br>N DAY INJ  | 01 NONE 0 STRGHT<br>PRVTE SW NE<br>PSNGR CAR       |                           | OR<25              | 026     | 000<br>000                           | 07<br>00<br>07                   |

# OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

CONTINUOUS SYSTEM CRASH LISTING

#### Young St & OR 99E

January 1, 2011 through December 31, 2015

| S D P R S W SER# E A U C O DATE COUNTY INVEST E L G H R DAY/TIME CITY UNLOC? D C S L K LAT/LONG URBAN AREA | RD# FC CONN # CMPT/MLG FIRST STREET MILEPNT SECOND STREET LRS INTERSECTION SEQ# | DIRECT LEG | N) INT-REL O<br>S TRAF- R | DFFRD WTHR CRASH TY<br>RNDBT SURF COLL TYP<br>DRVWY LIGHT SVRTY |                               | A S<br>PRTC INJ G E LICNS PED<br>P# TYPE SVRTY E X RES LOC ERI | ror actn event                          | CAUSE |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------|---------------------------|-----------------------------------------------------------------|-------------------------------|----------------------------------------------------------------|-----------------------------------------|-------|
|                                                                                                            |                                                                                 |            |                           |                                                                 | 02 NONE 0 STOP                |                                                                |                                         |       |
|                                                                                                            |                                                                                 |            |                           |                                                                 | PRVTE SW NE                   |                                                                | 011                                     | 00    |
|                                                                                                            |                                                                                 |            |                           |                                                                 | PSNGR CAR                     | 01 DRVR NONE 20 F OR-Y 00                                      | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00    |
|                                                                                                            |                                                                                 |            |                           |                                                                 |                               | OR<25<br>02 PSNG INJC 15 F 000                                 | 0 000                                   | 00    |
| 04058 N N N N N 11/30/2011 MARION                                                                          | 1 14                                                                            | INTER CROS | S N                       | N CLR 0-1STOP                                                   | 01 NONE 0 BACK                |                                                                |                                         | 10    |
| CITY Wed 7P WOODBURN                                                                                       | MN 0 PACIFIC HY 99E                                                             | SW         |                           | N DRY BACK                                                      | PRVTE NE SW                   |                                                                | 000                                     | 00    |
| WOODBURN UA                                                                                                | 32.87 YOUNG ST                                                                  | 06 0       |                           | N DLIT PDO                                                      | PSNGR CAR                     | 01 DRVR NONE 46 M OTH-Y 01:                                    | 1 000                                   | 10    |
| No 45 8 13.29 -122 50 38.07                                                                                | 008100100S00 1                                                                  |            |                           |                                                                 |                               | N-RES                                                          |                                         |       |
|                                                                                                            |                                                                                 |            |                           |                                                                 | 02 NONE 0 STOP                |                                                                |                                         |       |
|                                                                                                            |                                                                                 |            |                           |                                                                 | PRVTE SW NE                   |                                                                | 011                                     | 00    |
|                                                                                                            |                                                                                 |            |                           |                                                                 | PSNGR CAR                     | 01 DRVR NONE 26 M OR-Y 000<br>OR<25                            | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00    |
| 02074 N N N 06/24/2012 MARION                                                                              | 1 14                                                                            | INTER CROS | S N                       | N UNK S-1STOP                                                   | 01 NONE 0 STRGHT              |                                                                |                                         | 07    |
| NONE Sun 1P WOODBURN                                                                                       | MN 0 PACIFIC HY 99E                                                             | SW         | TRF SIGNAL                | L N UNK REAR                                                    | PRVTE SW NE                   |                                                                | 000                                     | 00    |
| WOODBURN UA                                                                                                | 32.87 YOUNG ST<br>008100100S00 1                                                | 06 0       |                           | N DAY PDO                                                       | PSNGR CAR                     | 01 DRVR NONE 81 M OR-Y 02                                      | 6 000                                   | 07    |
| No 45 8 13.29 -122 50 38.07                                                                                | 008100100800 1                                                                  |            |                           |                                                                 |                               | OR<25                                                          |                                         |       |
|                                                                                                            |                                                                                 |            |                           |                                                                 | 02 NONE 0 STOP                |                                                                | 011                                     | 0.0   |
|                                                                                                            |                                                                                 |            |                           |                                                                 | PRVTE SW NE<br>PSNGR CAR      | 01 DRVR NONE 48 F OR-Y 000                                     | 011<br>0 000                            | 00    |
|                                                                                                            |                                                                                 |            |                           |                                                                 | I SNOW OTH                    | OR<25                                                          | ,                                       |       |
| 02750 N N N 08/16/2012 MARION                                                                              | 1 14                                                                            | INTER CROS | S N                       | N CLR S-1STOP                                                   | 01 NONE 0 STRGHT              | 1                                                              |                                         | 07    |
| NO RPT Thu 8P WOODBURN                                                                                     | MN 0 PACIFIC HY 99E                                                             | SW         |                           | L N DRY REAR                                                    | PRVTE SW NE                   |                                                                | 000                                     | 00    |
| WOODBURN UA<br>No 45 8 13.29 -122 50 38.07                                                                 | 32.87 YOUNG ST<br>008100100S00 1                                                | 06 0       |                           | N DAY INJ                                                       | PSNGR CAR                     | 01 DRVR INJB 32 M OR-Y 02-                                     | 6 000                                   | 07    |
| NO 45 6 13.25 -122 30 30.07                                                                                | 000100100300                                                                    |            |                           |                                                                 |                               | UR\23                                                          |                                         |       |
|                                                                                                            |                                                                                 |            |                           |                                                                 | 02 NONE 0 STOP<br>PRVTE SW NE |                                                                | 011                                     | 00    |
|                                                                                                            |                                                                                 |            |                           |                                                                 |                               | 01 DRVR NONE 35 M OR-Y 00                                      |                                         | 00    |
|                                                                                                            |                                                                                 |            |                           |                                                                 |                               | OR<25                                                          |                                         |       |
| 03288 N N N N N 09/23/2014 MARION                                                                          | 1 14                                                                            | INTER CROS | S N                       | N RAIN ANGL-STP                                                 | 01 NONE 0 TURN-F              | 8                                                              |                                         | 08    |
| CITY Tue 9P WOODBURN                                                                                       | MN 0 PACIFIC HY 99E                                                             | NW         | L-GRN-SIG                 | N WET TURN                                                      | PRVTE NE NW                   |                                                                | 000                                     | 00    |
| WOODBURN UA                                                                                                | 32.87 YOUNG ST                                                                  | 06 0       |                           | N DLIT PDO                                                      | PSNGR CAR                     | 01 DRVR NONE 00 M UNK 00:                                      | 1 000                                   | 8 0   |
| No 45 8 13.29 -122 50 38.07                                                                                | 008100100800 1                                                                  |            |                           |                                                                 |                               | OR<25                                                          |                                         |       |
|                                                                                                            |                                                                                 |            |                           |                                                                 | 02 NONE 0 STOP                |                                                                | 010                                     | 0.0   |
|                                                                                                            |                                                                                 |            |                           |                                                                 | PRVTE NW SE                   | 01 DRVR NONE 00 M UNK 000                                      | 012<br>0 000                            | 00    |
|                                                                                                            |                                                                                 |            |                           |                                                                 | I SNOW CAR                    | OR<25                                                          | , 000                                   | 00    |
| 04255 N N N N N 12/11/2011 MARION                                                                          | 1 14                                                                            | INTER CROS | S N                       | N CLD O-1 L-TUR                                                 | N 01 NONE 0 STRGHT            |                                                                | 013                                     | 02    |
|                                                                                                            | MN 0 PACIFIC HY 99E                                                             |            |                           | L N DRY TURN                                                    | PRVTE NE SW                   |                                                                | 000                                     | 00    |
| WOODBURN UA<br>No 45 8 13.29 -122 50 38.07                                                                 | 32.87 YOUNG ST<br>008100100S00 1                                                |            |                           | N DUSK INJ                                                      | PSNGR CAR                     | 01 DRVR NONE 50 M OR-Y 000<br>OR<25                            | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00    |
| NO 45 0 15.25 -122 30 30.07                                                                                | 000100100200 1                                                                  |            |                           |                                                                 |                               | URSZU                                                          |                                         |       |

# OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

CONTINUOUS SYSTEM CRASH LISTING

Young St & OR 99E

January 1, 2011 through December 31, 2015

| S D P R S W SER# E A U C O DATE COUNTY INVEST E L G H R DAY/TIME CITY UNLOC? D C S L K LAT/LONG URBAN AREA | RD# FC CONN # CMPT/MLG FIRST STREET MILEPNT SECOND STREET LRS INTERSECTION SEQ# | RD CHAR (M<br>DIRECT | LEGS TRAF- R | FFRD WTHR CRASH TY<br>NDBT SURF COLL TYP<br>RVWY LIGHT SVRTY |                                 | A S<br>PRTC INJ G E LICNS PE<br>P# TYPE SVRTY E X RES LO |         | ACTN EVENT | CAUSE |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------|--------------|--------------------------------------------------------------|---------------------------------|----------------------------------------------------------|---------|------------|-------|
|                                                                                                            |                                                                                 |                      |              |                                                              | 02 NONE 0 TURN-L                | 1                                                        |         |            |       |
|                                                                                                            |                                                                                 |                      |              |                                                              | PRVTE SW NW                     |                                                          |         | 000        | 00    |
|                                                                                                            |                                                                                 |                      |              |                                                              | PSNGR CAR                       | 01 DRVR NONE 20 F OR-Y                                   | 004,028 | 000        | 02    |
|                                                                                                            |                                                                                 |                      |              |                                                              |                                 | OR<25<br>02 PSNG INJB 19 F                               | 000     | 000        | 00    |
|                                                                                                            |                                                                                 |                      |              |                                                              | 03 NONE 0 STOP                  |                                                          |         |            |       |
|                                                                                                            |                                                                                 |                      |              |                                                              | PRVTE NW SE                     |                                                          |         | 022        | 00    |
|                                                                                                            |                                                                                 |                      |              |                                                              | PSNGR CAR                       | 01 DRVR NONE 35 F OR-Y<br>OR<25                          | 000     | 000        | 00    |
| 00726 N N N 02/29/2012 MARION                                                                              | 1 14                                                                            | INTER                | CROSS N      | N SNOW ANGL-OTH                                              | 01 NONE 0 STRGHT                | 1                                                        |         |            | 04    |
| NONE Wed 6A WOODBURN                                                                                       | MN 0 PACIFIC HY 99E                                                             | CN                   | TRF SIGNAL   | N SNO ANGL                                                   | PRVTE SE NW                     |                                                          |         | 000        | 00    |
| WOODBURN UA<br>No 45 8 13.29 -122 50 38.07                                                                 | 32.87 YOUNG ST<br>008100100S00 1                                                | 02                   | 0            | N DAWN PDO                                                   | PSNGR CAR                       | 01 DRVR NONE 29 M OR-Y<br>OR<25                          | 097     | 000        | 00    |
|                                                                                                            |                                                                                 |                      |              |                                                              | 02 NONE 0 STRGHT                |                                                          |         |            |       |
|                                                                                                            |                                                                                 |                      |              |                                                              | PRVTE SW NE                     |                                                          | 007     | 000        | 00    |
|                                                                                                            |                                                                                 |                      |              |                                                              | PSNGR CAR                       | 01 DRVR NONE 00 M UNK<br>OR<25                           | 097     | 000        | 00    |
| 00929 N N N 03/16/2012 MARION                                                                              | 1 14                                                                            |                      | CROSS N      | N CLR S-OTHER                                                | 01 NONE 1 TURN-R                |                                                          |         | 000        | 06    |
| NO RPT Fri 10A WOODBURN WOODBURN UA                                                                        | MN 0 PACIFIC HY 99E<br>32.87 YOUNG ST                                           | CN<br>02             | UNKNOWN<br>0 | N DRY SS-O<br>N DAY PDO                                      | PRVTE SE NE                     | 01 DRVR NONE 58 M OTH-Y                                  | 001     | 000        | 00    |
| No 45 8 13.29 -122 50 38.07                                                                                | 008100100S00 1                                                                  | 02                   | U            | N DAI PDO                                                    | SEMI IOW                        | N-RES                                                    | 001     | 000        | 00    |
|                                                                                                            |                                                                                 |                      |              |                                                              | 02 NONE 0 TURN-R<br>PRVTE SE NE |                                                          |         | 031        | 00    |
|                                                                                                            |                                                                                 |                      |              |                                                              |                                 | 01 DRVR NONE 62 F OR-Y                                   | 031     | 000        | 06    |
|                                                                                                            |                                                                                 |                      |              |                                                              |                                 | OR<25                                                    | 001     |            |       |
| 03306 N N N 10/01/2012 MARION                                                                              | 1 14                                                                            | INTER                | CROSS N      | N CLR ANGL-OTH                                               | 01 NONE 0 STRGHT                |                                                          |         |            | 04    |
| NONE Mon UNK WOODBURN                                                                                      | MN 0 PACIFIC HY 99E                                                             | CN                   | TRF SIGNAL   |                                                              | PRVTE SE NW                     |                                                          |         | 000        | 00    |
| WOODBURN UA<br>No 45 8 13.29 -122 50 38.07                                                                 | 32.87 YOUNG ST<br>008100100S00 1                                                | 02                   | 0            | N DLIT PDO                                                   | PSNGR CAR                       | 01 DRVR NONE 00 U UNK<br>UNK                             | 020     | 000        | 04    |
|                                                                                                            |                                                                                 |                      |              |                                                              | 02 NONE 0 STRGHT                |                                                          |         |            |       |
|                                                                                                            |                                                                                 |                      |              |                                                              | PRVTE SW NE                     |                                                          |         | 000        | 00    |
|                                                                                                            |                                                                                 |                      |              |                                                              | PSNGR CAR                       | 01 DRVR NONE 44 M OR-Y<br>OR<25                          | 000     | 000        | 00    |
|                                                                                                            | 1 14                                                                            |                      |              |                                                              | 01 NONE 0 STRGHT                |                                                          |         | 013        | 04    |
| CITY Sat 9A WOODBURN                                                                                       | MN 0 PACIFIC HY 99E                                                             | CN                   |              | N DRY ANGL                                                   | PRVTE SW NE                     |                                                          | 000     | 000        | 00    |
| WOODBURN UA<br>No 45 8 13.29 -122 50 38.07                                                                 | 32.87 YOUNG ST<br>008100100S00 1                                                |                      | 0            | N DAY INJ                                                    | PSNGR CAR                       | 01 DRVR NONE 41 M OR-Y<br>OR<25                          | 020     | 000        | 04    |
|                                                                                                            |                                                                                 |                      |              |                                                              | 02 NONE 0 STRGHT                |                                                          |         |            |       |
|                                                                                                            |                                                                                 |                      |              |                                                              | PRVTE SE NW                     |                                                          | 000     | 000 013    | 00    |
|                                                                                                            |                                                                                 |                      |              |                                                              | PSNGR CAR                       | 01 DRVR INJB 58 F OR-Y OR<25                             | 000     | 000        | 00    |
|                                                                                                            |                                                                                 |                      |              |                                                              |                                 | 02 PSNG INJC 61 M                                        | 000     | 000        | 00    |

S D

081 PACIFIC HIGHWAY EAST

#### OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

CONTINUOUS SYSTEM CRASH LISTING

Young St & OR 99E

January 1, 2011 through December 31, 2015

P RSW RD# FC CONN # INT-TYP CMPT/MLG FIRST STREET RD CHAR (MEDIAN) INT-REL OFFRD WTHR CRASH TYP TRLR QTY MOVE SER# E A U C O DATE COUNTY A S INVEST E L G H R DAY/TIME CITY MILEPNT SECOND STREET DIRECT LEGS TRAF- RNDBT SURF COLL TYP OWNER FROM PRTC INJ G E LICNS PED LRS INTERSECTION SEO# LOCTN V# VEH TYPE TO P# TYPE SVRTY E X RES LOC ERROR CAUSE UNLOC? D C S L K LAT/LONG URBAN AREA (#LANES) CNTL DRVWY LIGHT SVRTY ACTN EVENT 03 NONE 0 STOP PRVTE NW SE 011 00 PSNGR CAR 01 DRVR NONE 36 M NONE 000 00 000 OR<25 03/20/2015 MARION 02 00968 NNN INTER CROSS N N CLR O-OTHER 01 NONE 0 TURN-L 1 14 NONE Fri 6A WOODBURN 0 PACIFIC HY 99E CN TRF SIGNAL N DRY TURN PRVTE 000 00 WOODBURN UA 32.87 YOUNG ST 02 0 N DAY PDO PSNGR CAR 01 DRVR NONE 86 F UNK 028,004 000 02 45 8 13.29 -122 50 38.07 008100100S00 1 OR<25 02 UNKN 0 TURN-R 000 UNKN SE NE 00 UNKNOWN 01 DRVR NONE 00 M UNK 000 000 00 OR<25 04079 N N N N N 10/23/2015 MARION 1 14 INTER CROSS N N CLR ANGL-OTH 01 NONE 0 STRGHT 04 Fri 7P WOODBURN MN 0 PACIFIC HY 99E CN TRF SIGNAL N DRY ANGL PRVTE 000 00 32.87 YOUNG ST 02 0 WOODBURN UA N DLIT INJ PSNGR CAR 01 DRVR NONE 37 M NONE 020 000 04 45 8 13.29 -122 50 38.07 008100100S00 1 OR<25 02 NONE 0 STRGHT PRVTE SE NW 000 00 PSNGR CAR 01 DRVR INJB 39 F OR-Y 000 000 00 OR<25 04841 N N N 12/05/2015 MARION 1 14 INTER CROSS N N CLR O-1 L-TURN 01 NONE 0 TURN-L 02 TRF SIGNAL N WET TURN CN 00 Sat 3A WOODBURN MN 0 PACIFIC HY 99E PRVTE NW NE 000 WOODBURN UA 32.87 YOUNG ST 02 0 N DLIT PDO PSNGR CAR 01 DRVR NONE 43 M OR-Y 028,004 000 02 45 8 13.29 -122 50 38.07 008100100S00 1 OR<25 02 NONE 0 STRGHT PRVTE SE NW 000 0.0 PSNGR CAR 01 DRVR NONE 00 M UNK 000 000 00 UNK 00439 NNN 02/11/2011 MARION INTER CROSS N N CLD O-1 L-TURN 01 NONE 0 TURN-L 02 1 14 Fri 8P WOODBURN 0 PACIFIC HY 99E CN TRF SIGNAL N DRY TURN PRVTE 000 00 WOODBURN UA 32.87 YOUNG ST 03 0 N DLIT INJ PSNGR CAR 01 DRVR INJC 32 F OR-Y 004,028 000 02 45 8 13.29 -122 50 38.07 008100100s00 OR<25 02 PSNG INJC 29 F 000 000 00 02 NONE 0 STRGHT PRVTE NW SE 000 00 PSNGR CAR 00 01 DRVR INJB 52 F OR-Y 000 000 OR<25 02471 N N N N N 08/01/2011 MARION 14 INTER 3-LEG N N CLR 0-1 L-TURN 01 NONE 0 STRGHT 013 02 Mon 12P WOODBURN 0 PACIFIC HY 99E CN TRF SIGNAL N DRY TURN PRVTE 000 00 03 000 00 WOODBURN UA 32.87 YOUNG ST 0 N DAY INJ PSNGR CAR 01 DRVR INJC 41 F OR-Y 000 45 8 13.29 -122 50 38.07 008100100s00 OR<25

# OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

CONTINUOUS SYSTEM CRASH LISTING

#### Young St & OR 99E

January 1, 2011 through December 31, 2015

| S D P R S W SER# E A U C O DATE COUNTY INVEST E L G H R DAY/TIME CITY UNLOC? D C S L K LAT/LONG URBAN AREA | RD# FC CONN # CMPT/MLG FIRST STREET MILEPNT SECOND STREET LRS INTERSECTION SEQ# | RD CHAR<br>DIRECT<br>LOCTN | INT-TYP (MEDIAN) IN LEGS TH (#LANES) CH | RAF- RN   |                | COLL TYP   | SPCL USE TRLR QTY MOVE OWNER FROM V# VEH TYPE TO | A S PRTC INJ G E LICNS P# TYPE SVRTY E X RES |         | ACTN EVENT     | CAUSE             |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------|-----------------------------------------|-----------|----------------|------------|--------------------------------------------------|----------------------------------------------|---------|----------------|-------------------|
|                                                                                                            |                                                                                 |                            |                                         |           |                |            | 02 NONE 0 TURN-:<br>PRVTE SE SW<br>PSNGR CAR     |                                              | 004,028 | 000 013<br>000 | 00<br>02          |
|                                                                                                            |                                                                                 |                            |                                         |           |                |            | 03 NONE 0 STOP<br>PRVTE NE SW<br>PSNGR CAR       |                                              | 000     | 022<br>000     | 00                |
| 04074 N N N 11/30/2011 MARION CITY Wed 7A WOODBURN WOODBURN UA No 45 8 13.29 -122 50 38.07                 | 1 14<br>MN 0 PACIFIC HY 99E<br>32.87 YOUNG ST<br>008100100S00 1                 | INTER<br>CN<br>03          | CROSS N<br>TR<br>0                      | RF SIGNAL |                | ANGL       | 01 NONE 0 STRGH<br>PRVTE SE NW<br>PSNGR CAR      |                                              | 000     | 000            | 0 4<br>0 0<br>0 0 |
|                                                                                                            |                                                                                 |                            |                                         |           |                |            | 02 NONE 0 STRGH<br>PRVTE NE SW<br>PSNGR CAR      |                                              | 020     | 000            | 0 0<br>0 4        |
| 00348 N N N 01/29/2012 MARION NONE Sun 6P WOODBURN WOODBURN UA No 45 8 13.29 -122 50 38.07                 | 1 14<br>MN 0 PACIFIC HY 99E<br>32.87 YOUNG ST<br>008100100S00 1                 | INTER<br>CN<br>03          |                                         | RF SIGNAL |                | TURN       | 01 NONE 0 STRGH<br>PRVTE NE SW<br>PSNGR CAR      |                                              | 020     | 000            | 0 4<br>0 0<br>0 4 |
|                                                                                                            |                                                                                 |                            |                                         |           |                |            | 02 NONE 0 TURN-:<br>PRVTE SW NW<br>PSNGR CAR     |                                              | 000     | 000            | 00                |
| 01642 N N N N 05/16/2012 MARION                                                                            | 1 14                                                                            | INTER                      | CROSS N                                 |           | N CLR          | O-1 L-TURN | 01 NONE 0 STRGH                                  | 02 PSNG NO<5 02 M<br>03 PSNG NO<5 03 F       | 000     | 000            | 00<br>00<br>02    |
| CITY Wed 2P WOODBURN WOODBURN UA No 45 8 13.29 -122 50 38.07                                               | MN 0 PACIFIC HY 99E<br>32.87 YOUNG ST<br>008100100S00 1                         | CN<br>03                   | TR<br>O                                 | RF SIGNAL | N DRY<br>N DAY |            | PRVTE NW SE<br>PSNGR CAR                         | 01 DRVR INJC 33 F OR-Y<br>OR<25              | 000     | 000            | 00                |
|                                                                                                            |                                                                                 |                            |                                         |           |                |            | 02 NONE 0 TURN-:<br>PRVTE SE SW<br>PSNGR CAR     |                                              | 004,028 | 000            | 00<br>02          |
| 00044 N N N 01/04/2013 MARION CITY Fri 6P WOODBURN WOODBURN UA No 45 8 13.29 -122 50 38.07                 | 1 14<br>MN 0 PACIFIC HY 99E<br>32.87 YOUNG ST<br>008100100S00 1                 | INTER<br>CN<br>03          | CROSS N<br>TR                           | RF SIGNAL |                | ANGL       | 01 NONE 0 STRGH<br>PRVTE NW SE<br>PSNGR CAR      |                                              | 097     | 000<br>000     | 0 4<br>0 0<br>0 0 |
|                                                                                                            |                                                                                 |                            |                                         |           |                |            | 02 NONE 0 STRGHT<br>PRVTE NE SW<br>PSNGR CAR     | 01 DRVR INJC 39 F OR-Y                       | 097     | 000            | 00                |
|                                                                                                            |                                                                                 |                            |                                         |           |                |            |                                                  | OR<25                                        | 000     | 000            | 00                |

# OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

CONTINUOUS SYSTEM CRASH LISTING

Young St & OR 99E

January 1, 2011 through December 31, 2015

|                     | SW                                   |                         | MILEPNT            | CONN # FIRST STREET SECOND STREET INTERSECTION SEQ# | RD CHAR<br>DIRECT<br>LOCTN |            | INT-REL<br>TRAF- | RNDBT SUR                  | F COLL TYP | SPCL USE TRLR QTY OWNER V# VEH TYPE | MOVE<br>FROM |         |      |      | E LICNS PED     |         | ACTN EVENT | CAUSE          |
|---------------------|--------------------------------------|-------------------------|--------------------|-----------------------------------------------------|----------------------------|------------|------------------|----------------------------|------------|-------------------------------------|--------------|---------|------|------|-----------------|---------|------------|----------------|
|                     |                                      |                         |                    |                                                     |                            |            |                  |                            |            |                                     |              | 03 PSNG | NO<5 | 04   | M               | 000     | 000        | 00             |
| 04221 N N N NONE    | 11/23/2014<br>Sun 4P<br>8 13.29 -122 | WOODBURN<br>WOODBURN UA |                    | PACIFIC HY 99E<br>YOUNG ST                          | INTER<br>CN<br>03          | CROSS<br>0 |                  | N CLR<br>AL N DRY<br>N DAY | TURN       | 01 NONE 0<br>PRVTE<br>PSNGR CAR     | SE SW        | 01 DRVR | NONE | 00   | M UNK<br>OR<25  | 028,004 | 000        | 02<br>00<br>02 |
|                     |                                      |                         |                    |                                                     |                            |            |                  |                            |            | 02 NONE C                           | NW SE        |         |      |      |                 |         | 000        | 00             |
|                     |                                      |                         |                    |                                                     |                            |            |                  |                            |            | PSNGR CAR                           | ₹            | 01 DRVR | NONE | 18 1 | M OR-Y<br>OR<25 | 000     | 000        | 00             |
| 04119 NNN<br>CITY   | N N 12/02/2012<br>Sun 7P             |                         |                    | PACIFIC HY 99E<br>YOUNG ST                          | INTER<br>CN<br>04          |            | N<br>TRF SIGNA   |                            | TURN       | 01 NONE 0<br>PRVTE<br>PSNGR CAR     | NE SE        | 01 DRVR | NONE | 21   | M OR-Y          | 004,028 | 000        | 02<br>00<br>02 |
| No 45 8             | 8 13.29 -122                         | 50 38.07                | 008100100          | 0800 1                                              |                            |            |                  |                            |            | 02 NONE C                           |              |         |      |      | OR<25           |         | 000        | 00             |
|                     |                                      |                         |                    |                                                     |                            |            |                  |                            |            | PSNGR CAR                           |              | 01 DRVR | NONE | 61   | M OR-Y<br>OR<25 | 000     | 000        | 00             |
| 00397 N N N<br>NONE | 02/07/2013<br>Thu 3P                 |                         | 1 14<br>MN 0       | PACIFIC HY 99E                                      | INTER<br>CN                |            | N<br>TRF SIGNA   |                            |            | 01 NONE 0                           |              |         |      |      |                 |         | 000        | 02<br>00       |
| No 45 8             | 8 13.29 -122                         | WOODBURN UA             |                    | YOUNG ST                                            | 04                         | 0          |                  | N DAY                      |            | PSNGR CAR                           | 3            | 01 DRVR | NONE | 45   | F OR-Y<br>OR>25 | 000     | 000        | 00             |
|                     |                                      |                         |                    |                                                     |                            |            |                  |                            |            | 02 NONE C                           |              |         |      |      |                 |         | 000        | 00             |
|                     |                                      |                         |                    |                                                     |                            |            |                  |                            |            | PRVTE<br>PSNGR CAR                  |              | 01 DRVR | NONE | 23   | M OR-Y<br>OR>25 | 004,028 | 000        | 02             |
|                     | N N 07/07/2013                       |                         | 1 14               | PACIFIC HY 99E                                      | INTER<br>CN                | CROSS      |                  |                            |            | 01 NONE C                           |              |         |      |      |                 |         | 000        | 04,30<br>00    |
| CITY No 45          | Sun 3P<br>8 13.29 -122               | WOODBURN UA             |                    | YOUNG ST                                            | 04                         | 0          | TRF SIGNA        | N DAY                      |            | PRVTE<br>PSNGR CAR                  |              | 01 DRVR | NONE | 37   | M NONE<br>OR<25 | 020,050 | 000        | 04,30          |
|                     |                                      |                         |                    |                                                     |                            |            |                  |                            |            | 02 NONE C                           |              |         |      |      |                 |         |            | 0.0            |
|                     |                                      |                         |                    |                                                     |                            |            |                  |                            |            | PRVTE<br>PSNGR CAR                  |              | 01 DRVR | INJC | 28 1 | M OR-Y<br>OR<25 | 000     | 000        | 00             |
|                     | N N 07/30/2013<br>Tue 6A             | WOODBURN                |                    | PACIFIC HY 99E                                      | INTER<br>CN                |            | N<br>TRF SIGNA   | AL N DRY                   | ANGL       | 01 NONE C                           | SW NE        |         |      |      |                 |         | 000        | 04<br>00       |
| No 45 8             | 8 13.29 -122                         | WOODBURN UA<br>50 38.07 | 32.87<br>008100100 | YOUNG ST<br>DS00 1                                  | 04                         | 0          |                  | N DAY                      | INJ        | PSNGR CAR                           | ₹            | 01 DRVR | INJB | 29 1 | M OR-Y<br>OR<25 | 020     | 000        | 04             |
|                     |                                      |                         |                    |                                                     |                            |            |                  |                            |            | 02 NONE C                           |              |         |      |      |                 |         | 000        | 00             |
|                     |                                      |                         |                    |                                                     |                            |            |                  |                            |            | PSNGR CAR                           |              | 01 DRVR | NONE | 63   | M OR-Y<br>OR<25 | 000     | 000        | 00             |

# OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CONTINUOUS SYSTEM CRASH LISTING

#### Young St & OR 99E

January 1, 2011 through December 31, 2015

S D P RSW RD# FC CONN # INT-TYP CMPT/MLG FIRST STREET RD CHAR (MEDIAN) INT-REL OFFRD WTHR CRASH TYP SER# E A U C O DATE COUNTY TRLR OTY MOVE A S PRTC INJ G E LICNS PED INVEST E L G H R DAY/TIME CITY MILEPNT SECOND STREET DIRECT LEGS TRAF- RNDBT SURF COLL TYP OWNER FROM UNLOC? D C S L K LAT/LONG URBAN AREA INTERSECTION SEO# LOCTN (#LANES) CNTL DRVWY LIGHT SVRTY V# VEH TYPE TO P# TYPE SVRTY E X RES LOC ERROR CAUSE 03162 N N N N N 09/16/2013 MARION 1 14 INTER CROSS N N CLD O-1 L-TURN 01 NONE 0 STRGHT 02 Mon 5P WOODBURN MN 0 PACIFIC HY 99E CN TRF SIGNAL N DRY TURN PRVTE 000 00 WOODBURN UA 32.87 YOUNG ST 04 0 N DAY INJ PSNGR CAR 01 DRVR NONE 27 F OR-Y 000 00 000 45 8 13.29 -122 50 38.07 008100100S00 1 OR<25 02 PSNG INJC 24 M 00 02 NONE 0 TURN-L PRVTE NE SE 000 00 PSNGR CAR 01 DRVR NONE 85 M OR-Y 004,028 02 OR>25 00937 N N N N N 03/22/2014 MARION 1 14 INTER CROSS N N CLR ANGL-OTH 01 NONE 0 STRGHT 04 CITY Sat 6P WOODBURN MN 0 PACIFIC HY 99E CN TRF SIGNAL N DRY ANGL PRVTE NW SE 000 00 04 WOODBURN UA 32.87 YOUNG ST 0 N DAY INJ PSNGR CAR 01 DRVR INJC 22 M SUSP 097 000 00 45 8 13.29 -122 50 38.07 008100100S00 1 OR<25 02 NONE 0 STRGHT PRVTE SW NE 000 00 PSNGR CAR 01 DRVR NONE 16 M OR-Y 097 000 00 03676 NNN 10/18/2014 MARION 1 14 INTER CROSS N N FOG O-1 L-TURN 01 NONE 0 STRGHT 02 Sat 10P WOODBURN MN 0 PACIFIC HY 99E CN TRF SIGNAL N DRY TURN PRVTE SW NE 000 00 0 WOODBURN UA 04 N DLIT PDO 000 32.87 YOUNG ST PSNGR CAR 01 DRVR NONE 24 M OR-Y 00 45 8 13.29 -122 50 38.07 008100100s00 OR<25 02 NONE 0 TURN-L PRVTE NE SE 000 00 02 PSNGR CAR 01 DRVR NONE 21 F OR-Y 004,028 000 OR<25 04658 NNN 11/23/2015 MARION 1 14 INTER CROSS N N RAIN O-1 L-TURN 01 NONE 0 STRGHT 04 Mon 4P WOODBURN MN 0 PACIFIC HY 99E CN TRF SIGNAL N WET TURN PRVTE 000 00 04 0 WOODBURN UA 32.87 YOUNG ST N DUSK INJ PSNGR CAR 01 DRVR INJB 71 F OR-Y 097 000 00 45 8 13.29 -122 50 38.07 008100100S00 OR<25 02 NONE 0 TURN-L PRVTE NE SE 000 00 PSNGR CAR 01 DRVR NONE 60 F OR-Y 00 OR>25 08 05162 N N N 12/22/2015 MARION 1 14 INTER CROSS N 01 NONE 1 TURN-R N CLD S-OTHER 8A WOODBURN MN 0 PACIFIC HY 99E CN TRF SIGNAL N WET TURN PRVTE SW E 000 00 32.87 YOUNG ST 04 0 SEMI TOW 000 08 WOODBURN UA N DAY INJ 01 DRVR NONE 61 M OR-Y 006 45 8 13.29 -122 50 38.07 008100100S00 1 OR>25 02 NONE 0 TURN-R PRVTE 000 00 PSNGR CAR 01 DRVR INJC 60 F OR-Y 00 OR<25

CDS380 9/6/2017

#### OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

PAGE: 8

CONTINUOUS SYSTEM CRASH LISTING

Young St & OR 99E

140 HILLSBORO-SILVERTON January 1, 2011 through December 31, 2015

| S D P R S W SER# E A U C O DATE COUNTY INVEST E L G H R DAY/TIME CITY UNLOC? D C S L K LAT/LONG URBAN AREA | RD# FC CONN # CMPT/MLG FIRST STREET MILEPNT SECOND STREET LRS INTERSECTION SEQ# | INT-TYP  RD CHAR (MEDIAN) INT-REL OFFRD WTHR CRASH TYPE DIRECT LEGS TRAF- RNDBT SURF COLL TYP LOCTN (#LANES) CNTL DRVWY LIGHT SVRTY | SPCL USE TRLR QTY MOVE A S OWNER FROM PRTC INJ G E LICNS PED V# VEH TYPE TO P# TYPE SVRTY E X RES LOC ER | ROR ACTN EVENT CAUSE |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------|
| 00379 N N N N N 02/06/2014 MARION                                                                          | 1 14                                                                            | INTER CROSS N N SNOW ANGL-OTH                                                                                                       | 01 NONE 0 STRGHT                                                                                         | 013 04               |
| CITY Thu 3P WOODBURN                                                                                       | MN 0 PACIFIC HY 99E                                                             | CN TRF SIGNAL N SNO ANGL                                                                                                            | PRVTE NE SW                                                                                              | 000 013 00           |
| WOODBURN UA                                                                                                | 39.31 YOUNG ST                                                                  | 03 0 N DAY INJ                                                                                                                      | PSNGR CAR 01 DRVR NONE 20 F OTH-Y 02                                                                     | 000 04               |
| No 45 8 13.29 -122 50 38.07                                                                                | 014000100S00 1                                                                  |                                                                                                                                     | OR<25                                                                                                    |                      |
|                                                                                                            |                                                                                 |                                                                                                                                     | 02 NONE 0 STRGHT                                                                                         |                      |
|                                                                                                            |                                                                                 |                                                                                                                                     | PRVTE NW SE                                                                                              | 000 00               |
|                                                                                                            |                                                                                 |                                                                                                                                     | PSNGR CAR 01 DRVR INJC 25 M OR-Y 000                                                                     | 000 00               |
|                                                                                                            |                                                                                 |                                                                                                                                     | OR<25                                                                                                    |                      |
|                                                                                                            |                                                                                 |                                                                                                                                     |                                                                                                          |                      |
|                                                                                                            |                                                                                 |                                                                                                                                     | 03 NONE 0 STOP                                                                                           |                      |
|                                                                                                            |                                                                                 |                                                                                                                                     | PRVTE SW NE                                                                                              | 011 013 00           |
|                                                                                                            |                                                                                 |                                                                                                                                     | PSNGR CAR 01 DRVR INJC 60 M OR-Y 00                                                                      | 000 00               |
|                                                                                                            |                                                                                 |                                                                                                                                     | OR<25                                                                                                    |                      |
|                                                                                                            |                                                                                 |                                                                                                                                     | 04 NONE 0 STOP                                                                                           |                      |
|                                                                                                            |                                                                                 |                                                                                                                                     | PRVTE SW NE                                                                                              | 011 00               |
|                                                                                                            |                                                                                 |                                                                                                                                     | PSNGR CAR 01 DRVR NONE 51 F OR-Y 000                                                                     | 000 00               |
|                                                                                                            |                                                                                 |                                                                                                                                     | OR<25                                                                                                    | •                    |
|                                                                                                            |                                                                                 |                                                                                                                                     |                                                                                                          |                      |

CDS380 9/6/2017

CITY OF WOODBURN, MARION COUNTY

# OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

URBAN NON-SYSTEM CRASH LISTING

Young St & OR 99E

PAGE: 1

January 1, 2011 through December 31, 2015

|        | S D        |            |        |                    |         |          |         |        |       |           |             |        |       |           |           |           |            |       |
|--------|------------|------------|--------|--------------------|---------|----------|---------|--------|-------|-----------|-------------|--------|-------|-----------|-----------|-----------|------------|-------|
|        | P R S W    |            |        | CITY STREET        |         | INT-TYP  |         |        |       |           | SPCL USE    |        |       |           |           |           |            |       |
| SER#   | E A U C O  | DATE       |        | FIRST STREET       | RD CHAR | (MEDIAN) | INT-REL | OFF-RD | WTHR  | CRASH TYP | TRLR QTY    | MOVE   |       |           | A S       |           |            |       |
| INVEST | ELGHR      | DAY/TIME   | FC     | SECOND STREET      | DIRECT  | LEGS     | TRAF-   | RNDBT  | SURF  | COLL TYP  | OWNER       | FROM   | I     | PRTC INJ  | G E LICNS | B PED     |            |       |
| UNLOC? | D C S L K  | LAT/LONG   | DISTNC | INTERSECTION SEQ # | LOCTN   | (#LANES) | CONTL   | DRVWY  | LIGHT | SVRTY     | V# VEH TYPE | TO     | P# 7  | YPE SVRT  | Z E X RES | LOC ERROR | ACTN EVENT | CAUSE |
| '      |            |            |        |                    |         |          |         |        |       |           |             |        |       |           |           |           |            |       |
| 04984  | N N N      | 12/11/2015 | 16     | PACIFIC HY 99E     | INTER   | CROSS    | N       | N      | RAIN  | S-1STOP   | 01 UNKN 0   | STRGHT |       |           |           |           |            | 29    |
| NONE   |            | Fri 7P     | 0      | YOUNG ST           | NW      |          | TRF SIG | NAL N  | WET   | REAR      | UNKN        | NW SE  |       |           |           |           | 000        | 00    |
| No     | 45 8 13.30 | -122 50 38 | .09    | 1                  | 06      | 0        |         | N      | DLIT  | PDO       | UNKNOWN     |        | 01 I  | DRVR NONE | 00 U UNK  | 026       | 000        | 29    |
|        |            |            |        |                    |         |          |         |        |       |           |             |        |       |           | UNK       |           |            |       |
|        |            |            |        |                    |         |          |         |        |       |           |             |        |       |           |           |           |            |       |
|        |            |            |        |                    |         |          |         |        |       |           | 02 NONE 0   | STOP   |       |           |           |           |            |       |
|        |            |            |        |                    |         |          |         |        |       |           | PRVTE       | NW SE  |       |           |           |           | 011        | 00    |
|        |            |            |        |                    |         |          |         |        |       |           | PSNGR CAR   |        | 01 I  | DRVR NONE | 29 F OR-Y | 000       | 000        | 00    |
|        |            |            |        |                    |         |          |         |        |       |           |             |        |       |           | OR<25     | 5         |            |       |
|        |            |            |        |                    |         |          |         |        |       |           |             |        | 02 I  | SNG NO<5  | 03 M      | 000       | 000        | 00    |
|        |            |            |        |                    |         |          |         |        |       |           |             |        | 0.3 F | SNG NO<5  | 01 F      | 000       | 000        | 00    |

#### ACTION CODE TRANSLATION LIST

| ACTION<br>CODE | SHORT<br>DESCRIPTION | LONG DESCRIPTION                                                                          |
|----------------|----------------------|-------------------------------------------------------------------------------------------|
| 000            | NONE                 | NO ACTION OR NON-WARRANTED                                                                |
| 001            | SKIDDED              | SKIDDED                                                                                   |
| 002            | ON/OFF V             | GETTING ON OR OFF STOPPED OR PARKED VEHICLE                                               |
| 003            | LOAD OVR             | OVERHANGING LOAD STRUCK ANOTHER VEHICLE, ETC.                                             |
| 006            | SLOW DN              | SLOWED DOWN                                                                               |
| 007            | AVOIDING             | AVOIDING MANEUVER                                                                         |
| 008            | PAR PARK             | PARALLEL PARKING                                                                          |
| 009            | ANG PARK             | ANGLE PARKING                                                                             |
| 010            | INTERFERE            | PASSENGER INTERFERING WITH DRIVER                                                         |
| 011            | STOPPED              | STOPPED IN TRAFFIC NOT WAITING TO MAKE A LEFT TURN                                        |
| 012            | STP/L TRN            | STOPPED BECAUSE OF LEFT TURN SIGNAL OR WAITING, ETC.                                      |
| 013            | STP TURN             | STOPPED WHILE EXECUTING A TURN                                                            |
| 014            | EMR V PKD            | EMERGENCY VEHICLE LEGALLY PARKED IN THE ROADWAY                                           |
| 015            | GO A/STOP            | PROCEED AFTER STOPPING FOR A STOP SIGN/FLASHING RED.                                      |
| 016            | TRN A/RED            | TURNED ON RED AFTER STOPPING                                                              |
| 017            | LOSTCTRL             | LOST CONTROL OF VEHICLE                                                                   |
| 018            | EXIT DWY             | ENTERING STREET OR HIGHWAY FROM ALLEY OR DRIVEWAY                                         |
| 019            | ENTR DWY             | ENTERING ALLEY OR DRIVEWAY FROM STREET OR HIGHWAY                                         |
| 020            | STR ENTR             | BEFORE ENTERING ROADWAY, STRUCK PEDESTRIAN, ETC. ON SIDEWALK OR SHOULDER                  |
| 021            | NO DRVR              | CAR RAN AWAY - NO DRIVER                                                                  |
| 022            | PREV COL             | STRUCK, OR WAS STRUCK BY, VEHICLE OR PEDESTRIAN IN PRIOR COLLISION BEFORE ACC. STABILIZED |
| 023            | STALLED              | VEHICLE STALLED OR DISABLED                                                               |
| 024            | DRVR DEAD            | DEAD BY UNASSOCIATED CAUSE                                                                |
| 025            | FATIGUE              | FATIGUED, SLEEPY, ASLEEP                                                                  |
| 026            | SUN                  | DRIVER BLINDED BY SUN                                                                     |
| 027            | HDLGHTS              | DRIVER BLINDED BY HEADLIGHTS                                                              |
| 028            | ILLNESS              | PHYSICALLY ILL                                                                            |
| 029            | THRU MED             | VEHICLE CROSSED, PLUNGED OVER, OR THROUGH MEDIAN BARRIER                                  |
| 030            | PURSUIT              | PURSUING OR ATTEMPTING TO STOP A VEHICLE                                                  |
| 031            | PASSING              | PASSING SITUATION                                                                         |
| 032            | PRKOFFRD             | VEHICLE PARKED BEYOND CURB OR SHOULDER                                                    |
| 033            | CROS MED             | VEHICLE CROSSED EARTH OR GRASS MEDIAN                                                     |
| 034            | X N/SGNL             | CROSSING AT INTERSECTION - NO TRAFFIC SIGNAL PRESENT                                      |
| 035            | X W/ SGNL            | CROSSING AT INTERSECTION - TRAFFIC SIGNAL PRESENT                                         |
| 036            | DIAGONAL             | CROSSING AT INTERSECTION - DIAGONALLY                                                     |
| 037            | BTWN INT             | CROSSING BETWEEN INTERSECTIONS                                                            |
| 038            | DISTRACT             | DRIVER'S ATTENTION DISTRACTED                                                             |
| 039            | W/TRAF-S             | WALKING, RUNNING, RIDING, ETC., ON SHOULDER WITH TRAFFIC                                  |
| 040            | A/TRAF-S             | WALKING, RUNNING, RIDING, ETC., ON SHOULDER FACING TRAFFIC                                |
| 041            | W/TRAF-P             | WALKING, RUNNING, RIDING, ETC., ON PAVEMENT WITH TRAFFIC                                  |
| 042            | A/TRAF-P             | WALKING, RUNNING, RIDING, ETC., ON PAVEMENT FACING TRAFFIC                                |
| 043<br>044     | PLAYINRD             | PLAYING IN STREET OR ROAD                                                                 |
| 044            | PUSH MV              | PUSHING OR WORKING ON VEHICLE IN ROAD OR ON SHOULDER                                      |
|                | WORK ON              | WORKING IN ROADWAY OR ALONG SHOULDER                                                      |
| 046            | W/ TRAFIC            | NON-MOTORIST WALKING, RUNNING, RIDING, ETC. WITH TRAFFIC                                  |
| 047<br>050     | A/ TRAFIC            | NON-MOTORIST WALKING, RUNNING, RIDING, ETC. FACING TRAFFIC                                |
| 050            | LAY ON RD            | STANDING OR LYING IN ROADWAY                                                              |
| 051            | ENT OFFRD            | ENTERING / STARTING IN TRAFFIC LANE FROM OFF ROAD                                         |
| 055            | MERGING<br>SPRAY     | MERGING<br>BLINDED BY WATER SPRAY                                                         |

#### ACTION CODE TRANSLATION LIST

| 7 | ACTION | SHORT       |                  |
|---|--------|-------------|------------------|
| _ | CODE   | DESCRIPTION | LONG DESCRIPTION |
| _ | 088    | OTHER       | OTHER ACTION     |
|   | 099    | UNK         | UNKNOWN ACTION   |

#### CAUSE CODE TRANSLATION LIST

| CAUSE<br>CODE | SHORT<br>DESCRIPTION | LONG DESCRIPTION                                  |
|---------------|----------------------|---------------------------------------------------|
| 00            | NO CODE              | NO CAUSE ASSOCIATED AT THIS LEVEL                 |
| 01            | TOO-FAST             | TOO FAST FOR CONDITIONS (NOT EXCEED POSTED SPEED  |
| 02            | NO-YIELD             | DID NOT YIELD RIGHT-OF-WAY                        |
| 03            | PAS-STOP             | PASSED STOP SIGN OR RED FLASHER                   |
| 04            | DIS SIG              | DISREGARDED TRAFFIC SIGNAL                        |
| 05            | LEFT-CTR             | DROVE LEFT OF CENTER ON TWO-WAY ROAD; STRADDLING  |
| 06            | IMP-OVER             | IMPROPER OVERTAKING                               |
| 07            | TOO-CLOS             | FOLLOWED TOO CLOSELY                              |
| 08            | IMP-TURN             | MADE IMPROPER TURN                                |
| 09            | DRINKING             | ALCOHOL OR DRUG INVOLVED                          |
| 10            | OTHR-IMP             | OTHER IMPROPER DRIVING                            |
| 11            | MECH-DEF             | MECHANICAL DEFECT                                 |
| 12            | OTHER                | OTHER (NOT IMPROPER DRIVING)                      |
| 13            | IMP LN C             | IMPROPER CHANGE OF TRAFFIC LANES                  |
| 14            | DIS TCD              | DISREGARDED OTHER TRAFFIC CONTROL DEVICE          |
| 15            | WRNG WAY             | WRONG WAY ON ONE-WAY ROAD; WRONG SIDE DIVIDED ROL |
| 16            | FATIGUE              | DRIVER DROWSY/FATIGUED/SLEEPY                     |
| 17            | ILLNESS              | PHYSICAL ILLNESS                                  |
| 18            | IN RDWY              | NON-MOTORIST ILLEGALLY IN ROADWAY                 |
| 19            | NT VISBL             | NON-MOTORIST NOT VISIBLE; NON-REFLECTIVE CLOTHING |
| 20            | IMP PKNG             | VEHICLE IMPROPERLY PARKED                         |
| 21            | DEF STER             | DEFECTIVE STEERING MECHANISM                      |
| 22            | DEF BRKE             | INADEQUATE OR NO BRAKES                           |
| 24            | LOADSHFT             | VEHICLE LOST LOAD OR LOAD SHIFTED                 |
| 25            | TIREFAIL             | TIRE FAILURE                                      |
| 26            | PHANTOM              | PHANTOM / NON-CONTACT VEHICLE                     |
| 27            | INATTENT             | INATTENTION                                       |
| 28            | NM INATT             | NON-MOTORIST INATTENTION                          |
| 29            | F AVOID              | FAILED TO AVOID VEHICLE AHEAD                     |
| 30            | SPEED                | DRIVING IN EXCESS OF POSTED SPEED                 |
| 31            | RACING               | SPEED RACING (PER PAR)                            |
| 32            | CARELESS             | CARELESS DRIVING (PER PAR)                        |
| 33            | RECKLESS             | RECKLESS DRIVING (PER PAR)                        |
| 34            | AGGRESV              | AGGRESSIVE DRIVING (PER PAR)                      |
| 35            | RD RAGE              | ROAD RAGE (PER PAR)                               |
| 40            | VIEW OBS             | VIEW OBSCURED                                     |
| 50            | USED MDN             | IMPROPER USE OF MEDIAN OR SHOULDER                |
| 51            | FAIL LN              | FAILED TO MAINTAIN LANE                           |
| 52            | OFF RD               | RAN OFF ROAD                                      |

#### COLLISION TYPE CODE TRANSLATION LIST

| COLL | SHORT       |                              |
|------|-------------|------------------------------|
| CODE | DESCRIPTION | LONG DESCRIPTION             |
| &    | OTH         | MISCELLANEOUS                |
| _    | BACK        | BACKING                      |
| 0    | PED         | PEDESTRIAN                   |
| 1    | ANGL        | ANGLE                        |
| 2    | HEAD        | HEAD-ON                      |
| 3    | REAR        | REAR-END                     |
| 4    | SS-M        | SIDESWIPE - MEETING          |
| 5    | SS-O        | SIDESWIPE - OVERTAKING       |
| 6    | TURN        | TURNING MOVEMENT             |
| 7    | PARK        | PARKING MANEUVER             |
| 8    | NCOL        | NON-COLLISION                |
| 9    | FIX         | FIXED OBJECT OR OTHER OBJECT |

#### CRASH TYPE CODE TRANSLATION LIST

| CRASH<br>TYPE | SHORT<br>DESCRIPTION | LONG DESCRIPTION                                    |
|---------------|----------------------|-----------------------------------------------------|
| &             | OVERTURN             | OVERTURNED                                          |
| 0             | NON-COLL             | OTHER NON-COLLISION                                 |
| 1             | OTH RDWY             | MOTOR VEHICLE ON OTHER ROADWAY                      |
| 2             | PRKD MV              | PARKED MOTOR VEHICLE                                |
| 3             | PED                  | PEDESTRIAN                                          |
| 4             | TRAIN                | RAILWAY TRAIN                                       |
| 6             | BIKE                 | PEDALCYCLIST                                        |
| 7             | ANIMAL               | ANIMAL                                              |
| 8             | FIX OBJ              | FIXED OBJECT                                        |
| 9             | OTH OBJ              | OTHER OBJECT                                        |
| A             | ANGL-STP             | ENTERING AT ANGLE - ONE VEHICLE STOPPED             |
| В             | ANGL-OTH             | ENTERING AT ANGLE - ALL OTHERS                      |
| С             | S-STRGHT             | FROM SAME DIRECTION - BOTH GOING STRAIGHT           |
| D             | S-1TURN              | FROM SAME DIRECTION - ONE TURN, ONE STRAIGHT        |
| E             | S-1STOP              | FROM SAME DIRECTION - ONE STOPPED                   |
| F             | S-OTHER              | FROM SAME DIRECTION-ALL OTHERS, INCLUDING PARKING   |
| G             | O-STRGHT             | FROM OPPOSITE DIRECTION - BOTH GOING STRAIGHT       |
| H             | O-1 L-TURN           | FROM OPPOSITE DIRECTION-ONE LEFT TURN, ONE STRAIGHT |
| I             | O-1STOP              | FROM OPPOSITE DIRECTION - ONE STOPPED               |
| J             | O-OTHER              | FROM OPPOSITE DIRECTION-ALL OTHERS INCL. PARKING    |

#### DRIVER RESIDENCE CODE TRANSLATION LIST

| LIC              | SHORT                         |                                                                                                                     | RES              | SHORT                                  |                                                                                                                                                                        |
|------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CODE             | DESC                          | LONG DESCRIPTION                                                                                                    | CODE             | DESC                                   | LONG DESCRIPTION                                                                                                                                                       |
| 0<br>1<br>2<br>3 | NONE<br>OR-Y<br>OTH-Y<br>SUSP | NOT LICENSED (HAD NEVER BEEN LICENSED) VALID OREGON LICENSE VALID LICENSE, OTHER STATE OR COUNTRY SUSPENDED/REVOKED | 1<br>2<br>3<br>4 | OR<25<br>OR>25<br>OR-?<br>N-RES<br>UNK | OREGON RESIDENT WITHIN 25 MILE OF HOME OREGON RESIDENT 25 OR MORE MILES FROM HOME OREGON RESIDENT - UNKNOWN DISTANCE FROM HOME NON-RESIDENT UNKNOWN IF OREGON RESIDENT |

#### ERROR CODE TRANSLATION LIST

| ERROR | SHORT       |                                                                                             |
|-------|-------------|---------------------------------------------------------------------------------------------|
| CODE  | DESCRIPTION | FULL DESCRIPTION                                                                            |
| 000   | NONE        | NO ERROR                                                                                    |
| 001   | WIDE TRN    | WIDE TURN                                                                                   |
| 002   | CUT CORN    | CUT CORNER ON TURN                                                                          |
| 003   | FAIL TRN    | FAILED TO OBEY MANDATORY TRAFFIC TURN SIGNAL, SIGN OR LANE MARKINGS                         |
| 004   | L IN TRF    | LEFT TURN IN FRONT OF ONCOMING TRAFFIC                                                      |
| 005   | L PROHIB    | LEFT TURN WHERE PROHIBITED                                                                  |
| 006   | FRM WRNG    | TURNED FROM WRONG LANE                                                                      |
| 007   | TO WRONG    | TURNED INTO WRONG LANE                                                                      |
| 008   | ILLEG U     | U-TURNED ILLEGALLY                                                                          |
| 009   | IMP STOP    | IMPROPERLY STOPPED IN TRAFFIC LANE                                                          |
| 010   | IMP SIG     | IMPROPER SIGNAL OR FAILURE TO SIGNAL                                                        |
| 011   | IMP BACK    | BACKING IMPROPERLY (NOT PARKING)                                                            |
| 012   | IMP PARK    | IMPROPERLY PARKED                                                                           |
| 013   | UNPARK      | IMPROPER START LEAVING PARKED POSITION                                                      |
| 014   | IMP STRT    | IMPROPER START FROM STOPPED POSITION                                                        |
| 015   | IMP LGHT    | IMPROPER OR NO LIGHTS (VEHICLE IN TRAFFIC)                                                  |
| 016   | INATTENT    | INATTENTION (FAILURE TO DIM LIGHTS PRIOR TO 4/1/97)                                         |
| 017   | UNSF VEH    | DRIVING UNSAFE VEHICLE (NO OTHER ERROR APPARENT)                                            |
| 018   | OTH PARK    | ENTERING/EXITING PARKED POSITION W/ INSUFFICIENT CLEARANCE; OTHER IMPROPER PARKING MANEUVER |
| 019   | DIS DRIV    | DISREGARDED OTHER DRIVER'S SIGNAL                                                           |
| 020   | DIS SGNL    | DISREGARDED TRAFFIC SIGNAL                                                                  |
| 021   | RAN STOP    | DISREGARDED STOP SIGN OR FLASHING RED                                                       |
| 022   | DIS SIGN    | DISREGARDED WARNING SIGN, FLARES OR FLASHING AMBER                                          |
| 023   | DIS OFCR    | DISREGARDED POLICE OFFICER OR FLAGMAN                                                       |
| 024   | DIS EMER    | DISREGARDED SIREN OR WARNING OF EMERGENCY VEHICLE                                           |
| 025   | DIS RR      | DISREGARDED RR SIGNAL, RR SIGN, OR RR FLAGMAN                                               |
| 026   | REAR-END    | FAILED TO AVOID STOPPED OR PARKED VEHICLE AHEAD OTHER THAN SCHOOL BUS                       |
| 027   | BIKE ROW    | DID NOT HAVE RIGHT-OF-WAY OVER PEDALCYCLIST                                                 |
| 028   | NO ROW      | DID NOT HAVE RIGHT-OF-WAY                                                                   |
| 029   | PED ROW     | FAILED TO YIELD RIGHT-OF-WAY TO PEDESTRIAN                                                  |
| 030   | PAS CURV    | PASSING ON A CURVE                                                                          |
| 031   | PAS WRNG    | PASSING ON THE WRONG SIDE                                                                   |
| 032   | PAS TANG    | PASSING ON STRAIGHT ROAD UNDER UNSAFE CONDITIONS                                            |
| 033   | PAS X-WK    | PASSED VEHICLE STOPPED AT CROSSWALK FOR PEDESTRIAN                                          |
| 034   | PAS INTR    | PASSING AT INTERSECTION                                                                     |
| 035   | PAS HILL    | PASSING ON CREST OF HILL                                                                    |
| 036   | N/PAS ZN    | PASSING IN "NO PASSING" ZONE                                                                |
| 037   | PAS TRAF    | PASSING IN FRONT OF ONCOMING TRAFFIC                                                        |
| 038   | CUT-IN      | CUTTING IN (TWO LANES - TWO WAY ONLY)                                                       |
| 039   | WRNGSIDE    | DRIVING ON WRONG SIDE OF THE ROAD (2-WAY UNDIVIDED ROADWAYS)                                |
| 040   | THRU MED    | DRIVING THROUGH SAFETY ZONE OR OVER ISLAND                                                  |
| 041   | F/ST BUS    | FAILED TO STOP FOR SCHOOL BUS                                                               |

#### ERROR CODE TRANSLATION LIST

| ERROR | SHORT       |                                                                     |
|-------|-------------|---------------------------------------------------------------------|
| CODE  | DESCRIPTION | FULL DESCRIPTION                                                    |
| 042   | F/SLO MV    | FAILED TO DECREASE SPEED FOR SLOWER MOVING VEHICLE                  |
| 043   | TOO CLOSE   | FOLLOWING TOO CLOSELY (MUST BE ON OFFICER'S REPORT)                 |
| 044   | STRDL LN    | STRADDLING OR DRIVING ON WRONG LANES                                |
| 045   | IMP CHG     | IMPROPER CHANGE OF TRAFFIC LANES                                    |
| 046   | WRNG WAY    | WRONG WAY ON ONE-WAY ROADWAY; WRONG SIDE DIVIDED ROAD               |
| 047   | BASCRULE    | DRIVING TOO FAST FOR CONDITIONS (NOT EXCEEDING POSTED SPEED)        |
| 048   | OPN DOOR    | OPENED DOOR INTO ADJACENT TRAFFIC LANE                              |
| 049   | IMPEDING    | IMPEDING TRAFFIC                                                    |
| 050   | SPEED       | DRIVING IN EXCESS OF POSTED SPEED                                   |
| 051   | RECKLESS    | RECKLESS DRIVING (PER PAR)                                          |
| 052   | CARELESS    | CARELESS DRIVING (PER PAR)                                          |
| 053   | RACING      | SPEED RACING (PER PAR)                                              |
| 054   | X N/SGNL    | CROSSING AT INTERSECTION, NO TRAFFIC SIGNAL PRESENT                 |
| 055   | X W/SGNL    | CROSSING AT INTERSECTION, TRAFFIC SIGNAL PRESENT                    |
| 056   | DIAGONAL    | CROSSING AT INTERSECTION - DIAGONALLY                               |
| 057   | BTWN INT    | CROSSING BETWEEN INTERSECTIONS                                      |
| 059   | W/TRAF-S    | WALKING, RUNNING, RIDING, ETC., ON SHOULDER WITH TRAFFIC            |
| 060   | A/TRAF-S    | WALKING, RUNNING, RIDING, ETC., ON SHOULDER FACING TRAFFIC          |
| 061   | W/TRAF-P    | WALKING, RUNNING, RIDING, ETC., ON PAVEMENT WITH TRAFFIC            |
| 062   | A/TRAF-P    | WALKING, RUNNING, RIDING, ETC., ON PAVEMENT FACING TRAFFIC          |
| 063   | PLAYINRD    | PLAYING IN STREET OR ROAD                                           |
| 064   | PUSH MV     | PUSHING OR WORKING ON VEHICLE IN ROAD OR ON SHOULDER                |
| 065   | WORK IN RD  | WORKING IN ROADWAY OR ALONG SHOULDER                                |
| 070   | LAY ON RD   | STANDING OR LYING IN ROADWAY                                        |
| 071   | NM IMP USE  | IMPROPER USE OF TRAFFIC LANE BY NON-MOTORIST                        |
| 073   | ELUDING     | ELUDING / ATTEMPT TO ELUDE                                          |
| 079   | F NEG CURV  | FAILED TO NEGOTIATE A CURVE                                         |
| 080   | FAIL LN     | FAILED TO MAINTAIN LANE                                             |
| 081   | OFF RD      | RAN OFF ROAD                                                        |
| 082   | NO CLEAR    | DRIVER MISJUDGED CLEARANCE                                          |
| 083   | OVRSTEER    | OVER-CORRECTING                                                     |
| 084   | NOT USED    | CODE NOT IN USE                                                     |
| 085   | OVRLOAD     | OVERLOADING OR IMPROPER LOADING OF VEHICLE WITH CARGO OR PASSENGERS |
| 097   | UNA DIS TC  | UNABLE TO DETERMINE WHICH DRIVER DISREGARDED TRAFFIC CONTROL DEVICE |

#### EVENT CODE TRANSLATION LIST

| CODE       | DESCRIPTION            | LONG DESCRIPTION                                                                             |
|------------|------------------------|----------------------------------------------------------------------------------------------|
| 001        | FEL/JUMP               | OCCUPANT FELL, JUMPED OR WAS EJECTED FROM MOVING VEHICLE                                     |
| 002        | INTERFER               | PASSENGER INTERFERED WITH DRIVER                                                             |
| 003        | BUG INTF               | ANIMAL OR INSECT IN VEHICLE INTERFERED WITH DRIVER                                           |
| 004        | INDRCT PED             | PEDESTRIAN INDIRECTLY INVOLVED (NOT STRUCK)                                                  |
| 005        | SUB-PED                | "SUB-PED": PEDESTRIAN INJURED SUBSEQUENT TO COLLISION, ETC.                                  |
| 006<br>007 | INDRCT BIK             | PEDALCYCLIST INDIRECTLY INVOLVED (NOT STRUCK)                                                |
| 007        | HITCHIKR<br>PSNGR TOW  | HITCHHIKER (SOLICITING A RIDE) PASSENGER OR NON-MOTORIST BEING TOWED OR PUSHED ON CONVEYANCE |
| 009        | ON/OFF V               | GETTING ON/OFF STOPPED/PARKED VEHICLE (OCCUPANTS ONLY; MUST HAVE PHYSICAL CONTACT W/ VEHIC   |
| 010        | SUB OTRN               | OVERTURNED AFTER FIRST HARMFUL EVENT                                                         |
| 011        | MV PUSHD               | VEHICLE BEING PUSHED                                                                         |
| 012        | MV TOWED               | VEHICLE TOWED OR HAD BEEN TOWING ANOTHER VEHICLE                                             |
| 013        | FORCED                 | VEHICLE FORCED BY IMPACT INTO ANOTHER VEHICLE, PEDALCYCLIST OR PEDESTRIAN                    |
| 014        | SET MOTN               | VEHICLE SET IN MOTION BY NON-DRIVER (CHILD RELEASED BRAKES, ETC.)                            |
| 015        | RR ROW                 | AT OR ON RAILROAD RIGHT-OF-WAY (NOT LIGHT RAIL)                                              |
| 016        | LT RL ROW              | AT OR ON LIGHT-RAIL RIGHT-OF-WAY                                                             |
| 017        | RR HIT V               | TRAIN STRUCK VEHICLE                                                                         |
| 018<br>019 | V HIT RR<br>HIT RR CAR | VEHICLE STRUCK TRAIN VEHICLE STRUCK RAILROAD CAR ON ROADWAY                                  |
| 020        | JACKNIFE               | JACKKNIFE; TRAILER OR TOWED VEHICLE STRUCK TOWING VEHICLE                                    |
| 021        | TRL OTRN               | TRAILER OR TOWED VEHICLE OVERTURNED                                                          |
| 022        | CN BROKE               | TRAILER CONNECTION BROKE                                                                     |
| 023        | DETACH TRL             | DETACHED TRAILING OBJECT STRUCK OTHER VEHICLE, NON-MOTORIST, OR OBJECT                       |
| 024        | V DOOR OPN             | VEHICLE DOOR OPENED INTO ADJACENT TRAFFIC LANE                                               |
| 025        | WHEELOFF               | WHEEL CAME OFF                                                                               |
| 026        | HOOD UP                | HOOD FLEW UP                                                                                 |
| 028        | LOAD SHIFT             | LOST LOAD, LOAD MOVED OR SHIFTED                                                             |
| 029        | TIREFAIL               | TIRE FAILURE                                                                                 |
| 030<br>031 | PET<br>LVSTOCK         | PET: CAT, DOG AND SIMILAR STOCK: COW, CALF, BULL, STEER, SHEEP, ETC.                         |
| 031        | HORSE                  | HORSE, MULE, OR DONKEY                                                                       |
| 033        | HRSE&RID               | HORSE AND RIDER                                                                              |
| 034        | GAME                   | WILD ANIMAL, GAME (INCLUDES BIRDS; NOT DEER OR ELK)                                          |
| 035        | DEER ELK               | DEER OR ELK, WAPITI                                                                          |
| 036        | ANML VEH               | ANIMAL-DRAWN VEHICLE                                                                         |
| 037        | CULVERT                | CULVERT, OPEN LOW OR HIGH MANHOLE                                                            |
| 038        | ATENUATN               | IMPACT ATTENUATOR                                                                            |
| 039        | PK METER               | PARKING METER                                                                                |
| 040<br>041 | CURB                   | CURB (ALSO NARROW SIDEWALKS ON BRIDGES)                                                      |
| 041        | JIGGLE<br>GDRL END     | JIGGLE BAR OR TRAFFIC SNAKE FOR CHANNELIZATION LEADING EDGE OF GUARDRAIL                     |
| 042        | GARDRAIL               | GUARD RAIL (NOT METAL MEDIAN BARRIER)                                                        |
| 044        | BARRIER                | MEDIAN BARRIER (RAISED OR METAL)                                                             |
| 045        | WALL                   | RETAINING WALL OR TUNNEL WALL                                                                |
| 046        | BR RAIL                | BRIDGE RAILING OR PARAPET (ON BRIDGE OR APPROACH)                                            |
| 047        | BR ABUTMNT             | BRIDGE ABUTMENT (INCLUDED "APPROACH END" THRU 2013)                                          |
| 048        | BR COLMN               | BRIDGE PILLAR OR COLUMN                                                                      |
| 049        | BR GIRDR               | BRIDGE GIRDER (HORIZONTAL BRIDGE STRUCTURE OVERHEAD)                                         |
| 050        | ISLAND                 | TRAFFIC RAISED ISLAND                                                                        |
| 051<br>052 | GORE<br>POLE UNK       | GORE POLE - TYPE UNKNOWN                                                                     |
| 052        | POLE UTL               | POLE - POWER OR TELEPHONE                                                                    |
| 054        | ST LIGHT               | POLE - STREET LIGHT ONLY                                                                     |
| 055        | TRF SGNL               | POLE - TRAFFIC SIGNAL AND PED SIGNAL ONLY                                                    |
| 056        | SGN BRDG               | POLE - SIGN BRIDGE                                                                           |
| 057        | STOPSIGN               | STOP OR YIELD SIGN                                                                           |
| 058        | OTH SIGN               | OTHER SIGN, INCLUDING STREET SIGNS                                                           |
| 059        | HYDRANT                | HYDRANT                                                                                      |

#### EVENT CODE TRANSLATION LIST

| EVENT      | SHORT                 |                                                                                                                                             |
|------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| CODE       | DESCRIPTION           | LONG DESCRIPTION                                                                                                                            |
| 060        | MARKER                | DELINEATOR OR MARKER (REFLECTOR POSTS)                                                                                                      |
| 061        | MAILBOX               | MAILBOX                                                                                                                                     |
| 062        | TREE                  | TREE, STUMP OR SHRUBS                                                                                                                       |
| 063        | VEG OHED              | TREE BRANCH OR OTHER VEGETATION OVERHEAD, ETC.                                                                                              |
| 064        | WIRE/CBL              | WIRE OR CABLE ACROSS OR OVER THE ROAD                                                                                                       |
| 065        | TEMP SGN              | TEMPORARY SIGN OR BARRICADE IN ROAD, ETC.                                                                                                   |
| 066        | PERM SGN              | PERMANENT SIGN OR BARRICADE IN/OFF ROAD                                                                                                     |
| 067        | SLIDE                 | SLIDES, FALLEN OR FALLING ROCKS                                                                                                             |
| 068        | FRGN OBJ              | FOREIGN OBSTRUCTION/DEBRIS IN ROAD (NOT GRAVEL)                                                                                             |
| 069        | EQP WORK              | EQUIPMENT WORKING IN/OFF ROAD                                                                                                               |
| 070        | OTH EQP               | OTHER EQUIPMENT IN OR OFF ROAD (INCLUDES PARKED TRAILER, BOAT)                                                                              |
| 071        | MAIN EQP              | · · · · · · · · · · · · · · · · · · ·                                                                                                       |
| 072        | OTHER WALL            | ROCK, BRICK OR OTHER SOLID WALL                                                                                                             |
| 073<br>074 | IRRGL PVMT            | OTHER BUMP (NOT SPEED BUMP), POTHOLE OR PAVEMENT IRREGULARITY (PER PAR) OTHER OVERHEAD OBJECT (HIGHWAY SIGN, SIGNAL HEAD, ETC.); NOT BRIDGE |
| 074        | OVERHD OBJ<br>CAVE IN | BRIDGE OR ROAD CAVE IN                                                                                                                      |
| 075        | HI WATER              | HIGH WATER                                                                                                                                  |
| 077        | SNO BANK              | SNOW BANK                                                                                                                                   |
| 078        |                       | LOW OR HIGH SHOULDER AT PAVEMENT EDGE                                                                                                       |
| 079        | DITCH                 | CUT SLOPE OR DITCH EMBANKMENT                                                                                                               |
| 080        |                       | STRUCK BY ROCK OR OTHER OBJECT SET IN MOTION BY OTHER VEHICLE (INCL. LOST LOADS)                                                            |
| 081        | FLY-OBJ               | STRUCK BY ROCK OR OTHER MOVING OR FLYING OBJECT (NOT SET IN MOTION BY VEHICLE)                                                              |
| 082        | VEH HID               | VEHICLE OBSCURED VIEW                                                                                                                       |
| 083        | VEG HID               | VEGETATION OBSCURED VIEW                                                                                                                    |
| 084        | BLDG HID              | VIEW OBSCURED BY FENCE, SIGN, PHONE BOOTH, ETC.                                                                                             |
| 085        | WIND GUST             | WIND GUST                                                                                                                                   |
| 086        | IMMERSED              | VEHICLE IMMERSED IN BODY OF WATER                                                                                                           |
| 087        | FIRE/EXP              | FIRE OR EXPLOSION                                                                                                                           |
| 088        | FENC/BLD              | FENCE OR BUILDING, ETC.                                                                                                                     |
| 089        |                       | CRASH RELATED TO ANOTHER SEPARATE CRASH                                                                                                     |
| 090        | TO 1 SIDE             | TWO-WAY TRAFFIC ON DIVIDED ROADWAY ALL ROUTED TO ONE SIDE                                                                                   |
| 091<br>092 | BUILDING<br>PHANTOM   | BUILDING OR OTHER STRUCTURE OTHER (PHANTOM) NON-CONTACT VEHICLE                                                                             |
| 093        | CELL PHONE            | CELL PHONE (ON PAR OR DRIVER IN USE)                                                                                                        |
| 094        | VIOL GDL              | TEENAGE DRIVER IN VIOLATION OF GRADUATED LICENSE PGM                                                                                        |
| 095        | GUY WIRE              | GUY WIRE                                                                                                                                    |
| 096        | BERM                  | BERM (EARTHEN OR GRAVEL MOUND)                                                                                                              |
| 097        | GRAVEL                | GRAVEL IN ROADWAY                                                                                                                           |
| 098        | ABR EDGE              | ABRUPT EDGE                                                                                                                                 |
| 099        | CELL WTNSD            | CELL PHONE USE WITNESSED BY OTHER PARTICIPANT                                                                                               |
| 100        | UNK FIXD              | FIXED OBJECT, UNKNOWN TYPE.                                                                                                                 |
| 101        | OTHER OBJ             | NON-FIXED OBJECT, OTHER OR UNKNOWN TYPE                                                                                                     |
| 102        | TEXTING               | TEXTING                                                                                                                                     |
| 103        | WZ WORKER             | WORK ZONE WORKER                                                                                                                            |
| 104        | ON VEHICLE            | PASSENGER RIDING ON VEHICLE EXTERIOR                                                                                                        |
| 105        | PEDAL PSGR            | PASSENGER RIDING ON PEDALCYCLE                                                                                                              |
| 106        | MAN WHLCHR            | PEDESTRIAN IN NON-MOTORIZED WHEELCHAIR                                                                                                      |
| 107        | MTR WHLCHR            | PEDESTRIAN IN MOTORIZED WHEELCHAIR                                                                                                          |
| 108<br>109 | OFFICER<br>SUB-BIKE   | LAW ENFORCEMENT / POLICE OFFICER "SUB-BIKE": PEDALCYCLIST INJURED SUBSEQUENT TO COLLISION, ETC.                                             |
| 110        | N-MTR                 | NON-MOTORIST STRUCK VEHICLE                                                                                                                 |
| 111        | S CAR VS V            | STREET CAR/TROLLEY (ON RAILS OR OVERHEAD WIRE SYSTEM) STRUCK VEHICLE                                                                        |
| 112        | V VS S CAR            | VEHICLE STRUCK STREET CAR/TROLLEY (ON RAILS OR OVERHEAD WIRE SYSTEM)                                                                        |
| 113        | S CAR ROW             | AT OR ON STREET CAR OR TROLLEY RIGHT-OF-WAY                                                                                                 |
| 114        | RR EQUIP              | VEHICLE STRUCK RAILROAD EQUIPMENT (NOT TRAIN) ON TRACKS                                                                                     |
| 115        | DSTRCT GPS            | DISTRACTED BY NAVIGATION SYSTEM OR GPS DEVICE                                                                                               |
| 116        | DSTRCT OTH            | DISTRACTED BY OTHER ELECTRONIC DEVICE                                                                                                       |
| 117        | RR GATE               | RAIL CROSSING DROP-ARM GATE                                                                                                                 |
|            |                       |                                                                                                                                             |

#### EVENT CODE TRANSLATION LIST

| EVENT<br>CODE | SHORT<br>DESCRIPTION | LONG DESCRIPTION                                                            |
|---------------|----------------------|-----------------------------------------------------------------------------|
| 118           | EXPNSN JNT           | EXPANSION JOINT                                                             |
| 119           | JERSEY BAR           | JERSEY BARRIER                                                              |
| 120           | WIRE BAR             | WIRE OR CABLE MEDIAN BARRIER                                                |
| 121           | FENCE                | FENCE                                                                       |
| 123           | OBJ IN VEH           | LOOSE OBJECT IN VEHICLE STRUCK OCCUPANT                                     |
| 124           | SLIPPERY             | SLIDING OR SWERVING DUE TO WET, ICY, SLIPPERY OR LOOSE SURFACE (NOT GRAVEL) |
| 125           | SHLDR                | SHOULDER GAVE WAY                                                           |
| 126           | BOULDER              | ROCK(S), BOULDER (NOT GRAVEL; NOT ROCK SLIDE)                               |
| 127           | LAND SLIDE           | ROCK SLIDE OR LAND SLIDE                                                    |
| 128           | CURVE INV            | CURVE PRESENT AT CRASH LOCATION                                             |
| 129           | HILL INV             | VERTICAL GRADE / HILL PRESENT AT CRASH LOCATION                             |
| 130           | CURVE HID            | VIEW OBSCURED BY CURVE                                                      |
| 131           | HILL HID             | VIEW OBSCURED BY VERTICAL GRADE / HILL                                      |
| 132           | WINDOW HID           | VIEW OBSCURED BY VEHICLE WINDOW CONDITIONS                                  |
| 133           | SPRAY HID            | VIEW OBSCURED BY WATER SPRAY                                                |
|               |                      |                                                                             |

#### FUNCTIONAL CLASSIFICATION TRANSLATION LIST

| 01 RURAL PRINCIPAL ARTERIAL - INTERSTATE             |  |
|------------------------------------------------------|--|
| 02 RURAL PRINCIPAL ARTERIAL - OTHER                  |  |
| 06 RURAL MINOR ARTERIAL                              |  |
| 07 RURAL MAJOR COLLECTOR                             |  |
| 08 RURAL MINOR COLLECTOR                             |  |
| 09 RURAL LOCAL                                       |  |
| 11 URBAN PRINCIPAL ARTERIAL - INTERSTATE             |  |
| 12 URBAN PRINCIPAL ARTERIAL - OTHER FREEWAYS AND EXP |  |
| 14 URBAN PRINCIPAL ARTERIAL - OTHER                  |  |
| 16 URBAN MINOR ARTERIAL                              |  |
| 17 URBAN MAJOR COLLECTOR                             |  |
| 18 URBAN MINOR COLLECTOR                             |  |
| 19 URBAN LOCAL                                       |  |
| 78 UNKNOWN RURAL SYSTEM                              |  |
| 79 UNKNOWN RURAL NON-SYSTEM                          |  |
| 98 UNKNOWN URBAN SYSTEM                              |  |
| 99 UNKNOWN URBAN NON-SYSTEM                          |  |

#### INJURY SEVERITY CODE TRANSLATION LIST

|      | SHORT |                                                |
|------|-------|------------------------------------------------|
| CODE | DESC  | LONG DESCRIPTION                               |
| 1    | KILL  | FATAL INJURY                                   |
| 2    | INJA  | INCAPACITATING INJURY - BLEEDING, BROKEN BONES |
| 3    | INJB  | NON-INCAPACITATING INJURY                      |
| 4    | INJC  | POSSIBLE INJURY - COMPLAINT OF PAIN            |
| 5    | PRI   | DIED PRIOR TO CRASH                            |
| 7    | NO<5  | NO INJURY - 0 TO 4 YEARS OF AGE                |

#### MEDIAN TYPE CODE TRANSLATION LIST

|      | SHORT |                              |
|------|-------|------------------------------|
| CODE | DESC  | LONG DESCRIPTION             |
| 0    | NONE  | NO MEDIAN                    |
| 1    | RSDMD | SOLID MEDIAN BARRIER         |
| 2    | DIVMD | EARTH, GRASS OR PAVED MEDIAN |

#### HIGHWAY COMPONENT TRANSLATION LIST

HIGHWAY - OTHER

| CODE | DESCRIPTION            |
|------|------------------------|
| 0    | MAINLINE STATE HIGHWAY |
| 1    | COUPLET                |
| 3    | FRONTAGE ROAD          |
| 6    | CONNECTION             |

#### LIGHT CONDITION CODE TRANSLATION LIST

#### SHORT

| SHOKI |                                    |
|-------|------------------------------------|
| DESC  | LONG DESCRIPTION                   |
| UNK   | UNKNOWN                            |
| DAY   | DAYLIGHT                           |
| DLIT  | DARKNESS - WITH STREET LIGHTS      |
| DARK  | DARKNESS - NO STREET LIGHTS        |
| DAWN  | DAWN (TWILIGHT)                    |
| DUSK  | DUSK (TWILIGHT)                    |
|       | UNK<br>DAY<br>DLIT<br>DARK<br>DAWN |

#### MILEAGE TYPE CODE TRANSLATION LIST

| CODE | LONG DESCRIPTION |  |  |
|------|------------------|--|--|
| 0    | REGULAR MILEAGE  |  |  |
| T    | TEMPORARY        |  |  |
| Y    | SPUR             |  |  |
| Z    | OVERLAPPING      |  |  |

#### MOVEMENT TYPE CODE TRANSLATION LIST

#### SHORT

| CODE | DESC   | LONG DESCRIPTION    |
|------|--------|---------------------|
| 0    | UNK    | UNKNOWN             |
| 1    | STRGHT | STRAIGHT AHEAD      |
| 2    | TURN-R | TURNING RIGHT       |
| 3    | TURN-L | TURNING LEFT        |
| 4    | U-TURN | MAKING A U-TURN     |
| 5    | BACK   | BACKING             |
| 6    | STOP   | STOPPED IN TRAFFIC  |
| 7    | PRKD-P | PARKED - PROPERLY   |
| 8    | PRKD-I | PARKED - IMPROPERLY |

#### PEDESTRIAN LOCATION CODE TRANSLATION LIST

| CODE | LONG DESCRIPTION                                   |
|------|----------------------------------------------------|
| 0.0  | AT INTERSECTION - NOT IN ROADWAY                   |
| 01   | AT INTERSECTION - INSIDE CROSSWALK                 |
| 02   | AT INTERSECTION - IN ROADWAY, OUTSIDE CROSSWALK    |
| 03   | AT INTERSECTION - IN ROADWAY, XWALK AVAIL UNKNWN   |
| 04   | NOT AT INTERSECTION - IN ROADWAY                   |
| 0.5  | NOT AT INTERSECTION - ON SHOULDER                  |
| 06   | NOT AT INTERSECTION - ON MEDIAN                    |
| 07   | NOT AT INTERSECTION - WITHIN TRAFFIC RIGHT-OF-WAY  |
| 0.8  | NOT AT INTERSECTION - IN BIKE PATH OR PARKING LANE |
| 09   | NOT-AT INTERSECTION - ON SIDEWALK                  |
| 10   | OUTSIDE TRAFFICWAY BOUNDARIES                      |
| 13   | AT INTERSECTION - IN BIKE LANE                     |
| 14   | NOT AT INTERSECTION - IN BIKE LANE                 |
| 15   | NOT AT INTERSECTION - INSIDE MID-BLOCK CROSSWALK   |
| 16   | NOT AT INTERSECTION - IN PARKING LANE              |

#### ROAD CHARACTER CODE TRANSLATION LIST

#### SHORT

| CODE | DESC   | LONG DESCRIPTION         |
|------|--------|--------------------------|
| 0    | UNK    | UNKNOWN                  |
| 1    | INTER  | INTERSECTION             |
| 2    | ALLEY  | DRIVEWAY OR ALLEY        |
| 3    | STRGHT | STRAIGHT ROADWAY         |
| 4    | TRANS  | TRANSITION               |
| 5    | CURVE  | CURVE (HORIZONTAL CURVE) |
| 6    | OPENAC | OPEN ACCESS OR TURNOUT   |
| 7    | GRADE  | GRADE (VERTICAL CURVE)   |
| 8    | BRIDGE | BRIDGE STRUCTURE         |
| 9    | TUNNEL | TUNNEL                   |
|      |        |                          |

#### PARTICIPANT TYPE CODE TRANSLATION LIST

#### SHORT

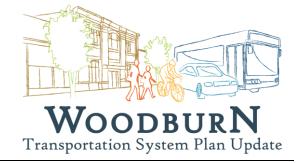
| CODE | DESC | LONG DESCRIPTION                       |
|------|------|----------------------------------------|
| 0    | occ  | UNKNOWN OCCUPANT TYPE                  |
| 1    | DRVR | DRIVER                                 |
| 2    | PSNG | PASSENGER                              |
| 3    | PED  | PEDESTRIAN                             |
| 4    | CONV | PEDESTRIAN USING A PEDESTRIAN CONVEYAL |
| 5    | PTOW | PEDESTRIAN TOWING OR TRAILERING AN OB- |
| 6    | BIKE | PEDALCYCLIST                           |
| 7    | BTOW | PEDALCYCLIST TOWING OR TRAILERING AN   |
| 8    | PRKD | OCCUPANT OF A PARKED MOTOR VEHICLE     |
| 9    | UNK  | UNKNOWN TYPE OF NON-MOTORIST           |

#### TRAFFIC CONTROL DEVICE CODE TRANSLATION LIST

| CODE | SHORT DESC | LONG DESCRIPTION                                                               |
|------|------------|--------------------------------------------------------------------------------|
| 000  | NONE       | NO CONTROL                                                                     |
| 001  | TRF SIGNAL | TRAFFIC SIGNALS<br>FLASHING BEACON - RED (STOP)                                |
| 002  | FLASHBCN-R | FLASHING BEACON - RED (STOP)                                                   |
| 003  | FLASHBCN-A | FLASHING BEACON - AMBER (SLOW)                                                 |
| 004  | STOP SIGN  | STOP SIGN                                                                      |
| 005  | SLOW SIGN  | SLOW SIGN                                                                      |
| 006  | REG-SIGN   | REGULATORY SIGN                                                                |
| 007  | YIELD      | YIELD SIGN                                                                     |
| 800  | WARNING    | WARNING SIGN                                                                   |
| 009  | CURVE      | CURVE SIGN                                                                     |
| 010  | SCHL X-ING | SCHOOL CROSSING SIGN OR SPECIAL SIGNAL POLICE OFFICER, FLAGMAN - SCHOOL PATROL |
| 011  | OFCR/FLAG  | POLICE OFFICER, FLAGMAN - SCHOOL PATROL                                        |
| 012  | BRDG-GATE  | BRIDGE GATE - BARRIER                                                          |
| 013  | TEMP-BARR  | TEMPORARY BARRIER                                                              |
| 014  | NO-PASS-ZN | NO PASSING ZONE                                                                |
| 015  | ONE-WAY    | ONE-WAY STREET                                                                 |
| 016  | CHANNEL    | CHANNELIZATION                                                                 |
| 017  | MEDIAN BAR | MEDIAN BARRIER                                                                 |
|      | PILOT CAR  |                                                                                |
| 019  | SP PED SIG | SPECIAL PEDESTRIAN SIGNAL<br>CROSSBUCK                                         |
| 020  |            |                                                                                |
| 021  |            | THROUGH GREEN ARROW OR SIGNAL                                                  |
| 022  | L-GRN-SIG  | LEFT TURN GREEN ARROW, LANE MARKINGS, OR SIGNAL                                |
| 023  | R-GRN-SIG  | RIGHT TURN GREEN ARROW, LANE MARKINGS, OR SIGNAL                               |
| 024  | WIGWAG     | WIGWAG OR FLASHING LIGHTS W/O DROP-ARM GATE                                    |
|      |            | CROSSBUCK AND ADVANCE WARNING                                                  |
| 026  | WW W/ GATE | FLASHING LIGHTS WITH DROP-ARM GATES                                            |
| 027  | OVRHD SGNL | SUPPLEMENTAL OVERHEAD SIGNAL (RR XING ONLY)                                    |
| 028  | SP RR STOP | SPECIAL RR STOP SIGN                                                           |
| 029  | ILUM GRD X | ILLUMINATED GRADE CROSSING                                                     |
| 037  | RAMP METER | METERED RAMPS                                                                  |
| 038  |            | RUMBLE STRIP                                                                   |
| 090  | L-TURN REF | LEFT TURN REFUGE (WHEN REFUGE IS INVOLVED)                                     |
|      |            | RIGHT TURN AT ALL TIMES SIGN, ETC.                                             |
| 092  | EMR SGN/FL | EMERGENCY SIGNS OR FLARES                                                      |
| 093  | ACCEL LANE | ACCELERATION OR DECELERATION LANES                                             |
|      |            | RIGHT TURN PROHIBITED ON RED AFTER STOPPING                                    |
|      |            |                                                                                |

#### VEHICLE TYPE CODE TRANSLATION LIST

| CODE | SHORT DESC | LONG DESCRIPTION                                  |
|------|------------|---------------------------------------------------|
| 00   | PDO        | NOT COLLECTED FOR PDO CRASHES                     |
| 01   | PSNGR CAR  | PASSENGER CAR, PICKUP, LIGHT DELIVERY, ETC.       |
| 02   | BOBTAIL    | TRUCK TRACTOR WITH NO TRAILERS (BOBTAIL)          |
| 03   | FARM TRCTR | FARM TRACTOR OR SELF-PROPELLED FARM EQUIPMENT     |
| 04   | SEMI TOW   | TRUCK TRACTOR WITH TRAILER/MOBILE HOME IN TOW     |
| 05   | TRUCK      | TRUCK WITH NON-DETACHABLE BED, PANEL, ETC.        |
| 06   | MOPED      | MOPED, MINIBIKE, SEATED MOTOR SCOOTER, MOTOR BIKE |
| 07   | SCHL BUS   | SCHOOL BUS (INCLUDES VAN)                         |
| 08   | OTH BUS    | OTHER BUS                                         |
| 09   | MTRCYCLE   | MOTORCYCLE, DIRT BIKE                             |
| 10   | OTHER      | OTHER: FORKLIFT, BACKHOE, ETC.                    |
| 11   | MOTRHOME   | MOTORHOME                                         |
| 12   | TROLLEY    | MOTORIZED STREET CAR/TROLLEY (NO RAILS/WIRES)     |
| 13   | ATV        | ATV                                               |
| 14   | MTRSCTR    | MOTORIZED SCOOTER (STANDING)                      |
| 15   | SNOWMOBILE | SNOWMOBILE                                        |
| 99   | UNKNOWN    | UNKNOWN VEHICLE TYPE                              |


### 095 BUS STPSGN BUS STOP SIGN AND RED LIGHTS 099 UNKNOWN UNKNOWN OR NOT DEFINITE

#### WEATHER CONDITION CODE TRANSLATION LIST

| CODE | SHORT DESC | LONG DESCRIPTION |
|------|------------|------------------|
| 0    | UNK        | UNKNOWN          |
| 1    | CLR        | CLEAR            |
| 2    | CLD        | CLOUDY           |
| 3    | RAIN       | RAIN             |
| 4    | SLT        | SLEET            |
| 5    | FOG        | FOG              |
| 6    | SNOW       | SNOW             |
| 7    | DUST       | DUST             |
| 8    | SMOK       | SMOKE            |
| 9    | ASH        | ASH              |

# **TECHNICAL MEMORANDUM #4**

**Future Systems Conditions** 



Date: March 29, 2019 Project #: 21071.4

To: Chris Kerr & Eric Liljequist, City of Woodburn

Michael Duncan, Oregon Department of Transportation, Region 2 Technical Advisory Committee and Community Advisory Committee

From: Matt Hughart and Molly McCormick, Kittleson & Associates, Inc.
Subject: Technical Memo #4: Future Systems Conditions (Subtask 4.1)

This memorandum documents the future transportation system conditions within the City of Woodburn and its urban growth boundary. The information presented in this memorandum will serve as a baseline for evaluating transportation system needs and identifying potential solutions for the Transportation System Plan (TSP) update, in coordination with the analysis conducted under existing system conditions in *Technical Memo #3: Existing Conditions Inventory and Analysis*.

### FUTURE TRAVEL FORECASTING PROCESS

Woodburn's 2040 traffic volume forecasts were developed using the following steps and components:

- Woodburn's travel demand forecast model was updated and used as the main tool to project future travel conditions on the study area infrastructure.
- The travel demand model was refined to reflect existing and fiscally constrained future circulation infrastructure.
- Portland State University Population Research Center (PRC) population forecast and employment data for the year 2040 were incorporated into the travel demand model based on feedback from city staff.

### Woodburn Travel Demand Model

A travel demand forecast model was originally built for the City of Woodburn's existing transportation system plan. Using the expertise of the Oregon Department of Transportation's (ODOT) Transportation Planning Analysis Unit (TPAU), this forecasting model was updated and used to help identify future travel demand through the year 2040. The model includes all state highways, and local arterials, collectors, and significant local streets within and surrounding the TSP study area.

Future Systems Conditions Project #: 21071.4
March 29, 2019 Page 2

#### Land Use Forecasts

Land use plays an important role in developing a comprehensive transportation system. The amount of land that is planned to be developed, the type of land uses, and how the land uses are mixed together have a direct impact on how the transportation system will function in the future.

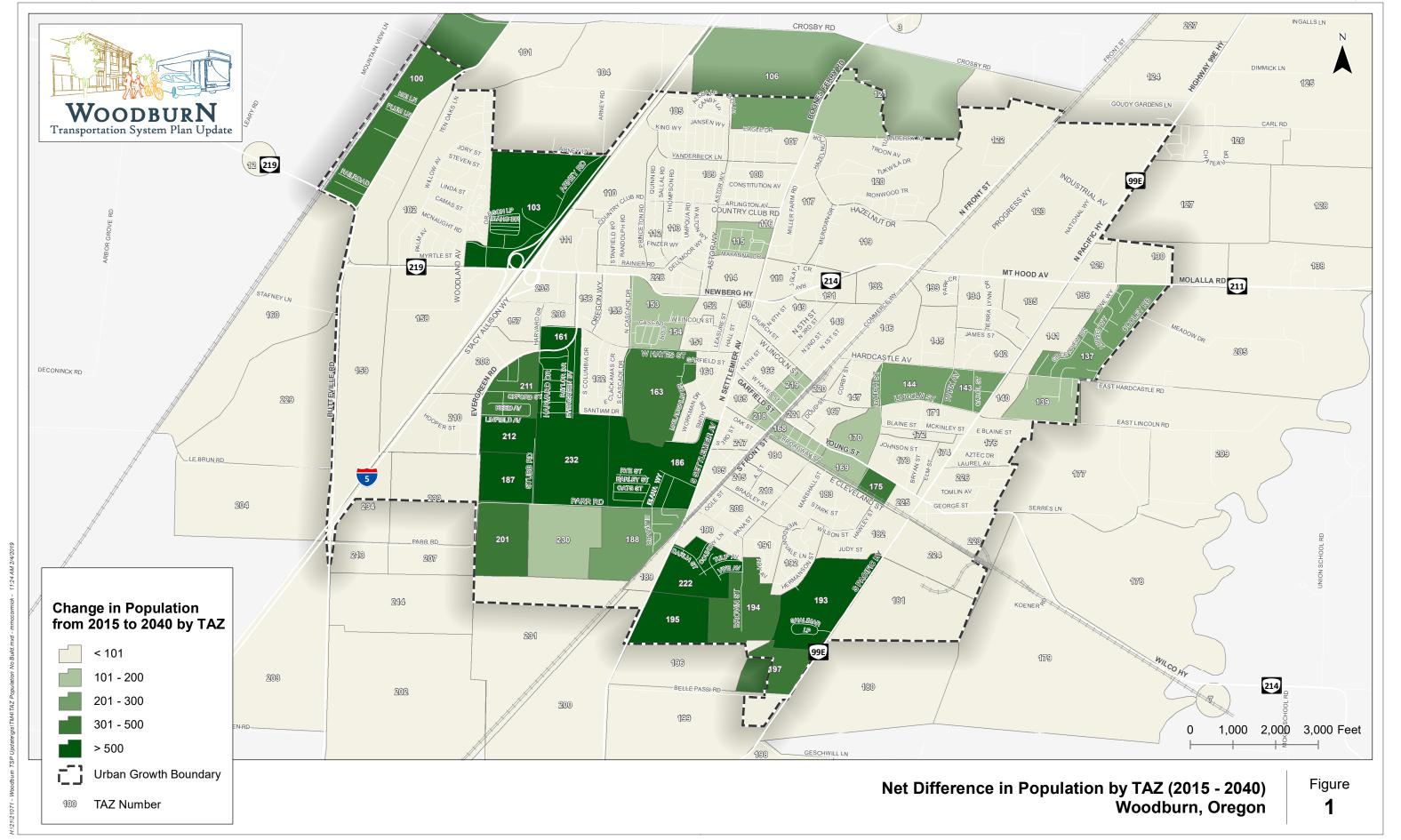
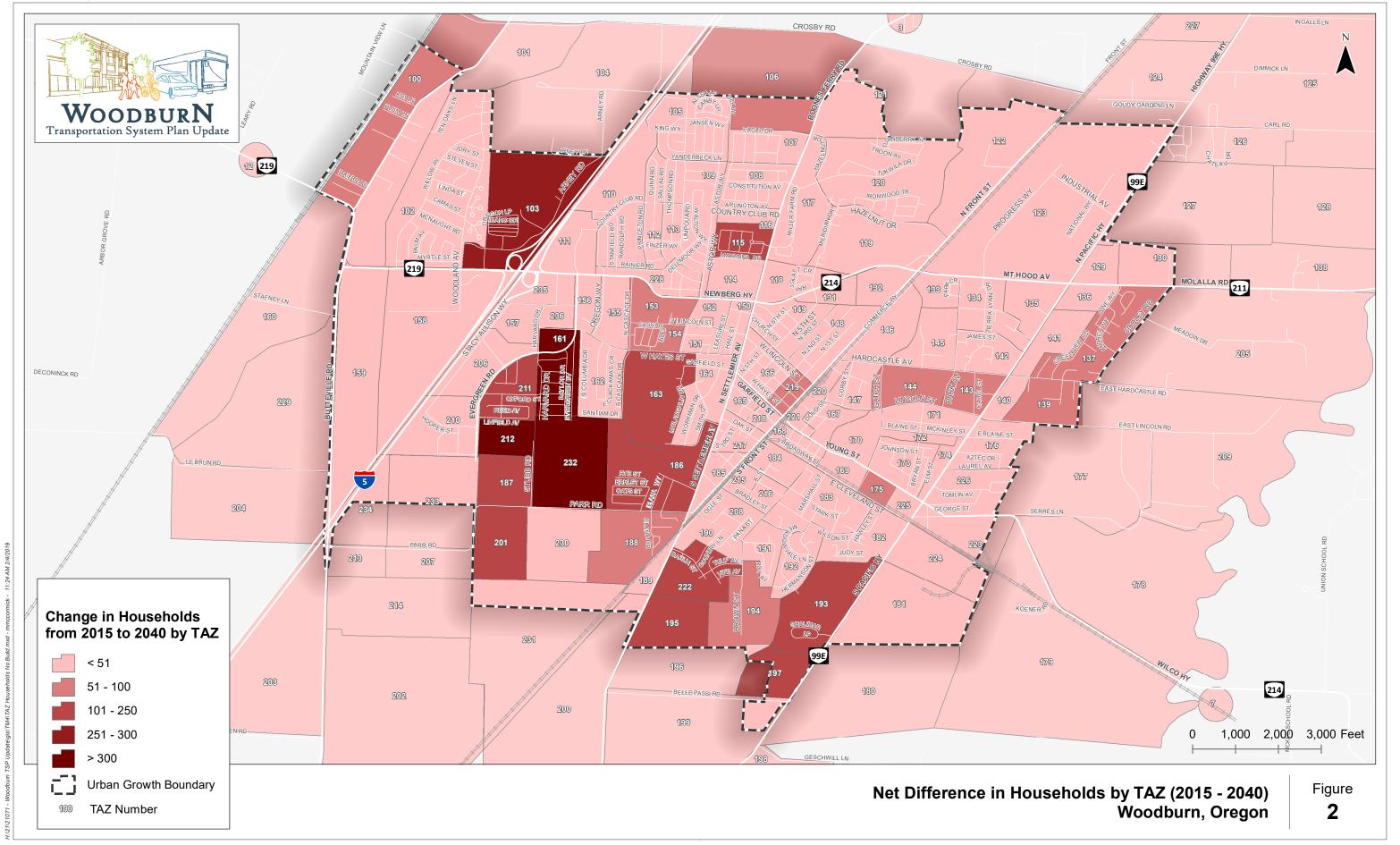

Based on feedback from city and project team staff, land use assumptions for base and future year conditions were incorporated into the travel demand model. The data includes base year 2015 and forecast year 2040 population, household, and employment estimates for the city by Transportation Analysis Zone (TAZ). There are 137 TAZs included within the Woodburn travel demand model. Figures 1, 2, and 3 illustrate the TAZs and the population, household, and employment changes expected between base year 2015 and forecast year 2040. Table 1 summarizes the overall system TAZ data for base year 2015 and forecast year 2040 conditions. As shown in Table 1, the growth in population and households over the 25-year period is expected to be approximately 2% per year while the growth in employment is expected to be closer to 3% per year.

Table 1: Woodburn UGB Land Use Summary


| Land Use   | 2015   | 2040   | Change  | Percent Change |
|------------|--------|--------|---------|----------------|
| Population | 25,610 | 38,802 | +13,192 | +51.5%         |
| Households | 8,428  | 12,428 | +4,000  | +47.5%         |
| Employment | 10,452 | 17,748 | +7,296  | +69.8%         |

As land uses change in proportion to each other (i.e. there is a significant increase in employment relative to household growth), there will be a shift in the overall operation of the transportation system. Retail land uses generate a higher number of trips per acre of land than residential and other land uses. The location and design of retail land uses in a community can greatly affect transportation system operation. Additionally, if a community is homogeneous in land use character (i.e. all employment or all residential), the transportation system must support significant trips coming to or from the community rather than within the community. Typically, there should be a mix of residential, commercial, and employment type land uses so that some residents may work and shop locally, reducing the need for residents to travel long distances. The data shown in Table 1 indicates that significant growth is expected in Woodburn in the coming years, particularly employment opportunities.

Woodburn TSP Update February 2019



Woodburn TSP Update February 2019



Woodburn TSP Update February 2019



## **FUTURE NO-BUILD SCENARIO**

The following sections summarize the additional analysis completed under the future no-build scenario conditions.

## Multi-modal Future Analysis

Although Bicycle Level of Traffic Stress (BLTS) analysis, Pedestrian Level of Traffic Stress (PLTS) analysis, and qualitative multimodal assessment for transit modes were completed under existing conditions in *Technical Memo #3: Existing Conditions Inventory and Analysis*, these methodologies do not rely on volume characteristics to complete the analyses. Therefore, the no-build scenario that does not propose geometric, posted speed, illumination, or other physical changes to the transportation system does not alter the results of these assessments. All modal systems will be further analyzed for needs and potential alternative solutions in *Technical Memo #5: Alternatives Analysis and Funding Program*.

# Bicycle Level of Traffic Stress Analysis

Figure 4 illustrates the results of the BLTS analysis for Woodburn's major arterial, minor arterial, service collector, and access streets. The BLTS calculations are summarized in *Technical Memo #3: Existing Conditions Inventory and Analysis*.

A majority of the segments rated BLTS 3 have striped bicycle lanes; however, the bike lanes are too narrow for roadways conditions. Several segments with striped bike lanes were rated BLTS 4 due to a lack of buffering and/or speed conditions; all of which are located on OR 99E. Other segments evaluated as shared roadways were rated BLTS 3 or BLTS 4 due to speed conditions.

### Pedestrian Level of Traffic Stress Analysis

Figure 5 illustrates the results of the PLTS analysis for Woodburn's major arterial, minor arterial, service collector, and access streets, which is unchanged from the existing conditions results. The PLTS calculations are summarized in *Technical Memo #3: Existing Conditions Inventory and Analysis*.

Several road segments are rated PLTS 3 due to having curb-tight sidewalks on roadways with speeds of 30 mph or higher. In order for these segments to be rated LTS 2, the speeds would need to be reduced to 25 mph or a buffer would need to be installed between the sidewalk and vehicle travel lane. A majority of the segments rated PLTS 4 have no sidewalks or other pedestrian facilities to accommodate pedestrians. In order for these segments to be rated PLTS 2, sidewalks with appropriate sidewalk and buffer widths would need to be installed along the full length of the roadway.

Woodburn TSP Update February 2019 WOODBURN
Transportation System Plan Update MOLALLA RD W LINCOLN ST 5 DECONINCK RD LE BRUN RD PARR RD BLTS 1 BELLE PASSI RD BLTS 2 BLTS 3 1,000 2,000 3,000 Feet BLTS 4 City Boundary Bicycle Level of Traffic Stress Analysis – Future Year 2040 No-build Figure Urban Growth Boundary

Woodburn, Oregon

Woodburn TSP Update February 2019 WOODBURN
Transportation System Plan Update STAFNEY LN WOODLAND AV W LINCOLN ST DECONINCK RD LE BRUN RD RYE ST BARLEY ST & PARR RD PLTS 1 BELLE PASSI RD PLTS 2 PLTS 3 1,000 2,000 3,000 Feet PLTS 4 City Boundary Pedestrian Level of Traffic Stress Analysis – Future Year 2040 No-build Figure Urban Growth Boundary

Woodburn, Oregon

Future Systems Conditions Project #: 21071.4

March 29, 2019 Page 9

### Qualitative (Multimodal) Assessment for Transit Modes

A transit qualitative multimodal assessment was conducted in accordance with the methodology described in ODOT's APM. Transit factors that should be considered are frequency and on-time reliability, schedule speed/travel times, transit stop amenities, and connecting pedestrian/bicycle network. This methodology applies a rating system similar to that used for pavement conditions; excellent, good, fair, poor.

## Frequency and On-time Reliability

From the user's perspective, *frequency* determines how many times an hour a user has access to transit service, assuming that service is provided within acceptable walking distance and at the times the user wishes to travel. Frequency also helps determine the convenience of transit service to riders and is one component of overall transit trip time (helping to determine the wait time at a stop). Table 2 summarizes the ratings for frequency and on-time reliability for the three transit routes serving Woodburn.

**Table 2: Frequency and On-time Reliability Rating** 

| Provider                 | Routes Service Frequency   |                                 | Rating |
|--------------------------|----------------------------|---------------------------------|--------|
| Woodburn Transit Service | City Loop                  | 60 minutes <sup>1</sup>         | Fair   |
| Cherriots Regional       | 10X Woodburn/Salem Express | 120 to 150 minutes <sup>1</sup> | Poor   |
| Canby Area Transit       | 99                         | 60 to 150 minutes <sup>1</sup>  | Poor   |

<sup>1.</sup> No service is provided on Saturday or Sunday.

All three routes that provide service to Woodburn operate on long headways that can create extended wait times at stops if users do not accurately time their travel.

### Schedule Speed/Travel Times

Schedule speed and travel time refer to the time it takes to complete a transit route in full and the length of time between stops. Table 3 summarizes the ratings for schedule speed and travel time.

Table 3: Schedule Speed/Travel Times Rating

| Provider                 | Routes                     | Number of Stops    | Route Travel Time | Rating |
|--------------------------|----------------------------|--------------------|-------------------|--------|
| Woodburn Transit Service | City Loop                  | 53 (loop)          | 60 minutes        | Fair   |
| Cherriots Regional       | 10X Woodburn/Salem Express | 7 (there and back) | 50 minutes        | Fair   |
| Canby Area Transit       | 99                         | 9 (there and back) | 45 minutes        | Fair   |

Woodburn Transit Service provides a loop route that goes to 53 stops in approximately 60 minutes. Cherriots Regional provides a bus route that goes out to Salem and back to Woodburn. In one direction, the route goes to 7 stops in approximately 50 minutes. Canby Area Transit provides a bus route that goes out to Oregon City Transit Center and back to Woodburn. In one direction, the route goes to 9 stops in approximately 45 minutes.

# **Future Traffic Operations**

Traffic operations were evaluated at 22 study intersections in accordance with the assumptions and methodologies identified in the methodology memo provided in *Attachment "A"* as well as the updated July 2018 Version 2 of ODOT's Analysis Procedures Manual (APM) Section 5.9.

## Forecast Traffic Volumes and Peak Hour Operations

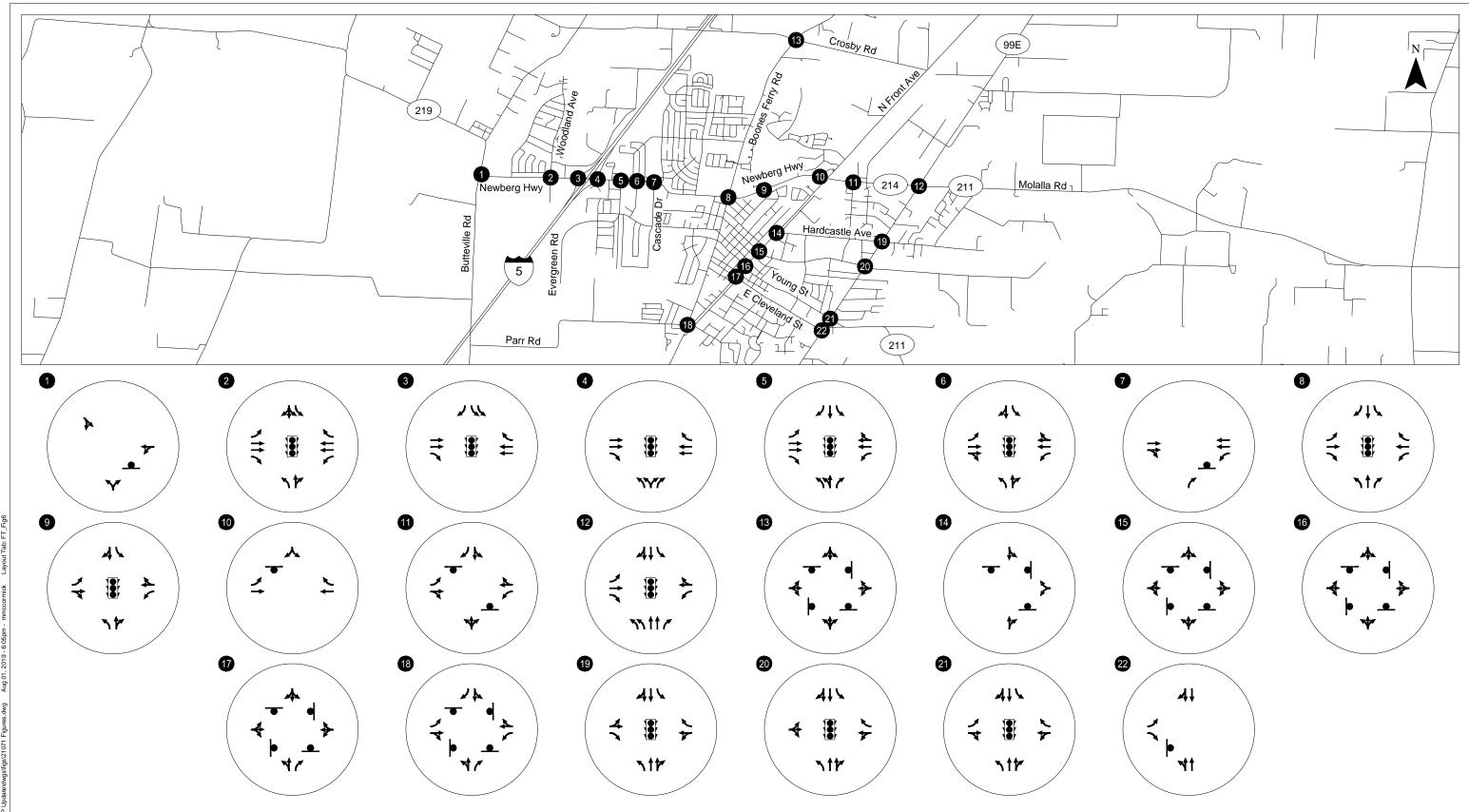

Forecast traffic volumes were developed for the study intersections based on the existing traffic counts and information provided in the Woodburn travel demand model. The travel demand model provides base year 2015 and forecast year 2040 traffic volume projections that reflect anticipated land use changes and planned transportation improvements within the study area. The forecast traffic volumes were developed by applying the post-processing methodology presented in the National Cooperative Highway Research Program (NCHRP) Report 255 Highway Traffic Data for Urbanized Area Project Planning and Design, in conjunction with engineering judgment and knowledge of the study area. Attachment "B" contains the travel demand model data provided by TPAU.

Figure 6 illustrates the location and no-build lane configurations of the study intersections. Figure 7 illustrates the year 2040 forecast traffic volumes at the study intersections during the weekday p.m. peak hour. Figure 7 and Table 4 summarize the results of the future traffic operations analysis at the study intersections under year 2040 traffic conditions. Attachment "C" contains the year 2040 future no-build traffic conditions worksheets.

As shown in Table 4, 14 study intersections are forecast to exceed their acceptable mobility standards and targets under year 2040 forecast traffic conditions. Four of these intersections were also exceeding their mobility standards and targets under existing conditions. Additional information about the operations issues identified at these study intersections is provided below.

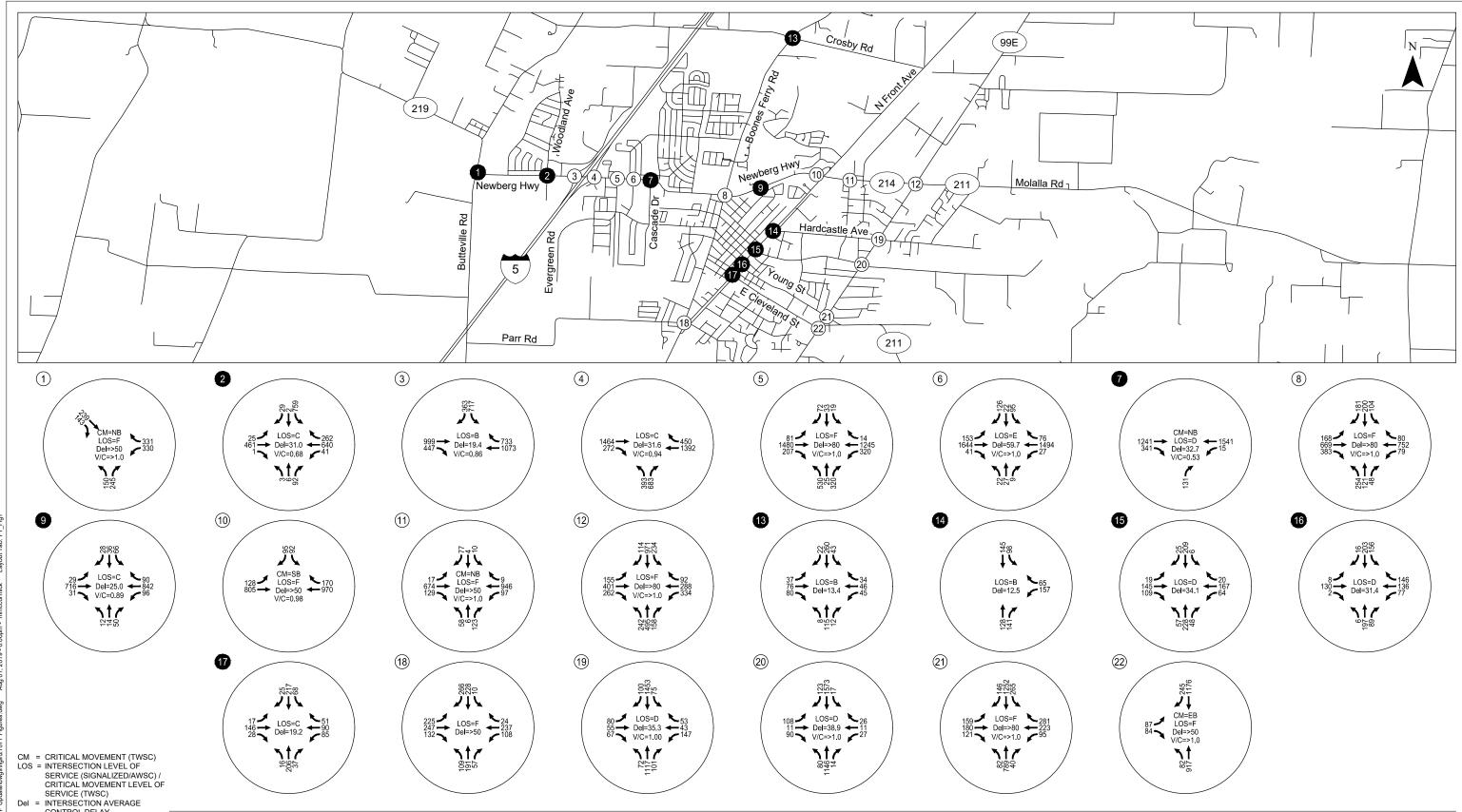
Woodburn Transportation System Plan Update

March 2019



## - STUDY INTERSECTIONS

STOP SIGN


- TRAFFIC SIGNAL

Future No-Build Scenario Lane Configurations and Traffic Control Devices Woodburn, Oregon

Figure 6



March 2019 Woodburn Transportation System Plan Update



CONTROL DELAY (SIGNALIZED/AWSC) / CRITICAL MOVEMENT CONTROL DELAY (TWSC)

VOLUME-TO-CAPACITY RATIO
TWC = TWO-WAY STOP CONTROL AWSC= ALL-WAY STOP CONTROL



- INTERSECTION DOES NOT MEET TARGET/STANDARD

Future Year 2040 No-Build Traffic Operations Woodburn, Oregon Figure



Future Systems Conditions Project #: 21071.4
March 29, 2019 Page 13

Table 4: Future Year 2040 Weekday PM Peak Hour Intersection Operations

| Мар |                                              | Level of      | Delay             | Volume/           | Mobilit<br>Operatio | Target/<br>Standard   |      |
|-----|----------------------------------------------|---------------|-------------------|-------------------|---------------------|-----------------------|------|
| ID  | Intersection                                 | Service (LOS) | (Sec)             | Capacity<br>(V/C) | Agency              | Maximum               | Met? |
|     |                                              | Signaliz      | ed Intersection   | ıs                |                     |                       |      |
| 2   | OR 219/Woodland Avenue                       | С             | 31.0              | 0.68              | ODOT                | v/c 0.95              | Yes  |
| 3   | OR 214/I-5 Southbound Ramp                   | В             | 19.4              | 0.86              | ODOT                | v/c 0.85              | No   |
| 4   | OR 214/I-5 Northbound Ramp                   | С             | 31.6              | 0.94              | ODOT                | v/c 0.85              | No   |
| 5   | OR 214/Evergreen Road                        | F             | >80.0             | 1.15              | ODOT                | v/c 0.95              | No   |
| 6   | OR 214/Oregon Way/Country Club<br>Road       | E             | 59.7              | 1.01              | ODOT                | v/c 0.95              | No   |
| 8   | OR 214/Boones Ferry Road NE                  | F             | >80.0             | 1.17              | ODOT                | v/c 0.95              | No   |
| 9   | OR 214/Meridian Drive/5 <sup>th</sup> Street | С             | 25.0              | 0.89              | ODOT                | v/c 0.95              | Yes  |
| 12  | OR 214/OR 211/OR 99E                         | F             | >80.0             | 1.22              | ODOT                | v/c 0.95              | No   |
| 19  | OR 99E/Hardcastle Avenue                     | D             | 35.3              | 1.00              | ODOT                | v/c 0.90              | No   |
| 20  | OR 99E/Lincoln Street                        | D             | 38.9              | 1.02              | ODOT                | v/c 0.90              | No   |
| 21  | OR 99E/Young Street                          | F             | >80.0             | 1.15              | ODOT                | v/c 0.90              | No   |
|     |                                              | Unsignal      | ized Intersection | ons               |                     |                       |      |
| 1   | Butteville Road/OR 219                       | F             | >50.0             | 2.17              | ODOT                | v/c 0.90              | No   |
| 7   | Cascade Drive/OR 214                         | D             | 32.7              | 0.53              | ODOT                | v/c 0.95              | Yes  |
| 10  | Front Street/OR 214                          | F             | >50.0             | 3.37              | ODOT                | v/c 0.95              | No   |
| 11  | Park Avenue/OR 214                           | F             | >50.0             | 4.11              | ODOT                | v/c 0.95              | No   |
| 13  | Boones Ferry Road NE/Crosby Road             | В             | 13.4              | -                 | County              | LOS D and<br>v/c 0.85 | Yes  |
| 14  | Hardcastle Avenue/Front Street               | В             | 12.5              | -                 | City                | v/c 0.90              | Yes  |
| 15  | Lincoln Street/Front Street                  | D             | 34.1              | -                 | City                | v/c 0.90              | Yes  |
| 16  | Garfield Street/Young Street/Front<br>Street | D             | 31.4              | -                 | City                | v/c 0.90              | Yes  |
| 17  | Cleveland Street/Front Street                | С             | 19.2              | -                 | City                | v/c 0.90              | Yes  |
| 18  | Parr Road/Settlemier Avenue                  | F             | >50.0             | -                 | City                | v/c 0.90              | No   |
| 22  | OR 99E/Cleveland Street                      | F             | >50.0             | 7.27              | ODOT                | v/c 0.90              | No   |

#### Notes:

LOS = Intersection Level of Service (Signal), Critical Movement Level of Service (TWSC).

Delay = Intersection Average vehicle delay (Signal), critical movement vehicle delay (TWSC).

V/C = Intersection V/C (Signal) critical movement V/C (TWSC).

MOE = Measure of Effectiveness

## Butteville Road/OR 219

The unsignalized northbound Butteville Road approach to the Butteville Road/OR 219 intersection is forecast to operate over capacity. Heavy east-west through volumes on OR 214 are projected to result in limited gaps where the left-turn and right-turn volumes can turn from a shared lane. The Butteville Road approach is currently stop-controlled, so some form of intersection traffic control may be looked at as part of the future solutions assessment.

#### OR 214/I-5 Southbound Ramp

OR 214/I-5 Southbound Ramp is forecast to operate at LOS C with a v/c ratio of 0.86, which exceeds the ODOT mobility target for the intersection. While the intersection is not meeting the 0.85 mobility target, the intersection is forecast to still have available capacity. As such, mitigation measures that involve physical improvements may not be necessary.

#### OR 214/I-5 Northbound Ramp

OR 214/I-5 Northbound Ramp is forecast to operate at over capacity conditions with a v/c ratio of 0.94. This is primarily due to high through volumes on OR 214.

## OR 214/Evergreen Road

OR 214/Evergreen Road is forecast to operate at over capacity conditions with a v/c ratio of 1.15. As the main portal to the retail, industrial, and growing residential areas south of OR 214 and east of I-5, traffic demands on Evergreen Road are projected to exceed the capacity of the OR 214/Evergreen Road intersection. As residential areas grow south of OR 214 and east of I-5, additional connections and alternative routing opportunities are likely going to be needed to help disperse this future demand from Evergreen Road while still connecting to the I-5 corridor.

# OR 214/Oregon Way/Country Club Road

OR 214/Oregon Way/Country Club Road is forecast to operate at capacity with a v/c ratio of 1.01. This is primarily due to high east-west through volumes on OR 214.

#### OR 214/Boones Ferry Road NE/N Settlemier Avenue

OR 214/Boones Ferry Road NE/N Settlemeier Avenue is forecast to operate at over capacity conditions with a v/c ratio of 1.17. These conditions are primarily due to high through volumes on OR 214 and high northbound left-turn volumes from N Settlemier Avenue. A second eastbound through lane was identified in the existing Woodburn TSP as a long-term improvement for this intersection. This potential mitigation as well as other capacity enhancement measures will be a focus of the future solutions analysis.

## Front Street/OR 214

The unsignalized southbound Front Street approach to the Front Street/OR 214 intersection is forecast to operate over capacity. Heavy east-west through volumes on OR 214 are projected to result in limited gaps where the left-turn and right-turn volumes can turn from a shared lane. The Front Street approach is currently stop-controlled, so some form of intersection traffic control may be looked at as part of the future solutions assessment. The existing Woodburn TSP identified signalization of this intersection as a long-term improvement.

## Park Avenue/OR 214

The unsignalized northbound Park Avenue approach to the Park Avenue/OR 214 intersection is forecast to operate over capacity. The Park Avenue approaches are currently stop-controlled, so some form of intersection traffic control may be looked at as part of the future solutions assessment. The existing Woodburn TSP identified signalization of this intersection as a long-term improvement.

## OR 214/OR 211/OR 99E

OR 214/OR 211/OR 99E is forecast to operate over capacity with a v/c ratio of 1.22. This is primarily due to high east-west through volumes on OR 214/OR 211, westbound left-turn volumes on OR 211, and high southbound through volumes on OR 99E. The existing Woodburn TSP identified the provision of a southbound right-turn lane on 99E and a second westbound left-turn lane on OR 211 as long-term improvements.

## Parr Road/Settlemier Avenue

The Parr Road/Settlemier Avenue intersection is forecast to operate at LOS F with a critical movement v/c ratio of 1.24. Significant growth projections in south Woodburn will require a reassessment of this intersection from a traffic control perspective. The existing Woodburn TSP identified the provision of an eastbound right-turn lane on Parr Road as long-term improvements.

## OR 99E/Hardcastle Avenue

OR 99E/Hardcastle Avenue is forecast to operate at capacity with a v/c ratio of 1.00. This is primarily due to high through volumes on OR 99E. Additional capacity enhancements to the Hardcastle Avenue approaches will need to be looked at as part of the future solutions assessment. No improvements have been identified in the existing TSP.

## OR 99E/Lincoln Street

OR 99E/Lincoln Street is forecast to operate over capacity with a v/c ratio of 1.02. This is primarily due to high through volumes on OR 214 and southbound on OR 99E. Additional capacity enhancements to the Lincoln Street approaches will need to be looked at as part of the future solutions assessment. No improvements have been identified in the existing TSP.

## OR 99E/Young Street

OR 99E/Young Street is forecast to operate over capacity with a v/c ratio of 1.15. This is primarily due to high through volumes on OR 99E and on the westbound approach. The *Highway 99E Corridor Plan* identified restriction of certain turn movements at the surrounding intersections as a near-term safety improvement and eventual closure of nearby connections as a long-term safety improvement. In the near-term, the plan identified restricting movements to right-in, right-out only access at the OR 99E/Silverton Avenue intersection and right-in only at the Young Street/Birds Eye Avenue. The long-term

vision is to completely close those two intersections to simplify turning movements and access in this block and free up land for potential future development.

# OR 99E/Cleveland Street

The unsignalized eastbound approach to the OR 99E/Cleveland Street intersection is forecast to operate at LOS F and over capacity. This primarily due to high through volumes on OR 99E that limit the gaps where the left-turn movement from Cleveland Street may enter the intersection. The existing Woodburn TSP and the Highway 99E Corridor Plan identified signalization of this intersection as a long-term improvement. In addition, the Highway 99E Corridor Plan identified the continuation of a two-way left-turn lane south of Cleveland Street.

Attachment A
Methodology Memo



# **TECHNICAL MEMORANDUM**

#### Woodburn Transportation System Plan (TSP) Update

Analysis Methodology and Assumptions Memorandum (Subtask 2.3)

Date: February 21, 2018

Project #:21071.2

To: Chris Kerr, City of Woodburn

Dan Fricke, Oregon Department of Transportation, Region 2

From: Matt Hughart and Molly McCormick, Kittleson & Associates, Inc.

This memorandum documents the methodology and key assumptions to be used in preparation of analyses for the Woodburn Transportation System Plan (TSP) Update. The methodology and assumptions included in this memorandum are based on guidance provided in the Oregon Department of Transportation (ODOT) Transportation System Plan Guidelines (2008, Reference 1), the ODOT Analysis Procedures Manual (APM, Versions 1 and 2, Reference 2), and direction provided by City and ODOT staff. The analyses described in this memorandum will help identify potential deficiencies in the transportation system, including:

- Traffic operations at the study intersections under existing and future traffic conditions,
- Traffic safety at the study intersections and along study area roadways,
- Gaps and deficiencies in the bicycle and pedestrian network,
- Gaps and deficiencies in transit service (service frequency, hours, coverage, etc.), and
- Gaps and deficiencies in other travel modes.

This information will serve as a baseline for identifying a comprehensive list of needs and deficiencies to be addressed as part of the TSP update. It will also serve as a baseline for identifying and evaluating potential solutions and developing a prioritized list of improvements for the TSP update.

## STUDY INTERSECTIONS AND STUDY SEGMENTS

The study intersections and segments for the Woodburn TSP Update were determined by the City and ODOT prior to the development of the scope of the work. There is a total of 22 study intersections located along City and ODOT facilities, including 11 signalized and 11 unsignalized intersections. There are three study segments. Traffic counts were conducted by the Oregon Department of Transportation in fall 2017

and consist of 16-hour and 96-hour<sup>1</sup> counts, as noted in Table 1 and Table 2. The process for determining the seasonal adjustment factors in Table 1 is discussed in sections below.

**Table 1: Study Intersections** 

| Map<br>ID | Intersection                                 | Count Date | Count Type | Peak Hour<br>Start | Peak Hour<br>TEV | Seasonal<br>Adjustment<br>Factor |
|-----------|----------------------------------------------|------------|------------|--------------------|------------------|----------------------------------|
| 1         | Butteville Road/OR 219                       | 9/28/2017  | 16-hour    | 3:45 PM            | 822              | 1.16                             |
| 2         | OR 219/Woodland Avenue                       | 9/26/2017  | 16-hour    | 5:00 PM            | 1,354            | 1.06                             |
| 3         | OR 214/I-5 Southbound Ramp                   | 9/28/2017  | 16-hour    | 4:15 PM            | 2,560            | 1.04                             |
| 4         | OR 214/I-5 Northbound Ramp                   | 9/28/2017  | 16-hour    | 4:15 PM            | 2,713            | 1.04                             |
| 5         | OR 214/Evergreen Road                        | 9/26/2017  | 16-hour    | 4:00 PM            | 2,487            | 1.06                             |
| 6         | OR 214/Oregon Way/Country Club Road          | 9/28/2017  | 16-hour    | 4:15 PM            | 2,093            | 1.06                             |
| 7         | Cascade Drive/OR 214                         | 9/28/2017  | 16-hour    | 4:45 PM            | 1,899            | 1.06                             |
| 8         | OR 214/Boones Ferry Road NE                  | 9/26/2017  | 16-hour    | 4:30 PM            | 2,517            | 1.06                             |
| 9         | OR 214/Meridian Drive/5 <sup>th</sup> Street | 9/28/2017  | 16-hour    | 4:00 PM            | 1,602            | 1.06                             |
| 10        | Front Street/OR 214                          | 10/5/2017  | 16-hour    | 4:15 PM            | 1,733            | 1.09                             |
| 11        | Park Avenue/OR 214                           | 9/28/2017  | 16-hour    | 3:45 PM            | 1,751            | 1.06                             |
| 12        | OR 214/OR 211/OR 99E                         | 9/26/2017  | 16-hour    | 3:30 PM            | 2,879            | 1.05                             |
| 13        | Boones Ferry Road NE/Crosby Road             | 10/3/2017  | 16-hour    | 4:30 PM            | 736              | N/A                              |
| 14        | Hardcastle Avenue/Front Street               | 9/26/2017  | 16-hour    | 4:45 PM            | 701              | N/A                              |
| 15        | Lincoln Street/Front Street                  | 9/28/2017  | 16-hour    | 5:15 PM            | 795              | N/A                              |
| 16        | Garfield Street/Young Street/Front Street    | 9/28/2017  | 16-hour    | 5:00 PM            | 770              | N/A                              |
| 17        | Cleveland Street/Front Street                | 9/26/2017  | 16-hour    | 5:00 PM            | 688              | N/A                              |
| 18        | Parr Road/Settlemier Avenue                  | 9/28/2017  | 16-hour    | 5:00 PM            | 804              | N/A                              |
| 19        | OR 99E/Hardcastle Avenue                     | 10/5/2017  | 16-hour    | 4:30 PM            | 2,546            | 1.05                             |
| 20        | OR 99E/Lincoln Street                        | 10/5/2017  | 16-hour    | 4:30 PM            | 2,405            | 1.05                             |
| 21        | OR 99E/Young Street                          | 9/26/2017  | 16-hour    | 4:30 PM            | 2,564            | 1.05                             |
| 22        | OR 99E/Cleveland Street                      | 9/28/2017  | 16-hour    | 4:15 PM            | 1,798            | 1.05                             |

**Table 2: Study Segments** 

| Map<br>ID | Intersection                    | Count Date       | Count Type |
|-----------|---------------------------------|------------------|------------|
| S1        | Willow Avenue – Roadway Segment | 9/25 – 9/28/2017 | 96-hour    |
| S2        | Hayes Street – Roadway Segment  | 9/25 – 9/28/2017 | 84-hour    |
| S3        | Gatch Street – Roadway Segment  | 9/25 – 9/28/2017 | 96-hour    |

<sup>&</sup>lt;sup>1</sup> Traffic counts collected on the Hayes Street roadway segment included 84 hours of data instead of 96 hours. It is assumed that there were technical difficulties at this location during data collection.

# Peak Hour Development

The traffic counts were reviewed to determine individual and system-wide peak hours for the operational analyses. The system-wide peak hour for the study intersections was identified as 4:30 to 5:30 p.m. The system peak hour will be used to complete the operational analyses in order to accurately represent the overall peak period experienced on the Woodburn roadway system.

#### Seasonal Factors

30th Hour Volumes (30 HV) for the Woodburn TSP Update will be developed based on the traffic counts collected at the study intersections and the application of seasonal adjustment factors consistent with the methodology identified in the APM. The APM outlines three methods for identifying seasonal adjustment factors for highway traffic volumes. All three methods utilize information provided by Automatic Traffic Recorders (ATRs) located in select locations throughout the State Highway System that collect traffic data 24-hours a day, 365 days a year. Each method was evaluated to determine the most appropriate method for the study intersections. Based on the evaluations, a combination of the On-Site ATR method and the Seasonal Trend Table method will be used to develop 30 HV volumes at the ODOT study intersections. The results of the evaluation are summarized below.

#### On-Site ATR Method

Based on conversations with ODOT staff and the APM, it was suggested that ATR 24-020 (located west of Woodburn on OR 219) and ATR 24-001 (located north of Woodburn on OR 99E) would be appropriate ATRs for seasonally adjusting the Butteville Road/OR 219 intersection and intersections along OR99E, respectively. The On-Site ATR Method adjustment factors for these ATRs are outlined in Table 3 below.

Table 3: Seasonal Adjustment Factors using the On-Site ATR Method

| ATR      | Data Month                       | 2016 | 2015 | 2014 | 2013 | 2012 | Average <sup>1</sup> | Seasonal<br>Adjustment Factor |
|----------|----------------------------------|------|------|------|------|------|----------------------|-------------------------------|
| 24 020   | Peak Month<br>(July)             | 121  | 120  | 126  | 127  | 135  | 125                  | 1.16                          |
| 24-020 - | Count Month<br>(September)       | 113  | 109  | 107  | 107  | 107  | 108                  | 1.16                          |
| 24-001   | Peak Month<br>(June/July/August) | 111  | 113  | 112  | 112  | 115  | 112                  | 1.05                          |
| 24-001   | Count Month<br>(September)       | 106  | 105  | 109  | 107  | 110  | 107                  | 1.03                          |

 $<sup>^{\</sup>rm 1}$  Shaded values were dropped from the average calculations based on ODOT methodology

# Seasonal Trend Table Method

The Seasonal Trend Table Method uses average values from the ATR Characteristic Table for each seasonal traffic trend. Based on a review of the regional and local traffic trends, a combination of the Interstate Non-Urbanized, Commuter, and Summer seasonal traffic trend values were used to determine the seasonal adjustment factors for the study intersections. Table 4 summarizes the average values for

the seasonal traffic trends during the count months of September and October and during the peak period as provided in the ODOT Seasonal Trend Table.

**Table 4: Season Adjustment Factors using the Seasonal Trend Table** 

| Trend                        | Peak<br>Period<br>Seasonal<br>Factor | 15-September<br>Seasonal<br>Factor | 01-October<br>Seasonal<br>Factor | Seasonal<br>Adjustment<br>Factor<br>(September) | Average<br>(September) | Seasonal<br>Adjustment<br>Factor<br>(October) | Average<br>(October) |
|------------------------------|--------------------------------------|------------------------------------|----------------------------------|-------------------------------------------------|------------------------|-----------------------------------------------|----------------------|
| Interstate Non-<br>Urbanized | 0.8564                               | 0.9458                             | N/A                              | 1.1044                                          | N/A                    | N/A                                           | N/A                  |
| Commuter                     | 0.9037                               | 0.9359                             | 0.9431                           | 1.0356                                          | 1.0633                 | 1.0436                                        | 1.0878               |
| Summer                       | 0.8350                               | 0.9110                             | 0.9452                           | 1.0910                                          | 1.0055                 | 1.1320                                        | 1.0070               |

The seasonal adjustment factor shown in Table 4 for Interstate Non-Urbanized facilities (1.10) will be used to derive 30 HV volumes at the Interstate 5 (I-5) Ramp Terminals. An average of the seasonal adjustment factors for Commuter and Summer facilities will be used to derive 30 HV at all other ODOT study intersections, with 1.06 for locations with counts conducted in September and 1.09 for locations with counts conducted in October.

#### **Historical Factors**

All of the traffic counts were conducted in 2017; therefore, no historical factors are needed to adjust traffic volumes.

## **Forecast Traffic Volumes**

Forecast traffic volumes for the Woodburn TSP Update will be developed for the study intersections based on the methodology identified in the National Cooperative Highway Research Program (NCHRP) Report 255 *Highway Traffic Data for Urbanized Area Project Planning and Design*. The methodology combines the year 2017 30 HV traffic volumes developed at the study intersections with base year and future year 2035 traffic volume forecasts from the current Woodburn travel demand model developed by ODOT's Transportation Planning and Analysis Unit (TPAU).

# **Intersection Operational Standards**

The study intersections are a mix of ODOT and Woodburn facilities. The ODOT controlled intersections within the study area are located along I-5, OR 219, OR 214, OR 211, and OR 99E. ODOT uses volume-to-capacity (V/C) ratio to assess intersections operations. Table 6 of the *Oregon Highway Plan* (OHP, Reference 3) and Table 10-2 of the *Oregon Highway Design Manual* (HDM, Reference 4) provide maximum V/C ratios for all signalized and unsignalized intersections outside the Portland metropolitan area Urban Growth Boundary (UGB). The OHP ratios are used to evaluate existing and future no-build conditions, while the HDM ratios are used in the creation of future TSP alternatives which involve projects along state highways. Table 5 summarizes the ODOT standards for the facilities being analyzed through the TSP update process.

**Table 5: ODOT Operational Standards** 

| Roadway                                      | Posted<br>Speed ><br>35 MPH | State<br>Classification<br>System | National<br>Highway<br>System | National<br>Network<br>(Truck<br>Route) | OHP<br>Freight<br>Route | OHP<br>Mobility<br>Targets | HDM<br>Standard        |
|----------------------------------------------|-----------------------------|-----------------------------------|-------------------------------|-----------------------------------------|-------------------------|----------------------------|------------------------|
| OR 219 (Hillsboro-<br>Silverton Highway 140) | No/Yes <sup>1</sup>         | District                          | Yes/No <sup>2</sup>           | No                                      | No                      | 0.95/0.90 <sup>1</sup>     | 0.75/0.80 <sup>2</sup> |
| OR 214 (Hillsboro-<br>Silverton Highway 140) | No                          | District                          | Yes/No³                       | Yes                                     | No                      | 0.95                       | 0.80                   |
| OR 211 (Woodburn-<br>Estacada Highway 161)   | No/Yes <sup>4</sup>         | District                          | No                            | No                                      | No                      | 0.95                       | 0.75/0.80              |
| OR 99E<br>(Pacific Highway East 081)         | No/Yes⁵                     | Regional<br>Highway               | Yes/No <sup>6</sup>           | Yes                                     | No                      | 0.90/0.85                  | 0.75                   |
| I-5 Ramp Terminals<br>(Pacific Highway 001)  | Yes <sup>7</sup>            | Interstate<br>Highway             | Yes                           | Yes                                     | Yes                     | 0.85                       | 0.70                   |

<sup>&</sup>lt;sup>1</sup> The posted speed limit on OR 219 transitions from 35 MPH east of Willow Avenue to 55 MPH west of Willow Avenue. Therefore, the study intersection of Butteville Road/OR 219 has a different set of OHP mobility standards as compared to all other study intersections along OR 219.

Marion County used the following mobility standards, as presented in the current Marion County Rural TSP 2005 Update:

- LOS D or better with a V/C ratio of 0.85 or better for signalized, all-way stop, and roundabout intersections.
- LOS E or better with a v/c ratio of 0.90 or better for other unsignalized intersections.
- LOS D or better with a v/c ratio of 0.60 or better for road segments.

The City of Woodburn uses the following mobility standards, as presented in the current Woodburn TSP adopted in 2003:

- Level of Service (LOS) "E" for signalized intersections
- V/C ratio less than 1.00 regardless of LOS
- V/C ratio of less than 0.90 on the critical movement should be maintained, provided the queues on the critical approach can be appropriately accommodated.

<sup>&</sup>lt;sup>2</sup> OR 219 transitions to part of the National Highway System east of Woodland Avenue. Therefore, the study intersections of Butteville Road/OR 219 and OR 219/Woodland Avenue have a different set of HDM standards as compared to all other study intersections along OR 219.

<sup>&</sup>lt;sup>3</sup> OR 214 transitions from being part of the National Highway System at milepost 39.31.

<sup>&</sup>lt;sup>4</sup> The posted speed limit on OR 211 transitions from 35 MPH west of Cooley Road to 45 MPH east of Cooley Road.

<sup>&</sup>lt;sup>5</sup> The posted speed limit on OR 99E transitions from 45 MPH north of Industrial Road to 35 MPH south of Industrial Road, to 45 MPH south of Cleveland Road, and to 55 MPH at milepost 33.34.

<sup>&</sup>lt;sup>6</sup> OR 99E is only identified as a National Highway System route between the mileposts of 31.70 and 32.87.

<sup>&</sup>lt;sup>7</sup> The non-freeway speed limits adjacent to the ramp terminals are less than 45 MPH.

#### ANALYSIS MODEL PARAMETERS

The bullets below identify the proposed sources of data and methodologies to be used to analyze traffic conditions in Woodburn. Analyses of the study area and intersections will be conducted according to the most-recent version of the APM.

- Intersection/Roadway Geometry (lane numbers and arrangements, cross-section elements, signal phasing, etc.) will be verified for consistency with previous work efforts, reviewed through aerial photography, and confirmed through a site visit. Available as-built data may also be used to verify existing roadway geometry. The analysis models will be built on scaled roadway line work from GIS or aerial photography. ODOT's two-way stop-controlled intersection calculator tool will be used to calculate expected queue lengths for two-way stop-controlled intersections.
- 2. Operational Data (such as posted speeds, intersection control, parking, right-turn on red, etc.) will be field verified. Data will be reviewed during a site visit and supplemented by available GIS data, aerials, and photos.
- 3. Peak Hour Factors (PHF) will be calculated for each intersection and applied to the existing conditions analyses. PHFs of 0.95 will be used for the future analysis for high-order facilities (arterials), with 0.90 applied to medium-order facilities (collectors) and 0.85 applied to local roads. If the existing PHF is greater than these default future values, the existing PHF will be applied.
- 4. Traffic Operations
  - a. The 2000 Highway Capacity Manual (HCM 2000) methodology will be used to analyze traffic operations at the signalized intersections while the HCM 2010 methodology will be used to analyze traffic operations at the unsignalized intersections.
  - b. The existing and future no-build traffic operations analyses will use Synchro 9 software using HCM 2000 reports for signalized intersections and HCM 2010 reports for unsignalized intersections. Electronic Synchro 9 files shall be provided to ODOT for review.
  - c. Queuing analysis methodology will be based on Synchro 95<sup>th</sup> percentile queue lengths. Microsimulation is not proposed as part of this long-range planning effort.

#### SAFETY ANALYSES

Safety analyses will include reviewing historical crash data and examining roadway crossings, as described in the following sections.

## Crash Analyses

The most recent five years of crash data will be reviewed at the study intersections and roadway segments identified through this planning process. The data will be analyzed for a variety of factors including type, severity, general conditions, and location to identify potential crash patterns or anomalies. Particular attention will be paid to the details of crashes involving pedestrians and bicyclists.

Study intersection crash rates and critical crash rates will be calculated based on the method outlined in Part B of the Highway Safety Manual. If a critical crash rate cannot be calculated due to limited data, the published 90th percentile rates in Table 4-1 of ODOT's APM will be used for comparisons purposes. Project-area K-factors from 12+ hour counts will be used to convert short duration counts to daily traffic approach volumes.

For all areas that exceed the critical crash rate or 90th percentile rate, we will identify and present crash patterns and potential projects, policies, or studies that could address reported crash types and patterns. Countermeasures suggested for mitigation will be identified as having crash reduction potential based on Crash Modification Factors from the Highway Safety Manual or FHWA's online Crash Modification Factor (CMF) Clearinghouse with a star rating of 3 or better. All CMFs must have consistent volumes/parameters as the study intersections.

#### NON-AUTOMOBILE ANALYSIS

The existing pedestrian, bicycle, and transit network will be reviewed to identify gaps and deficiencies. A gap is defined as a missing link in the network, such as a missing sidewalk on a collector or arterial roadway. A deficiency, or obstacle, is defined as a bicycle or pedestrian facility that is not up to standards or sufficient to meet users' needs. Examples of deficiencies include:

- On-street connection on a collector or arterial roadway that has a Bicycle Level of Traffic Stress rating greater than 2 (Interested but Concerned)
- Sidewalks that are too narrow to meet ADA standards or crossings without a curb ramp

The multimodal analysis will be performed in accordance with the methodologies identified in Chapter 14 of the APM and identify the needs associated with public transportation, pedestrian, and bicycle facilities and services. The pedestrian and bicycle analyses will be supplemented by a Pedestrian Level of Traffic Stress (PLTS) analysis and a Bicycle Level of Traffic Street (BLTS) analysis, consistent with the APM. Both PLTS and BLTS methods group facilities into four different stress levels for segments, intersection approaches, and intersection crossings. Facilities with an LTS 1 rating have little to no traffic stress, require less attention, and are suitable for all users. Facilities with an LTS 2 rating have little traffic stress, but require more attention and therefore, may or may not be suitable for small children. Facilities with an LTS 3 rating have moderate traffic stress and are suitable for adults. Facilities with an LTS 4 rating have high traffic stress and are only suitable for able-bodied adults with limited options.

## **NEXT STEPS**

We would like to request concurrence from TPAU and ODOT Region 2 on the methodology and key assumptions outlined in this memorandum. This memorandum is being provided prior to beginning the existing conditions analysis and conforms to the project scope. Please contact us with any questions or comments at your earliest convenience.

## **REFERENCES**

- 1. Oregon Department of Transportation. Transportation System Plan Guidelines, 2008.
- 2. Oregon Department of Transportation. *Analysis Procedures Manual*, 2012.
- 3. Oregon Department of Transportation. *Oregon Highway Plan*, 2012.
- 4. Oregon Department of Transportation. *Highway Design Manual*, 2012.

Attachment B

Travel Demand Model

Data





Attachment C Year 2040 Traffic Conditions Analysis Worksheets

| Intersection           |         |                  |         |         |          |         |                      |                                |  |
|------------------------|---------|------------------|---------|---------|----------|---------|----------------------|--------------------------------|--|
| Int Delay, s/veh       | 162     |                  |         |         |          |         |                      |                                |  |
| Movement               | EBT     | EBR              | WBL     | WBT     | NBL      | NBR     |                      |                                |  |
| Lane Configurations    | f)      |                  |         | र्स     | ¥        |         |                      |                                |  |
| Traffic Vol, veh/h     | 239     | 143              | 330     | 331     | 150      | 245     |                      |                                |  |
| Future Vol, veh/h      | 239     | 143              | 330     | 331     | 150      | 245     |                      |                                |  |
| Conflicting Peds, #/hr | 0       | 0                | 0       | 0       | 0        | 0       |                      |                                |  |
| Sign Control           | Free    | Free             | Free    | Free    | Stop     | Stop    |                      |                                |  |
| RT Channelized         | -       |                  | -       | None    | -        |         |                      |                                |  |
| Storage Length         | _       | -                | _       | -       | 0        | -       |                      |                                |  |
| Veh in Median Storage  | ,# 0    | _                | _       | 0       | 0        | _       |                      |                                |  |
| Grade, %               | 0       | _                | _       | 0       | 0        | _       |                      |                                |  |
| Peak Hour Factor       | 96      | 96               | 96      | 96      | 96       | 96      |                      |                                |  |
|                        | 15      | 21               | 18      | 29      | 31       | 15      |                      |                                |  |
| Heavy Vehicles, %      |         |                  |         |         |          |         |                      |                                |  |
| Mvmt Flow              | 249     | 149              | 344     | 345     | 156      | 255     |                      |                                |  |
|                        |         | _                |         |         |          |         |                      |                                |  |
|                        | //ajor1 |                  | Major2  |         | Minor1   |         |                      |                                |  |
| Conflicting Flow All   | 0       | 0                | 398     | 0       | 1355     | 323     |                      |                                |  |
| Stage 1                | -       | -                | -       | -       | 323      | -       |                      |                                |  |
| Stage 2                | -       | -                | -       | -       | 1032     | -       |                      |                                |  |
| Critical Hdwy          | -       | -                | 4.28    | -       | 6.71     | 6.35    |                      |                                |  |
| Critical Hdwy Stg 1    | -       | -                | -       | -       | 5.71     | -       |                      |                                |  |
| Critical Hdwy Stg 2    | -       | -                | -       | -       | 5.71     | -       |                      |                                |  |
| Follow-up Hdwy         | -       | -                | 2.362   | -       | 3.779    | 3.435   |                      |                                |  |
| Pot Cap-1 Maneuver     | _       | -                | 1079    |         | ~ 143    | 689     |                      |                                |  |
| Stage 1                | _       | _                | _       | _       | 673      | -       |                      |                                |  |
| Stage 2                | _       | _                | _       | -       | 304      | _       |                      |                                |  |
| Platoon blocked, %     | _       | _                |         | _       | 001      |         |                      |                                |  |
| Mov Cap-1 Maneuver     | _       | _                | 1079    | _       | ~ 87     | 689     |                      |                                |  |
| Mov Cap-2 Maneuver     | _       | _                | -       | _       | ~ 87     | -       |                      |                                |  |
| Stage 1                | _       | _                | _       | _       | 673      | _       |                      |                                |  |
| Stage 2                |         |                  |         |         | 184      |         |                      |                                |  |
| olaye 2                | -       | -                | _       | -       | 104      | -       |                      |                                |  |
| A                      | FD      |                  | \A/D    |         | NE       |         |                      |                                |  |
| Approach               | EB      |                  | WB      |         | NB       |         |                      |                                |  |
| HCM Control Delay, s   | 0       |                  | 4.9     | \$      | 581.6    |         |                      |                                |  |
| HCM LOS                |         |                  |         |         | F        |         |                      |                                |  |
|                        |         |                  |         |         |          |         |                      |                                |  |
| Minor Lane/Major Mvm   | t 1     | NBLn1            | EBT     | EBR     | WBL      | WBT     |                      |                                |  |
| Capacity (veh/h)       |         | 190              | -       | -       | 1079     | -       |                      |                                |  |
| HCM Lane V/C Ratio     |         | 2.166            | _       | _       | 0.319    | _       |                      |                                |  |
| HCM Control Delay (s)  | \$      | 581.6            | _       | _       | 9.9      | 0       |                      |                                |  |
| HCM Lane LOS           | Ψ       | F                | _       | _       | 3.5<br>A | A       |                      |                                |  |
| HCM 95th %tile Q(veh)  |         | 32.4             | _       | _       | 1.4      | -       |                      |                                |  |
|                        |         | JZ. <del>4</del> |         | _       | 1.4      |         |                      |                                |  |
| Notes                  |         |                  |         |         |          |         |                      |                                |  |
| ~: Volume exceeds cap  | acity   | \$: De           | lay exc | eeds 30 | )0s      | +: Comp | outation Not Defined | *: All major volume in platoon |  |
|                        |         |                  |         |         |          |         |                      |                                |  |

|                               | •          | <b>→</b>   | •     | •     | +        | 4           | 1       | <b>†</b> | <b>/</b> | <b>\</b> | <b></b> | 1    |
|-------------------------------|------------|------------|-------|-------|----------|-------------|---------|----------|----------|----------|---------|------|
| Movement                      | EBL        | EBT        | EBR   | WBL   | WBT      | WBR         | NBL     | NBT      | NBR      | SBL      | SBT     | SBR  |
| Lane Configurations           | *          | <b>†</b> † | 7     | , J   | <b>^</b> | 7           | ¥       | ĵ.       |          | J.       | 4       |      |
| Traffic Volume (vph)          | 25         | 461        | 1     | 41    | 640      | 262         | 3       | 6        | 92       | 759      | 2       | 29   |
| Future Volume (vph)           | 25         | 461        | 1     | 41    | 640      | 262         | 3       | 6        | 92       | 759      | 2       | 29   |
| Ideal Flow (vphpl)            | 1750       | 1750       | 1750  | 1750  | 1750     | 1750        | 1750    | 1750     | 1750     | 1750     | 1750    | 1750 |
| Total Lost time (s)           | 4.0        | 4.5        | 4.0   | 4.0   | 4.5      | 4.0         | 4.0     | 4.0      |          | 4.0      | 4.0     |      |
| Lane Util. Factor             | 1.00       | 0.95       | 1.00  | 1.00  | 0.95     | 1.00        | 1.00    | 1.00     |          | 0.95     | 0.95    |      |
| Frpb, ped/bikes               | 1.00       | 1.00       | 0.98  | 1.00  | 1.00     | 1.00        | 1.00    | 1.00     |          | 1.00     | 1.00    |      |
| Flpb, ped/bikes               | 1.00       | 1.00       | 1.00  | 1.00  | 1.00     | 1.00        | 1.00    | 1.00     |          | 1.00     | 1.00    |      |
| Frt                           | 1.00       | 1.00       | 0.85  | 1.00  | 1.00     | 0.85        | 1.00    | 0.86     |          | 1.00     | 0.99    |      |
| Flt Protected                 | 0.95       | 1.00       | 1.00  | 0.95  | 1.00     | 1.00        | 0.95    | 1.00     |          | 0.95     | 0.96    |      |
| Satd. Flow (prot)             | 1614       | 2866       | 975   | 1250  | 2866     | 1430        | 1662    | 1162     |          | 1490     | 1477    |      |
| Flt Permitted                 | 0.95       | 1.00       | 1.00  | 0.95  | 1.00     | 1.00        | 0.95    | 1.00     |          | 0.95     | 0.96    |      |
| Satd. Flow (perm)             | 1614       | 2866       | 975   | 1250  | 2866     | 1430        | 1662    | 1162     |          | 1490     | 1477    |      |
| Peak-hour factor, PHF         | 0.92       | 0.92       | 0.92  | 0.92  | 0.92     | 0.92        | 0.92    | 0.92     | 0.92     | 0.92     | 0.92    | 0.92 |
| Adj. Flow (vph)               | 27         | 501        | 1     | 45    | 696      | 285         | 3       | 7        | 100      | 825      | 2       | 32   |
| RTOR Reduction (vph)          | 0          | 0          | 1     | 0     | 0        | 59          | 0       | 93       | 0        | 0        | 2       | 0    |
| Lane Group Flow (vph)         | 27         | 501        | 0     | 45    | 696      | 226         | 3       | 14       | 0        | 429      | 428     | 0    |
| Confl. Bikes (#/hr)           |            |            | 1     |       |          |             |         |          |          |          |         |      |
| Heavy Vehicles (%)            | 3%         | 16%        | 50%   | 33%   | 16%      | 4%          | 0%      | 50%      | 28%      | 6%       | 20%     | 11%  |
| Turn Type                     | Prot       | NA         | pm+ov | Prot  | NA       | pm+ov       | Split   | NA       |          | Split    | NA      |      |
| Protected Phases              | 5          | 2          | . 8   | 1     | 6        | 4           | . 8     | 8        |          | . 4      | 4       |      |
| Permitted Phases              |            |            | 2     |       |          | 6           |         |          |          |          |         |      |
| Actuated Green, G (s)         | 4.4        | 30.6       | 38.5  | 7.6   | 33.8     | 77.8        | 7.9     | 7.9      |          | 44.0     | 44.0    |      |
| Effective Green, g (s)        | 4.4        | 30.6       | 38.5  | 7.6   | 33.8     | 77.8        | 7.9     | 7.9      |          | 44.0     | 44.0    |      |
| Actuated g/C Ratio            | 0.04       | 0.29       | 0.36  | 0.07  | 0.32     | 0.73        | 0.07    | 0.07     |          | 0.41     | 0.41    |      |
| Clearance Time (s)            | 4.0        | 4.5        | 4.0   | 4.0   | 4.5      | 4.0         | 4.0     | 4.0      |          | 4.0      | 4.0     |      |
| Vehicle Extension (s)         | 2.5        | 4.2        | 2.5   | 2.5   | 4.2      | 2.5         | 2.5     | 2.5      |          | 2.5      | 2.5     |      |
| Lane Grp Cap (vph)            | 66         | 822        | 352   | 89    | 908      | 1043        | 123     | 86       |          | 615      | 609     |      |
| v/s Ratio Prot                | 0.02       | 0.17       | 0.00  | c0.04 | c0.24    | 0.09        | 0.00    | c0.01    |          | 0.29     | c0.29   |      |
| v/s Ratio Perm                |            |            | 0.00  |       |          | 0.07        |         |          |          |          |         |      |
| v/c Ratio                     | 0.41       | 0.61       | 0.00  | 0.51  | 0.77     | 0.22        | 0.02    | 0.17     |          | 0.70     | 0.70    |      |
| Uniform Delay, d1             | 49.8       | 32.8       | 21.8  | 47.7  | 32.8     | 4.6         | 45.8    | 46.3     |          | 25.8     | 25.9    |      |
| Progression Factor            | 1.00       | 1.00       | 1.00  | 1.00  | 1.00     | 1.00        | 1.00    | 1.00     |          | 1.00     | 1.00    |      |
| Incremental Delay, d2         | 3.0        | 1.6        | 0.0   | 3.3   | 4.3      | 0.1         | 0.1     | 0.7      |          | 3.2      | 3.4     |      |
| Delay (s)                     | 52.8       | 34.4       | 21.8  | 51.0  | 37.1     | 4.7         | 45.8    | 46.9     |          | 29.0     | 29.3    |      |
| Level of Service              | D          | С          | С     | D     | D        | Α           | D       | D        |          | С        | С       |      |
| Approach Delay (s)            |            | 35.3       |       |       | 28.7     |             |         | 46.9     |          |          | 29.2    |      |
| Approach LOS                  |            | D          |       |       | С        |             |         | D        |          |          | С       |      |
| Intersection Summary          |            |            |       |       |          |             |         |          |          |          |         |      |
| HCM 2000 Control Delay        |            |            | 31.0  | Н     | CM 2000  | Level of S  | Service |          | С        |          |         |      |
| HCM 2000 Volume to Capa       | city ratio |            | 0.68  |       |          |             |         |          |          |          |         |      |
| Actuated Cycle Length (s)     |            |            | 106.6 |       |          | st time (s) |         |          | 16.5     |          |         |      |
| Intersection Capacity Utiliza | ation      |            | 64.3% | IC    | CU Level | of Service  |         |          | С        |          |         |      |
| Analysis Period (min)         |            |            | 15    |       |          |             |         |          |          |          |         |      |
| Δ '11' 1 1 Δ                  |            |            |       |       |          |             |         |          |          |          |         |      |

|                                          | ۶     | <b>→</b>     | •     | •    | <b>—</b>      | •          | •       | <b>†</b> | <i>&gt;</i> | <b>/</b>     | ţ    | -√          |
|------------------------------------------|-------|--------------|-------|------|---------------|------------|---------|----------|-------------|--------------|------|-------------|
| Movement                                 | EBL   | EBT          | EBR   | WBL  | WBT           | WBR        | NBL     | NBT      | NBR         | SBL          | SBT  | SBR         |
| Lane Configurations                      |       | <b>†</b> †   | 7     |      | <b>†</b> †    | 7          |         |          |             | 14.54        |      | 7           |
| Traffic Volume (vph)                     | 0     | 999          | 447   | 0    | 1073          | 733        | 0       | 0        | 0           | 717          | 0    | 363         |
| Future Volume (vph)                      | 0     | 999          | 447   | 0    | 1073          | 733        | 0       | 0        | 0           | 717          | 0    | 363         |
| Ideal Flow (vphpl)                       | 1750  | 1750         | 1750  | 1750 | 1750          | 1750       | 1750    | 1750     | 1750        | 1750         | 1750 | 1750        |
| Total Lost time (s)                      |       | 4.5          | 4.0   |      | 4.5           | 4.0        |         |          |             | 4.5          |      | 4.5         |
| Lane Util. Factor                        |       | 0.95         | 1.00  |      | 0.95          | 1.00       |         |          |             | 0.97         |      | 1.00        |
| Frpb, ped/bikes                          |       | 1.00         | 0.98  |      | 1.00          | 0.98       |         |          |             | 1.00         |      | 1.00        |
| Flpb, ped/bikes                          |       | 1.00         | 1.00  |      | 1.00          | 1.00       |         |          |             | 1.00         |      | 1.00        |
| Frt                                      |       | 1.00         | 0.85  |      | 1.00          | 0.85       |         |          |             | 1.00         |      | 0.85        |
| Flt Protected                            |       | 1.00         | 1.00  |      | 1.00          | 1.00       |         |          |             | 0.95         |      | 1.00        |
| Satd. Flow (prot)                        |       | 2866         | 1255  |      | 2842          | 1173       |         |          |             | 2710         |      | 1271        |
| FIt Permitted                            |       | 1.00         | 1.00  |      | 1.00          | 1.00       |         |          |             | 0.95         |      | 1.00        |
| Satd. Flow (perm)                        |       | 2866         | 1255  |      | 2842          | 1173       |         |          |             | 2710         |      | 1271        |
| Peak-hour factor, PHF                    | 0.98  | 0.98         | 0.98  | 0.98 | 0.98          | 0.98       | 0.98    | 0.98     | 0.98        | 0.98         | 0.98 | 0.98        |
| Adj. Flow (vph)                          | 0     | 1019         | 456   | 0    | 1095          | 748        | 0       | 0        | 0           | 732          | 0    | 370         |
| RTOR Reduction (vph)                     | 0     | 0            | 0     | 0    | 0             | 0          | 0       | 0        | 0           | 0            | 0    | 9           |
| Lane Group Flow (vph)                    | 0     | 1019         | 456   | 0    | 1095          | 748        | 0       | 0        | 0           | 732          | 0    | 361         |
| Confl. Peds. (#/hr)                      | 5     | 400/         | 2     | 2    | 470/          | 5          | 1       | 00/      | 00/         | 400/         | 00/  | 1           |
| Heavy Vehicles (%)                       | 0%    | 16%          | 16%   | 0%   | 17%           | 24%        | 0%      | 0%       | 0%          | 19%          | 0%   | 17%         |
| Turn Type                                |       | NA           | Free  |      | NA            | Free       |         |          |             | Prot         |      | custom      |
| Protected Phases                         |       | 2            | F     |      | 6             |            |         |          |             | 4            |      | 4 5         |
| Permitted Phases                         |       | 50.0         | Free  |      | 45.0          | Free       |         |          |             | 24.0         |      | 45.7        |
| Actuated Green, G (s)                    |       | 59.8         | 100.0 |      | 45.8          | 100.0      |         |          |             | 31.2         |      | 45.7        |
| Effective Green, g (s)                   |       | 59.8         | 100.0 |      | 45.8          | 100.0      |         |          |             | 31.2         |      | 45.7        |
| Actuated g/C Ratio                       |       | 0.60<br>4.5  | 1.00  |      | 0.46          | 1.00       |         |          |             | 0.31<br>4.5  |      | 0.46        |
| Clearance Time (s) Vehicle Extension (s) |       | 6.0          |       |      | 4.5<br>4.0    |            |         |          |             | 2.5          |      |             |
|                                          |       |              | 1055  |      |               | 1173       |         |          |             |              |      | 500         |
| Lane Grp Cap (vph) v/s Ratio Prot        |       | 1713<br>0.36 | 1255  |      | 1301<br>c0.39 | 11/3       |         |          |             | 845<br>c0.27 |      | 580<br>0.28 |
| v/s Ratio Prot<br>v/s Ratio Perm         |       | 0.30         | 0.36  |      | 00.39         | c0.64      |         |          |             | CU.21        |      | 0.20        |
| v/c Ratio                                |       | 0.59         | 0.36  |      | 0.84          | 0.64       |         |          |             | 0.87         |      | 0.62        |
| Uniform Delay, d1                        |       | 12.5         | 0.0   |      | 23.9          | 0.04       |         |          |             | 32.4         |      | 20.6        |
| Progression Factor                       |       | 1.00         | 1.00  |      | 1.07          | 1.00       |         |          |             | 1.00         |      | 1.00        |
| Incremental Delay, d2                    |       | 1.5          | 0.8   |      | 2.9           | 1.1        |         |          |             | 9.2          |      | 1.8         |
| Delay (s)                                |       | 14.1         | 0.8   |      | 28.6          | 1.1        |         |          |             | 41.6         |      | 22.4        |
| Level of Service                         |       | В            | Α     |      | C             | A          |         |          |             | T1.0         |      | C           |
| Approach Delay (s)                       |       | 10.0         | , ,   |      | 17.4          | , ,        |         | 0.0      |             |              | 35.2 |             |
| Approach LOS                             |       | A            |       |      | В             |            |         | A        |             |              | D    |             |
| Intersection Summary                     |       |              |       |      |               |            |         |          |             |              |      |             |
| HCM 2000 Control Delay                   |       |              | 19.4  | Н    | CM 2000       | Level of S | Service |          | В           |              |      |             |
| HCM 2000 Volume to Capacity              | ratio |              | 0.86  | - 11 | 2111 2000     | _0.0.0.0   | 3.1.00  |          |             |              |      |             |
| Actuated Cycle Length (s)                |       |              | 100.0 | Sı   | um of los     | t time (s) |         |          | 13.0        |              |      |             |
| Intersection Capacity Utilization        | n     |              | 64.2% |      |               | of Service |         |          | C           |              |      |             |
| Analysis Period (min)                    |       |              | 15    |      |               |            |         |          |             |              |      |             |
| o Critical Lana Croup                    |       |              |       |      |               |            |         |          |             |              |      |             |

|                                   | ۶       | <b>→</b>  | •     | •    | <b>—</b>   | 4          | 1       | <b>†</b> | <i>&gt;</i> | <b>/</b> | <b>+</b> | ✓    |
|-----------------------------------|---------|-----------|-------|------|------------|------------|---------|----------|-------------|----------|----------|------|
| Movement                          | EBL     | EBT       | EBR   | WBL  | WBT        | WBR        | NBL     | NBT      | NBR         | SBL      | SBT      | SBR  |
| Lane Configurations               |         | <b>^</b>  | 7     |      | <b>^</b>   | 7          | Ť       | 4        | 7           |          |          |      |
| Traffic Volume (vph)              | 0       | 1464      | 272   | 0    | 1392       | 450        | 393     | 0        | 683         | 0        | 0        | 0    |
| Future Volume (vph)               | 0       | 1464      | 272   | 0    | 1392       | 450        | 393     | 0        | 683         | 0        | 0        | 0    |
| Ideal Flow (vphpl)                | 1750    | 1750      | 1750  | 1750 | 1750       | 1750       | 1750    | 1750     | 1750        | 1750     | 1750     | 1750 |
| Total Lost time (s)               |         | 4.5       | 4.0   |      | 4.5        | 4.0        | 4.5     | 4.5      | 4.5         |          |          |      |
| Lane Util. Factor                 |         | 0.95      | 1.00  |      | 0.95       | 1.00       | 0.95    | 0.91     | 0.95        |          |          |      |
| Frpb, ped/bikes                   |         | 1.00      | 0.98  |      | 1.00       | 0.98       | 1.00    | 0.99     | 0.99        |          |          |      |
| Flpb, ped/bikes                   |         | 1.00      | 1.00  |      | 1.00       | 1.00       | 1.00    | 1.00     | 1.00        |          |          |      |
| Frt                               |         | 1.00      | 0.85  |      | 1.00       | 0.85       | 1.00    | 0.87     | 0.85        |          |          |      |
| Flt Protected                     |         | 1.00      | 1.00  |      | 1.00       | 1.00       | 0.95    | 0.99     | 1.00        |          |          |      |
| Satd. Flow (prot)                 |         | 2866      | 1234  |      | 2725       | 1212       | 1350    | 1107     | 1132        |          |          |      |
| Flt Permitted                     |         | 1.00      | 1.00  |      | 1.00       | 1.00       | 0.95    | 0.99     | 1.00        |          |          |      |
| Satd. Flow (perm)                 |         | 2866      | 1234  |      | 2725       | 1212       | 1350    | 1107     | 1132        |          |          |      |
| Peak-hour factor, PHF             | 0.96    | 0.96      | 0.96  | 0.96 | 0.96       | 0.96       | 0.96    | 0.96     | 0.96        | 0.96     | 0.96     | 0.96 |
| Adj. Flow (vph)                   | 0       | 1525      | 283   | 0    | 1450       | 469        | 409     | 0        | 711         | 0        | 0        | 0    |
| RTOR Reduction (vph)              | 0       | 0         | 0     | 0    | 0          | 0          | 0       | 17       | 17          | 0        | 0        | 0    |
| Lane Group Flow (vph)             | 0       | 1525      | 283   | 0    | 1450       | 469        | 368     | 358      | 360         | 0        | 0        | 0    |
| Confl. Peds. (#/hr)               | 4       |           | 3     | 3    |            | 4          |         |          | 2           | 2        |          |      |
| Heavy Vehicles (%)                | 0%      | 16%       | 18%   | 0%   | 22%        | 20%        | 17%     | 0%       | 23%         | 0%       | 0%       | 0%   |
| Turn Type                         |         | NA        | Free  |      | NA         | Free       | Perm    | NA       | Perm        |          |          |      |
| Protected Phases                  |         | 2         |       |      | 6          |            |         | 8        |             |          |          |      |
| Permitted Phases                  |         |           | Free  |      |            | Free       | 8       |          | 8           |          |          |      |
| Actuated Green, G (s)             |         | 56.9      | 100.0 |      | 56.9       | 100.0      | 34.1    | 34.1     | 34.1        |          |          |      |
| Effective Green, g (s)            |         | 56.9      | 100.0 |      | 56.9       | 100.0      | 34.1    | 34.1     | 34.1        |          |          |      |
| Actuated g/C Ratio                |         | 0.57      | 1.00  |      | 0.57       | 1.00       | 0.34    | 0.34     | 0.34        |          |          |      |
| Clearance Time (s)                |         | 4.5       |       |      | 4.5        |            | 4.5     | 4.5      | 4.5         |          |          |      |
| Vehicle Extension (s)             |         | 4.0       | 1001  |      | 6.0        | 1010       | 2.5     | 2.5      | 2.5         |          |          |      |
| Lane Grp Cap (vph)                |         | 1630      | 1234  |      | 1550       | 1212       | 460     | 377      | 386         |          |          |      |
| v/s Ratio Prot                    |         | 0.53      | 0.00  |      | c0.53      | 0.00       | 0.07    | 0.00     | 0.00        |          |          |      |
| v/s Ratio Perm                    |         | 0.04      | 0.23  |      | 0.04       | 0.39       | 0.27    | 0.32     | 0.32        |          |          |      |
| v/c Ratio                         |         | 0.94      | 0.23  |      | 0.94       | 0.39       | 0.80    | 0.95     | 0.93        |          |          |      |
| Uniform Delay, d1                 |         | 19.9      | 0.0   |      | 19.9       | 0.0        | 29.9    | 32.1     | 31.8        |          |          |      |
| Progression Factor                |         | 1.43      | 1.00  |      | 0.92       | 1.00       | 1.00    | 1.00     | 1.00        |          |          |      |
| Incremental Delay, d2             |         | 9.3       | 0.3   |      | 5.1        | 0.3        | 9.4     | 33.0     | 29.1        |          |          |      |
| Delay (s)                         |         | 37.7      | 0.3   |      | 23.2       | 0.3        | 39.2    | 65.1     | 61.0        |          |          |      |
| Level of Service                  |         | D         | Α     |      | C<br>17.6  | Α          | D       | E 2      | Е           |          | 0.0      |      |
| Approach LOS                      |         | 31.8<br>C |       |      |            |            |         | 55.2     |             |          |          |      |
| Approach LOS                      |         | C         |       |      | В          |            |         | Е        |             |          | Α        |      |
| Intersection Summary              |         |           |       |      |            |            |         |          |             |          |          |      |
| HCM 2000 Control Delay            |         |           | 31.6  | H    | CM 2000    | Level of S | Service |          | С           |          |          |      |
| HCM 2000 Volume to Capacit        | y ratio |           | 0.94  |      | -          |            |         |          |             |          |          |      |
| Actuated Cycle Length (s)         |         |           | 100.0 |      | um of lost |            |         |          | 9.0         |          |          |      |
| Intersection Capacity Utilization | n       |           | 82.3% | IC   | U Level    | of Service |         |          | E           |          |          |      |
| Analysis Period (min)             |         |           | 15    |      |            |            |         |          |             |          |          |      |

| Lane Configurations    1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           | ٠           | <b>→</b> | •    | •     | +           | •          | 4       | <b>†</b> | <b>/</b> | <b>/</b> | <b>+</b> | 4    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------|----------|------|-------|-------------|------------|---------|----------|----------|----------|----------|------|
| Traffic Volume (vph) 81 1480 207 320 1245 14 530 25 320 19 33 72 Future Volume (vph) 81 1480 207 320 1245 14 530 25 320 19 33 72 Future Volume (vph) 81 1480 207 320 1245 14 530 25 320 19 33 72 Future Volume (vph) 81 1480 207 320 1245 14 530 25 320 19 33 72 Future Volume (vph) 81 1480 207 320 1245 14 530 25 320 19 33 72 Future Volume (vph) 81 1480 207 320 1245 14 530 25 320 19 33 72 Future Volume (vph) 81 1480 207 320 1245 14 530 25 320 19 33 72 Future Volume (vph) 81 1480 207 320 1245 14 530 25 320 19 33 72 Future Volume (vph) 81 1480 207 320 1245 14 530 25 320 19 33 72 Future Volume (vph) 81 1480 207 320 1245 14 530 25 320 19 3 33 72 Future Volume (vph) 81 1480 207 320 1245 14 530 25 320 19 30 37 Future Volume (vph) 81 1480 207 320 1245 14 530 25 320 19 30 72 Future Volume (vph) 81 1480 207 320 1245 14 530 25 320 19 30 72 Future Volume (vph) 81 1480 207 320 100 100 1.00 1.00 1.00 1.00 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Movement                  | EBL         | EBT      | EBR  | WBL   | WBT         | WBR        | NBL     | NBT      | NBR      | SBL      | SBT      | SBR  |
| Future Volume (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lane Configurations       |             |          |      |       | <b>∱</b> ∱  |            |         |          |          |          |          |      |
| Ideal Flow (vphph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \ I /                     |             |          |      |       |             |            |         |          |          |          |          |      |
| Total Lost time (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,                         |             |          |      |       |             |            |         |          |          |          |          |      |
| Lane Util. Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ( ,                       |             |          |      |       |             | 1750       |         |          |          |          |          |      |
| Frpb. pedrbikes 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |             |          |      |       |             |            |         |          |          |          |          |      |
| Fipb, ped/bikes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |             |          |      |       |             |            |         |          |          |          |          |      |
| Fit   1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |             |          |      |       |             |            |         |          |          |          |          |      |
| Fit Protected 0.95 1.00 1.00 0.95 1.00 0.95 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 0.96 1.00 0.95 1.00 1.00 0.95 0.96 1.00 0.95 1.00 1.00 0.95 0.96 1.00 0.95 1.00 1.00 0.95 0.96 1.00 0.95 1.00 1.00 0.95 0.96 1.00 0.95 1.00 1.00 0.95 0.96 1.00 0.95 1.00 1.00 0.95 0.96 1.00 0.95 0.96 1.00 0.95 0.96 1.00 0.95 0.96 1.00 0.95 0.96 1.00 0.95 0.96 1.00 0.95 0.96 1.00 0.95 0.96 1.00 0.95 0.96 1.00 0.95 0.96 1.00 0.95 0.96 1.00 0.95 0.96 1.00 0.95 0.96 1.00 0.95 0.96 1.00 0.95 0.96 1.00 0.95 0.96 1.00 0.95 0.96 1.00 0.95 0.96 1.00 0.95 0.96 1.00 0.95 0.96 1.00 0.95 0.96 1.00 0.95 0.96 1.00 0.95 0.96 1.00 0.95 0.96 1.00 0.95 0.96 1.00 0.95 0.96 1.00 0.95 0.96 1.00 0.95 0.96 1.00 0.95 0.96 1.00 0.95 0.96 1.00 0.95 0.96 1.00 0.95 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97                                                                                                                                                                                                                                                                  |                           |             |          |      |       |             |            |         |          |          |          |          |      |
| Satd, Flow (prot)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |             |          |      |       |             |            |         |          |          |          |          |      |
| Fit Permitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |             |          |      |       |             |            |         |          |          |          |          |      |
| Satd. Flow (perm)         139         2842         1316         176         2835         1373         1390         1262         1511         1651         1096           Peak-hour factor, PHF         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97                                                                                                                                                      |                           |             |          |      |       |             |            |         |          |          |          |          |      |
| Peak-hour factor, PHF         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97         0.97                                                                                                                                         |                           |             |          |      |       |             |            |         |          |          |          |          |      |
| Adj. Flow (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |             |          |      |       |             |            |         |          |          |          |          |      |
| RTOR Reduction (vph)         0         0         126         0         1         0         0         238         0         0         69           Lane Group Flow (vph)         84         1526         87         330         1297         0         284         288         92         20         34         5           Confl. Peds. (#hr)         3         1         13%         18%         17%         23%         15%         8%         16%         10%         6%         34%           Turn Type         D.P+P         NA         Perm         D.P+P         NA         Split         NA         Perm         Split         NA         Perm         Perm         Perm         D.P+P         NA         Split         NA         Perm         Perm<                                                                                                                                                                                   |                           |             |          |      |       |             |            |         |          |          |          |          |      |
| Lane Group Flow (vph) 84 1526 87 330 1297 0 284 288 92 20 34 5 Confl. Peds. (#/hr) 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |             |          |      |       |             |            |         |          |          |          |          |      |
| Confi. Peds. (#/hr)   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |             |          |      |       |             |            |         |          |          |          |          |      |
| Heavy Vehicles (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |             | 1526     | 87   | 330   | 1297        |            |         | 288      |          |          | 34       |      |
| Turn Type D.P+P NA Perm D.P+P NA Split NA Perm Split NA Perm Protected Phases 5 2 1 1 6 8 8 8 4 4 4 Permitted Phases 6 2 2 2 8 8 4 4 Actuated Green, G (s) 48.6 33.8 33.8 48.6 41.3 27.8 27.8 27.8 6.1 6.1 6.1 6.1 Effective Green, g (s) 48.6 33.8 33.8 48.6 41.3 27.8 27.8 27.8 27.8 6.1 6.1 6.1 6.1 Actuated g/C Ratio 0.49 0.34 0.34 0.49 0.41 0.28 0.28 0.28 0.28 0.06 0.06 0.06 Clearance Time (s) 4.0 4.5 4.5 4.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |             |          |      |       |             |            |         |          |          |          |          |      |
| Protected Phases   5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |             |          |      |       |             | 23%        |         |          |          |          |          |      |
| Permitted Phases 6 2 2 2 8 8 4. Actuated Green, G (s) 48.6 33.8 33.8 48.6 41.3 27.8 27.8 27.8 27.8 6.1 6.1 6.1 Effective Green, g (s) 48.6 33.8 33.8 48.6 41.3 27.8 27.8 27.8 27.8 6.1 6.1 6.1 6.1 Actuated g/C Ratio 0.49 0.34 0.34 0.49 0.41 0.28 0.28 0.28 0.28 0.06 0.06 0.06 0.06 Clearance Time (s) 4.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Turn Type                 |             |          | Perm | D.P+P |             |            |         |          | Perm     | Split    | NA       | Perm |
| Actuated Green, G (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |             | 2        |      |       | 6           |            | 8       | 8        |          | 4        | 4        |      |
| Effective Green, g (s)       48.6       33.8       33.8       48.6       41.3       27.8       27.8       27.8       0.0       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1       6.1                                                                                                                                                                                                                                                                               |                           |             |          |      |       |             |            |         |          |          |          |          |      |
| Actuated g/C Ratio 0.49 0.34 0.34 0.49 0.41 0.28 0.28 0.28 0.06 0.06 0.06 Clearance Time (s) 4.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . ,                       |             |          |      |       |             |            |         |          |          |          |          |      |
| Clearance Time (s)         4.0         4.5         4.5         4.0         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5                                                                                                                                                                                       | Effective Green, g (s)    |             |          |      |       |             |            |         |          |          |          |          |      |
| Vehicle Extension (s)         2.5         6.2         6.2         2.5         6.2         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5                                                                                                                                                                                    |                           |             |          |      |       |             |            |         |          |          |          |          |      |
| Lane Grp Cap (vph)         156         960         444         268         1170         381         386         350         92         100         66           v/s Ratio Prot         0.04         c0.54         0.18         c0.46         0.21         c0.21         0.01         c0.02           v/s Ratio Perm         0.22         0.07         0.42         0.07         0.00           v/c Ratio         0.54         1.59         0.20         1.23         1.11         0.75         0.75         0.26         0.22         0.34         0.07           Uniform Delay, d1         19.8         33.1         23.5         39.3         29.4         32.9         32.9         28.1         44.7         45.0         44.3           Progression Factor         0.90         0.99         1.04         0.87         0.81         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00                                                                                                                                                                                 |                           |             |          |      |       |             |            |         |          |          |          |          |      |
| v/s Ratio Prot       0.04       c0.54       0.18       c0.46       0.21       c0.21       0.01       c0.02         v/s Ratio Perm       0.22       0.07       0.42       0.07       0.00         v/c Ratio       0.54       1.59       0.20       1.23       1.11       0.75       0.75       0.26       0.22       0.34       0.07         Uniform Delay, d1       19.8       33.1       23.5       39.3       29.4       32.9       32.9       28.1       44.7       45.0       44.3         Progression Factor       0.90       0.99       1.04       0.87       0.81       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.0                                                                                                                                                                                                                                                | Vehicle Extension (s)     |             |          |      |       |             |            | 2.5     |          | 2.5      |          |          |      |
| v/s Ratio Perm       0.22       0.07       0.42       0.07       0.00         v/c Ratio       0.54       1.59       0.20       1.23       1.11       0.75       0.75       0.26       0.22       0.34       0.07         Uniform Delay, d1       19.8       33.1       23.5       39.3       29.4       32.9       32.9       28.1       44.7       45.0       44.3         Progression Factor       0.90       0.99       1.04       0.87       0.81       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00                                                                                                                                                                                                                                                    | Lane Grp Cap (vph)        |             |          | 444  |       | 1170        |            | 381     |          | 350      |          | 100      | 66   |
| v/c Ratio         0.54         1.59         0.20         1.23         1.11         0.75         0.75         0.26         0.22         0.34         0.07           Uniform Delay, d1         19.8         33.1         23.5         39.3         29.4         32.9         32.9         28.1         44.7         45.0         44.3           Progression Factor         0.90         0.99         1.04         0.87         0.81         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00                                                                                                                                                             | v/s Ratio Prot            |             | c0.54    |      |       | c0.46       |            | 0.21    | c0.21    |          | 0.01     | c0.02    |      |
| Uniform Delay, d1 19.8 33.1 23.5 39.3 29.4 32.9 32.9 28.1 44.7 45.0 44.3 Progression Factor 0.90 0.99 1.04 0.87 0.81 1.00 1.00 1.00 1.00 1.00 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |             |          |      |       |             |            |         |          |          |          |          |      |
| Progression Factor         0.90         0.99         1.04         0.87         0.81         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00 <td>v/c Ratio</td> <td></td> | v/c Ratio                 |             |          |      |       |             |            |         |          |          |          |          |      |
| Incremental Delay, d2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Uniform Delay, d1         |             |          |      |       |             |            |         |          |          |          |          |      |
| Delay (s)         18.8         299.8         24.8         146.8         76.4         40.2         40.2         28.4         45.5         46.5         44.6           Level of Service         B         F         C         F         E         D         D         C         D         D         D           Approach Delay (s)         254.7         90.7         35.9         45.2         45.2         45.2         45.2         Approach LOS         F         F         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D                                                                                                                                                                                                                                                        | Progression Factor        | 0.90        | 0.99     | 1.04 | 0.87  | 0.81        |            | 1.00    | 1.00     | 1.00     | 1.00     | 1.00     | 1.00 |
| Level of Service         B         F         C         F         E         D         D         C         D         D           Approach Delay (s)         254.7         90.7         35.9         45.2           Approach LOS         F         F         D         D           Intersection Summary         HCM 2000 Control Delay         145.1         HCM 2000 Level of Service         F           HCM 2000 Volume to Capacity ratio         1.15         Actuated Cycle Length (s)         100.0         Sum of lost time (s)         17.5           Intersection Capacity Utilization         97.9%         ICU Level of Service         F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Incremental Delay, d2     |             |          |      |       |             |            |         |          |          |          |          |      |
| Approach Delay (s)         254.7         90.7         35.9         45.2           Approach LOS         F         F         D         D           Intersection Summary           HCM 2000 Control Delay         145.1         HCM 2000 Level of Service         F           HCM 2000 Volume to Capacity ratio         1.15           Actuated Cycle Length (s)         100.0         Sum of lost time (s)         17.5           Intersection Capacity Utilization         97.9%         ICU Level of Service         F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Delay (s)                 | 18.8        | 299.8    |      |       |             |            | 40.2    | 40.2     |          | 45.5     |          |      |
| Approach LOS F F F D D  Intersection Summary  HCM 2000 Control Delay 145.1 HCM 2000 Level of Service F  HCM 2000 Volume to Capacity ratio 1.15  Actuated Cycle Length (s) 100.0 Sum of lost time (s) 17.5  Intersection Capacity Utilization 97.9% ICU Level of Service F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           | В           |          | С    | F     |             |            | D       |          | С        | D        |          | D    |
| Intersection Summary  HCM 2000 Control Delay 145.1 HCM 2000 Level of Service F  HCM 2000 Volume to Capacity ratio 1.15  Actuated Cycle Length (s) 100.0 Sum of lost time (s) 17.5  Intersection Capacity Utilization 97.9% ICU Level of Service F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |             | 254.7    |      |       |             |            |         | 35.9     |          |          |          |      |
| HCM 2000 Control Delay 145.1 HCM 2000 Level of Service F  HCM 2000 Volume to Capacity ratio 1.15  Actuated Cycle Length (s) 100.0 Sum of lost time (s) 17.5  Intersection Capacity Utilization 97.9% ICU Level of Service F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Approach LOS              |             | F        |      |       | F           |            |         | D        |          |          | D        |      |
| HCM 2000 Volume to Capacity ratio  1.15  Actuated Cycle Length (s)  100.0  Sum of lost time (s)  17.5  Intersection Capacity Utilization  97.9%  ICU Level of Service  F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Intersection Summary      |             |          |      |       |             |            |         |          |          |          |          |      |
| Actuated Cycle Length (s) 100.0 Sum of lost time (s) 17.5 Intersection Capacity Utilization 97.9% ICU Level of Service F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HCM 2000 Control Delay    |             |          |      | Н     | CM 2000     | Level of S | Service |          | F        |          |          |      |
| Intersection Capacity Utilization 97.9% ICU Level of Service F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           | acity ratio |          |      |       |             |            |         |          |          |          |          |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Actuated Cycle Length (s) |             |          |      |       |             |            |         |          | 17.5     |          |          |      |
| Analysis Period (min) 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           | ation       |          |      | IC    | CU Level of | of Service |         |          | F        |          |          |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Analysis Period (min)     |             |          | 15   |       |             |            |         |          |          |          |          |      |

|                                 | <b>≯</b> → > |            |       |           |            |            | •         | <b>†</b>       | ~    | <b>/</b>  | <b>+</b>    | 4    |
|---------------------------------|--------------|------------|-------|-----------|------------|------------|-----------|----------------|------|-----------|-------------|------|
| Movement                        | EBL          | EBT        | EBR   | WBL       | WBT        | WBR        | NBL       | NBT            | NBR  | SBL       | SBT         | SBR  |
| Lane Configurations             | ř            | <b>∱</b> ∱ |       | Ŋ         | ħβ         |            | ķ         | <del>(</del> Î |      | ň         | f)          |      |
| Traffic Volume (vph)            | 153          | 1644       | 41    | 27        | 1494       | 76         | 22        | 27             | 9    | 95        | 22          | 126  |
| Future Volume (vph)             | 153          | 1644       | 41    | 27        | 1494       | 76         | 22        | 27             | 9    | 95        | 22          | 126  |
| Ideal Flow (vphpl)              | 1750         | 1750       | 1750  | 1750      | 1750       | 1750       | 1750      | 1750           | 1750 | 1750      | 1750        | 1750 |
| Total Lost time (s)             | 4.0          | 4.5        |       | 4.0       | 4.5        |            | 4.0       | 4.0            |      | 4.0       | 4.0         |      |
| Lane Util. Factor               | 1.00         | 0.95       |       | 1.00      | 0.95       |            | 1.00      | 1.00           |      | 1.00      | 1.00        |      |
| Frpb, ped/bikes                 | 1.00         | 1.00       |       | 1.00      | 1.00       |            | 1.00      | 1.00           |      | 1.00      | 1.00        |      |
| Flpb, ped/bikes                 | 1.00         | 1.00       |       | 1.00      | 1.00       |            | 1.00      | 1.00           |      | 1.00      | 1.00        |      |
| Frt                             | 1.00         | 1.00       |       | 1.00      | 0.99       |            | 1.00      | 0.96           |      | 1.00      | 0.87        |      |
| Fit Protected                   | 0.95         | 1.00       |       | 0.95      | 1.00       |            | 0.95      | 1.00           |      | 0.95      | 1.00        |      |
| Satd. Flow (prot)               | 1554         | 2747       |       | 1471      | 2720       |            | 1525      | 1396           |      | 1385      | 1427        |      |
| FIt Permitted                   | 0.07         | 1.00       |       | 0.08      | 1.00       |            | 0.95      | 1.00           |      | 0.95      | 1.00        |      |
| Satd. Flow (perm)               | 123          | 2747       |       | 125       | 2720       |            | 1525      | 1396           |      | 1385      | 1427        |      |
| Peak-hour factor, PHF           | 0.96         | 0.96       | 0.96  | 0.96      | 0.96       | 0.96       | 0.96      | 0.96           | 0.96 | 0.96      | 0.96        | 0.96 |
| Adj. Flow (vph)                 | 159          | 1712       | 43    | 28        | 1556       | 79         | 23        | 28             | 9    | 99        | 23          | 131  |
| RTOR Reduction (vph)            | 0            | 1          | 0     | 0         | 3          | 0          | 0         | 8              | 0    | 0         | 115         | 0    |
| Lane Group Flow (vph)           | 159          | 1755       | 0     | 28        | 1632       | 0          | 23        | 29             | 0    | 99        | 39          | 0    |
| Confl. Peds. (#/hr)             | 2            | 200/       | 1     | 1         | 000/       | 2          | 00/       | 0.407          | 000/ | 000/      | <b>-</b> 0/ | 70/  |
| Heavy Vehicles (%)              | 7%           | 20%        | 42%   | 13%       | 22%        | 6%         | 9%        | 21%            | 20%  | 20%       | 7%          | 7%   |
| Turn Type                       | D.P+P        | NA         |       | pm+pt     | NA         |            | Prot      | NA             |      | Prot      | NA          |      |
| Protected Phases                | 5            | 2          |       | 1         | 6          |            | 3         | 8              |      | 7         | 4           |      |
| Permitted Phases                | 6            | 20.0       |       | 6         | -0.4       |            |           | 0.4            |      | 44.4      | 40.0        |      |
| Actuated Green, G (s)           | 66.0         | 62.0       |       | 53.4      | 53.4       |            | 5.3       | 6.1            |      | 11.4      | 12.2        |      |
| Effective Green, g (s)          | 66.0         | 62.0       |       | 53.4      | 53.4       |            | 5.3       | 6.1            |      | 11.4      | 12.2        |      |
| Actuated g/C Ratio              | 0.66         | 0.62       |       | 0.53      | 0.53       |            | 0.05      | 0.06           |      | 0.11      | 0.12        |      |
| Clearance Time (s)              | 4.0          | 4.5        |       | 4.0       | 4.5        |            | 4.0       | 4.0            |      | 4.0       | 4.0         |      |
| Vehicle Extension (s)           | 2.5          | 6.2        |       | 2.5       | 6.2        |            | 2.5       | 2.5            |      | 2.5       | 2.5         |      |
| Lane Grp Cap (vph)              | 261          | 1703       |       | 120       | 1452       |            | 80        | 85             |      | 157       | 174         |      |
| v/s Ratio Prot                  | 0.08         | c0.64      |       | 0.01      | c0.60      |            | 0.02      | c0.02          |      | c0.07     | 0.03        |      |
| v/s Ratio Perm                  | 0.33         | 4.00       |       | 0.11      | 4.40       |            | 0.00      | 0.04           |      | 0.00      | 0.00        |      |
| v/c Ratio                       | 0.61         | 1.03       |       | 0.23      | 1.12       |            | 0.29      | 0.34           |      | 0.63      | 0.22        |      |
| Uniform Delay, d1               | 32.8         | 19.0       |       | 19.3      | 23.3       |            | 45.5      | 45.0           |      | 42.3      | 39.6        |      |
| Progression Factor              | 0.39         | 1.25       |       | 1.00      | 1.00       |            | 1.00      | 1.00           |      | 1.00      | 1.00        |      |
| Incremental Delay, d2           | 0.3          | 16.4       |       | 0.7       | 65.4       |            | 1.4       | 1.7            |      | 7.0       | 0.5         |      |
| Delay (s)                       | 13.0<br>B    | 40.2       |       | 20.0<br>C | 88.7       |            | 47.0<br>D | 46.7           |      | 49.3<br>D | 40.1        |      |
| Level of Service                | Б            | D<br>37.9  |       | C         | F<br>87.6  |            | U         | D<br>46.8      |      | U         | D<br>43.7   |      |
| Approach Delay (s) Approach LOS |              | 37.9<br>D  |       |           | 67.0<br>F  |            |           | 40.0<br>D      |      |           | 43.7<br>D   |      |
| ••                              |              | U          |       |           | Г          |            |           | D              |      |           | D           |      |
| Intersection Summary            |              |            |       |           |            |            |           |                | _    |           |             |      |
| HCM 2000 Control Delay          |              |            | 59.7  | Н         | CM 2000    | Level of S | Service   |                | Е    |           |             |      |
| HCM 2000 Volume to Capa         | city ratio   |            | 1.01  | -         | •          | ('         |           |                | 40 = |           |             |      |
| Actuated Cycle Length (s)       |              |            | 100.0 |           | um of lost |            |           |                | 16.5 |           |             |      |
| Intersection Capacity Utiliza   | ition        |            | 83.5% | IC        | CU Level o | of Service |           |                | Е    |           |             |      |
| Analysis Period (min)           |              |            | 15    |           |            |            |           |                |      |           |             |      |

| Intersection                          |          |       |        |          |        |       |
|---------------------------------------|----------|-------|--------|----------|--------|-------|
| Int Delay, s/veh                      | 1.4      |       |        |          |        |       |
|                                       |          | EDD   | WDI    | WDT      | NDI    | NDD   |
| Movement                              | EBT      | EBR   | WBL    | WBT      | NBL    | NBR   |
| Lane Configurations                   | <b>†</b> |       |        | <b>^</b> |        | 7     |
| •                                     | 1241     | 341   | 15     | 1541     | 0      | 131   |
| · · · · · · · · · · · · · · · · · · · | 1241     | 341   | 15     | 1541     | 0      | 131   |
| Conflicting Peds, #/hr                | 0        | 2     | 2      | 0        | 0      | 0     |
|                                       | Free     | Free  | Free   | Free     | Stop   | Stop  |
| RT Channelized                        | -        | None  | -      | None     | -      | None  |
| Storage Length                        | -        | -     | 130    | -        | -      | 0     |
| Veh in Median Storage,                | # 0      | -     | -      | 0        | 0      | _     |
| Grade, %                              | 0        | _     | -      | 0        | 0      | -     |
| Peak Hour Factor                      | 94       | 94    | 94     | 94       | 94     | 94    |
| Heavy Vehicles, %                     | 19       | 17    | 10     | 23       | 0      | 24    |
|                                       | 1320     | 363   | 16     | 1639     | 0      | 139   |
| IVIVIIIL I IUW                        | 1020     | 505   | 10     | 1009     | U      | 103   |
|                                       |          |       |        |          |        |       |
| Major/Minor M                         | ajor1    | N     | Major2 | ľ        | Minor1 |       |
| Conflicting Flow All                  | 0        | 0     | 1685   | 0        | _      | 843   |
| Stage 1                               | -        | -     | -      | -        | _      | -     |
| Stage 2                               | _        | _     | _      | _        | _      | _     |
| Critical Hdwy                         | _        | _     | 4.3    | _        | _      | 7.38  |
| Critical Hdwy Stg 1                   | _        | -     | 4.5    | _        | _      | 7.50  |
|                                       |          |       |        |          |        |       |
| Critical Hdwy Stg 2                   | -        | -     | - 2 2  | -        | -      | 2 5 4 |
| Follow-up Hdwy                        | -        | -     | 2.3    | -        | -      | 3.54  |
| Pot Cap-1 Maneuver                    | -        | -     | 342    | -        | 0      | 266   |
| Stage 1                               | -        | -     | -      | -        | 0      | -     |
| Stage 2                               | -        | -     | -      | -        | 0      | -     |
| Platoon blocked, %                    | -        | -     |        | -        |        |       |
| Mov Cap-1 Maneuver                    | -        | -     | 342    | -        | -      | 265   |
| Mov Cap-2 Maneuver                    | -        | -     | -      | -        | -      | -     |
| Stage 1                               | -        | -     | -      | -        | -      | -     |
| Stage 2                               | -        | -     | -      | _        | -      | -     |
|                                       |          |       |        |          |        |       |
|                                       |          |       |        |          |        |       |
| Approach                              | EB       |       | WB     |          | NB     |       |
| HCM Control Delay, s                  | 0        |       | 0.2    |          | 32.7   |       |
| HCM LOS                               |          |       |        |          | D      |       |
|                                       |          |       |        |          |        |       |
| Minor Long/Marie v Ma                 |          | JDI 4 | EDT    | EDD      | WDI    | MDT   |
| Minor Lane/Major Mvmt                 | 1        | NBLn1 | EBT    | EBR      | WBL    | WBT   |
| Capacity (veh/h)                      |          | 265   | -      | -        | 342    | -     |
| HCM Lane V/C Ratio                    |          | 0.526 | -      | -        | 0.047  | -     |
| HCM Control Delay (s)                 |          | 32.7  | -      | -        | 16     | -     |
| HCM Lane LOS                          |          | D     | -      | -        | С      | -     |
| HCM 95th %tile Q(veh)                 |          | 2.8   | -      | -        | 0.1    | -     |
|                                       |          |       |        |          |        |       |

|                                      | ۶            | <b>→</b> | •            | •            | <b>—</b>     | •            | 1            | <b>†</b>     | <b>/</b>     | <b>/</b>     | <b>↓</b>     | 4           |
|--------------------------------------|--------------|----------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|
| Movement                             | EBL          | EBT      | EBR          | WBL          | WBT          | WBR          | NBL          | NBT          | NBR          | SBL          | SBT          | SBR         |
| Lane Configurations                  | ሻ            | <b>†</b> | 7            | 7            | <b>†</b>     | 7            | ሻ            | <b>†</b>     | 7            | ሻ            | <b>↑</b>     | 7           |
| Traffic Volume (vph)                 | 168          | 669      | 383          | 79           | 752          | 80           | 254          | 121          | 48           | 104          | 200          | 181         |
| Future Volume (vph)                  | 168          | 669      | 383          | 79           | 752          | 80           | 254          | 121          | 48           | 104          | 200          | 181         |
| Ideal Flow (vphpl)                   | 1750         | 1750     | 1750         | 1750         | 1750         | 1750         | 1750         | 1750         | 1750         | 1750         | 1750         | 1750        |
| Total Lost time (s)                  | 4.5          | 5.0      | 4.5          | 4.5          | 5.0          | 5.0          | 4.5          | 5.0          | 5.0          | 4.5          | 5.0          | 5.0         |
| Lane Util. Factor                    | 1.00         | 1.00     | 1.00         | 1.00         | 1.00         | 1.00         | 1.00         | 1.00         | 1.00         | 1.00         | 1.00         | 1.00        |
| Frpb, ped/bikes                      | 1.00         | 1.00     | 0.94         | 1.00         | 1.00         | 0.91         | 1.00         | 1.00         | 0.98         | 1.00         | 1.00         | 0.70        |
| Flpb, ped/bikes                      | 1.00         | 1.00     | 1.00         | 1.00         | 1.00         | 1.00         | 1.00         | 1.00         | 1.00         | 1.00         | 1.00         | 1.00        |
| Frt<br>Flt Protected                 | 1.00         | 1.00     | 0.85<br>1.00 | 1.00<br>0.95 | 1.00<br>1.00 | 0.85<br>1.00 | 1.00<br>0.95 | 1.00<br>1.00 | 0.85<br>1.00 | 1.00<br>0.95 | 1.00<br>1.00 | 0.85        |
|                                      | 0.95<br>1446 | 1458     | 1214         | 1484         | 1446         | 1111         | 1385         | 1483         | 1343         | 1458         | 1446         | 1.00<br>868 |
| Satd. Flow (prot) Flt Permitted      | 0.95         | 1.00     | 1.00         | 0.95         | 1.00         | 1.00         | 0.95         | 1.00         | 1.00         | 0.95         | 1.00         | 1.00        |
| Satd. Flow (perm)                    | 1446         | 1458     | 1214         | 1484         | 1446         | 1111         | 1385         | 1483         | 1343         | 1458         | 1446         | 868         |
|                                      |              |          |              |              |              |              |              |              |              |              |              |             |
| Peak-hour factor, PHF                | 0.95<br>177  | 0.95     | 0.95<br>403  | 0.95         | 0.95<br>792  | 0.95         | 0.95<br>267  | 0.95<br>127  | 0.95<br>51   | 0.95<br>109  | 0.95<br>211  | 0.95<br>191 |
| Adj. Flow (vph) RTOR Reduction (vph) | 0            | 704<br>0 | 94           | 83<br>0      | 192          | 84<br>48     | 0            | 0            | 39           | 0            | 0            | 158         |
| Lane Group Flow (vph)                | 177          | 704      | 309          | 83           | 792          | 36           | 267          | 127          | 12           | 109          | 211          | 33          |
| Confl. Peds. (#/hr)                  | 26           | 704      | 26           | 26           | 192          | 26           | 118          | 127          | 2            | 2            | 211          | 118         |
| Heavy Vehicles (%)                   | 15%          | 20%      | 15%          | 12%          | 21%          | 22%          | 20%          | 18%          | 8%           | 14%          | 21%          | 20%         |
| Turn Type                            | Prot         | NA       | pm+ov        | Prot         | NA           | Perm         | Prot         | NA           | Perm         | Prot         | NA           | Perm        |
| Protected Phases                     | 5            | 2        | 3            | 1            | 6            | r eiiii      | 3            | 8            | Feiiii       | 7            | 4            | Feiiii      |
| Permitted Phases                     | 5            | 2        | 2            | ı            | U            | 6            | J            | O            | 8            | <i>'</i>     | 4            | 4           |
| Actuated Green, G (s)                | 21.2         | 63.4     | 88.5         | 13.0         | 55.2         | 55.2         | 25.1         | 34.2         | 34.2         | 15.7         | 24.8         | 24.8        |
| Effective Green, g (s)               | 21.2         | 63.4     | 88.5         | 13.0         | 55.2         | 55.2         | 25.1         | 34.2         | 34.2         | 15.7         | 24.8         | 24.8        |
| Actuated g/C Ratio                   | 0.15         | 0.44     | 0.61         | 0.09         | 0.38         | 0.38         | 0.17         | 0.24         | 0.24         | 0.11         | 0.17         | 0.17        |
| Clearance Time (s)                   | 4.5          | 5.0      | 4.5          | 4.5          | 5.0          | 5.0          | 4.5          | 5.0          | 5.0          | 4.5          | 5.0          | 5.0         |
| Vehicle Extension (s)                | 2.5          | 4.8      | 2.5          | 2.5          | 4.8          | 4.8          | 2.5          | 2.5          | 2.5          | 2.5          | 2.5          | 2.5         |
| Lane Grp Cap (vph)                   | 210          | 636      | 739          | 132          | 549          | 422          | 239          | 349          | 316          | 157          | 246          | 148         |
| v/s Ratio Prot                       | c0.12        | c0.48    | 0.07         | 0.06         | c0.55        | 122          | c0.19        | 0.09         | 010          | 0.07         | c0.15        | 110         |
| v/s Ratio Perm                       | VV           | 000      | 0.18         | 0.00         | 00.00        | 0.03         |              | 0.00         | 0.01         |              |              | 0.04        |
| v/c Ratio                            | 0.84         | 1.11     | 0.42         | 0.63         | 1.44         | 0.08         | 1.12         | 0.36         | 0.04         | 0.69         | 0.86         | 0.22        |
| Uniform Delay, d1                    | 60.4         | 41.0     | 14.9         | 63.8         | 45.1         | 28.9         | 60.1         | 46.5         | 42.9         | 62.5         | 58.5         | 51.9        |
| Progression Factor                   | 1.00         | 1.00     | 1.00         | 1.00         | 1.00         | 1.00         | 1.00         | 1.00         | 1.00         | 1.00         | 1.00         | 1.00        |
| Incremental Delay, d2                | 24.9         | 68.6     | 0.3          | 7.9          | 209.3        | 0.2          | 93.3         | 0.5          | 0.0          | 11.6         | 24.0         | 0.5         |
| Delay (s)                            | 85.3         | 109.6    | 15.2         | 71.7         | 254.4        | 29.0         | 153.4        | 46.9         | 42.9         | 74.1         | 82.6         | 52.5        |
| Level of Service                     | F            | F        | В            | Е            | F            | С            | F            | D            | D            | Е            | F            | D           |
| Approach Delay (s)                   |              | 76.6     |              |              | 218.8        |              |              | 110.3        |              |              | 69.5         |             |
| Approach LOS                         |              | Е        |              |              | F            |              |              | F            |              |              | Е            |             |
| Intersection Summary                 |              |          |              |              |              |              |              |              |              |              |              |             |
| HCM 2000 Control Delay               |              |          | 122.8        | Н            | CM 2000      | Level of     | Service      |              | F            |              |              | _           |
| HCM 2000 Volume to Capac             | city ratio   |          | 1.17         |              |              |              |              |              |              |              |              |             |
| Actuated Cycle Length (s)            |              |          | 145.3        |              | um of lost   |              |              |              | 19.0         |              |              |             |
| Intersection Capacity Utiliza        | tion         |          | 108.9%       | IC           | CU Level     | of Service   |              |              | G            |              |              |             |
| Analysis Period (min)                |              |          | 15           |              |              |              |              |              |              |              |              |             |

|                               | ۶          | <b>→</b>     | •     | •     | <b>←</b>   | 4          | 1       | †    | <i>&gt;</i> | <b>&gt;</b> | <del> </del> | ✓    |
|-------------------------------|------------|--------------|-------|-------|------------|------------|---------|------|-------------|-------------|--------------|------|
| Movement                      | EBL        | EBT          | EBR   | WBL   | WBT        | WBR        | NBL     | NBT  | NBR         | SBL         | SBT          | SBR  |
| Lane Configurations           | ሻ          | 1>           |       | ሻ     | 1>         |            | 7       | ĵ.   |             | ሻ           | ĵ.           |      |
| Traffic Volume (vph)          | 29         | 716          | 31    | 96    | 842        | 90         | 12      | 14   | 50          | 66          | 36           | 28   |
| Future Volume (vph)           | 29         | 716          | 31    | 96    | 842        | 90         | 12      | 14   | 50          | 66          | 36           | 28   |
| Ideal Flow (vphpl)            | 1750       | 1750         | 1750  | 1750  | 1750       | 1750       | 1750    | 1750 | 1750        | 1750        | 1750         | 1750 |
| Total Lost time (s)           | 5.0        | 5.0          |       | 5.0   | 5.0        |            | 5.0     | 5.0  |             | 5.0         | 5.0          |      |
| Lane Util. Factor             | 1.00       | 1.00         |       | 1.00  | 1.00       |            | 1.00    | 1.00 |             | 1.00        | 1.00         |      |
| Frpb, ped/bikes               | 1.00       | 1.00         |       | 1.00  | 1.00       |            | 1.00    | 0.98 |             | 1.00        | 0.98         |      |
| Flpb, ped/bikes               | 1.00       | 1.00         |       | 1.00  | 1.00       |            | 0.97    | 1.00 |             | 0.99        | 1.00         |      |
| Frt                           | 1.00       | 0.99         |       | 1.00  | 0.99       |            | 1.00    | 0.88 |             | 1.00        | 0.93         |      |
| Flt Protected                 | 0.95       | 1.00         |       | 0.95  | 1.00       |            | 0.95    | 1.00 |             | 0.95        | 1.00         |      |
| Satd. Flow (prot)             | 1484       | 1443         |       | 1339  | 1423       |            | 1213    | 1152 |             | 1280        | 1427         |      |
| Flt Permitted                 | 0.19       | 1.00         |       | 0.27  | 1.00       |            | 0.71    | 1.00 |             | 0.71        | 1.00         |      |
| Satd. Flow (perm)             | 300        | 1443         |       | 377   | 1423       |            | 912     | 1152 |             | 963         | 1427         |      |
| Peak-hour factor, PHF         | 0.98       | 0.98         | 0.98  | 0.98  | 0.98       | 0.98       | 0.98    | 0.98 | 0.98        | 0.98        | 0.98         | 0.98 |
| Adj. Flow (vph)               | 30         | 731          | 32    | 98    | 859        | 92         | 12      | 14   | 51          | 67          | 37           | 29   |
| RTOR Reduction (vph)          | 0          | 1            | 0     | 0     | 2          | 0          | 0       | 46   | 0           | 0           | 26           | 0    |
| Lane Group Flow (vph)         | 30         | 762          | 0     | 98    | 949        | 0          | 12      | 19   | 0           | 67          | 40           | 0    |
| Confl. Peds. (#/hr)           | 9          |              | 33    | 33    |            | 9          | 18      |      | 4           | 4           |              | 18   |
| Confl. Bikes (#/hr)           |            |              |       |       |            | 1          |         |      |             |             |              |      |
| Heavy Vehicles (%)            | 12%        | 20%          | 27%   | 24%   | 22%        | 10%        | 33%     | 50%  | 26%         | 29%         | 4%           | 22%  |
| Turn Type                     | D.P+P      | NA           |       | D.P+P | NA         |            | Perm    | NA   |             | Perm        | NA           |      |
| Protected Phases              | 5          | 2            |       | 1     | 6          |            |         | 8    |             |             | 4            |      |
| Permitted Phases              | 6          | <del>-</del> |       | 2     |            |            | 8       |      |             | 4           | •            |      |
| Actuated Green, G (s)         | 72.6       | 65.4         |       | 72.6  | 69.2       |            | 10.2    | 10.2 |             | 10.2        | 10.2         |      |
| Effective Green, g (s)        | 72.6       | 65.4         |       | 72.6  | 69.2       |            | 10.2    | 10.2 |             | 10.2        | 10.2         |      |
| Actuated g/C Ratio            | 0.74       | 0.67         |       | 0.74  | 0.71       |            | 0.10    | 0.10 |             | 0.10        | 0.10         |      |
| Clearance Time (s)            | 5.0        | 5.0          |       | 5.0   | 5.0        |            | 5.0     | 5.0  |             | 5.0         | 5.0          |      |
| Vehicle Extension (s)         | 2.5        | 5.3          |       | 2.5   | 5.3        |            | 2.5     | 2.5  |             | 2.5         | 2.5          |      |
| Lane Grp Cap (vph)            | 263        | 964          |       | 350   | 1006       |            | 95      | 120  |             | 100         | 148          |      |
| v/s Ratio Prot                | 0.00       | 0.53         |       | c0.02 | c0.67      |            |         | 0.02 |             | 100         | 0.03         |      |
| v/s Ratio Perm                | 0.08       | 0.00         |       | 0.19  | 00.01      |            | 0.01    | 0.02 |             | c0.07       | 0.00         |      |
| v/c Ratio                     | 0.11       | 0.79         |       | 0.28  | 0.94       |            | 0.13    | 0.16 |             | 0.67        | 0.27         |      |
| Uniform Delay, d1             | 7.3        | 11.4         |       | 5.7   | 12.6       |            | 39.8    | 39.9 |             | 42.2        | 40.4         |      |
| Progression Factor            | 1.00       | 1.00         |       | 1.00  | 1.00       |            | 1.00    | 1.00 |             | 1.00        | 1.00         |      |
| Incremental Delay, d2         | 0.1        | 5.2          |       | 0.3   | 17.0       |            | 0.4     | 0.5  |             | 14.8        | 0.7          |      |
| Delay (s)                     | 7.4        | 16.6         |       | 6.0   | 29.6       |            | 40.2    | 40.4 |             | 57.0        | 41.1         |      |
| Level of Service              | A          | В            |       | A     | C          |            | D       | D    |             | E           | D            |      |
| Approach Delay (s)            | ,,         | 16.3         |       | , ,   | 27.4       |            |         | 40.3 |             | _           | 49.1         |      |
| Approach LOS                  |            | В            |       |       | C          |            |         | D    |             |             | D            |      |
| Intersection Summary          |            |              |       |       |            |            |         |      |             |             |              |      |
| HCM 2000 Control Delay        |            |              | 25.0  | Н     | CM 2000    | Level of S | Service |      | С           |             |              |      |
| HCM 2000 Volume to Capa       | city ratio |              | 0.89  |       |            |            |         |      |             |             |              |      |
| Actuated Cycle Length (s)     |            |              | 97.8  | S     | um of lost | time (s)   |         |      | 15.0        |             |              |      |
| Intersection Capacity Utiliza | ation      |              | 86.8% | IC    | U Level o  | of Service |         |      | Е           |             |              |      |
| Analysis Period (min)         |            |              | 15    |       |            |            |         |      |             |             |              |      |
| c Critical Lane Group         |            |              |       |       |            |            |         |      |             |             |              |      |

| Intersection           |         |        |          |         |         |         |                      |                                |
|------------------------|---------|--------|----------|---------|---------|---------|----------------------|--------------------------------|
| Int Delay, s/veh       | 101.2   |        |          |         |         |         |                      |                                |
| •                      |         | FOT    | MAIDT    | 14/55   | 051     | 000     |                      |                                |
| Movement               | EBL     | EBT    | WBT      | WBR     | SBL     | SBR     |                      |                                |
| Lane Configurations    | ሻ       |        | <b>^</b> | 7       | Y       |         |                      |                                |
| Traffic Vol, veh/h     | 128     | 805    | 970      | 170     | 92      | 95      |                      |                                |
| Future Vol, veh/h      | 128     | 805    | 970      | 170     | 92      | 95      |                      |                                |
| Conflicting Peds, #/hr | 8       | 0      | 0        | 8       | 0       | 0       |                      |                                |
| Sign Control           | Free    | Free   | Free     | Free    | Stop    | Stop    |                      |                                |
| RT Channelized         | -       | None   | -        |         | -       | None    |                      |                                |
| Storage Length         | 130     | -      | -        | 60      | 0       | -       |                      |                                |
| Veh in Median Storag   | e,# -   | 0      | 0        | -       | 0       | -       |                      |                                |
| Grade, %               | -       | 0      | 0        | -       | 0       | -       |                      |                                |
| Peak Hour Factor       | 94      | 94     | 94       | 94      | 94      | 94      |                      |                                |
| Heavy Vehicles, %      | 25      | 21     | 18       | 18      | 30      | 24      |                      |                                |
| Mvmt Flow              | 136     | 856    | 1032     | 181     | 98      | 101     |                      |                                |
|                        |         |        |          |         |         |         |                      |                                |
| Major/Minor            | Major1  | N.     | /aiar2   | A       | /linar2 |         |                      |                                |
| Major/Minor            | Major1  |        | /lajor2  |         | Minor2  | 4040    |                      |                                |
| Conflicting Flow All   | 1040    | 0      | -        |         | 2169    | 1040    |                      |                                |
| Stage 1                | -       | -      | -        | -       | 1040    | -       |                      |                                |
| Stage 2                | -       | -      | -        | -       | 1129    | -       |                      |                                |
| Critical Hdwy          | 4.35    | -      | -        | -       | 6.7     | 6.44    |                      |                                |
| Critical Hdwy Stg 1    | -       | -      | -        | -       | 5.7     | -       |                      |                                |
| Critical Hdwy Stg 2    | -       | -      | -        | -       | 5.7     | -       |                      |                                |
| Follow-up Hdwy         | 2.425   | -      | -        | -       |         | 3.516   |                      |                                |
| Pot Cap-1 Maneuver     | 588     | -      | -        | -       | ~ 43    | 254     |                      |                                |
| Stage 1                | -       | -      | -        | -       | 302     | -       |                      |                                |
| Stage 2                | -       | -      | -        | -       | 272     | -       |                      |                                |
| Platoon blocked, %     |         | -      | -        | -       |         |         |                      |                                |
| Mov Cap-1 Maneuver     |         | -      | -        | -       | ~ 33    | 252     |                      |                                |
| Mov Cap-2 Maneuver     | · -     | -      | -        | -       | ~ 33    | -       |                      |                                |
| Stage 1                | -       | -      | -        | -       | 300     | -       |                      |                                |
| Stage 2                | -       | -      | -        | -       | 207     | -       |                      |                                |
|                        |         |        |          |         |         |         |                      |                                |
| Approach               | EB      |        | WB       |         | SB      |         |                      |                                |
| HCM Control Delay, s   |         |        | 0        | ¢       | 1214    |         |                      |                                |
| HCM LOS                | 1.0     |        |          |         | F       |         |                      |                                |
|                        |         |        |          |         | '       |         |                      |                                |
|                        |         |        |          |         |         |         |                      |                                |
| Minor Lane/Major Mvr   | nt      | EBL    | EBT      | WBT     | WBR:    | SBLn1   |                      |                                |
| Capacity (veh/h)       |         | 588    | -        | -       | -       | 59      |                      |                                |
| HCM Lane V/C Ratio     |         | 0.232  | -        | -       | -       | 3.372   |                      |                                |
| HCM Control Delay (s   | s)      | 13     | -        | -       | - (     | \$ 1214 |                      |                                |
| HCM Lane LOS           |         | В      | -        | -       | -       | F       |                      |                                |
| HCM 95th %tile Q(vel   | 1)      | 0.9    | -        | -       | -       | 21      |                      |                                |
| Notes                  |         |        |          |         |         |         |                      |                                |
|                        |         | ф. D   | lav      | 00      | 10-     | 0       | utation Nat Define   | * All maion volumes in all (   |
| ~: Volume exceeds ca   | apacity | \$: De | iay exc  | eeds 30 | JUS -   | +: Comp | outation Not Defined | *: All major volume in platoon |

| Intersection           |        |        |          |         |      |         |          |         |        |         |         |            |           |
|------------------------|--------|--------|----------|---------|------|---------|----------|---------|--------|---------|---------|------------|-----------|
| Int Delay, s/veh       | 140.6  |        |          |         |      |         |          |         |        |         |         |            |           |
| Movement               | EBL    | EBT    | EBR      | WBL     | WBT  | WBR     | NBL      | NBT     | NBR    | SBL     | SBT     | SBR        |           |
| Lane Configurations    | ሻ      | î,     |          | *       | ĵ.   |         |          | 4       |        |         | 4       | 7          |           |
| Traffic Vol, veh/h     | 17     | 674    | 129      | 97      | 946  | 9       | 58       | 6       | 123    | 10      | 4       | 77         |           |
| uture Vol, veh/h       | 17     | 674    | 129      | 97      | 946  | 9       | 58       | 6       | 123    | 10      | 4       | 77         |           |
| Conflicting Peds, #/hr | 4      | 0      | 14       | 14      | 0    | 4       | 22       | 0       | 0      | 0       | 0       | 22         |           |
| Sign Control           | Free   | Free   | Free     | Free    | Free | Free    | Stop     | Stop    | Stop   | Stop    | Stop    | Stop       |           |
| RT Channelized         | -      | -      | None     | -       | _    | None    | -        | -       | None   | -       | -       | None       |           |
| Storage Length         | 90     | -      | -        | 185     | -    | -       | -        | -       | -      | -       | -       | 55         |           |
| eh in Median Storage   | , # -  | 0      | -        | -       | 0    | -       | -        | 0       | -      | -       | 0       | -          |           |
| Grade, %               | -      | 0      | -        | -       | 0    | -       | -        | 0       | -      | -       | 0       | -          |           |
| Peak Hour Factor       | 91     | 91     | 91       | 91      | 91   | 91      | 91       | 91      | 91     | 91      | 91      | 91         |           |
| Heavy Vehicles, %      | 9      | 23     | 16       | 9       | 23   | 38      | 0        | 0       | 10     | 9       | 25      | 7          |           |
| /lvmt Flow             | 19     | 741    | 142      | 107     | 1040 | 10      | 64       | 7       | 135    | 11      | 4       | 85         |           |
|                        |        |        |          |         |      |         |          |         |        |         |         |            |           |
| lajor/Minor I          | Major1 |        | ľ        | Major2  |      | ı       | Minor1   |         |        | Minor2  |         |            |           |
| Conflicting Flow All   | 1053   | 0      | 0        | 896     | 0    | 0       | 2145     | 2130    | 826    | 2182    | 2196    | 1071       |           |
| Stage 1                | -      | -      | -        | -       | -    | -       | 863      | 863     | -      | 1262    | 1262    | -          |           |
| Stage 2                | -      | -      | -        | -       | -    | -       | 1282     | 1267    | -      | 920     | 934     | -          |           |
| ritical Hdwy           | 4.19   | -      | -        | 4.19    | -    | -       | 7.1      | 6.5     | 6.3    | 7.19    | 6.75    | 6.27       |           |
| ritical Hdwy Stg 1     | -      | -      | -        | -       | -    | -       | 6.1      | 5.5     | -      | 6.19    | 5.75    | -          |           |
| Critical Hdwy Stg 2    | -      | -      | -        | -       | -    | -       | 6.1      | 5.5     | -      | 6.19    | 5.75    | -          |           |
| ollow-up Hdwy          | 2.281  | -      | -        | 2.281   | -    | -       | 3.5      | 4       | 3.39   | 3.581   | 4.225   | 3.363      |           |
| ot Cap-1 Maneuver      | 635    | -      | -        | 729     | -    | -       | ~ 36     | 50      | 360    | 32      | 39      | 262        |           |
| Stage 1                | -      | -      | -        | -       | -    | -       | 352      | 374     | -      | 202     | 218     | -          |           |
| Stage 2                | -      | -      | -        | -       | -    | -       | 205      | 242     | -      | 315     | 316     | -          |           |
| latoon blocked, %      |        | -      | -        |         | -    | -       |          |         |        |         |         |            |           |
| Nov Cap-1 Maneuver     | 622    | -      | -        | 729     | -    | -       | ~ 18     | 41      | 355    | 15      | 32      | 256        |           |
| Nov Cap-2 Maneuver     | -      | -      | -        | -       | -    | -       | ~ 18     | 41      | -      | 15      | 32      | -          |           |
| Stage 1                | -      | -      | -        | -       | -    | -       | 337      | 358     | -      |         | 185     | -          |           |
| Stage 2                | -      | -      | -        | -       | -    | -       | 112      | 206     | -      | 186     | 302     | -          |           |
|                        |        |        |          |         |      |         |          |         |        |         |         |            |           |
| pproach                | EB     |        |          | WB      |      |         | NB       |         |        | SB      |         |            |           |
| HCM Control Delay, s   | 0.2    |        |          | 1       |      | \$ 1    | 1565.9   |         |        | 91.4    |         |            |           |
| ICM LOS                |        |        |          |         |      |         | F        |         |        | F       |         |            |           |
|                        |        |        |          |         |      |         |          |         |        |         |         |            |           |
| /linor Lane/Major Mvm  | it N   | NBLn1  | EBL      | EBT     | EBR  | WBL     | WBT      | WBR     | SBLn1  | SBLn2   |         |            |           |
| Capacity (veh/h)       |        | 50     | 622      | -       | -    | 729     | -        | -       | 18     | 256     |         |            |           |
| ICM Lane V/C Ratio     |        | 4.11   | 0.03     | -       | -    | 0.146   | -        | -       | 0.855  | 0.331   |         |            |           |
| ICM Control Delay (s)  | \$ 1   | 565.9  | 11       | -       | -    | 10.8    | -        | -\$     | 451.6  | 25.9    |         |            |           |
| ICM Lane LOS           |        | F      | В        | -       | -    | В       | -        | -       | F      | D       |         |            |           |
| HCM 95th %tile Q(veh)  |        | 22.8   | 0.1      | -       | -    | 0.5     | -        | -       | 2.2    | 1.4     |         |            |           |
| Notes                  |        |        |          |         |      |         |          |         |        |         |         |            |           |
| ·: Volume exceeds car  | pacity | \$; De | elav exc | eeds 30 | 00s  | +: Comp | outation | Not De  | efined | *: All  | maior v | olume ir   | n platoon |
| . c.a.mo choodad dap   | 230.19 | ψ. Δ0  | , 010    | 2040 00 | 30   | . 00111 |          | . 101 D |        | . 7 111 | ajo: v  | 5.G.710 II | . piatoon |

|                               | ۶          | <b>→</b> | •      | •     | <b>+</b>   | •          | 4       | <b>†</b> | <i>&gt;</i> | <b>/</b> | <b>↓</b>    | 4    |
|-------------------------------|------------|----------|--------|-------|------------|------------|---------|----------|-------------|----------|-------------|------|
| Movement                      | EBL        | EBT      | EBR    | WBL   | WBT        | WBR        | NBL     | NBT      | NBR         | SBL      | SBT         | SBR  |
| Lane Configurations           | ሻ          | <b>^</b> | 7      | 7     | f)         |            | 14.14   | <b>^</b> | 7           | 7        | <b>∱</b> 1> |      |
| Traffic Volume (vph)          | 155        | 401      | 262    | 334   | 288        | 92         | 242     | 495      | 158         | 234      | 971         | 114  |
| Future Volume (vph)           | 155        | 401      | 262    | 334   | 288        | 92         | 242     | 495      | 158         | 234      | 971         | 114  |
| Ideal Flow (vphpl)            | 1750       | 1750     | 1750   | 1750  | 1750       | 1750       | 1750    | 1750     | 1750        | 1750     | 1750        | 1750 |
| Total Lost time (s)           | 4.5        | 5.5      | 5.5    | 4.5   | 5.5        |            | 4.5     | 5.5      | 5.5         | 4.5      | 5.5         |      |
| Lane Util. Factor             | 1.00       | 1.00     | 1.00   | 1.00  | 1.00       |            | 0.97    | 0.95     | 1.00        | 1.00     | 0.95        |      |
| Frpb, ped/bikes               | 1.00       | 1.00     | 0.98   | 1.00  | 1.00       |            | 1.00    | 1.00     | 0.98        | 1.00     | 1.00        |      |
| Flpb, ped/bikes               | 1.00       | 1.00     | 1.00   | 1.00  | 1.00       |            | 1.00    | 1.00     | 1.00        | 1.00     | 1.00        |      |
| Frt                           | 1.00       | 1.00     | 0.85   | 1.00  | 0.96       |            | 1.00    | 1.00     | 0.85        | 1.00     | 0.98        |      |
| Flt Protected                 | 0.95       | 1.00     | 1.00   | 0.95  | 1.00       |            | 0.95    | 1.00     | 1.00        | 0.95     | 1.00        |      |
| Satd. Flow (prot)             | 1421       | 1483     | 1218   | 1341  | 1311       |            | 2906    | 2639     | 1054        | 1374     | 2950        |      |
| FIt Permitted                 | 0.95       | 1.00     | 1.00   | 0.95  | 1.00       |            | 0.95    | 1.00     | 1.00        | 0.95     | 1.00        |      |
| Satd. Flow (perm)             | 1421       | 1483     | 1218   | 1341  | 1311       |            | 2906    | 2639     | 1054        | 1374     | 2950        |      |
| Peak-hour factor, PHF         | 0.96       | 0.96     | 0.96   | 0.96  | 0.96       | 0.96       | 0.96    | 0.96     | 0.96        | 0.96     | 0.96        | 0.96 |
| Adj. Flow (vph)               | 161        | 418      | 273    | 348   | 300        | 96         | 252     | 516      | 165         | 244      | 1011        | 119  |
| RTOR Reduction (vph)          | 0          | 0        | 199    | 0     | 9          | 0          | 0       | 0        | 115         | 0        | 7           | 0    |
| Lane Group Flow (vph)         | 161        | 418      | 74     | 348   | 387        | 0          | 252     | 516      | 50          | 244      | 1123        | 0    |
| Confl. Peds. (#/hr)           |            |          | 5      | 5     |            |            |         |          | 1           | 1        |             |      |
| Heavy Vehicles (%)            | 17%        | 18%      | 20%    | 24%   | 25%        | 40%        | 11%     | 26%      | 38%         | 21%      | 10%         | 19%  |
| Turn Type                     | Prot       | NA       | Perm   | Prot  | NA         |            | Prot    | NA       | custom      | Prot     | NA          |      |
| Protected Phases              | 3          | 8        |        | 7     | 4          |            | 1       | 6        |             | 5        | 2           |      |
| Permitted Phases              |            |          | 8      |       |            |            |         |          | 2           |          |             |      |
| Actuated Green, G (s)         | 25.5       | 30.5     | 30.5   | 25.5  | 30.5       |            | 14.6    | 38.5     | 39.4        | 15.5     | 39.4        |      |
| Effective Green, g (s)        | 25.5       | 30.5     | 30.5   | 25.5  | 30.5       |            | 14.6    | 38.5     | 39.4        | 15.5     | 39.4        |      |
| Actuated g/C Ratio            | 0.20       | 0.23     | 0.23   | 0.20  | 0.23       |            | 0.11    | 0.30     | 0.30        | 0.12     | 0.30        |      |
| Clearance Time (s)            | 4.5        | 5.5      | 5.5    | 4.5   | 5.5        |            | 4.5     | 5.5      | 5.5         | 4.5      | 5.5         |      |
| Vehicle Extension (s)         | 3.0        | 3.2      | 3.2    | 3.0   | 3.5        |            | 3.0     | 5.2      | 5.2         | 3.0      | 5.2         |      |
| Lane Grp Cap (vph)            | 278        | 347      | 285    | 263   | 307        |            | 326     | 781      | 319         | 163      | 894         |      |
| v/s Ratio Prot                | 0.11       | 0.28     |        | c0.26 | c0.30      |            | c0.09   | 0.20     |             | c0.18    | c0.38       |      |
| v/s Ratio Perm                |            |          | 0.06   |       |            |            |         |          | 0.05        |          |             |      |
| v/c Ratio                     | 0.58       | 1.20     | 0.26   | 1.32  | 1.26       |            | 0.77    | 0.66     | 0.16        | 1.50     | 1.26        |      |
| Uniform Delay, d1             | 47.4       | 49.8     | 40.5   | 52.2  | 49.8       |            | 56.1    | 40.0     | 33.1        | 57.2     | 45.3        |      |
| Progression Factor            | 1.00       | 1.00     | 1.00   | 1.00  | 1.00       |            | 1.30    | 0.93     | 0.59        | 1.00     | 1.00        |      |
| Incremental Delay, d2         | 2.9        | 116.3    | 0.5    | 169.5 | 140.6      |            | 7.0     | 2.7      | 0.7         | 253.0    | 124.4       |      |
| Delay (s)                     | 50.3       | 166.0    | 41.1   | 221.7 | 190.4      |            | 79.9    | 39.9     | 20.2        | 310.3    | 169.7       |      |
| Level of Service              | D          | F        | D      | F     | F          |            | Е       | D        | С           | F        | F           |      |
| Approach Delay (s)            |            | 104.1    |        |       | 205.0      |            |         | 47.2     |             |          | 194.7       |      |
| Approach LOS                  |            | F        |        |       | F          |            |         | D        |             |          | F           |      |
| Intersection Summary          |            |          |        |       |            |            |         |          |             |          |             |      |
| HCM 2000 Control Delay        |            |          | 141.6  | Н     | CM 2000    | Level of S | Service |          | F           |          |             |      |
| HCM 2000 Volume to Capa       | city ratio |          | 1.22   |       |            |            |         |          |             |          |             |      |
| Actuated Cycle Length (s)     |            |          | 130.0  | S     | um of lost | time (s)   |         |          | 20.0        |          |             |      |
| Intersection Capacity Utiliza | ation      |          | 101.5% |       | CU Level   |            |         |          | G           |          |             |      |
| Analysis Period (min)         |            |          | 15     |       |            |            |         |          |             |          |             |      |
| 0.111                         |            |          |        |       |            |            |         |          |             |          |             |      |

| Intersection              |                |       |        |       |       |      |      |      |      |      |      |      |  |
|---------------------------|----------------|-------|--------|-------|-------|------|------|------|------|------|------|------|--|
| Intersection Delay, s/veh | 13.4           |       |        |       |       |      |      |      |      |      |      |      |  |
| Intersection LOS          | В              |       |        |       |       |      |      |      |      |      |      |      |  |
|                           |                |       |        |       |       |      |      |      |      |      |      |      |  |
| Movement                  | EBL            | EBT   | EBR    | WBL   | WBT   | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
| Lane Configurations       |                | 4     |        |       | 4     |      |      | 4    |      |      | 4    |      |  |
| Traffic Vol, veh/h        | 37             | 76    | 80     | 45    | 46    | 34   | 8    | 115  | 12   | 43   | 260  | 22   |  |
| Future Vol, veh/h         | 37             | 76    | 80     | 45    | 46    | 34   | 8    | 115  | 12   | 43   | 260  | 22   |  |
| Peak Hour Factor          | 0.94           | 0.94  | 0.94   | 0.94  | 0.94  | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 |  |
| Heavy Vehicles, %         | 39             | 23    | 6      | 31    | 20    | 86   | 22   | 13   | 27   | 36   | 13   | 16   |  |
| Mvmt Flow                 | 39             | 81    | 85     | 48    | 49    | 36   | 9    | 122  | 13   | 46   | 277  | 23   |  |
| Number of Lanes           | 0              | 1     | 0      | 0     | 1     | 0    | 0    | 1    | 0    | 0    | 1    | 0    |  |
| Approach                  | EB             |       |        | WB    |       |      | NB   |      |      | SB   |      |      |  |
| Opposing Approach         | WB             |       |        | EB    |       |      | SB   |      |      | NB   |      |      |  |
| Opposing Lanes            | 1              |       |        | 1     |       |      | 1    |      |      | 1    |      |      |  |
| Conflicting Approach Le   | ft SB          |       |        | NB    |       |      | EB   |      |      | WB   |      |      |  |
| Conflicting Lanes Left    | 1              |       |        | 1     |       |      | 1    |      |      | 1    |      |      |  |
| Conflicting Approach Rig  | gh <b>t</b> NB |       |        | SB    |       |      | WB   |      |      | EB   |      |      |  |
| Conflicting Lanes Right   | 1              |       |        | 1     |       |      | 1    |      |      | 1    |      |      |  |
| HCM Control Delay         | 12.3           |       |        | 11.1  |       |      | 10.8 |      |      | 16   |      |      |  |
| HCM LOS                   | В              |       |        | В     |       |      | В    |      |      | С    |      |      |  |
|                           |                |       |        |       |       |      |      |      |      |      |      |      |  |
| Lane                      | 1              | NBLn1 | EBLn1\ | VBLn1 | SBLn1 |      |      |      |      |      |      |      |  |
| Vol Left, %               |                | 6%    | 19%    | 36%   | 13%   |      |      |      |      |      |      |      |  |
| Vol Thru, %               |                | 85%   | 39%    | 37%   | 80%   |      |      |      |      |      |      |      |  |
| Vol Right, %              |                | 9%    | 41%    | 27%   | 7%    |      |      |      |      |      |      |      |  |
| Sign Control              |                | Stop  | Stop   | Stop  | Stop  |      |      |      |      |      |      |      |  |
| Traffic Vol by Lane       |                | 135   | 193    | 125   | 325   |      |      |      |      |      |      |      |  |
| LT Vol                    |                | 8     | 37     | 45    | 43    |      |      |      |      |      |      |      |  |
| Through Vol               |                | 115   | 76     | 46    | 260   |      |      |      |      |      |      |      |  |
| RT Vol                    |                | 12    | 80     | 34    | 22    |      |      |      |      |      |      |      |  |
| Lane Flow Rate            |                | 144   | 205    | 133   | 346   |      |      |      |      |      |      |      |  |
| Geometry Grp              |                | 1     | 1      | 1     | 1     |      |      |      |      |      |      |      |  |
| Degree of Util (X)        |                | 0.236 |        | 0.229 | 0.558 |      |      |      |      |      |      |      |  |
| Departure Headway (Hd     | )              | 5.91  |        | 6.209 |       |      |      |      |      |      |      |      |  |
| Convergence, Y/N          |                | Yes   | Yes    | Yes   | Yes   |      |      |      |      |      |      |      |  |
| Сар                       |                | 606   | 591    | 577   | 619   |      |      |      |      |      |      |      |  |

3.96 4.124 4.262 3.853

0.238 0.347 0.231 0.559

В

1.5

11.1

В

0.9

16

С

3.4

10.8 12.3

В

0.9

Service Time

HCM Lane V/C Ratio

**HCM Control Delay** 

HCM Lane LOS

HCM 95th-tile Q

| Movement   WBL   WBR   NBT   NBR   SBL   SBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Intersection      |              |       |          |        |     |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|-------|----------|--------|-----|-----|
| Movement   WBL   WBR   NBT   NBR   SBL   SBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   | 12.5         |       |          |        |     |     |
| Movement         WBL         WBR         NBT         NBR         SBL         SBT           Lane Configurations         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑         ↑                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |              |       |          |        |     |     |
| Lane Configurations         Y         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓         ↓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | <del>_</del> |       |          |        |     |     |
| Lane Configurations         Y         Lane           Traffic Vol, veh/h         157         65         128         141         98         145           Future Vol, veh/h         157         65         128         141         98         145           Peak Hour Factor         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85                                                                                                                                                                                                                                                                                                                                                                                                                           | Marramant         | VA/DL VA/E   | VDD   | NDT      | NDD    | CDI | ODT |
| Traffic Vol, veh/h Future Vol, veh/h Feak Hour Factor  0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |              | VBK   |          | NRK    | SBL |     |
| Future Vol, veh/h         157         65         128         141         98         145           Peak Hour Factor         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85 <td></td> <td></td> <td>0.5</td> <td></td> <td>444</td> <td>00</td> <td></td>                                                                                                                                                                                                                                                                                                                            |                   |              | 0.5   |          | 444    | 00  |     |
| Peak Hour Factor         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         0.85         19         22         24           Mvmt Flow         185         76         151         166         115         171           Number of Lanes         1         0         1         0         0         1           Approach         WB         NB         NB         NB         OD         1           Conflicting Approach Left NB         WB         WB         Conflicting Approach RightSB         WB         WB         Conflicting Approach RightSB         WB         Conflicting Approach RightSB         WB         WB         Conflicting Approach RightSB         WB         B         B         B         B         <                                                                                                                                                                                                                                                                                                                                          |                   |              |       |          |        |     |     |
| Heavy Vehicles, %   12   28   15   19   22   24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |              |       |          |        |     |     |
| Mvmt Flow         185         76         151         166         115         171           Number of Lanes         1         0         1         0         0         1           Approach         WB         NB         SB         NB           Opposing Approach         SB         NB         NB           Opposing Lanes         0         1         1         1           Conflicting Approach Left NB         WB         WB         Conflicting Lanes Left         1         0         1         1         0         1         1         0         1         1         0         1         1         0         1         1         0         1         1         0         1         1         0         1         1         0         1         1         0         1         1         0         1         1         0         1         1         0         1         1         0         1         1         0         1         1         0         1         1         0         1         1         0         1         2         1         1         1         0         1         1         1         1         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |              |       |          |        |     |     |
| Number of Lanes         1         0         1         0         0         1           Approach         WB         NB         SB           Opposing Approach Deft NB         SB         NB           Opposing Lanes         0         1         1           Conflicting Approach Left NB         WB         WB           Conflicting Lanes Left         1         0         1           Conflicting Lanes Right         1         1         0           HCM Control Delay         12.5         12.1         13           HCM LOS         B         B         B           B         B         B         B           Lane         NBLn1WBLn1 SBLn1         VO           HCM LOS         B         B         B           Lane         NBLn1WBLn1 SBLn1         NBLn1WBLn1 SBLn1           Vol Left, %         0%         71%         40%           Vol Right, %         52%         29%         0%           Sign Control         Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |              |       |          |        |     |     |
| Approach         WB         NB         SB           Opposing Approach         SB         NB           Opposing Lanes         0         1         1           Conflicting Approach Left NB         WB           Conflicting Lanes Left         1         0         1           Conflicting Lanes Right         1         1         0           HCM Control Delay         12.5         12.1         13           HCM LOS         B         B         B           B         B         B         B           Lane         NBLn1WBLn1 SBLn1         NBLn1WBLn1 SBLn1           Vol Control Delay         12.5         12.1         13           HCM LOS         B         B         B           B         B         B         B     Provided The Control Delay (A) A 100 (A)                                                                                                                                                                                                                      |                   |              |       |          |        |     |     |
| Opposing Approach         SB         NB           Opposing Lanes         0         1         1           Conflicting Approach Left NB         WB           Conflicting Lanes Left         1         0         1           Conflicting Approach RighSB         WB         WB           Conflicting Lanes Right         1         1         0           HCM Control Delay         12.5         12.1         13           HCM LOS         B         B         B           B         B         B         B     **Page 10.**  **Page 12.**  **Page 12.**  **Page 13.**  **P | Number of Lanes   | 1            | 0     | 1        | 0      | 0   | 1   |
| Opposing Lanes         0         1         1           Conflicting Approach Left NB         WB           Conflicting Lanes Left         1         0         1           Conflicting Approach RightSB         WB           Conflicting Lanes Right         1         1         0           HCM Control Delay         12.5         12.1         13           HCM LOS         B         B         B           B         B         B         B           Lane         NBLn1WBLn1 SBLn1         NBLn1WBLn1 SBLn1           Vol CM LOS         B         B         B           B         B         B         B           B         B         B         B           B         B         B         B     **Convergence*  **Convergence**  **Convergence*                                                                                                                                                                                                            | Approach          | WB           |       | NB       |        | SB  |     |
| Opposing Lanes         0         1         1           Conflicting Approach Left NB         WB           Conflicting Lanes Left         1         0         1           Conflicting Approach RightSB         WB         WB           Conflicting Lanes Right         1         1         0           HCM Control Delay         12.5         12.1         13           HCM LOS         B         B         B           Lane         NBLn1WBLn1 SBLn1         NBLn1WBLn1 SBLn1           Vol Loft,         0%         71%         40%           Vol Left,         0%         71%         40%           Vol Left,         0%         71%         40%           Vol Left,         0%         71%         40%           Vol Thru,         48%         0%         60%           Vol Right,         52%         29%         0%           Sign Control         Stop         Stop         Stop           Traffic Vol by Lane         269         222         243           LT Vol         0         157         98           Through Vol         128         0         145           RT Vol         141         65         0 <td>Opposing Approach</td> <td></td> <td></td> <td>SB</td> <td></td> <td>NB</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                     | Opposing Approach |              |       | SB       |        | NB  |     |
| Conflicting Approach Left NB         WB           Conflicting Lanes Left         1         0         1           Conflicting Approach RightSB         WB         WB           Conflicting Lanes Right         1         1         0           HCM Control Delay         12.5         12.1         13           HCM LOS         B         B         B           B         B         B         B           Lane         NBLn1WBLn1 SBLn1         NBLn1WBLn1 SBLn1           Vol Loft, %         0%         71%         40%           Vol Left, %         0%         71%         40%           Vol Thru, %         48%         0%         60%           Vol Right, %         52%         29%         0%           Sign Control         Stop Stop Stop         Stop           Traffic Vol by Lane         269         222         243           LT Vol         0         157         98           Through Vol         128         0         145           RT Vol         141         65         0           Lane Flow Rate         316         261         286           Geometry Grp         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | 0            |       | 1        |        | 1   |     |
| Conflicting Lanes Left         1         0         1           Conflicting Approach RightSB         WB           Conflicting Lanes Right         1         1         0           HCM Control Delay         12.5         12.1         13           HCM LOS         B         B         B           B         B         B         B           Lane         NBLn1WBLn1 SBLn1         NBLn1WBLn1 SBLn1           Vol Loft, %         0%         71%         40%           Vol Left, %         0%         71%         40%           Vol Thru, %         48%         0%         60%           Vol Right, %         52%         29%         0%           Sign Control         Stop Stop Stop         Stop           Traffic Vol by Lane         269         222         243           LT Vol         0         157         98           Through Vol         128         0         145           RT Vol         141         65         0           Lane Flow Rate         316         261         286           Geometry Grp         1         1         1           Degree of Util (X)         0.445         0.409         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |              |       |          |        | WB  |     |
| Conflicting Approach RightSB         WB           Conflicting Lanes Right         1         1         0           HCM Control Delay         12.5         12.1         13           HCM LOS         B         B         B           Lane         NBLn1WBLn1 SBLn1           Vol Left, %         0%         71%         40%           Vol Left, %         0%         60%         71%         40%           Vol Right, %         52%         29%         0%         50%           Sign Control         Stop Stop Stop Stop         5top                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |              |       | 0        |        | 1   |     |
| Conflicting Lanes Right         1         1         0           HCM Control Delay         12.5         12.1         13           HCM LOS         B         B         B           Lane         NBLn1WBLn1 SBLn1           Vol Left, %         0%         71%         40%           Vol Thru, %         48%         0%         60%           Vol Right, %         52%         29%         0%           Sign Control         Stop         Stop         Stop           Traffic Vol by Lane         269         222         243           LT Vol         0         157         98           Through Vol         128         0         145           RT Vol         141         65         0           Lane Flow Rate         316         261         286           Geometry Grp         1         1         1           Degree of Util (X)         0.445         0.409         0.444           Departure Headway (Hd)         5.067         5.644         5.589           Convergence, Y/N         Yes         Yes         Yes           Cap         712         637         646           Service Time         3.094                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   | ghtSB        |       | WB       |        |     |     |
| HCM Control Delay   12.5   12.1   13     HCM LOS   B   B   B   B     Lane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |              |       | 1        |        | 0   |     |
| Lane         NBLn1WBLn1 SBLn1           Vol Left, %         0% 71% 40%           Vol Thru, %         48% 0% 60%           Vol Right, %         52% 29% 0%           Sign Control         Stop Stop Stop           Traffic Vol by Lane         269 222 243           LT Vol         0 157 98           Through Vol         128 0 145           RT Vol         141 65 0           Lane Flow Rate         316 261 286           Geometry Grp         1 1 1           Degree of Util (X)         0.445 0.409 0.444           Departure Headway (Hd)         5.067 5.644 5.589           Convergence, Y/N         Yes Yes Yes           Cap         712 637 646           Service Time         3.094 3.673 3.615           HCM Lane V/C Ratio         0.444 0.41 0.443           HCM Control Delay         12.1 12.5 13           HCM Lane LOS         B B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | 12.5         |       | 12.1     |        | 13  |     |
| Vol Left, %         0%         71%         40%           Vol Thru, %         48%         0%         60%           Vol Right, %         52%         29%         0%           Sign Control         Stop         Stop         Stop           Traffic Vol by Lane         269         222         243           LT Vol         0         157         98           Through Vol         128         0         145           RT Vol         141         65         0           Lane Flow Rate         316         261         286           Geometry Grp         1         1         1           Degree of Util (X)         0.445         0.409         0.444           Departure Headway (Hd)         5.067         5.644         5.589           Convergence, Y/N         Yes         Yes         Yes           Cap         712         637         646           Service Time         3.094         3.673         3.615           HCM Lane V/C Ratio         0.444         0.41         0.443           HCM Control Delay         12.1         12.5         13           HCM Lane LOS         B         B         B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HCM LOS           | В            |       | В        |        | В   |     |
| Vol Left, %         0%         71%         40%           Vol Thru, %         48%         0%         60%           Vol Right, %         52%         29%         0%           Sign Control         Stop         Stop         Stop           Traffic Vol by Lane         269         222         243           LT Vol         0         157         98           Through Vol         128         0         145           RT Vol         141         65         0           Lane Flow Rate         316         261         286           Geometry Grp         1         1         1           Degree of Util (X)         0.445         0.409         0.444           Departure Headway (Hd)         5.067         5.644         5.589           Convergence, Y/N         Yes         Yes         Yes           Cap         712         637         646           Service Time         3.094         3.673         3.615           HCM Lane V/C Ratio         0.444         0.41         0.443           HCM Control Delay         12.1         12.5         13           HCM Lane LOS         B         B         B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |              |       |          |        |     |     |
| Vol Left, %         0%         71%         40%           Vol Thru, %         48%         0%         60%           Vol Right, %         52%         29%         0%           Sign Control         Stop         Stop         Stop           Traffic Vol by Lane         269         222         243           LT Vol         0         157         98           Through Vol         128         0         145           RT Vol         141         65         0           Lane Flow Rate         316         261         286           Geometry Grp         1         1         1           Degree of Util (X)         0.445         0.409         0.444           Departure Headway (Hd)         5.067         5.644         5.589           Convergence, Y/N         Yes         Yes         Yes           Cap         712         637         646           Service Time         3.094         3.673         3.615           HCM Lane V/C Ratio         0.444         0.41         0.443           HCM Control Delay         12.1         12.5         13           HCM Lane LOS         B         B         B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | l ane             | NRI          | l n1W | VRI n1 ! | SRI n1 |     |     |
| Vol Thru, %         48%         0%         60%           Vol Right, %         52%         29%         0%           Sign Control         Stop         Stop         Stop           Traffic Vol by Lane         269         222         243           LT Vol         0         157         98           Through Vol         128         0         145           RT Vol         141         65         0           Lane Flow Rate         316         261         286           Geometry Grp         1         1         1           Degree of Util (X)         0.445         0.409         0.444           Departure Headway (Hd)         5.067         5.644         5.589           Convergence, Y/N         Yes         Yes         Yes           Cap         712         637         646           Service Time         3.094         3.673         3.615           HCM Lane V/C Ratio         0.444         0.41         0.443           HCM Control Delay         12.1         12.5         13           HCM Lane LOS         B         B         B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |              |       |          |        |     |     |
| Vol Right, %         52%         29%         0%           Sign Control         Stop         Stop         Stop           Traffic Vol by Lane         269         222         243           LT Vol         0         157         98           Through Vol         128         0         145           RT Vol         141         65         0           Lane Flow Rate         316         261         286           Geometry Grp         1         1         1           Degree of Util (X)         0.445         0.409         0.444           Departure Headway (Hd)         5.067         5.644         5.589           Convergence, Y/N         Yes         Yes         Yes           Cap         712         637         646           Service Time         3.094         3.673         3.615           HCM Lane V/C Ratio         0.444         0.41         0.443           HCM Control Delay         12.1         12.5         13           HCM Lane LOS         B         B         B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |              |       |          |        |     |     |
| Sign Control         Stop         Stop         Stop           Traffic Vol by Lane         269         222         243           LT Vol         0         157         98           Through Vol         128         0         145           RT Vol         141         65         0           Lane Flow Rate         316         261         286           Geometry Grp         1         1         1           Degree of Util (X)         0.445         0.409         0.444           Departure Headway (Hd)         5.067         5.644         5.589           Convergence, Y/N         Yes         Yes         Yes           Cap         712         637         646           Service Time         3.094         3.673         3.615           HCM Lane V/C Ratio         0.444         0.41         0.443           HCM Control Delay         12.1         12.5         13           HCM Lane LOS         B         B         B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |       |          |        |     |     |
| Traffic Vol by Lane       269       222       243         LT Vol       0       157       98         Through Vol       128       0       145         RT Vol       141       65       0         Lane Flow Rate       316       261       286         Geometry Grp       1       1       1         Degree of Util (X)       0.445       0.409       0.444         Departure Headway (Hd)       5.067       5.644       5.589         Convergence, Y/N       Yes       Yes       Yes         Cap       712       637       646         Service Time       3.094       3.673       3.615         HCM Lane V/C Ratio       0.444       0.41       0.443         HCM Control Delay       12.1       12.5       13         HCM Lane LOS       B       B       B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |              |       |          |        |     |     |
| LT Vol       0       157       98         Through Vol       128       0       145         RT Vol       141       65       0         Lane Flow Rate       316       261       286         Geometry Grp       1       1       1         Degree of Util (X)       0.445       0.409       0.444         Departure Headway (Hd)       5.067       5.644       5.589         Convergence, Y/N       Yes       Yes       Yes         Cap       712       637       646         Service Time       3.094       3.673       3.615         HCM Lane V/C Ratio       0.444       0.41       0.443         HCM Control Delay       12.1       12.5       13         HCM Lane LOS       B       B       B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |              |       |          |        |     |     |
| Through Vol 128 0 145 RT Vol 141 65 0 Lane Flow Rate 316 261 286 Geometry Grp 1 1 1 Degree of Util (X) 0.445 0.409 0.444 Departure Headway (Hd) 5.067 5.644 5.589 Convergence, Y/N Yes Yes Yes Cap 712 637 646 Service Time 3.094 3.673 3.615 HCM Lane V/C Ratio 0.444 0.41 0.443 HCM Control Delay 12.1 12.5 13 HCM Lane LOS B B B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 2            |       |          |        |     |     |
| RT Vol 141 65 0 Lane Flow Rate 316 261 286 Geometry Grp 1 1 1 Degree of Util (X) 0.445 0.409 0.444 Departure Headway (Hd) 5.067 5.644 5.589 Convergence, Y/N Yes Yes Yes Cap 712 637 646 Service Time 3.094 3.673 3.615 HCM Lane V/C Ratio 0.444 0.41 0.443 HCM Control Delay 12.1 12.5 13 HCM Lane LOS B B B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | 1            |       |          |        |     |     |
| Lane Flow Rate       316       261       286         Geometry Grp       1       1       1         Degree of Util (X)       0.445       0.409       0.444         Departure Headway (Hd)       5.067       5.644       5.589         Convergence, Y/N       Yes       Yes       Yes         Cap       712       637       646         Service Time       3.094       3.673       3.615         HCM Lane V/C Ratio       0.444       0.41       0.443         HCM Control Delay       12.1       12.5       13         HCM Lane LOS       B       B       B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |              |       |          |        |     |     |
| Geometry Grp       1       1       1       1         Degree of Util (X)       0.445       0.409       0.444         Departure Headway (Hd)       5.067       5.644       5.589         Convergence, Y/N       Yes       Yes       Yes         Cap       712       637       646         Service Time       3.094       3.673       3.615         HCM Lane V/C Ratio       0.444       0.41       0.443         HCM Control Delay       12.1       12.5       13         HCM Lane LOS       B       B       B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |              |       |          |        |     |     |
| Degree of Util (X)       0.445       0.409       0.444         Departure Headway (Hd)       5.067       5.644       5.589         Convergence, Y/N       Yes       Yes       Yes         Cap       712       637       646         Service Time       3.094       3.673       3.615         HCM Lane V/C Ratio       0.444       0.41       0.443         HCM Control Delay       12.1       12.5       13         HCM Lane LOS       B       B       B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | J            |       |          |        |     |     |
| Departure Headway (Hd)         5.067         5.644         5.589           Convergence, Y/N         Yes         Yes         Yes           Cap         712         637         646           Service Time         3.094         3.673         3.615           HCM Lane V/C Ratio         0.444         0.41         0.443           HCM Control Delay         12.1         12.5         13           HCM Lane LOS         B         B         B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | 0.4          |       | •        |        |     |     |
| Convergence, Y/N         Yes         Yes         Yes           Cap         712         637         646           Service Time         3.094         3.673         3.615           HCM Lane V/C Ratio         0.444         0.41         0.443           HCM Control Delay         12.1         12.5         13           HCM Lane LOS         B         B         B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |       |          |        |     |     |
| Cap       712       637       646         Service Time       3.094       3.673       3.615         HCM Lane V/C Ratio       0.444       0.41       0.443         HCM Control Delay       12.1       12.5       13         HCM Lane LOS       B       B       B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | ,            |       |          |        |     |     |
| Service Time       3.094       3.673       3.615         HCM Lane V/C Ratio       0.444       0.41       0.443         HCM Control Delay       12.1       12.5       13         HCM Lane LOS       B       B       B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |              |       |          |        |     |     |
| HCM Lane V/C Ratio       0.444       0.41       0.443         HCM Control Delay       12.1       12.5       13         HCM Lane LOS       B       B       B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |              |       |          |        |     |     |
| HCM Control Delay 12.1 12.5 13 HCM Lane LOS B B B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |              |       |          |        |     |     |
| HCM Lane LOS B B B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |              |       |          |        |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |              |       |          |        |     |     |
| HCM 95th-tile Q 2.3 2 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | 2            | 2.3   | 2        | 2.3    |     |     |

| Intersection             |         |       |        |       |       |      |      |      |      |      |      |      |
|--------------------------|---------|-------|--------|-------|-------|------|------|------|------|------|------|------|
| Intersection Delay, s/ve | eh 34.1 |       |        |       |       |      |      |      |      |      |      |      |
| Intersection LOS         | D       |       |        |       |       |      |      |      |      |      |      |      |
|                          |         |       |        |       |       |      |      |      |      |      |      |      |
| Movement                 | EBL     | EBT   | EBR    | WBL   | WBT   | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
| Lane Configurations      |         | 4     |        |       | 4     |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h       | 19      | 145   | 109    | 64    | 167   | 20   | 57   | 228  | 48   | 6    | 209  | 25   |
| Future Vol, veh/h        | 19      | 145   | 109    | 64    | 167   | 20   | 57   | 228  | 48   | 6    | 209  | 25   |
| Peak Hour Factor         | 0.85    | 0.85  | 0.85   | 0.85  | 0.85  | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 |
| Heavy Vehicles, %        | 25      | 25    | 31     | 16    | 25    | 18   | 30   | 13   | 28   | 54   | 20   | 9    |
| Mvmt Flow                | 22      | 171   | 128    | 75    | 196   | 24   | 67   | 268  | 56   | 7    | 246  | 29   |
| Number of Lanes          | 0       | 1     | 0      | 0     | 1     | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                 | EB      |       |        | WB    |       |      | NB   |      |      | SB   |      |      |
| Opposing Approach        | WB      |       |        | EB    |       |      | SB   |      |      | NB   |      |      |
| Opposing Lanes           | 1       |       |        | 1     |       |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Lo  |         |       |        | NB    |       |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left   | 1       |       |        | 1     |       |      | 1    |      |      | 1    |      |      |
| Conflicting Approach R   |         |       |        | SB    |       |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right  |         |       |        | 1     |       |      | 1    |      |      | 1    |      |      |
| HCM Control Delay        | 29.8    |       |        | 27.3  |       |      | 46.1 |      |      | 29.5 |      |      |
| HCM LOS                  | D       |       |        | D     |       |      | Ε    |      |      | D    |      |      |
|                          |         |       |        |       |       |      |      |      |      |      |      |      |
| Lane                     | 1       | NBLn1 | EBLn1V | VBLn1 | SBLn1 |      |      |      |      |      |      |      |
| Vol Left, %              |         | 17%   | 7%     | 25%   | 3%    |      |      |      |      |      |      |      |
| Vol Thru, %              |         | 68%   | 53%    | 67%   | 87%   |      |      |      |      |      |      |      |
| Vol Right, %             |         | 14%   | 40%    | 8%    | 10%   |      |      |      |      |      |      |      |
| Sign Control             |         | Stop  | Stop   | Stop  | Stop  |      |      |      |      |      |      |      |
| Traffic Vol by Lane      |         | 333   | 273    | 251   | 240   |      |      |      |      |      |      |      |
| LT Vol                   |         | 57    | 19     | 64    | 6     |      |      |      |      |      |      |      |
| Through Vol              |         | 228   | 145    | 167   | 209   |      |      |      |      |      |      |      |
| RT Vol                   |         | 48    | 109    | 20    | 25    |      |      |      |      |      |      |      |
| Lane Flow Rate           |         | 392   | 321    | 295   | 282   |      |      |      |      |      |      |      |
| Geometry Grp             |         | 1     | 1      | 1     | 1     |      |      |      |      |      |      |      |
| Degree of Util (X)       |         |       | 0.724  | 0.679 | 0.691 |      |      |      |      |      |      |      |
| Departure Headway (H     | ld)     | 8.041 | 8.111  | 8.281 | 8.804 |      |      |      |      |      |      |      |
| Convergence, Y/N         |         | Yes   | Yes    | Yes   | Yes   |      |      |      |      |      |      |      |
| Сар                      |         | 451   | 446    | 434   | 409   |      |      |      |      |      |      |      |
| Service Time             |         |       | 6.181  |       |       |      |      |      |      |      |      |      |
| HCM Lane V/C Ratio       |         | 0.869 | 0.72   |       | 0.689 |      |      |      |      |      |      |      |
| HCM Control Delay        |         | 46.1  | 29.8   | 27.3  | 29.5  |      |      |      |      |      |      |      |
| HCM Lane LOS             |         | Е     | _ D    | D     | D     |      |      |      |      |      |      |      |
| HCM 95th-tile Q          |         | 9.1   | 5.7    | 4.9   | 5.1   |      |      |      |      |      |      |      |

| Intersection                            |      |             |             |             |             |      |      |      |      |           |      |      |  |
|-----------------------------------------|------|-------------|-------------|-------------|-------------|------|------|------|------|-----------|------|------|--|
| Intersection Delay, s/veh               | 31.4 |             |             |             |             |      |      |      |      |           |      |      |  |
| Intersection LOS                        | D    |             |             |             |             |      |      |      |      |           |      |      |  |
|                                         |      |             |             |             |             |      |      |      |      |           |      |      |  |
| Movement                                | EBL  | EBT         | EBR         | WBL         | WBT         | WBR  | NBL  | NBT  | NBR  | SBL       | SBT  | SBR  |  |
| Lane Configurations                     |      | 4           |             |             | 4           |      |      | 4    |      |           | 4    |      |  |
| Traffic Vol, veh/h                      | 8    | 130         | 2           | 77          | 136         | 146  | 6    | 197  | 89   | 156       | 203  | 16   |  |
| Future Vol, veh/h                       | 8    | 130         | 2           | 77          | 136         | 146  | 6    | 197  | 89   | 156       | 203  | 16   |  |
|                                         | 0.92 | 0.92        | 0.92        | 0.92        | 0.92        | 0.92 | 0.92 | 0.92 | 0.92 | 0.92      | 0.92 | 0.92 |  |
| Heavy Vehicles, %                       | 10   | 20          | 40          | 38          | 23          | 14   | 25   | 15   | 22   | 19        | 18   | 24   |  |
| Mvmt Flow                               | 9    | 141         | 2           | 84          | 148         | 159  | 7    | 214  | 97   | 170       | 221  | 17   |  |
| Number of Lanes                         | 0    | 1           | 0           | 0           | 1           | 0    | 0    | 1    | 0    | 0         | 1    | 0    |  |
| Approach                                | EB   |             |             | WB          |             |      | NB   |      |      | SB        |      |      |  |
|                                         | WB   |             |             | EB          |             |      | SB   |      |      | NB        |      |      |  |
| Opposing Approach                       | 1    |             |             | 1           |             |      | 1    |      |      | 1         |      |      |  |
| Opposing Lanes Conflicting Approach Lef |      |             |             | NB          |             |      | EB   |      |      | WB        |      |      |  |
| Conflicting Lanes Left                  | 1    |             |             | 1           |             |      | 1    |      |      | 1         |      |      |  |
| Conflicting Approach Rig                |      |             |             | SB          |             |      | WB   |      |      | EB        |      |      |  |
| Conflicting Lanes Right                 | 1    |             |             | 1           |             |      | 1    |      |      | 1         |      |      |  |
|                                         | 15.6 |             |             | 36.6        |             |      | 24.2 |      |      | 37.9      |      |      |  |
| HCM LOS                                 | C    |             |             | 30.0<br>E   |             |      | C C  |      |      | 51.5<br>E |      |      |  |
| I IOIVI LOO                             | U    |             |             |             |             |      | C    |      |      |           |      |      |  |
| Lana                                    | K I  | IDI 1 I     | -DI1\       | VDI 1 :     | CDI 1       |      |      |      |      |           |      |      |  |
| Lane                                    | IN   |             |             | VBLn1       |             |      |      |      |      |           |      |      |  |
| Vol Left, %                             |      | 2%          | 6%          | 21%         | 42%         |      |      |      |      |           |      |      |  |
| Vol Thru, %                             |      | 67%         | 93%         | 38%         | 54%         |      |      |      |      |           |      |      |  |
| Vol Right, %                            |      | 30%         | 1%          | 41%         | 4%          |      |      |      |      |           |      |      |  |
| Sign Control                            |      | Stop<br>292 | Stop<br>140 | Stop<br>359 | Stop<br>375 |      |      |      |      |           |      |      |  |
| Traffic Vol by Lane<br>LT Vol           |      | 292         | 8           | 77          | 156         |      |      |      |      |           |      |      |  |
|                                         |      | 197         | 130         | 136         | 203         |      |      |      |      |           |      |      |  |
| Through Vol<br>RT Vol                   |      | 89          | 2           | 146         | 16          |      |      |      |      |           |      |      |  |
| Lane Flow Rate                          |      | 317         | 152         | 390         | 408         |      |      |      |      |           |      |      |  |
| Geometry Grp                            |      | 1           | 132         | 1           | 400         |      |      |      |      |           |      |      |  |
| Degree of Util (X)                      |      | •           | 0.346       | 0.818       | 0.835       |      |      |      |      |           |      |      |  |
| Departure Headway (Hd)                  |      | 7.514       |             | 7.546       |             |      |      |      |      |           |      |      |  |
| Convergence, Y/N                        | )    | Yes         | Yes         | Yes         | Yes         |      |      |      |      |           |      |      |  |
| Cap                                     |      | 479         | 437         | 480         | 489         |      |      |      |      |           |      |      |  |
| Service Time                            |      | 5.586       |             | 5.608       |             |      |      |      |      |           |      |      |  |
| HCM Lane V/C Ratio                      |      |             |             | 0.813       |             |      |      |      |      |           |      |      |  |
| HCM Control Delay                       |      | 24.2        | 15.6        | 36.6        | 37.9        |      |      |      |      |           |      |      |  |
| HCM Lane LOS                            |      | C C         | 13.0<br>C   | 50.0<br>E   | 51.5<br>E   |      |      |      |      |           |      |      |  |
| HCM 95th-tile Q                         |      | 4.8         | 1.5         | 7.8         | 8.3         |      |      |      |      |           |      |      |  |
| 1 10111 33111-1116 W                    |      | 4.0         | 1.0         | 1.0         | 0.5         |      |      |      |      |           |      |      |  |

| Intersection Delay, s/veh1                                                                                                                                                                              | 9.2                                                                                                            |                                                                                                   |                                                                                                                  |                                                                                                                  |                                                                                                                |      |      |      |          |      |      |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------|------|------|----------|------|------|--|
| Intersection LOS                                                                                                                                                                                        | С                                                                                                              |                                                                                                   |                                                                                                                  |                                                                                                                  |                                                                                                                |      |      |      |          |      |      |  |
|                                                                                                                                                                                                         |                                                                                                                |                                                                                                   |                                                                                                                  |                                                                                                                  |                                                                                                                |      |      |      |          |      |      |  |
| Movement E                                                                                                                                                                                              | BL EBT                                                                                                         | EBR                                                                                               | WBL                                                                                                              | WBT                                                                                                              | WBR                                                                                                            | NBL  | NBT  | NBR  | SBL      | SBT  | SBR  |  |
| Lane Configurations                                                                                                                                                                                     | 4                                                                                                              |                                                                                                   | 1102                                                                                                             | 4                                                                                                                | 115.1                                                                                                          | 1102 | 4    | 7    | <u> </u> | 4    | OBIT |  |
| Traffic Vol, veh/h                                                                                                                                                                                      | 17 146                                                                                                         | 28                                                                                                | 85                                                                                                               | 90                                                                                                               | 51                                                                                                             | 16   | 206  | 37   | 68       | 217  | 25   |  |
| Future Vol, veh/h                                                                                                                                                                                       | 17 146                                                                                                         | 28                                                                                                | 85                                                                                                               | 90                                                                                                               | 51                                                                                                             | 16   | 206  | 37   | 68       | 217  | 25   |  |
| •                                                                                                                                                                                                       | .85 0.85                                                                                                       | 0.85                                                                                              | 0.85                                                                                                             | 0.85                                                                                                             | 0.85                                                                                                           | 0.85 | 0.85 | 0.85 | 0.85     | 0.85 | 0.85 |  |
| Heavy Vehicles, %                                                                                                                                                                                       | 14 23                                                                                                          | 13                                                                                                | 11                                                                                                               | 28                                                                                                               | 14                                                                                                             | 43   | 18   | 50   | 9        | 21   | 12   |  |
| Mymt Flow                                                                                                                                                                                               | 20 172                                                                                                         | 33                                                                                                | 100                                                                                                              | 106                                                                                                              | 60                                                                                                             | 19   | 242  | 44   | 80       | 255  | 29   |  |
| Number of Lanes                                                                                                                                                                                         | 0 1                                                                                                            | 0                                                                                                 | 0                                                                                                                | 1                                                                                                                | 0                                                                                                              | 0    | 1    | 1    | 0        | 1    | 0    |  |
|                                                                                                                                                                                                         |                                                                                                                |                                                                                                   |                                                                                                                  | •                                                                                                                |                                                                                                                |      | •    |      |          | •    |      |  |
| • •                                                                                                                                                                                                     | EB AVD                                                                                                         |                                                                                                   | WB                                                                                                               |                                                                                                                  |                                                                                                                | NB   |      |      | SB       |      |      |  |
|                                                                                                                                                                                                         | NB                                                                                                             |                                                                                                   | EB                                                                                                               |                                                                                                                  |                                                                                                                | SB   |      |      | NB       |      |      |  |
| Opposing Lanes                                                                                                                                                                                          | 1                                                                                                              |                                                                                                   | 1                                                                                                                |                                                                                                                  |                                                                                                                | 1    |      |      | 2        |      |      |  |
| Conflicting Approach Left                                                                                                                                                                               |                                                                                                                |                                                                                                   | NB                                                                                                               |                                                                                                                  |                                                                                                                | EB   |      |      | WB       |      |      |  |
| Conflicting Lanes Left                                                                                                                                                                                  | 1                                                                                                              |                                                                                                   | 2                                                                                                                |                                                                                                                  |                                                                                                                | 1    |      |      | 1        |      |      |  |
| Conflicting Approach Right                                                                                                                                                                              |                                                                                                                |                                                                                                   | SB                                                                                                               |                                                                                                                  |                                                                                                                | WB   |      |      | EB       |      |      |  |
| Conflicting Lanes Right                                                                                                                                                                                 | 2                                                                                                              |                                                                                                   | 1                                                                                                                |                                                                                                                  |                                                                                                                | 1    |      |      | 1        |      |      |  |
| ,                                                                                                                                                                                                       | 5.9                                                                                                            |                                                                                                   | 17.3                                                                                                             |                                                                                                                  |                                                                                                                | 18.9 |      |      | 22.9     |      |      |  |
| HCM LOS                                                                                                                                                                                                 | С                                                                                                              |                                                                                                   | С                                                                                                                |                                                                                                                  |                                                                                                                | С    |      |      | С        |      |      |  |
|                                                                                                                                                                                                         |                                                                                                                |                                                                                                   |                                                                                                                  |                                                                                                                  |                                                                                                                |      |      |      |          |      |      |  |
|                                                                                                                                                                                                         |                                                                                                                |                                                                                                   |                                                                                                                  |                                                                                                                  |                                                                                                                |      |      |      |          |      |      |  |
| Lane                                                                                                                                                                                                    | NBLn1                                                                                                          |                                                                                                   |                                                                                                                  |                                                                                                                  |                                                                                                                |      |      |      |          |      |      |  |
| Vol Left, %                                                                                                                                                                                             | 7%                                                                                                             | 0%                                                                                                | 9%                                                                                                               | 38%                                                                                                              | 22%                                                                                                            |      |      |      |          |      |      |  |
| Vol Left, %<br>Vol Thru, %                                                                                                                                                                              | 7%<br>93%                                                                                                      | 0%<br>0%                                                                                          | 9%<br>76%                                                                                                        | 38%<br>40%                                                                                                       | 22%<br>70%                                                                                                     |      |      |      |          |      |      |  |
| Vol Left, %<br>Vol Thru, %<br>Vol Right, %                                                                                                                                                              | 7%<br>93%<br>0%                                                                                                | 0%<br>0%<br>100%                                                                                  | 9%<br>76%<br>15%                                                                                                 | 38%<br>40%<br>23%                                                                                                | 22%<br>70%<br>8%                                                                                               |      |      |      |          |      |      |  |
| Vol Left, %<br>Vol Thru, %<br>Vol Right, %<br>Sign Control                                                                                                                                              | 7%<br>93%<br>0%<br>Stop                                                                                        | 0%<br>0%                                                                                          | 9%<br>76%<br>15%<br>Stop                                                                                         | 38%<br>40%<br>23%<br>Stop                                                                                        | 22%<br>70%<br>8%<br>Stop                                                                                       |      |      |      |          |      |      |  |
| Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane                                                                                                                                   | 7%<br>93%<br>0%<br>Stop<br>222                                                                                 | 0%<br>0%<br>100%<br>Stop<br>37                                                                    | 9%<br>76%<br>15%<br>Stop<br>191                                                                                  | 38%<br>40%<br>23%<br>Stop<br>226                                                                                 | 22%<br>70%<br>8%<br>Stop<br>310                                                                                |      |      |      |          |      |      |  |
| Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol                                                                                                                            | 7%<br>93%<br>0%<br>Stop<br>222<br>16                                                                           | 0%<br>0%<br>100%<br>Stop<br>37<br>0                                                               | 9%<br>76%<br>15%<br>Stop<br>191<br>17                                                                            | 38%<br>40%<br>23%<br>Stop                                                                                        | 22%<br>70%<br>8%<br>Stop<br>310<br>68                                                                          |      |      |      |          |      |      |  |
| Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane                                                                                                                                   | 7%<br>93%<br>0%<br>Stop<br>222                                                                                 | 0%<br>0%<br>100%<br>Stop<br>37                                                                    | 9%<br>76%<br>15%<br>Stop<br>191<br>17                                                                            | 38%<br>40%<br>23%<br>Stop<br>226                                                                                 | 22%<br>70%<br>8%<br>Stop<br>310<br>68<br>217                                                                   |      |      |      |          |      |      |  |
| Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol                                                                                                                            | 7%<br>93%<br>0%<br>Stop<br>222<br>16<br>206                                                                    | 0%<br>0%<br>100%<br>Stop<br>37<br>0                                                               | 9%<br>76%<br>15%<br>Stop<br>191<br>17<br>146<br>28                                                               | 38%<br>40%<br>23%<br>Stop<br>226<br>85<br>90<br>51                                                               | 22%<br>70%<br>8%<br>Stop<br>310<br>68<br>217<br>25                                                             |      |      |      |          |      |      |  |
| Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol                                                                                                                | 7%<br>93%<br>0%<br>Stop<br>222<br>16<br>206<br>0                                                               | 0%<br>0%<br>100%<br>Stop<br>37<br>0<br>0<br>37<br>44                                              | 9%<br>76%<br>15%<br>Stop<br>191<br>17<br>146<br>28<br>225                                                        | 38%<br>40%<br>23%<br>Stop<br>226<br>85<br>90<br>51<br>266                                                        | 22%<br>70%<br>8%<br>Stop<br>310<br>68<br>217<br>25<br>365                                                      |      |      |      |          |      |      |  |
| Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol                                                                                                         | 7%<br>93%<br>0%<br>Stop<br>222<br>16<br>206<br>0<br>261                                                        | 0%<br>0%<br>100%<br>Stop<br>37<br>0<br>0<br>37<br>44<br>7                                         | 9%<br>76%<br>15%<br>Stop<br>191<br>17<br>146<br>28<br>225                                                        | 38%<br>40%<br>23%<br>Stop<br>226<br>85<br>90<br>51<br>266<br>2                                                   | 22%<br>70%<br>8%<br>Stop<br>310<br>68<br>217<br>25<br>365<br>5                                                 |      |      |      |          |      |      |  |
| Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate                                                                                          | 7%<br>93%<br>0%<br>Stop<br>222<br>16<br>206<br>0<br>261<br>7                                                   | 0%<br>0%<br>100%<br>Stop<br>37<br>0<br>0<br>37<br>44<br>7                                         | 9%<br>76%<br>15%<br>Stop<br>191<br>17<br>146<br>28<br>225<br>2                                                   | 38%<br>40%<br>23%<br>Stop<br>226<br>85<br>90<br>51<br>266<br>2                                                   | 22%<br>70%<br>8%<br>Stop<br>310<br>68<br>217<br>25<br>365<br>5                                                 |      |      |      |          |      |      |  |
| Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp                                                                             | 7%<br>93%<br>0%<br>Stop<br>222<br>16<br>206<br>0<br>261                                                        | 0%<br>0%<br>100%<br>Stop<br>37<br>0<br>0<br>37<br>44<br>7<br>0.08<br>6.622                        | 9%<br>76%<br>15%<br>Stop<br>191<br>17<br>146<br>28<br>225                                                        | 38%<br>40%<br>23%<br>Stop<br>226<br>85<br>90<br>51<br>266<br>2                                                   | 22%<br>70%<br>8%<br>Stop<br>310<br>68<br>217<br>25<br>365<br>5                                                 |      |      |      |          |      |      |  |
| Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)                                                          | 7%<br>93%<br>0%<br>Stop<br>222<br>16<br>206<br>0<br>261<br>7<br>0.567<br>7.812<br>Yes                          | 0%<br>0%<br>100%<br>Stop<br>37<br>0<br>0<br>37<br>44<br>7<br>0.08<br>6.622<br>Yes                 | 9%<br>76%<br>15%<br>Stop<br>191<br>17<br>146<br>28<br>225<br>2<br>0.445<br>7.128<br>Yes                          | 38%<br>40%<br>23%<br>Stop<br>226<br>85<br>90<br>51<br>266<br>2<br>0.514<br>6.965<br>Yes                          | 22%<br>70%<br>8%<br>Stop<br>310<br>68<br>217<br>25<br>365<br>5<br>0.679<br>6.7<br>Yes                          |      |      |      |          |      |      |  |
| Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap              | 7%<br>93%<br>0%<br>Stop<br>222<br>16<br>206<br>0<br>261<br>7<br>0.567<br>7.812                                 | 0%<br>0%<br>100%<br>Stop<br>37<br>0<br>0<br>37<br>44<br>7<br>0.08<br>6.622<br>Yes<br>538          | 9%<br>76%<br>15%<br>Stop<br>191<br>17<br>146<br>28<br>225<br>2<br>0.445<br>7.128<br>Yes<br>503                   | 38%<br>40%<br>23%<br>Stop<br>226<br>85<br>90<br>51<br>266<br>2<br>0.514<br>6.965<br>Yes<br>516                   | 22%<br>70%<br>8%<br>Stop<br>310<br>68<br>217<br>25<br>365<br>5<br>0.679<br>6.7<br>Yes<br>536                   |      |      |      |          |      |      |  |
| Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N                  | 7%<br>93%<br>0%<br>Stop<br>222<br>16<br>206<br>0<br>261<br>7<br>0.567<br>7.812<br>Yes                          | 0%<br>0%<br>100%<br>Stop<br>37<br>0<br>0<br>37<br>44<br>7<br>0.08<br>6.622<br>Yes<br>538<br>4.398 | 9%<br>76%<br>15%<br>Stop<br>191<br>17<br>146<br>28<br>225<br>2<br>0.445<br>7.128<br>Yes<br>503<br>5.213          | 38% 40% 23% Stop 226 85 90 51 266 2 0.514 6.965 Yes 516 5.046                                                    | 22%<br>70%<br>8%<br>Stop<br>310<br>68<br>217<br>25<br>365<br>5<br>0.679<br>6.7<br>Yes<br>536<br>4.773          |      |      |      |          |      |      |  |
| Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap              | 7%<br>93%<br>0%<br>Stop<br>222<br>16<br>206<br>0<br>261<br>7<br>0.567<br>7.812<br>Yes<br>460<br>5.589<br>0.567 | 0%<br>0%<br>100%<br>Stop<br>37<br>0<br>0<br>37<br>44<br>7<br>0.08<br>6.622<br>Yes<br>538<br>4.398 | 9%<br>76%<br>15%<br>Stop<br>191<br>17<br>146<br>28<br>225<br>2<br>0.445<br>7.128<br>Yes<br>503<br>5.213<br>0.447 | 38%<br>40%<br>23%<br>Stop<br>226<br>85<br>90<br>51<br>266<br>2<br>0.514<br>6.965<br>Yes<br>516<br>5.046<br>0.516 | 22%<br>70%<br>8%<br>Stop<br>310<br>68<br>217<br>25<br>365<br>5<br>0.679<br>6.7<br>Yes<br>536<br>4.773<br>0.681 |      |      |      |          |      |      |  |
| Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time | 7%<br>93%<br>0%<br>Stop<br>222<br>16<br>206<br>0<br>261<br>7<br>0.567<br>7.812<br>Yes<br>460<br>5.589          | 0%<br>0%<br>100%<br>Stop<br>37<br>0<br>0<br>37<br>44<br>7<br>0.08<br>6.622<br>Yes<br>538<br>4.398 | 9%<br>76%<br>15%<br>Stop<br>191<br>17<br>146<br>28<br>225<br>2<br>0.445<br>7.128<br>Yes<br>503<br>5.213          | 38% 40% 23% Stop 226 85 90 51 266 2 0.514 6.965 Yes 516 5.046                                                    | 22%<br>70%<br>8%<br>Stop<br>310<br>68<br>217<br>25<br>365<br>5<br>0.679<br>6.7<br>Yes<br>536<br>4.773          |      |      |      |          |      |      |  |

3.4 0.3

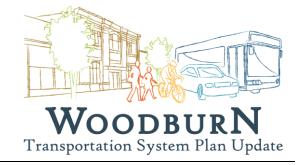
2.3 2.9

5.1

HCM 95th-tile Q

| Intersection               |               |          |       |        |        |        |        |       |      |      |      |  |
|----------------------------|---------------|----------|-------|--------|--------|--------|--------|-------|------|------|------|--|
| Intersection Delay, s/veh7 | 72.3          |          |       |        |        |        |        |       |      |      |      |  |
| Intersection LOS           | F             |          |       |        |        |        |        |       |      |      |      |  |
|                            |               |          |       |        |        |        |        |       |      |      |      |  |
| Movement I                 | EBL EB        | T EBR    | WBL   | WBT    | WBR    | NBL    | NBT    | NBR   | SBL  | SBT  | SBR  |  |
| Lane Configurations        | ች 1           | <b>,</b> | Ť     | ĵ.     |        |        | र्स    | 7     |      | सी   | 7    |  |
|                            | 225 24        |          | 108   | 237    | 24     | 109    | 191    | 57    | 10   | 228  | 266  |  |
| Future Vol, veh/h          | 225 24        | 7 132    | 108   | 237    | 24     | 109    | 191    | 57    | 10   | 228  | 266  |  |
| Peak Hour Factor (         | 0.85          | 5 0.85   | 0.85  | 0.85   | 0.85   | 0.85   | 0.85   | 0.85  | 0.85 | 0.85 | 0.85 |  |
| Heavy Vehicles, %          | 49 2          | 7 21     | 25    | 37     | 12     | 14     | 9      | 21    | 0    | 21   | 28   |  |
| Mvmt Flow                  | 265 29        | 1 155    | 127   | 279    | 28     | 128    | 225    | 67    | 12   | 268  | 313  |  |
| Number of Lanes            | 1             | 1 0      | 1     | 1      | 0      | 0      | 1      | 1     | 0    | 1    | 1    |  |
| Approach                   | EB            |          | WB    |        |        | NB     |        |       | SB   |      |      |  |
|                            | WB            |          | EB    |        |        | SB     |        |       | NB   |      |      |  |
| Opposing Lanes             | 2             |          | 2     |        |        | 2      |        |       | 2    |      |      |  |
| Conflicting Approach Left  | SB            |          | NB    |        |        | EB     |        |       | WB   |      |      |  |
| Conflicting Lanes Left     | 2             |          | 2     |        |        | 2      |        |       | 2    |      |      |  |
| Conflicting Approach Righ  | n <b>t</b> NB |          | SB    |        |        | WB     |        |       | EB   |      |      |  |
| Conflicting Lanes Right    | 2             |          | 2     |        |        | 2      |        |       | 2    |      |      |  |
|                            | 11.9          |          | 48.1  |        |        | 74.5   |        |       | 41   |      |      |  |
| HCM LOS                    | F             |          | Е     |        |        | F      |        |       | Е    |      |      |  |
|                            |               |          |       |        |        |        |        |       |      |      |      |  |
| Lane                       | NBLn          | 1 NBLn2  | EBLn1 | EBLn2\ | NBLn1\ | NBLn2  | SBLn1  | SBLn2 |      |      |      |  |
| Vol Left, %                | 369           | 6 0%     | 100%  | 0%     | 100%   | 0%     | 4%     | 0%    |      |      |      |  |
| Vol Thru, %                | 649           | 6 0%     | 0%    | 65%    | 0%     | 91%    | 96%    | 0%    |      |      |      |  |
| Vol Right, %               | 09            | 6 100%   | 0%    | 35%    | 0%     | 9%     | 0%     | 100%  |      |      |      |  |
| Sign Control               | Sto           | p Stop   | Stop  | Stop   | Stop   | Stop   | Stop   | Stop  |      |      |      |  |
| Traffic Vol by Lane        | 30            |          | 225   | 379    | 108    | 261    | 238    | 266   |      |      |      |  |
| LT Vol                     | 10            | 9 0      | 225   | 0      | 108    | 0      | 10     | 0     |      |      |      |  |
| Through Vol                | 19            | 1 0      | 0     | 247    | 0      | 237    | 228    | 0     |      |      |      |  |
| RT Vol                     |               | 0 57     | 0     | 132    | 0      | 24     | 0      | 266   |      |      |      |  |
| Lane Flow Rate             | 35            | 3 67     | 265   | 446    | 127    | 307    | 280    | 313   |      |      |      |  |
| Geometry Grp               |               | 7 7      | 7     | 7      | 7      | 7      | 7      | 7     |      |      |      |  |
| Degree of Util (X)         | 1.0           | 1 0.174  | 0.804 | 1.216  | 0.381  | 0.89   | 0.755  | 0.812 |      |      |      |  |
| Departure Headway (Hd)     | 10.81         | 2 9.793  | 11.28 | 10.103 | 11.287 | 10.907 | 10.162 | 9.778 |      |      |      |  |
| Convergence, Y/N           | Ye            | s Yes    | Yes   | Yes    | Yes    | Yes    | Yes    | Yes   |      |      |      |  |
| Сар                        | 33            | 9 369    | 323   | 361    | 321    | 335    | 358    | 372   |      |      |      |  |
| Service Time               |               | 2 7.493  |       |        |        |        | 7.862  |       |      |      |      |  |
| HCM Lane V/C Ratio         |               | 1 0.182  |       |        |        |        | 0.782  |       |      |      |      |  |
| HCM Control Delay          | 85.           |          |       | 150.2  | 20.8   | 59.4   | 38.3   | 43.4  |      |      |      |  |
| HCM Lane LOS               |               | F B      | Е     | F      | С      | F      | Е      | Е     |      |      |      |  |
| HCM 95th-tile Q            | 11.           | 4 0.6    | 6.7   | 18.4   | 1.7    | 8.5    | 6      | 7.1   |      |      |      |  |

|                               | ٠           | <b>→</b> | •     | •    | <b>←</b>   | 4          | 1       | <b>†</b>   | <i>&gt;</i> | <b>/</b> | Ţ          | √    |
|-------------------------------|-------------|----------|-------|------|------------|------------|---------|------------|-------------|----------|------------|------|
| Movement                      | EBL         | EBT      | EBR   | WBL  | WBT        | WBR        | NBL     | NBT        | NBR         | SBL      | SBT        | SBR  |
| Lane Configurations           |             | र्स      | 7     |      | र्स        | 7          | ሻ       | <b>∱</b> ∱ |             | ሻ        | <b>∱</b> ∱ |      |
| Traffic Volume (vph)          | 80          | 55       | 67    | 147  | 43         | 53         | 72      | 1117       | 101         | 75       | 1453       | 100  |
| Future Volume (vph)           | 80          | 55       | 67    | 147  | 43         | 53         | 72      | 1117       | 101         | 75       | 1453       | 100  |
| Ideal Flow (vphpl)            | 1750        | 1750     | 1750  | 1750 | 1750       | 1750       | 1750    | 1750       | 1750        | 1750     | 1750       | 1750 |
| Total Lost time (s)           |             | 4.5      | 4.5   |      | 4.5        | 4.5        | 4.5     | 4.5        |             | 4.5      | 4.5        |      |
| Lane Util. Factor             |             | 1.00     | 1.00  |      | 1.00       | 1.00       | 1.00    | 0.95       |             | 1.00     | 0.95       |      |
| Frpb, ped/bikes               |             | 1.00     | 0.98  |      | 1.00       | 0.98       | 1.00    | 1.00       |             | 1.00     | 1.00       |      |
| Flpb, ped/bikes               |             | 1.00     | 1.00  |      | 1.00       | 1.00       | 1.00    | 1.00       |             | 1.00     | 1.00       |      |
| Frt                           |             | 1.00     | 0.85  |      | 1.00       | 0.85       | 1.00    | 0.99       |             | 1.00     | 0.99       |      |
| Flt Protected                 |             | 0.97     | 1.00  |      | 0.96       | 1.00       | 0.95    | 1.00       |             | 0.95     | 1.00       |      |
| Satd. Flow (prot)             |             | 1498     | 1227  |      | 1479       | 1206       | 1363    | 2667       |             | 1458     | 2738       |      |
| Flt Permitted                 |             | 0.54     | 1.00  |      | 0.59       | 1.00       | 0.06    | 1.00       |             | 0.14     | 1.00       |      |
| Satd. Flow (perm)             |             | 834      | 1227  |      | 902        | 1206       | 90      | 2667       |             | 218      | 2738       |      |
| Peak-hour factor, PHF         | 0.94        | 0.94     | 0.94  | 0.94 | 0.94       | 0.94       | 0.94    | 0.94       | 0.94        | 0.94     | 0.94       | 0.94 |
| Adj. Flow (vph)               | 85          | 59       | 71    | 156  | 46         | 56         | 77      | 1188       | 107         | 80       | 1546       | 106  |
| RTOR Reduction (vph)          | 0           | 0        | 55    | 0    | 0          | 43         | 0       | 5          | 0           | 0        | 4          | 0    |
| Lane Group Flow (vph)         | 0           | 144      | 16    | 0    | 202        | 13         | 77      | 1290       | 0           | 80       | 1648       | 0    |
| Confl. Peds. (#/hr)           | 6           |          | 6     | 6    |            | 6          | 3       |            | 3           | 3        |            | 3    |
| Heavy Vehicles (%)            | 16%         | 9%       | 19%   | 13%  | 15%        | 21%        | 22%     | 23%        | 21%         | 14%      | 20%        | 21%  |
| Turn Type                     | Perm        | NA       | Perm  | Perm | NA         | Perm       | D.P+P   | NA         |             | D.P+P    | NA         |      |
| Protected Phases              |             | 8        |       |      | 4          |            | 1       | 6          |             | 5        | 2          |      |
| Permitted Phases              | 8           |          | 8     | 4    |            | 4          | 2       |            |             | 6        |            |      |
| Actuated Green, G (s)         |             | 30.0     | 30.0  |      | 30.0       | 30.0       | 86.5    | 79.2       |             | 86.5     | 77.3       |      |
| Effective Green, g (s)        |             | 30.0     | 30.0  |      | 30.0       | 30.0       | 86.5    | 79.2       |             | 86.5     | 77.3       |      |
| Actuated g/C Ratio            |             | 0.23     | 0.23  |      | 0.23       | 0.23       | 0.67    | 0.61       |             | 0.67     | 0.59       |      |
| Clearance Time (s)            |             | 4.5      | 4.5   |      | 4.5        | 4.5        | 4.5     | 4.5        |             | 4.5      | 4.5        |      |
| Vehicle Extension (s)         |             | 2.5      | 2.5   |      | 2.5        | 2.5        | 2.5     | 4.6        |             | 2.5      | 4.6        |      |
| Lane Grp Cap (vph)            |             | 192      | 283   |      | 208        | 278        | 149     | 1624       |             | 214      | 1628       |      |
| v/s Ratio Prot                |             |          |       |      |            |            | 0.04    | c0.48      |             | 0.02     | c0.60      |      |
| v/s Ratio Perm                |             | 0.17     | 0.01  |      | c0.22      | 0.01       | 0.31    |            |             | 0.23     |            |      |
| v/c Ratio                     |             | 0.75     | 0.06  |      | 0.97       | 0.05       | 0.52    | 0.79       |             | 0.37     | 1.01       |      |
| Uniform Delay, d1             |             | 46.5     | 39.0  |      | 49.6       | 38.9       | 41.3    | 19.2       |             | 11.3     | 26.4       |      |
| Progression Factor            |             | 1.00     | 1.00  |      | 1.00       | 1.00       | 0.82    | 0.73       |             | 1.18     | 1.13       |      |
| Incremental Delay, d2         |             | 14.5     | 0.1   |      | 53.9       | 0.1        | 1.6     | 2.9        |             | 0.1      | 10.1       |      |
| Delay (s)                     |             | 61.0     | 39.0  |      | 103.4      | 38.9       | 35.3    | 16.9       |             | 13.4     | 39.9       |      |
| Level of Service              |             | Е        | D     |      | F          | D          | D       | В          |             | В        | D          |      |
| Approach Delay (s)            |             | 53.7     |       |      | 89.4       |            |         | 18.0       |             |          | 38.7       |      |
| Approach LOS                  |             | D        |       |      | F          |            |         | В          |             |          | D          |      |
| Intersection Summary          |             |          |       |      |            |            |         |            |             |          |            |      |
| HCM 2000 Control Delay        |             |          | 35.3  | H    | CM 2000    | Level of   | Service |            | D           |          |            |      |
| HCM 2000 Volume to Capa       | acity ratio |          | 1.00  |      |            |            |         |            |             |          |            |      |
| Actuated Cycle Length (s)     |             |          | 130.0 |      | um of lost |            |         |            | 13.5        |          |            |      |
| Intersection Capacity Utiliza | ation       |          | 82.4% | IC   | U Level    | of Service | Э       |            | Е           |          |            |      |
| Analysis Period (min)         |             |          | 15    |      |            |            |         |            |             |          |            |      |
| o Critical Lana Croup         |             |          |       |      |            |            |         |            |             |          |            |      |


|                                  | ۶       | <b>→</b> | •     | •    | <b>—</b>   | •          | 4       | <b>†</b>   | <i>&gt;</i> | <b>/</b> | <b>↓</b>   | -✓   |
|----------------------------------|---------|----------|-------|------|------------|------------|---------|------------|-------------|----------|------------|------|
| Movement                         | EBL     | EBT      | EBR   | WBL  | WBT        | WBR        | NBL     | NBT        | NBR         | SBL      | SBT        | SBR  |
| Lane Configurations              |         | 4        |       |      | र्स        | 7          | ሻ       | <b>∱</b> ∱ |             | ሻ        | <b>∱</b> ∱ |      |
| Traffic Volume (vph)             | 108     | 11       | 90    | 27   | 11         | 26         | 80      | 1146       | 14          | 17       | 1573       | 123  |
| Future Volume (vph)              | 108     | 11       | 90    | 27   | 11         | 26         | 80      | 1146       | 14          | 17       | 1573       | 123  |
| Ideal Flow (vphpl)               | 1750    | 1750     | 1750  | 1750 | 1750       | 1750       | 1750    | 1750       | 1750        | 1750     | 1750       | 1750 |
| Total Lost time (s)              |         | 4.5      |       |      | 4.5        | 4.5        | 4.5     | 4.5        |             | 4.5      | 4.5        |      |
| Lane Util. Factor                |         | 1.00     |       |      | 1.00       | 1.00       | 1.00    | 0.95       |             | 1.00     | 0.95       |      |
| Frpb, ped/bikes                  |         | 0.99     |       |      | 1.00       | 0.97       | 1.00    | 1.00       |             | 1.00     | 1.00       |      |
| Flpb, ped/bikes                  |         | 0.99     |       |      | 1.00       | 1.00       | 1.00    | 1.00       |             | 1.00     | 1.00       |      |
| Frt                              |         | 0.94     |       |      | 1.00       | 0.85       | 1.00    | 1.00       |             | 1.00     | 0.99       |      |
| Flt Protected                    |         | 0.97     |       |      | 0.97       | 1.00       | 0.95    | 1.00       |             | 0.95     | 1.00       |      |
| Satd. Flow (prot)                |         | 1288     |       |      | 1406       | 1124       | 1446    | 2629       |             | 1289     | 2720       |      |
| Flt Permitted                    |         | 0.82     |       |      | 0.73       | 1.00       | 0.05    | 1.00       |             | 0.17     | 1.00       |      |
| Satd. Flow (perm)                |         | 1078     |       |      | 1064       | 1124       | 75      | 2629       |             | 226      | 2720       |      |
| Peak-hour factor, PHF            | 0.94    | 0.94     | 0.94  | 0.94 | 0.94       | 0.94       | 0.94    | 0.94       | 0.94        | 0.94     | 0.94       | 0.94 |
| Adj. Flow (vph)                  | 115     | 12       | 96    | 29   | 12         | 28         | 85      | 1219       | 15          | 18       | 1673       | 131  |
| RTOR Reduction (vph)             | 0       | 22       | 0     | 0    | 0          | 22         | 0       | 0          | 0           | 0        | 4          | 0    |
| Lane Group Flow (vph)            | 0       | 201      | 0     | 0    | 41         | 6          | 85      | 1234       | 0           | 18       | 1800       | 0    |
| Confl. Peds. (#/hr)              | 10      |          |       |      |            | 10         | 6       |            | 6           | 6        |            | 6    |
| Confl. Bikes (#/hr)              |         |          | 1     |      |            |            |         |            | 1           |          |            |      |
| Heavy Vehicles (%)               | 19%     | 50%      | 25%   | 5%   | 57%        | 29%        | 15%     | 26%        | 40%         | 29%      | 21%        | 15%  |
| Turn Type                        | Perm    | NA       |       | Perm | NA         | Perm       | D.P+P   | NA         |             | D.P+P    | NA         |      |
| Protected Phases                 |         | 8        |       |      | 4          |            | 1       | 6          |             | 5        | 2          |      |
| Permitted Phases                 | 8       |          |       | 4    |            | 4          | 2       |            |             | 6        |            |      |
| Actuated Green, G (s)            |         | 26.4     |       |      | 26.4       | 26.4       | 90.1    | 83.1       |             | 90.1     | 81.2       |      |
| Effective Green, g (s)           |         | 26.4     |       |      | 26.4       | 26.4       | 90.1    | 83.1       |             | 90.1     | 81.2       |      |
| Actuated g/C Ratio               |         | 0.20     |       |      | 0.20       | 0.20       | 0.69    | 0.64       |             | 0.69     | 0.62       |      |
| Clearance Time (s)               |         | 4.5      |       |      | 4.5        | 4.5        | 4.5     | 4.5        |             | 4.5      | 4.5        |      |
| Vehicle Extension (s)            |         | 2.5      |       |      | 2.5        | 2.5        | 2.5     | 4.6        |             | 2.5      | 4.6        |      |
| Lane Grp Cap (vph)               |         | 218      |       |      | 216        | 228        | 145     | 1680       |             | 213      | 1698       |      |
| v/s Ratio Prot                   |         |          |       |      |            |            | 0.04    | c0.47      |             | 0.00     | c0.66      |      |
| v/s Ratio Perm                   |         | c0.19    |       |      | 0.04       | 0.01       | 0.36    |            |             | 0.05     |            |      |
| v/c Ratio                        |         | 0.92     |       |      | 0.19       | 0.02       | 0.59    | 0.73       |             | 0.08     | 1.06       |      |
| Uniform Delay, d1                |         | 50.8     |       |      | 42.9       | 41.5       | 26.4    | 15.9       |             | 15.6     | 24.4       |      |
| Progression Factor               |         | 1.00     |       |      | 1.00       | 1.00       | 1.43    | 0.81       |             | 1.32     | 0.66       |      |
| Incremental Delay, d2            |         | 40.3     |       |      | 0.3        | 0.0        | 3.4     | 2.0        |             | 0.0      | 32.5       |      |
| Delay (s)                        |         | 91.1     |       |      | 43.2       | 41.5       | 41.2    | 15.0       |             | 20.7     | 48.7       |      |
| Level of Service                 |         | F        |       |      | D          | D          | D       | В          |             | С        | D          |      |
| Approach Delay (s)               |         | 91.1     |       |      | 42.5       |            |         | 16.6       |             |          | 48.4       |      |
| Approach LOS                     |         | F        |       |      | D          |            |         | В          |             |          | D          |      |
| Intersection Summary             |         |          |       |      |            |            |         |            |             |          |            |      |
| HCM 2000 Control Delay           |         |          | 38.9  | H    | CM 2000    | Level of   | Service |            | D           |          |            |      |
| HCM 2000 Volume to Capacity      | y ratio |          | 1.02  |      |            |            |         |            |             |          |            |      |
| Actuated Cycle Length (s)        |         |          | 130.0 | Sı   | um of lost | t time (s) |         |            | 13.5        |          |            |      |
| Intersection Capacity Utilizatio | n       |          | 87.3% |      | U Level    |            | Э       |            | E           |          |            |      |
| Analysis Period (min)            |         |          | 15    |      |            |            |         |            |             |          |            |      |
| c Critical Lane Group            |         |          |       |      |            |            |         |            |             |          |            |      |

|                               | ٠          | <b>→</b> | •     | •    | <b>—</b>  | •          | •       | <b>†</b>    | ~    | <b>\</b> | <b>+</b>    | 4    |
|-------------------------------|------------|----------|-------|------|-----------|------------|---------|-------------|------|----------|-------------|------|
| Movement                      | EBL        | EBT      | EBR   | WBL  | WBT       | WBR        | NBL     | NBT         | NBR  | SBL      | SBT         | SBR  |
| Lane Configurations           | ሻ          | f)       |       |      | ર્ન       | 7          | ሻ       | <b>∱</b> 1≽ |      | ሻ        | <b>∱</b> 1≽ |      |
| Traffic Volume (vph)          | 159        | 180      | 121   | 95   | 223       | 281        | 82      | 789         | 40   | 265      | 1252        | 146  |
| Future Volume (vph)           | 159        | 180      | 121   | 95   | 223       | 281        | 82      | 789         | 40   | 265      | 1252        | 146  |
| Ideal Flow (vphpl)            | 1750       | 1750     | 1750  | 1750 | 1750      | 1750       | 1750    | 1750        | 1750 | 1750     | 1750        | 1750 |
| Total Lost time (s)           | 4.5        | 4.5      |       |      | 4.5       | 4.5        | 4.5     | 4.5         |      | 4.5      | 4.5         |      |
| Lane Util. Factor             | 1.00       | 1.00     |       |      | 1.00      | 1.00       | 1.00    | 0.95        |      | 1.00     | 0.95        |      |
| Frpb, ped/bikes               | 1.00       | 0.99     |       |      | 1.00      | 1.00       | 1.00    | 1.00        |      | 1.00     | 1.00        |      |
| Flpb, ped/bikes               | 1.00       | 1.00     |       |      | 1.00      | 1.00       | 1.00    | 1.00        |      | 1.00     | 1.00        |      |
| Frt                           | 1.00       | 0.94     |       |      | 1.00      | 0.85       | 1.00    | 0.99        |      | 1.00     | 0.98        |      |
| Flt Protected                 | 0.95       | 1.00     |       |      | 0.99      | 1.00       | 0.95    | 1.00        |      | 0.95     | 1.00        |      |
| Satd. Flow (prot)             | 1222       | 1304     |       |      | 1457      | 1293       | 1179    | 2697        |      | 1374     | 2765        |      |
| Flt Permitted                 | 0.30       | 1.00     |       |      | 0.47      | 1.00       | 0.10    | 1.00        |      | 0.26     | 1.00        |      |
| Satd. Flow (perm)             | 386        | 1304     |       |      | 696       | 1293       | 123     | 2697        |      | 369      | 2765        |      |
| Peak-hour factor, PHF         | 0.99       | 0.99     | 0.99  | 0.99 | 0.99      | 0.99       | 0.99    | 0.99        | 0.99 | 0.99     | 0.99        | 0.99 |
| Adj. Flow (vph)               | 161        | 182      | 122   | 96   | 225       | 284        | 83      | 797         | 40   | 268      | 1265        | 147  |
| RTOR Reduction (vph)          | 0          | 18       | 0     | 0    | 0         | 65         | 0       | 3           | 0    | 0        | 6           | 0    |
| Lane Group Flow (vph)         | 161        | 286      | 0     | 0    | 321       | 219        | 83      | 834         | 0    | 268      | 1406        | 0    |
| Confl. Peds. (#/hr)           |            |          | 4     | 4    |           |            | 1       |             | 2    | 2        |             | 1    |
| Confl. Bikes (#/hr)           |            |          |       |      |           |            |         |             | 1    |          |             |      |
| Heavy Vehicles (%)            | 36%        | 22%      | 30%   | 33%  | 12%       | 15%        | 41%     | 22%         | 27%  | 21%      | 18%         | 19%  |
| Turn Type                     | Perm       | NA       |       | Perm | NA        | Perm       | D.P+P   | NA          |      | D.P+P    | NA          |      |
| Protected Phases              |            | 4        |       |      | 8         |            | 5       | 2           |      | 1        | 6           |      |
| Permitted Phases              | 4          | •        |       | 8    |           | 8          | 6       | _           |      | 2        | •           |      |
| Actuated Green, G (s)         | 34.5       | 34.5     |       |      | 34.5      | 34.5       | 82.0    | 66.5        |      | 82.0     | 73.7        |      |
| Effective Green, g (s)        | 34.5       | 34.5     |       |      | 34.5      | 34.5       | 82.0    | 66.5        |      | 82.0     | 73.7        |      |
| Actuated g/C Ratio            | 0.27       | 0.27     |       |      | 0.27      | 0.27       | 0.63    | 0.51        |      | 0.63     | 0.57        |      |
| Clearance Time (s)            | 4.5        | 4.5      |       |      | 4.5       | 4.5        | 4.5     | 4.5         |      | 4.5      | 4.5         |      |
| Vehicle Extension (s)         | 2.5        | 2.5      |       |      | 2.5       | 2.5        | 2.5     | 4.6         |      | 2.5      | 4.6         |      |
| Lane Grp Cap (vph)            | 102        | 346      |       |      | 184       | 343        | 145     | 1379        |      | 352      | 1567        |      |
| v/s Ratio Prot                | 102        | 0.22     |       |      | 101       | 010        | 0.04    | 0.31        |      | 0.09     | c0.51       |      |
| v/s Ratio Perm                | 0.42       | V.LL     |       |      | c0.46     | 0.17       | 0.32    | 0.01        |      | c0.39    | 00.01       |      |
| v/c Ratio                     | 1.58       | 0.83     |       |      | 1.74      | 0.64       | 0.57    | 0.60        |      | 0.76     | 0.90        |      |
| Uniform Delay, d1             | 47.8       | 44.9     |       |      | 47.8      | 42.2       | 16.8    | 22.5        |      | 28.9     | 24.8        |      |
| Progression Factor            | 1.00       | 1.00     |       |      | 1.00      | 1.00       | 1.00    | 1.00        |      | 1.35     | 1.37        |      |
| Incremental Delay, d2         | 301.8      | 14.5     |       |      | 356.6     | 3.4        | 4.4     | 2.0         |      | 0.9      | 0.9         |      |
| Delay (s)                     | 349.6      | 59.4     |       |      | 404.3     | 45.7       | 21.3    | 24.4        |      | 39.9     | 34.8        |      |
| Level of Service              | F          | E        |       |      | F         | D          | C       | С           |      | D        | С           |      |
| Approach Delay (s)            | •          | 159.9    |       |      | 236.0     |            |         | 24.1        |      |          | 35.6        |      |
| Approach LOS                  |            | F        |       |      | F         |            |         | С           |      |          | D           |      |
| Intersection Summary          |            |          |       |      |           |            |         |             |      |          |             |      |
| HCM 2000 Control Delay        |            |          | 81.5  | Н    | CM 2000   | Level of   | Service |             | F    |          |             |      |
| HCM 2000 Volume to Capa       | city ratio |          | 1.15  |      |           |            |         |             |      |          |             |      |
| Actuated Cycle Length (s)     |            |          | 130.0 | S    | um of los | t time (s) |         |             | 13.5 |          |             |      |
| Intersection Capacity Utiliza | ation      |          | 99.9% | IC   | U Level   | of Service | Э       |             | F    |          |             |      |
| Analysis Period (min)         |            |          | 15    |      |           |            |         |             |      |          |             |      |
| c Critical Lane Group         |            |          |       |      |           |            |         |             |      |          |             |      |

| Intersection           |           |          |         |          |             |         |                      |                                |  |
|------------------------|-----------|----------|---------|----------|-------------|---------|----------------------|--------------------------------|--|
| Int Delay, s/veh       | 117.6     |          |         |          |             |         |                      |                                |  |
| Movement               | EBL       | EBR      | NBL     | NBT      | SBT         | SBR     |                      |                                |  |
| Lane Configurations    | ሻ         | 7        |         | 414      | <b>†</b> 1> |         |                      |                                |  |
| Traffic Vol, veh/h     | 87        | 84       | 82      | 917      | 1176        | 245     |                      |                                |  |
| Future Vol, veh/h      | 87        | 84       | 82      | 917      | 1176        | 245     |                      |                                |  |
| Conflicting Peds, #/hr | 0         | 1        | 1       | 0        | 0           | 1       |                      |                                |  |
| Sign Control           | Stop      | Stop     | Free    | Free     | Free        | Free    |                      |                                |  |
| RT Channelized         | Slop<br>- |          |         | None     | -           |         |                      |                                |  |
| Storage Length         | 110       | 0        | _       | -        | _           | None    |                      |                                |  |
|                        |           | -        |         | 0        | 0           | -       |                      |                                |  |
| Veh in Median Storage  | 0         |          | -       | 0        | 0           |         |                      |                                |  |
| Grade, %               |           | -        | -       |          |             | -       |                      |                                |  |
| Peak Hour Factor       | 92        | 92       | 92      | 92       | 92          | 92      |                      |                                |  |
| Heavy Vehicles, %      | 21        | 35       | 31      | 25       | 29          | 16      |                      |                                |  |
| Mvmt Flow              | 95        | 91       | 89      | 997      | 1278        | 266     |                      |                                |  |
|                        |           |          |         |          |             |         |                      |                                |  |
|                        | Minor2    |          | Major1  |          | Major2      |         |                      |                                |  |
| Conflicting Flow All   | 2089      | 774      | 1546    | 0        | -           | 0       |                      |                                |  |
| Stage 1                | 1412      | -        | -       | -        | -           | -       |                      |                                |  |
| Stage 2                | 677       | -        | -       | -        | -           | -       |                      |                                |  |
| Critical Hdwy          | 7.22      | 7.6      | 4.72    | -        | -           | -       |                      |                                |  |
| Critical Hdwy Stg 1    | 6.22      | -        | -       | -        | -           | -       |                      |                                |  |
| Critical Hdwy Stg 2    | 6.22      | -        | -       | -        | -           | -       |                      |                                |  |
| Follow-up Hdwy         | 3.71      | 3.65     | 2.51    | -        | -           | -       |                      |                                |  |
| Pot Cap-1 Maneuver     | ~ 36      | 278      | 309     | _        | -           | _       |                      |                                |  |
| Stage 1                | 161       | -        | _       | _        | _           | _       |                      |                                |  |
| Stage 2                | 418       | _        | _       | _        | _           | _       |                      |                                |  |
| Platoon blocked, %     | 110       |          |         | _        | _           | _       |                      |                                |  |
| Mov Cap-1 Maneuver     | ~ 13      | 277      | 309     | _        | _           | _       |                      |                                |  |
| Mov Cap-2 Maneuver     |           | -        | -       | _        | _           | _       |                      |                                |  |
| Stage 1                | 161       |          | _       |          | _           |         |                      |                                |  |
| Stage 2                | 148       | -        | _       | -<br>-   | -           | _       |                      |                                |  |
| Slaye 2                | 140       | <u>-</u> | _       | <u>-</u> | _           | -       |                      |                                |  |
|                        | ==        |          | L I D   |          | 0.5         |         |                      |                                |  |
| Approach               | EB        |          | NB      |          | SB          |         |                      |                                |  |
| HCM Control Delay, \$  |           |          | 7.1     |          | 0           |         |                      |                                |  |
| HCM LOS                | F         |          |         |          |             |         |                      |                                |  |
|                        |           |          |         |          |             |         |                      |                                |  |
| Minor Lane/Major Mvr   | nt        | NBL      | NBT I   | EBLn1 I  | EBLn2       | SBT     | SBR                  |                                |  |
| Capacity (veh/h)       |           | 309      | -       | 13       | 277         | -       | -                    |                                |  |
| HCM Lane V/C Ratio     |           | 0.288    | -       | 7.274    | 0.33        | -       | -                    |                                |  |
| HCM Control Delay (s   | )         | 21.3     |         | 3396.4   | 24.3        | -       | -                    |                                |  |
| HCM Lane LOS           | ,         | С        | A       | F        | С           | -       | -                    |                                |  |
| HCM 95th %tile Q(veh   | 1)        | 1.2      | -       | 12.9     | 1.4         | -       | -                    |                                |  |
| ,                      | ,         |          |         |          |             |         |                      |                                |  |
| Notes                  |           | Φ. D.    |         | 1 00     | 10          |         | L.C. N. D.C.         | * All                          |  |
| ~: Volume exceeds ca   | pacity    | \$: De   | iay exc | eeds 30  | JUS         | +: Comp | outation Not Defined | *: All major volume in platoon |  |

# **TECHNICAL MEMORANDUM #5**

**Alternatives Analysis and Funding Program** 



Date: June 7, 2019 Project #: 21071.4

To: Chris Kerr & Eric Liljequist, City of Woodburn

Michael Duncan, Oregon Department of Transportation, Region 2 Technical Advisory Committee and Community Advisory Committee

From: Matt Hughart and Molly McCormick, Kittleson & Associates, Inc.

Subject: Technical Memo #5: Alternatives Analysis and Funding Program (Subtask 4.2)

This memorandum identifies potential alternatives to address the issues identified in *Tech Memo 3:* Existing Conditions Inventory and Analysis and Tech Memo 4: Future Systems Conditions. Attachment "A" contains a menu of potential solutions that can be used to address many of these needs identified in this memo. The solutions include those related to the following:

- Auto-related Alternatives
- Street Connectivity and Extension Plan
- Transportation System Management and Operations
- Access Management and Spacing
- Bicycle
- Pedestrian
- Multi-Use Paths

- Transit
- Intermodal Route Connectivity
- Rail
- Freight
- Safe Routes to School
- Safety
- Funding Programs

The solutions include potential policies, plans, programs, and projects for inclusion in the Woodburn Transportation System Plan (TSP) update. These solutions were reviewed by the project Technical Advisory Committee (TAC), Community Advisory Committee (CAC), and general public to determine if they should move forward into the Draft TSP update and to identify the highest priorities for limited funding.

### **AUTO-RELATED ALTERNATIVES**

Streets serve a majority of all trips within Woodburn across all travel modes. In addition to motorists, pedestrians, bicyclists, and public transit riders use streets to access areas locally and regionally. This section summarizes the solutions considered for implementation within the City of Woodburn and the

potential alternatives proposed at specific locations to address existing gaps and deficiencies in the auto system and future needs.

### Solutions Considered

The following provides a description of different solutions considered for the auto system.

### Street Connectivity Solutions

Although the Woodburn's downtown is largely built on a grid system, much of the residential neighborhood, commercial, and industrial development throughout the city has resulted in a network of cul-de-sacs and stubs streets. These streets can be desirable to residents because they can limit traffic speeds and volumes on local streets, but cul-de-sacs and stub streets result in longer trip distances, increased reliance on arterials for local trips, and limited options for people to walk and bike to the places they want to go.

The future street system needs to balance the benefits of providing a well-connected grid system with the connectivity challenges in the city due to I-5 and railroads running through the city and existing development. Incremental improvements to the street system can be planned carefully to provide route choices for motorists, cyclists, and pedestrians while accounting for potential neighborhood impacts. In addition, the quality of the transportation system can be improved by making connectivity improvements to the pedestrian and bicycle system separate from street connectivity, as discussed through solutions presented in later sections.

The following are potential connectivity solutions that can be applied in the City of Woodburn.

- Re-designate a roadway with a higher or lower functional classification to improve the order and function of the roadway
- Construct a new roadway or extend an existing roadway to improve connectivity within an area
  of the city

### **Capacity-Based Solutions**

#### Turn Lanes

Separate left- and right-turn lanes, as well as two-way left-turn lanes (TWLTL) can provide separation between slowed or stopped vehicles waiting to turn and through vehicles. The design of turn lanes is largely determined based on a traffic study that identifies the storage length needed to accommodate vehicle queues. Turn lanes are commonly used at intersections where the turning volumes warrant the need for separation.

### Traffic Signals

Traffic signals allow opposing streams of traffic to proceed in an alternating pattern. National and state guidance indicates when it is appropriate to install traffic signals at intersections. When used, traffic signals can effectively manage high traffic volumes and provide dedicated times in which pedestrians and cyclists can cross roadways. Because they continuously draw from a power source and must be periodically re-timed, signals typically have higher maintenance costs than other types of intersection control. Signals can improve safety at intersections where signal warrants are met, however, they may result in an increase in rear-end crashes compared to other solutions. Signals have a significant range in costs depending on the number of approaches, how many through and turn lanes each approach has, and if it is located in an urban or rural area. The cost of a new traffic signal ranges from approximately \$250,000 in rural areas to \$500,000 in urban areas.

# Signal Timing/Phasing Modifications

Signal retiming and optimization offers a relatively low-cost option to increase system efficiency. Retiming and optimization refers to updating timing plans to better match prevailing traffic conditions and coordinating signals. Timing optimization can be applied to existing systems or may include upgrading signal technology, such as signal communication infrastructure, signal controllers, or cabinets. Signal retiming can reduce travel times and be especially beneficial to improving travel time reliability. In high pedestrian or desired pedestrian areas, signal retiming can facilitate pedestrian movements through intersections by increasing minimum green times to give pedestrians time to cross during each cycle, which may create additional delay for other intersection users. Signals can also facilitate bicycle movements with the inclusion of bicycle detectors.

Signal upgrades often come at a higher cost than signal timing and phasing modifications and usually require further coordination between jurisdictions. However, upgrading signals provides the opportunity to incorporate advanced signal systems to further improve the efficiency of a transportation network. Strategies include coordinated signal operations across jurisdictions, centralized control of traffic signals, adaptive or active signal control, and transit or freight signal priority as further described in the Transportation System Management and Operations (TSMO) section. These advanced signal systems can reduce delay, travel time, and the number of stops for transit, freight, and other vehicles. In addition, these systems may help reduce vehicle emissions and improve travel time reliability.

### Roundabouts

Roundabouts are circular intersections where entering vehicles yield to vehicles already in the circle. They are designed to slow vehicle speeds to 20 to 30 mph or less before they enter the intersection, which promotes a more comfortable environment for pedestrians, bicyclists, and other non-motorized users. Roundabouts have fewer conflict-points and have been shown to reduce the severity of crashes, as compared to signalized intersections. Roundabouts can be more costly to design and install when compared to other intersection control types, but they have a lower operating and maintenance cost

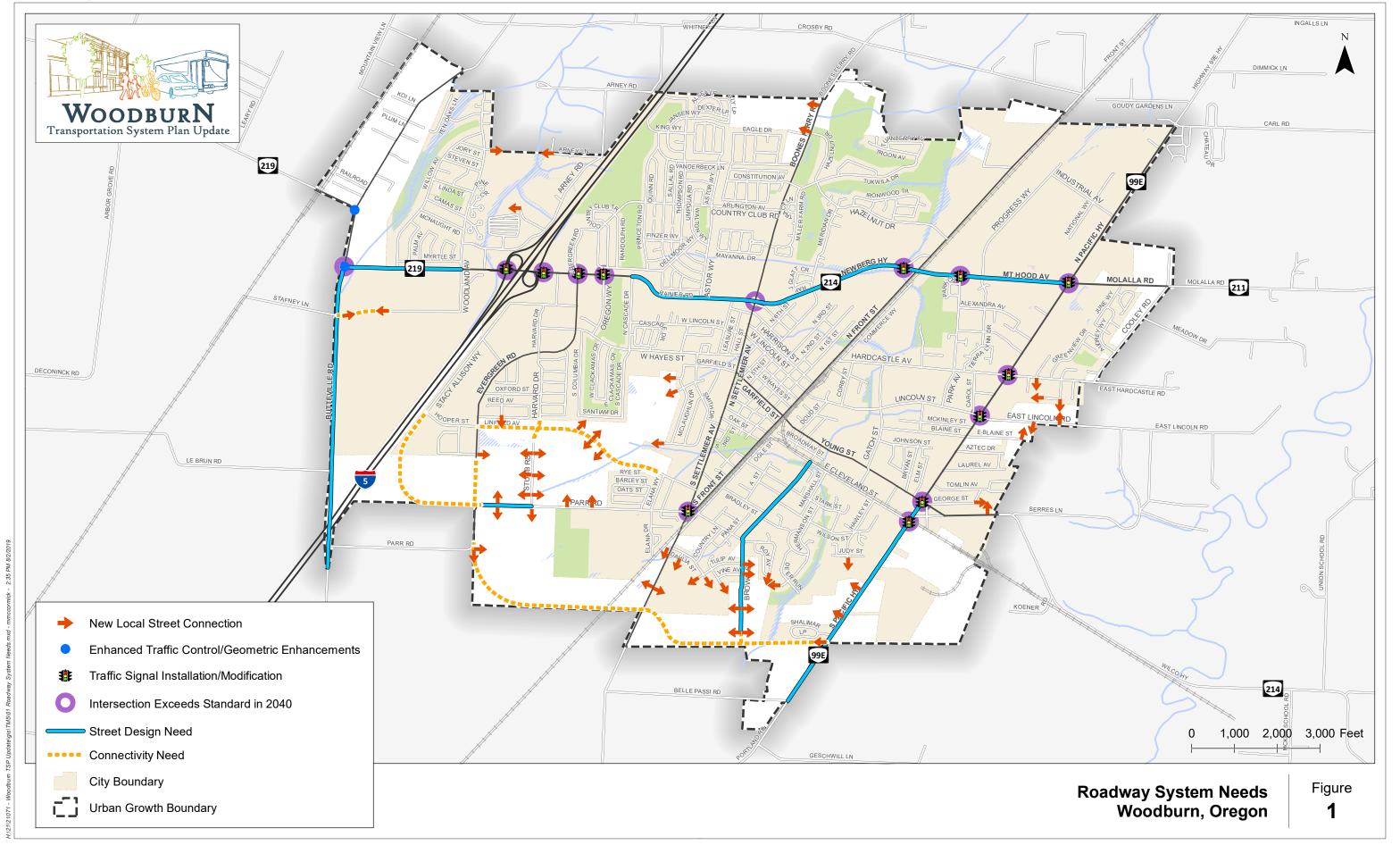
than traffic signals. Topography must be carefully evaluated in considering a roundabout, given that slope characteristics at an intersection may render a roundabout infeasible. The cost of a new roundabouts ranges from approximately \$2 million to \$4 million depending upon the number of lanes and the slope conditions.





Traffic Signal Roundabout

# Through Lanes


When the demand per lane on a roadway segment has reached saturation, a potential solution is to construct additional through lanes. Although this theoretically adds capacity to the corridor, added lanes can allow latent demand from the system to show an increase in demand. Added lanes may also create induced demand where drivers see that roadway as less of a barrier with its increased capacity, drawing in additional new demand and potentially maintaining or worsening the rate of congestion.

When a roadway does not have a consistent number of travel lanes per direction along a corridor, an added through lane may provide a consistent cross-section allowing for less weaving by vehicles traveling the corridor.

# **Potential Improvements**

The following improvements have been organized by location. Where there are multiple improvements, the improvements shown in **bold text** were identified as the preferred improvement based on an evaluation of environmental, engineering, land use "fatal flaws", and anticipated funding capacity as well as discussions with the project team, advisory committees, and the general public. Figure 1 illustrated the roadway system needs discussed below. Attachment "B" contains the year 2040 future capacity-based alternatives traffic conditions worksheets.

Woodburn TSP Update
June 2019



### **Street Connectivity Improvements**

# Arterial/Collector/Access Street Connectivity Needs

The following identifies potential connectivity improvements for collector and arterial-level roadways, including potential changes to the city's functional classification plan.

- Re-designate Ben Brown Lane as an Access Street from Settlemier Avenue to Elans Way. Extend Ben Brown Lane to Evergreen Road as an Access Street as part of future residential development
- Construct the Southern Arterial from Evergreen Road to OR 99E (2 lanes)
- Extend Evergreen Road south to Parr Road
- Extend Stacy Allison Way south to Parr Road
- Extend Brown Street south to the South Arterial
- Extend Woodland Avenue west to Butteville Road through future development

### Local Street Connectivity Needs

The local street system within Woodburn's existing residential area is largely built-out. However, there are a number of residentially zoned areas that could experience future low-density residential growth in the southwest, south, and southeast parts of the City. Within these areas, there are opportunities for new local streets that could improve access and circulation for all travel modes. Figure 1 illustrates the location of the local street connections.

# **Capacity-Based Improvements**

### Upgrade/widen Roadway

The following identifies potential roadway segments to upgrade to their determined functional classification standard or to widen to construct additional travel lanes.

- Widen OR 219 from Butteville Road to Willow Avenue to include two lanes in each direction and a two-way left-turn lane (state highway)
- Widen OR 214 from Cascade Drive to OR 99E to include two lanes in each direction and a twoway left-turn lane, including changes to signal timing as appropriate (state highway)
- Widen OR 99E from Lincoln Street to southern UGB to provide a two-way left-turn lane and wider shoulders, including impacts to the railroad crossing (in conjunction with pedestrian and bicycle facility improvements) (state highway)
- Upgrade Parr Road to service collector urban standards (country roadway)
- Upgrade Butteville Road south of OR 219 to minor arterial urban standards (county roadway)
- Upgrade Brown Street to service collector urban standards (city roadway)

### Butteville Road/OR 219

Parr Road/Settlemier Avenue is forecast to not meet the ODOT's operating standard of a v/c less than 0.90 under future 2040 conditions. The critical northbound through movement is forecast to experience average delays greater than 100 seconds per vehicle. Therefore, the following improvements are being considered at the intersection:

- Install intersection capacity improvement such as traffic signal (if/when warranted), turn lanes, or roundabout.
- Install an uncoordinated traffic signal with actuated timing (if/when warranted).

| Solution                                          | v/c  | Delay (seconds) | LOS |
|---------------------------------------------------|------|-----------------|-----|
| Install a traffic signal with westbound turn lane | 0.86 | 20.0            | С   |

# OR 214/I-5 Southbound Ramp

OR 214/I-5 Southbound Ramp is forecast to not meet ODOT's operating standard of a v/c less than 0.85 under future 2040 conditions. While the intersection is not meeting the 0.85 mobility target, the intersection is forecast to still have available capacity. As such, mitigation measures that involve physical improvements may not be necessary. Therefore, the following improvements are being considered at the intersection:

- Increase the cycle length from 100 to 120 seconds and optimize the signal timing. The expectation is that all signalized intersections from the I-5 Southbound Ramp to Oregon Way will have increased cycle lengths and continue to operate in coordination.
- Increase the cycle length from 100 to 150 seconds and optimize the signal timing. The expectation is that all signalized intersections from the I-5 Southbound Ramp to Oregon Way will have increased cycle lengths and continue to operate in coordination. This is an unlikely timing scenario based on current ODOT signal timing practices for a city the size of Woodburn.

| Solution                                  | V/C  | Delay (seconds) | LOS |
|-------------------------------------------|------|-----------------|-----|
| Signal retiming – 120 second cycle length | 0.82 | 21.7            | С   |
| Signal retiming – 150 second cycle length | 0.78 | 24.6            | С   |

### OR 214/I-5 Northbound Ramp

OR 214/I-5 Northbound Ramp is forecast to not meet ODOT's operating standard of a v/c less than 0.85 under future 2040 conditions. The critical westbound through movement is forecast to experience average delays greater than 20 seconds per vehicle. Therefore, the following improvements are being considered at the intersection:

- Increase the cycle length from 100 to 120 seconds and optimize the signal timing. The expectation is that all signalized intersections from the I-5 Southbound Ramp to Oregon Way will have increased cycle lengths and continue to operate in coordination.
- Increase the cycle length from 100 to 150 seconds and optimize the signal timing. The expectation is that all signalized intersections from the I-5 Southbound Ramp to Oregon Way will have increased cycle lengths and continue to operate in coordination. This is an unlikely timing scenario based on current ODOT signal timing practices for a city the size of Woodburn.

| Solution                                  | v/c  | Delay (seconds) | LOS |
|-------------------------------------------|------|-----------------|-----|
| Signal retiming – 120 second cycle length | 0.92 | 32.8            | С   |
| Signal retiming – 150 second cycle length | 0.91 | 36.5            | D   |

# OR 214/Evergreen Road

OR 214/Evergreen Road is forecast to not meet ODOT's operating standard of a v/c less than 0.95 under future 2040 conditions. The critical eastbound through movement is forecast to experience average delays greater than 250 seconds per vehicle. Therefore, the following improvements are being considered at the intersection:

- Increase the cycle length from 100 to 120 seconds and optimize the signal timing. The expectation is that all signalized intersections from the I-5 Southbound Ramp to Oregon Way will have increased cycle lengths and continue to operate in coordination.
- Increase the cycle length from 100 to 150 seconds and optimize the signal timing. The expectation is that all signalized intersections from the I-5 Southbound Ramp to Oregon Way will have increased cycle lengths and continue to operate in coordination. This is an unlikely timing scenario based on current ODOT signal timing practices for a city the size of Woodburn.

| Solution                                  | V/C  | Delay (seconds) | LOS |
|-------------------------------------------|------|-----------------|-----|
| Signal retiming – 120 second cycle length | 1.12 | 104.4           | F   |
| Signal retiming – 150 second cycle length | 1.13 | 93.8            | F   |

# OR 214/Oregon Way/Country Club Road

OR 214/Oregon Way/Country Club Road is forecast to not meet ODOT's operating standard of a v/c less than 0.95 under future 2040 conditions. The critical westbound through movement is forecast to experience average delays greater than 80 seconds per vehicle. Therefore, the following improvements are being considered at the intersection:

- Increase the cycle length from 100 to 120 seconds and optimize the signal timing. The expectation is that all signalized intersections from the I-5 Southbound Ramp to Oregon Way will have increased cycle lengths and continue to operate in coordination.
- Increase the cycle length from 100 to 150 seconds and optimize the signal timing. The expectation is that all signalized intersections from the I-5 Southbound Ramp to Oregon Way will have increased cycle lengths and continue to operate in coordination. This is an unlikely timing scenario based on current ODOT signal timing practices for a city the size of Woodburn.

| Solution                                  | v/c  | Delay (seconds) | LOS |
|-------------------------------------------|------|-----------------|-----|
| Signal retiming – 120 second cycle length | 0.94 | 32.3            | С   |
| Signal retiming – 150 second cycle length | 0.88 | 26.2            | С   |

# OR 214/Boones Ferry Road NE/N Settlemier Avenue

OR 214/Boones Ferry Road NE/N Settlemeier Avenue is forecast to not meet ODOT's operating standard of a v/c less than 0.95 under future 2040 conditions. The critical westbound through movement is forecast to experience average delays greater than 250 seconds per vehicle. See the OR 214 widening improvement earlier in this section for the preferred alternative at this intersection.

### OR 214/Front Street

OR 214/Front Street is forecast to not meet ODOT's operating standard of a v/c less than 0.95 under future 2040 conditions. The critical southbound movements are forecast to experience average delays greater than 300 seconds per vehicle. In addition to the below improvement, see the OR 214 widening improvement for another alternative at this intersection.

- Install intersection capacity improvement such as traffic signal (if/when warranted), turn lanes, or roundabout.
- Install a traffic signal with actuated timing (if/when warranted). Similar to other signalized intersections along the segment of OR 214 between Cascade Drive and OR 99E, this improvement is proposed as an uncoordinated signalized intersection.

| Solution                 | v/c  | Delay (seconds) | LOS |
|--------------------------|------|-----------------|-----|
| Install a traffic signal | 0.91 | 21.8            | С   |

### OR 214/Park Avenue

OR 214/Park Avenue is forecast to not meet ODOT's operating standard of a v/c less than 0.95 under future 2040 conditions. The critical northbound and southbound left-turn movements are forecast to experience average delays greater than 300 seconds per vehicle. In addition to the below improvement, see the OR 214 widening improvement for another alternative at this intersection.

- Install intersection capacity improvement such as traffic signal (if/when warranted), turn lanes, or roundabout.
- Install a traffic signal with actuated timing (if/when warranted). Similar to other signalized intersections along the segment of OR 214 between Cascade Drive and OR 99E, this improvement is proposed as an uncoordinated signalized intersection.

| Solution                 | v/c  | Delay (seconds) | LOS |
|--------------------------|------|-----------------|-----|
| Install a traffic signal | 0.92 | 23.7            | С   |

### OR 214/OR 211/OR 99E

OR 214/OR 211/OR 99E is forecast to not meet ODOT's operating standard of a v/c less than 0.95 under future 2040 conditions. The critical southbound through movement is forecast to experience average delays greater than 120 seconds per vehicle. Therefore, the following improvements are being considered at the intersection:

 Install a second left-turn lane on the southbound approach, install a second receiving lane on the east leg, and update signal timing.

| Solution                      | v/c  | Delay (seconds) | LOS |
|-------------------------------|------|-----------------|-----|
| Turn lane and signal retiming | 1.19 | 112.7           | F   |

### Parr Road/Settlemier Avenue

Parr Road/Settlemier Avenue is forecast to not meet the City's operating standard of a v/c less than 0.90 under future 2040 conditions. The critical eastbound through movement is forecast to experience average delays greater than 100 seconds per vehicle. Therefore, the following improvements are being considered at the intersection:

- Install intersection capacity improvement such as traffic signal (if/when warranted), turn lanes, or roundabout.
- Install an uncoordinated traffic signal with actuated timing (if/when warranted).

| Solution                 | v/c  | Delay (seconds) | LOS |  |
|--------------------------|------|-----------------|-----|--|
| Install a traffic signal | 0.85 | 17.1            | В   |  |

### OR 99E/Hardcastle Avenue

OR 99E/Hardcastle Avenue is forecast to not meet ODOT's operating standard of a v/c less than 0.90 under future 2040 conditions. The critical southbound through movement is forecast to experience average delays greater than 30 seconds per vehicle. Therefore, the following improvements are being considered at the intersection:

- Reconfigure the westbound approach to have a separate left-turn lane and a shared throughright turn lane.
- In addition to reconfiguring the westbound approach, install a separate right-turn lane on the southbound approach. Review and update signal timing as needed.

| Solution                           | v/c  | Delay (seconds) | LOS |
|------------------------------------|------|-----------------|-----|
| Reconfigure east leg               | 0.95 | 26.7            | С   |
| Turn lane and reconfigure east leg | 0.90 | 24.3            | С   |

### OR 99E/Lincoln Street

OR 99E/Lincoln Street is forecast to not meet ODOT's operating standard of a v/c less than 0.90 under future 2040 conditions. The critical southbound through movement is forecast to experience average delays greater than 40 seconds per vehicle. Therefore, the following improvements are being considered at the intersection:

- Install a shared through-right turn lane on the eastbound approach and reconfigure the existing approach lane as a separate left-turn lane.
- In addition to reconfiguring the eastbound approach, install a separate right-turn lane on the southbound approach. Review and update signal timing as needed.

| Solution             | v/c  | Delay (seconds) | LOS |
|----------------------|------|-----------------|-----|
| Reconfigure west leg | 0.92 | 18.8            | В   |
| Turn lane            | 0.86 | 16.2            | В   |

### OR 99E/Young Street

OR 99E/Young Street is forecast to not meet ODOT's operating standard of a v/c less than 0.90 under future 2040 conditions. The critical southbound through movement is forecast to experience average delays greater than 30 seconds per vehicle. Therefore, the following improvements are being considered at the intersection:

• Install a third westbound lane to provide separate left, thru, and right turn lanes. Implement protected-permissive left-turn phasing on the eastbound and westbound approaches.

| Solution                             | v/c  | Delay (seconds) | LOS |
|--------------------------------------|------|-----------------|-----|
| Turn lane and signal phasing updates | 0.98 | 41.3            | D   |

### OR 99E/Cleveland Street

OR 99E/Cleveland Street is forecast to not meet ODOT's operating standard of a v/c less than 0.90 under future 2040 conditions. The critical westbound through movement is forecast to experience average delays greater than 80 seconds per vehicle. Therefore, the following improvements are being considered at the intersection:

• Install intersection capacity improvement such as a traffic signal (if/when warranted), turn lanes, or roundabout. Similar to other signalized intersections along OR 99E, one potential improvement is proposed as a coordinated signalized intersection with a cycle length of 130 seconds.

| Solution                 | v/c  | Delay (seconds) | LOS |
|--------------------------|------|-----------------|-----|
| Install a traffic signal | 0.76 | 9.3             | A   |

# **Modeled Alternative Packages**

The above potential capacity-based improvements were explored using the volumes developed from the 2040 no-build travel demand model output provided by TPAU, as described in Technical Memorandum #4: Future Systems Conditions. Forecast traffic volumes were developed for the study intersections based on the existing traffic counts and information provided in the Woodburn travel demand model. The travel demand model provides base year 2015 and forecast year 2040 traffic volume projections that reflect anticipated land use changes and any funded transportation improvements within the study area. The forecast traffic volumes were developed by applying the post-processing methodology presented in the National Cooperative Highway Research Program (NCHRP) Report 255 Highway Traffic Data for Urbanized Area Project Planning and Design, in conjunction with engineering judgment and knowledge of the study area.

Output for three additional model alternatives were provided through the Woodburn travel demand model to understand the traffic impacts of constructing specific connectivity projects in Woodburn. Attachment "C" contains the travel demand model data provided by TPAU for the three additional alternatives. The improvements included in each alternative are described below.

### **Modeled Improvement Alternative 1**

Alternative 1 focused on widening sections of the OR 214 and OR 99E corridors to provide consistent cross-sections, minimize weaving, and limit bottlenecks for through traffic on the major east-west and north-south connections. The following capacity-based improvements were modeled as part of Alternative 1:

- Widen OR 219 from Butteville Road to Woodland Avenue to include two lanes in each direction and a two-way left-turn lane
- Widen OR 214 from Cascade Drive to OR 99E to include two lanes in each direction and a twoway left-turn lane
- Widen OR 99E from Young Street to southern UGB to provide a two-way left-turn lane and wider shoulders (in conjunction with pedestrian and bicycle facility improvements)

Although this alternative provided more capacity along the OR 214 and OR 99E corridors, portions of those segments were found to experience more delay compared to the no-build scenario. This may be due to latent demand within the larger roadway network. All study intersections that were forecast to not meet standards in the no-build scenario were found to continue to not meet standards in Alternative 1.

### **Modeled Improvement Alternative 2**

Alternative 2 builds upon the projects in Alternative 1 with the inclusion of major roadway connectivity projects in the developing segments of western Woodburn. The following additional improvements were modeled as part of Alternative 2:

- Construct a grid system of access and local streets as development occurs in the UGB expansion area between Stacy Allison Way and Settlemier Avenue to the north of Parr Road
- Extend Evergreen Road south to Parr Road
- Extend Stacy Allison Way south to Parr Road
- Extend Woodland Avenue west to Butteville Road through future development

Similar to Alternative 2, study intersections continue to not meet standards with these improvements in place, although intersections along Front Avenue and OR 99E experience a small decrease in demand and delay. Better collector-level connectivity will provide some route alternatives for the anticipated growth in southwest Woodburn, but the main east-west travel corridors are forecast to continue to experience capacity constraints and congestion at major intersections.

#### Alternative 3

Alternative 3 incorporates a new southern arterial, which has been a planned east-west connection in south Woodburn for over a decade. In addition to all improvements modeled in Alternatives 1 and 2, Alternative 3 includes:

 A new two-lane arterial roadway that would be developed along the south UGB boundary connecting Parr Road (at Evergreen Road) to OR 99E.

Based on the Woodburn travel demand model output, all regionally significant study intersections continue to not meet standards with the inclusion of the southern arterial. Although it provides a needed east-west alternative to OR 214, the southern arterial lacks a direct connection to I-5, limiting its effectiveness as a regional east-west alternative. However, such a connection would provide an important east-west alternative for Woodburn that would greatly benefit all new industrial and residential development in the growing southwest portion of the City.

Table 1 summarizes the results of the future alternatives traffic operations analysis at the study intersections under year 2040 traffic conditions. *Attachment "D" contains the year 2040 future alternatives traffic conditions worksheets.* As shown in Table 1, 14 study intersections were forecast to exceed their acceptable mobility standards and targets under year 2040 no-build forecast traffic conditions. The same study intersections, with the exception of Parr Road/Settlemier Avenue, are forecast to also not meet standards under the three alternative scenarios modeled.

Table 1: Alternatives Comparison - Weekday PM Peak Hour Intersection Operations

| •         |                                              | Mobility Target/<br>Operations Standard |                    | Target/<br>Standard Met? |                  |                  |                  |  |
|-----------|----------------------------------------------|-----------------------------------------|--------------------|--------------------------|------------------|------------------|------------------|--|
| Map<br>ID | Intersection                                 | Agency                                  | Maximum            | 2040<br>No-Build         | Alternative<br>1 | Alternative<br>2 | Alternative<br>3 |  |
|           | Signalized Intersections                     |                                         |                    |                          |                  |                  |                  |  |
| 2         | OR 219/Woodland Avenue                       | ODOT                                    | v/c 0.95           | Yes                      | Yes              | Yes              | Yes              |  |
| 3         | OR 214/I-5 Southbound Ramp                   | ODOT                                    | v/c 0.85           | No                       | No               | No               | No               |  |
| 4         | OR 214/I-5 Northbound Ramp                   | ODOT                                    | v/c 0.85           | No                       | No               | No               | No               |  |
| 5         | OR 214/Evergreen Road                        | ODOT                                    | v/c 0.95           | No                       | No               | No               | No               |  |
| 6         | OR 214/Oregon Way/Country<br>Club Road       | ODOT                                    | v/c 0.95           | No                       | No               | No               | No               |  |
| 8         | OR 214/Boones Ferry Road NE                  | ODOT                                    | v/c 0.95           | No                       | No               | No               | No               |  |
| 9         | OR 214/Meridian Drive/5 <sup>th</sup> Street | ODOT                                    | v/c 0.95           | Yes                      | Yes              | Yes              | Yes              |  |
| 12        | OR 214/OR 211/OR 99E                         | ODOT                                    | v/c 0.95           | No                       | No               | No               | No               |  |
| 19        | OR 99E/Hardcastle Avenue                     | ODOT                                    | v/c 0.90           | No                       | No               | No               | No               |  |
| 20        | OR 99E/Lincoln Street                        | ODOT                                    | v/c 0.90           | No                       | No               | No               | No               |  |
| 21        | OR 99E/Young Street                          | ODOT                                    | v/c 0.90           | No                       | No               | No               | No               |  |
|           |                                              | Uı                                      | nsignalized Inte   | rsections                |                  |                  |                  |  |
| 1         | Butteville Road/OR 219                       | ODOT                                    | v/c 0.90           | No                       | No               | No               | No               |  |
| 7         | Cascade Drive/OR 214                         | ODOT                                    | v/c 0.95           | Yes                      | Yes              | Yes              | Yes              |  |
| 10        | Front Street/OR 214                          | ODOT                                    | v/c 0.95           | No                       | No               | No               | No               |  |
| 11        | Park Avenue/OR 214                           | ODOT                                    | v/c 0.95           | No                       | No               | No               | No               |  |
| 13        | Boones Ferry Road NE/Crosby<br>Road          | County                                  | LOS D and v/c 0.85 | Yes                      | Yes              | Yes              | Yes              |  |
| 14        | Hardcastle Avenue/Front Street               | City                                    | v/c 0.90           | Yes                      | Yes              | Yes              | Yes              |  |
| 15        | Lincoln Street/Front Street                  | City                                    | v/c 0.90           | Yes                      | Yes              | Yes              | Yes              |  |
| 16        | Garfield Street/Young<br>Street/Front Street | City                                    | v/c 0.90           | Yes                      | Yes              | Yes              | Yes              |  |
| 17        | Cleveland Street/Front Street                | City                                    | v/c 0.90           | Yes                      | Yes              | Yes              | Yes              |  |
| 18        | Parr Road/Settlemier Avenue                  | City                                    | v/c 0.90           | No                       | No               | No               | Yes              |  |
| 22        | OR 99E/Cleveland Street                      | ODOT                                    | v/c 0.90           | No                       | No               | No               | No               |  |

#### Notes:

LOS = Intersection Level of Service (Signal), Critical Movement Level of Service (TWSC).

Delay = Intersection Average vehicle delay (Signal), critical movement vehicle delay (TWSC).

V/C = Intersection V/C (Signal) critical movement V/C (TWSC).

MOE = Measure of Effectiveness

Woodburn, Oregon

### TRANSPORTATION SYSTEM MANAGEMENT AND OPERATIONS

Transportation Demand Management (TDM) and Transportation System Management (TSM) strategies are two complementary approaches to managing transportation and maximizing the existing system. Together, these strategies are referred to as Transportation System Management and Operations (TSMO). TDM addresses the *demand* on the system: the number of vehicles traveling on the roadways each day. TDM alternatives include any method intended to shift travel demand from single occupant vehicles to non-auto modes or carpooling, travel along less congested roadways, or at less congested times of the day. TSM addresses the *supply* of the system: using strategies to improve the system efficiency without increasing roadway widths or building new roads. TSM alternatives are focused on improving operations by enhancing capacity during peak times, typically with advanced technologies to improve traffic operations.

The following section provides an overview of a broad range of TSMO measures that are being implemented and considered in Oregon and identifies and explains those that are most applicable to the City of Woodburn.

### Solutions Considered

Successful implementation of TSMO strategies relies on the participation of a variety of public and private entities. Strategies can be implemented by the city, a neighborhood, or particular employer. In addition, they can be categorized as policies, programs, or physical infrastructure investments. Table 2 provides a summary of potential measures that can be implemented within Woodburn and which entities are generally in the position to implement each one. As the city continues to grow and redevelop over the next 10 to 20 years, the applicability of these strategies can be further reviewed. Additional information on potential strategy implementation within Woodburn is discussed below.

The following section provides more detail on policy, programming, and infrastructure TSMO strategies that may be effective for managing transportation demand and increasing system efficiency in the City of Woodburn, especially within the next 10 to 20 years.

Table 2: Transportation System Management and Transportation Demand Management Strategies

| TSMO Strategy                         | TDM or<br>TSM? | Type of<br>Investment     | City | State | Transit<br>Provider | Employers | Developers |
|---------------------------------------|----------------|---------------------------|------|-------|---------------------|-----------|------------|
| Parking management                    | TSM/TDM        | Policy                    | Р    |       | S                   | S         | S          |
| Limited/flexible parking requirements | TDM            | Policy                    | Р    |       |                     | S         | S          |
| Access management                     | TSM/TDM        | Policy/<br>Infrastructure | Р    | Р     |                     |           |            |
| Connectivity standards                | TSM/TDM        | Policy/<br>Infrastructure | Р    | Р     |                     |           |            |
| Congestion pricing                    | TSM/TDM        | Policy/<br>Infrastructure | Р    | Р     |                     |           |            |
| Flexible Work Shifts                  | TDM            | Program/Policy            | S    |       |                     | Р         |            |
| Frequent transit service              | TDM            | Program                   | S    |       | Р                   |           |            |
| Free or subsidized transit passes     | TDM            | Program                   | S    |       |                     | Р         |            |
| Collaborative Marketing               | TDM            | Program                   | S    |       | S                   | S         | S          |
| Preferential carpool parking          | TDM            | Program                   | S    |       |                     | Р         |            |
| Carpool match services                | TDM            | Program                   | S    |       |                     | S         |            |
| Parking cash out                      | TDM            | Program                   |      |       | S                   | Р         |            |
| Carsharing program support            | TDM            | Program                   | S    |       |                     | Р         | Р          |
| Bicycle facilities                    | TDM            | Infrastructure            | Р    | S     | S                   | S         | S          |
| Pedestrian Facilities                 | TDM            | Infrastructure            | Р    | S     | S                   | S         | S          |
| Regional ITS                          | TSM            | Infrastructure            | S    | Р     |                     |           |            |
| Regional traffic management           | TSM            | Infrastructure            | S    | Р     |                     |           |            |
| Advanced signal systems               | TSM            | Infrastructure            | S    | Р     |                     |           |            |
| Real time traveler data               | TSM            | Infrastructure            | S    | Р     |                     |           |            |
| Arterial corridor management          | TSM            | Infrastructure            | S    | Р     |                     |           |            |

P: Primary role

### **Programming**

Programming solutions can provide effective and low-cost options for reducing transportation demand. Some of the most effective programming strategies can be implemented by employers and are aimed at encouraging non-single occupancy vehicle (SOV) commuting. These strategies are discussed below.

### Carpool/Vanpool Match Services

A rideshare/carpool program, run by public agencies and/or employers, coordinates regional commuters to find other commuters with similar routes to work. The program could allow commuters to connect and coordinate with others on locations, departure times, and driving responsibilities. Local employers can also play a role in encouraging an agency-run carpooling program by sharing information about the program, providing preferential carpool parking, and allowing employees to have flexibility in workday schedules.

S: Secondary/Support role

# Preferential Carpool/Vanpool Parking

A rideshare/carpool program, run by public agencies and/or employers, coordinates regional commuters to find other commuters with similar routes to work. The program could allow commuters to connect and coordinate with others on locations, departure times, and driving responsibilities. Local employers can also play a role in encouraging an agency-run carpooling program by sharing information about the program, providing preferential carpool parking, and allowing employees to have flexibility in workday schedules.

# Collaborative Marketing

Public agencies, local business owners and operators, developers, and transit service providers can collaborate on marketing to get the word out to residents about transportation options that provide an alternative to single-occupancy vehicles.

#### Free or Subsidized Transit Passes

Local business owners and operators may work with the City or transit service providers to provide transit fare subsidies that support an alternative to single-occupancy vehicles.

### Work Schedule Flexibility

Local business owners and operators may allow employees to have flexibility in workday schedules to alleviate demand during peak travel periods. Potential implementations include changing shift schedules to occur outside peak travel periods and allowing employees to work at home one day a week.

#### **Policy**

Policy solutions can be implemented by cities, counties, regions, or at the statewide level. Regional and state-level policies will affect transportation demand in Woodburn, but local policies can also have an impact. These policies are discussed below.

### Limited and/or Flexible Parking Requirements

Cities set policies related to parking requirements for new developments. In order to allow developments that encourage multi-modal transportation, cities can set parking maximums and low minimums and/or allow for shared parking between uses. Cities can also provide developers the option to pay in-lieu fees instead of constructing additional parking. This option provides additional flexibility to developers that can increase the likelihood of development, especially on smaller lots where surface parking would cover a high portion of the total property.

Cities can also set policies that require provision of parking to the rear of buildings, allowing buildings in commercial areas to directly front the street. This urban form creates a more appealing environment

for walking and window-shopping. In-lieu parking fees support this type of development for parcels that do not have rear- or side-access points.

# Parking Management

Parking plays a large role in transportation demand management, and effective management of parking resources can encourage use of non-single occupancy vehicle modes. Cities can tailor policies to charge for public parking in certain areas or impose time limits on street parking in retail centers. Cities can also monitor public parking supply and utilization in order to inform future parking strategy.

### Access Management

Access management describes a practice of managing the number, placement, and allowed movements at intersections and driveways that provide access to adjacent land uses. Access management policies can be important tools to improve transportation system efficiency by limiting the number of opportunities for turning movements on to or off of certain streets.

In addition, well deployed access management strategies can help manage travel demand by improving travel conditions for pedestrians and bicycles. Eliminating the number of access points on roadways allows for continuous sidewalk and bicycle facilities and reduces the number of potential interruptions and conflict points between pedestrians, bicyclists, and motor vehicles.

Access management is typically adopted as a policy in development guidelines. It can be extremely difficult to implement an access management program once properties have been developed along a corridor. Cooperation among and involvement of relevant government agencies, business owners, land developers, and the public is necessary to establish an access management plan that benefits all roadway users and businesses. Additional information on potential access management solutions is provided in a following section.

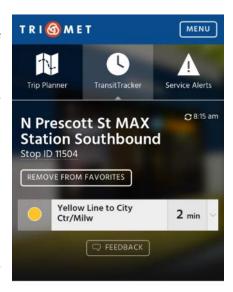
### Commercial and Mixed-use Nodes

Land use plays a huge role in effected transportation impacts and needs. By establishing neighborhood commercial and mixed-use nodes that are equipped with direct sidewalk connections, bus stop provisions, and proper building orientation, a city can create opportunities to travel via modes other than a single-occupancy vehicle.

### Signal Systems Improvements

Signal retiming and optimization offers a relatively low-cost option to increase system efficiency. Retiming and optimization refers to updating timing plans to better match prevailing traffic conditions and coordinating signals. Timing optimization can be applied to existing systems or may include upgrading signal technology, such as signal communication infrastructure, signal controllers, or cabinets. Signal retiming can reduce travel times and be especially beneficial to improving travel time reliability. In high pedestrian or desired pedestrian areas, signal retiming can facilitate pedestrian

movements through intersections by increasing minimum green times to give pedestrians time to cross during each cycle, eliminating the need to push pedestrian crossing buttons. Signals can also facilitate bicycle movements with the inclusion of bicycle detectors.


Signal upgrades often come at a higher cost and usually require further coordination between jurisdictions. However, upgrading signals provides the opportunity to incorporate advanced signal systems to further improve the efficiency of a transportation network. Strategies include coordinated signal operations across jurisdictions, centralized control of traffic signals, adaptive or active signal control, and transit or freight signal priority. These advanced signal systems can reduce delay, travel time and the number of stops for transit, freight, and other vehicles. In addition, these systems may help reduce vehicle emissions and improve travel time reliability. The following signal system solutions have been identified for consideration within Woodburn:

- In addition to the above potential capacity-based improvements to the intersections along OR 99E, there is the potential to coordinate the traffic signals from Hardcastle Avenue to Young Street (or to the future Cleveland Street traffic signal) in coordination with ODOT.
- Truck signal priority systems use sensors to detect approaching heavy vehicles and alter signal timings to improve truck freight travel. While truck signal priority may improve travel times for trucks, its primary purpose is to improve the overall performance of intersection operations by clearing any trucks that would otherwise be stopped at the intersection and subsequently have to spend a longer time getting back up to speed. Implementing truck signal priority requires additional advanced detector loops, usually placed in pairs back from the approach to the intersection.

#### Real-Time Transit Information

Transit agencies or third-party sources can disseminate both schedule and system performance information to travelers through a variety of applications, such as in-vehicle, wayside, or in-terminal dynamic message signs, as well as the Internet or wireless devices. Coordination with regional or multimodal traveler information efforts can increase the availability of this transit schedule and system performance information. TriMet is one example of an agency that has implemented this through its Transit Tracker system.

These systems enhance passenger convenience and may increase the attractiveness of transit to the public by encouraging travelers to consider transit as opposed to driving alone. They do require cooperation and integration between agencies for disseminating the information, which may or may not be applicable for a transit system the size of Woodburn's.



RIDER NEWS

# **Potential Improvements**

- Lead or provide support of potential TSM and TDM strategies within the City
- Promote a regional carpool/vanpool program
- Establish carpool/vanpool matching programs for ride-sharing
- Establish carpool parking programs
- Identify opportunities for collaborative marketing with local business owners and operators, developers, and transit service providers
- Provide transit fare subsidies
- Schedule shift changes to occur outside of peak travel periods
- Allow employees to work at home one day a week
- Update the Woodburn Development Ordinance (WDO) to limit and/or allow for flexible parking requirements
- Develop access management standards for city streets that reflect the functional classification of the roadway – Additional information on potential access management measures is provided below
- Establish neighborhood commercial and mixed-use nodes within the City
- Implement truck signal priority at key signalized intersections along OR 214 and OR 99E
- Work with ODOT to develop and implement a Traffic Management Plan for the OR 99E corridor that responds to increased congestion resulting from incidents on I-5 and regional events

### ACCESS MANAGEMENT AND SPACING

The Oregon Highway Plan (OHP) defines access management as a set of measures regulating access to streets, roads, and highways, from public roads and private driveways. Measures may include but are not limited to restrictions on the siting of interchanges, restrictions on the type and amount of access to roadways, and use of physical controls, such as signals and channelization including raised medians, to reduce impacts of approach road traffic on the main facility. The OHP requires that new connections to arterials and state highways be consistent with designated access management categories. The intent of this requirement is to provide guidance on the spacing of future extensions and connections along existing and future streets that are needed to provide reasonably direct routes for bicycle and pedestrian travel.

### Solutions Considered

The TSP should identify access management techniques and strategies that help to preserve transportation system investments and guard against deteriorations in safety and increased congestion.

The City's approach to access management should balance the need for land use activities and property parcels to be served with appropriate access while preserving safe and efficient movement of traffic. Access management solutions include:

- Setting city-wide access spacing standards according to a roadway's functional classification;
- Obtaining special area designations along ODOT facilities that have alternative access spacing standards;
- Defining a variance process for when the standard cannot be met; and,
- Establishing an approach for access consolidation over time to move in the direction of the standards at each opportunity.

# **Access Spacing Standards**

### **ODOT Standards**

Oregon Administrative Rule 734, Division 51 establishes procedures, standards, and approval criteria used by ODOT to govern highway approach permitting and access management consistent with Oregon Revised Statutes (ORS), Oregon Administrative Rules (OAR), statewide planning goals, acknowledged comprehensive plans, and the OHP. The OHP serves as the policy basis for implementing Division 51 and guides the administration of access management rules, including mitigation and public investment, when required, to ensure highway safety and operations pursuant to this division.

Access management standards for approaches to state highways are based on the classification of the highway and highway designation, type of area, and posted speed. Future developments along these corridors (new development, redevelopment, zone changes, and/or comprehensive plan amendments) will be required to meet the OHP access management policies and standards. Table 3 summarizes ODOT's current access management standards for roadways within the Woodburn UGB per the OHP.

**Table 3: ODOT Access Spacing Standards within Woodburn UGB** 

| Corridor                                | To/From                            | Highway<br>Classification | Posted<br>Speed (MPH) | Spacing Standards<br>(Feet) <sup>1</sup> |
|-----------------------------------------|------------------------------------|---------------------------|-----------------------|------------------------------------------|
| Hillsboro-Silverton Highway 140: OR 219 | West UGB limits to Woodland Avenue | District Highway          | 55                    | 700                                      |
| Hillsboro-Silverton Highway 140: OR 214 | Woodland Avenue to OR 99E          | District Highway          | 35                    | 350                                      |
| Hillsboro-Silverton Highway 140: OR 99E | OR 214/OR 211 to Young Street      | District Highway          | 35                    | 350                                      |
| Hillsboro-Silverton Highway 140: OR 214 | East of OR 99E                     | District Highway          | 35                    | 350                                      |
| Woodburn-Estacada Highway 161: OR 211   | East of OR 99E                     | District Highway          | 35                    | 350                                      |
| Pacific Highway 081: OR 99E             | North of OR 214/OR 211             | Regional Highway          | 35/45                 | 350/500                                  |
| Pacific Highway 081: OR 99E             | South of Young Street              | Regional Highway          | 35/45/55              | 350/500/990                              |

<sup>&</sup>lt;sup>1</sup> These access management spacing standards do not apply to approaches in existence prior to April 1, 2000 except as provided in OAR 734-051-5120(9).

### City Standards

Access spacing standards for approaches to City streets are based on the roadway functional classification. WDO Section 3.04.03 Table 3.04A shows the minimum separation of a driveway from another intersection (street or driveway). The minimum separation for major arterials, minor arterials, and service collectors are 300 feet, 245 feet, and 50 feet, respectively. WDO Section 3.01.05 outlines that a block length should be between 200 and 600 feet long.

In addition to adopting access spacing standards, the City could adopt a policy that requires access be taken from lower classification streets whenever possible.

### **Access Spacing Variances**

Access spacing variances may be provided to parcels whose highway/street frontage, topography, or location would otherwise preclude issuance of a conforming permit and would either have no reasonable access or cannot obtain reasonable alternate access to the public road system. In such a situation, a conditional access permit may be issued by ODOT or the City, as appropriate, for a connection to a property that cannot be accessed in a manner that is consistent with the spacing standards. The permit can carry a condition that the access may be closed at such time that reasonable access becomes available to a local public street. The approval condition might also require a given land owner to work in cooperation with adjacent land owners to provide either joint access points, front and rear cross-over easements, or a rear access upon future redevelopment.

The requirements for obtaining a deviation from ODOT's minimum spacing standards are documented in OAR 734-051-3050. For streets under the City's jurisdiction, the City may reduce the access spacing standards at the discretion of the City Engineer if the following conditions exist:

- Joint access driveways and cross access easements are provided in accordance with the standards;
- The site plan incorporates a unified access and circulation system in accordance with the standards;
- The property owner enters into a written agreement with the City that pre-existing connections
  on the site will be closed and eliminated after construction of each side of the joint use
  driveway; and/or,
- The proposed access plan for redevelopment properties moves in the direction of the spacing standards.

The City Engineer may modify or waive the access spacing standards for streets under the City's jurisdiction where the physical site characteristics or layout of abutting properties would make development of a unified or shared access and circulation system impractical, subject to the following considerations:

- Unless modified, application of the access standard will result in the degradation of operational and safety integrity of the transportation system.
- The granting of the variance shall meet the purpose and intent of these standards and shall not be considered until every feasible option for meeting access standards is explored.
- Applicants for variance from these standards must provide proof of unique or special conditions that make strict application of the standards impractical. Applicants shall include proof that:
  - Indirect or restricted access cannot be obtained;
  - No engineering or construction solutions can be applied to mitigate the condition;
     and,
  - No alternative access is available from a road with a lower functional classification than the primary roadway.

No variance shall be granted where such hardship is self-created. Consistency between access spacing requirements and exceptions in the TSP and GMC is an important regulatory solution to be addressed as part of this TSP update.

### **Access Consolidation through Management**

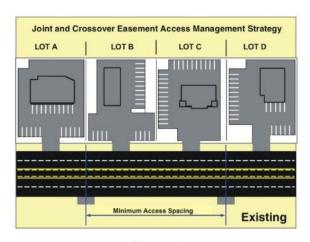
From an operational perspective, access management measures limit the number of redundant access points along roadways. This enhances roadway capacity, improves safety, and benefits circulation. Enforcement of the access spacing standards should be complemented with provision of alternative access points. Purchasing right-of-way and closing driveways without a parallel road system and/or other local access could seriously affect the viability of the impacted properties. Thus, if an access management approach is taken, alternative access should be developed to avoid "land-locking" a given property.

As part of every land use action, the City should evaluate the potential need for conditioning a given development proposal with the following items in order to maintain and/or improve traffic operations and safety along the arterial and collector roadways.

- Providing access only to the lower classification roadway when multiple roadways abut the property.
- Provision of crossover easements on all compatible parcels (considering topography, access, and land use) to facilitate future access between adjoining parcels.
- Issuance of conditional access permits to developments having proposed access points that do not meet the designated access spacing policy and/or have the ability to align with opposing driveways.
- Right-of-way dedications to facilitate the future planned roadway system in the vicinity of proposed developments.

Half-street improvements (sidewalks, curb and gutter, bike lanes/paths, and/or travel lanes)
along site frontages that do not have full build-out improvements in place at the time of
development.

Exhibit 1 illustrates the application of cross-over easements and conditional access permits over time to achieve access management objectives. The individual steps are described in Table 4. As illustrated in the exhibit and supporting table, by using these guidelines, all driveways along the highways can eventually move in the overall direction of the access spacing standards as development and redevelopment occur along a given street.


Table 4: Example of Crossover Easement/Indenture/Consolidation

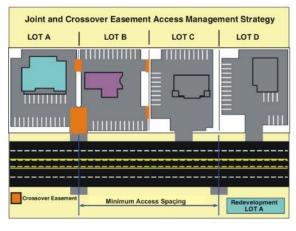
| Step | Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | EXISTING – Currently Lots A, B, C, and D have site-access driveways that neither meet the access spacing criteria of 500 feet nor align with driveways or access points on the opposite side of the highway. Under these conditions motorists are into situations of potential conflict (conflicting left turns) with opposing traffic. Additionally, the number of side-street (or site-access driveway) intersections decreases the operation and safety of the highway                                                                                                                                                                                                                                                                        |
| 2    | REDEVELOPMENT OF LOT B – At the time that Lot B redevelops, the City would review the proposed site plan and make recommendations to ensure that the site could promote future crossover or consolidated access. Next, the City would issue conditional permits for the development to provide crossover easements with Lots A and C, and ODOT/City would grant a conditional access permit to the lot. After evaluating the land use action, ODOT/City would determine that LOT B does not have either alternative access, nor can an access point be aligned with an opposing access point, nor can the available lot frontage provide an access point that meets the access spacing criteria set forth for segment of highway.                |
| 3    | REDEVELOPMENT OF LOT A – At the time Lot A redevelops, the City/ODOT would undertake the same review process as with the redevelopment of LOT B (see Step 2); however, under this scenario ODOT and the City would use the previously obtained cross-over easement at Lot B consolidate the access points of Lots A and B. ODOT/City would then relocate the conditional access of Lot B to align with the opposing access point and provide and efficient access to both Lots A and B. The consolidation of site-access driveways for Lots A and B will not only reduce the number of driveways accessing the highway, but will also eliminate the conflicting left-turn movements the highway by the alignment with the opposing access point. |
| 4    | REDEVELOPMENT OF LOT D – The redevelopment of Lot D will be handled in same manner as the redevelopment of Lot B (see Step 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5    | REDEVELOPMENT OF LOT C – The redevelopment of Lot C will be reviewed once again to ensure that the site will accommodate crossover and/or consolidated access. Using the crossover agreements with Lots B and D, Lot C would share a consolidated access point with Lot D and will also have alternative frontage access the shared site-access driveway of Lots A and B. By using the crossover agreement and conditional access permit process, the City and ODOT will be able to eliminate another access point and provide the alignment with the opposing access points.                                                                                                                                                                    |
| 6    | COMPLETE – After Lots A, B, C, and D redevelop over time, the number of access points will be reduced and aligned, and the remaining access points will meet the access spacing standard.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

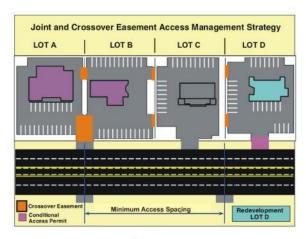
Woodburn, Oregon

**Exhibit 1: Cross Over Easement** 

# **Proposed Access Management Strategy**

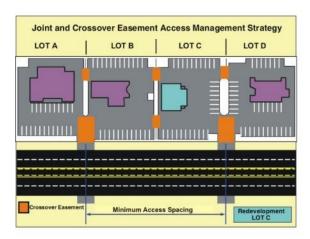


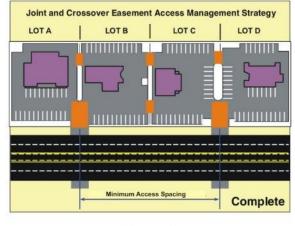

Joint and Crossover Easement Access Management Strategy


LOT A LOT B LOT C LOT D

Crossover Easement Minimum Access Spacing Redevelopment LOT B

Step 1


Step 2






Step 3

Step 4





Step 5 Step 6

# **Potential Improvements**

- Develop city-wide access spacing standards according to a roadway's functional classification
- Define a variance process for when the standard cannot be met (see above)
- Establish an approach for access consolidation over time to move in the direction of the standards at each opportunity (see above). Cross-over easements should be provided on all compatible parcels (topography, access, and land use) to facilitate future access between adjacent parcels and inter-parcel circulation.
- Investigate and implement opportunities to provide alternative access to nonstate facilities when reasonable access can occur (consistent with the State's Division 51 access management standards)
- Consider opportunities to restrict certain turning movements at accesses (such as a right inright out access)
- Through development, half-street improvements (sidewalks, curb and gutter, bicycle lanes/paths, and/or travel lanes) should be provided along all site frontages that do not have full buildout improvements in place at the time of development
- Through development, right-of-way dedications should be provided to facilitate the future planned transportation system in the vicinity of the proposed development

### BICYCLE SYSTEM AND CONNECTIVITY

Bicycle facilities are the elements of the transportation system that enable people to travel safely and efficiently by bike. These include facilities along key roadways (e.g., shared lane pavement markings, on-street bike lanes, and separated bike facilities) and facilities at key crossing locations (e.g., enhanced bike crossings). These also include end of trip facilities (e.g. secure bike parking, changing rooms, and showers at worksites); however, these facilities are addressed through the development code. Each facility plays a role in developing a comprehensive bicycle system.

# Solutions Considered

This section summarizes the solutions considered for implementation within the City of Woodburn to address existing gaps and deficiencies in the bicycle system and future needs.

# **Alternative Routes**

Designate an alternative route along a parallel street that provides a more comfortable environment for cyclists with the same level of connectivity. The alternative route could be identified by wayfinding signs, which could also be used to identify essential destinations that can be reached by the route. The alternative route may provide shared-lane pavement markings and signs, on-street bike lanes, or other bicycle facilities.

### Shared Lane Pavement Markings and Signs

Shared-lane pavement markings (often called "sharrows") are not a bicycle facility, but a tool designed to help accommodate bicyclists on roadways where bike lanes are desirable but infeasible to construct. Sharrows indicate a shared roadway space for cyclists and motorists and are typically centered in the travel lane or approximately four feet from the edge of the travelway. Sharrows are suitable on roadways with relatively low travel speeds (<35 mph) and low ADT (<3,000 ADT); however, they may also be used to transition between discontinuous bicycle facilities. Sharrows could be applied along a variety of streets within Woodburn where room for on-street bike lanes is limited.

### On-Street bike lanes

On-street bike lanes are striped lanes on the roadway dedicated for the exclusive use of cyclists. Bike lanes are typically placed at the outer edge of pavement (but to the inside of right-turn lanes and/or on-street parking). Bicycle lanes can improve safety and security of cyclists and (if comprehensive) can provide direct connections between origins and destinations. On-street bike lanes could be applied along a variety of streets within Woodburn where space allows.

### Separated Bike Facilities

Separated bike facilities include buffered bike lanes and separated bike lanes, or cycle tracks. Buffered bike lanes are on-street bike lanes that include an additional striped buffer of typically 2-3 feet between the bicycle lane and the vehicle travel lane and/or between the bicycle lane and the vehicle parking lane. They are typically located along streets that require a higher level of separation to improve the comfort of bicycling. Separated bike lanes, also known as cycle tracks, are bicycle facilities that are separated from motor vehicle traffic by a buffer and a physical barrier, such as planters, flexible posts, parked cars, or a mountable curb. One-way separated bike lanes are typically found on each side of the street, like a standard bike lane, while a two-way separated bike lanes are typically found on one side of the street.







Buffered Bike Lanes

### **Enhanced Crossings**

Enhanced bicycle crossing facilities enable cyclists to safely cross streets, railroad tracks, and other transportation facilities. Planning for appropriate bicycle crossings requires the community to balance vehicular mobility needs with providing crossing locations that the desired routes of cyclists. Enhanced bicycle crossings include:

- Bike Boxes designated space at an intersection that allows cyclists to wait in front of motor vehicles while waiting to turn or continue through the intersection.
- Two-Stage Left-turn Boxes designated space at a signalized intersection outside of the travel lane that provides cyclists with a place to wait while making a two-stage left-turn.
- Pavement marking through intersections pavement markings that extend and bike lane through an intersection.
- Bike Only Signals A traffic signal that is dedicated for cyclists
- Bicycle Detection Vehicle detection for bicycles

Additional information on the enhanced bicycle crossing treatments is provided in Attachment "A".

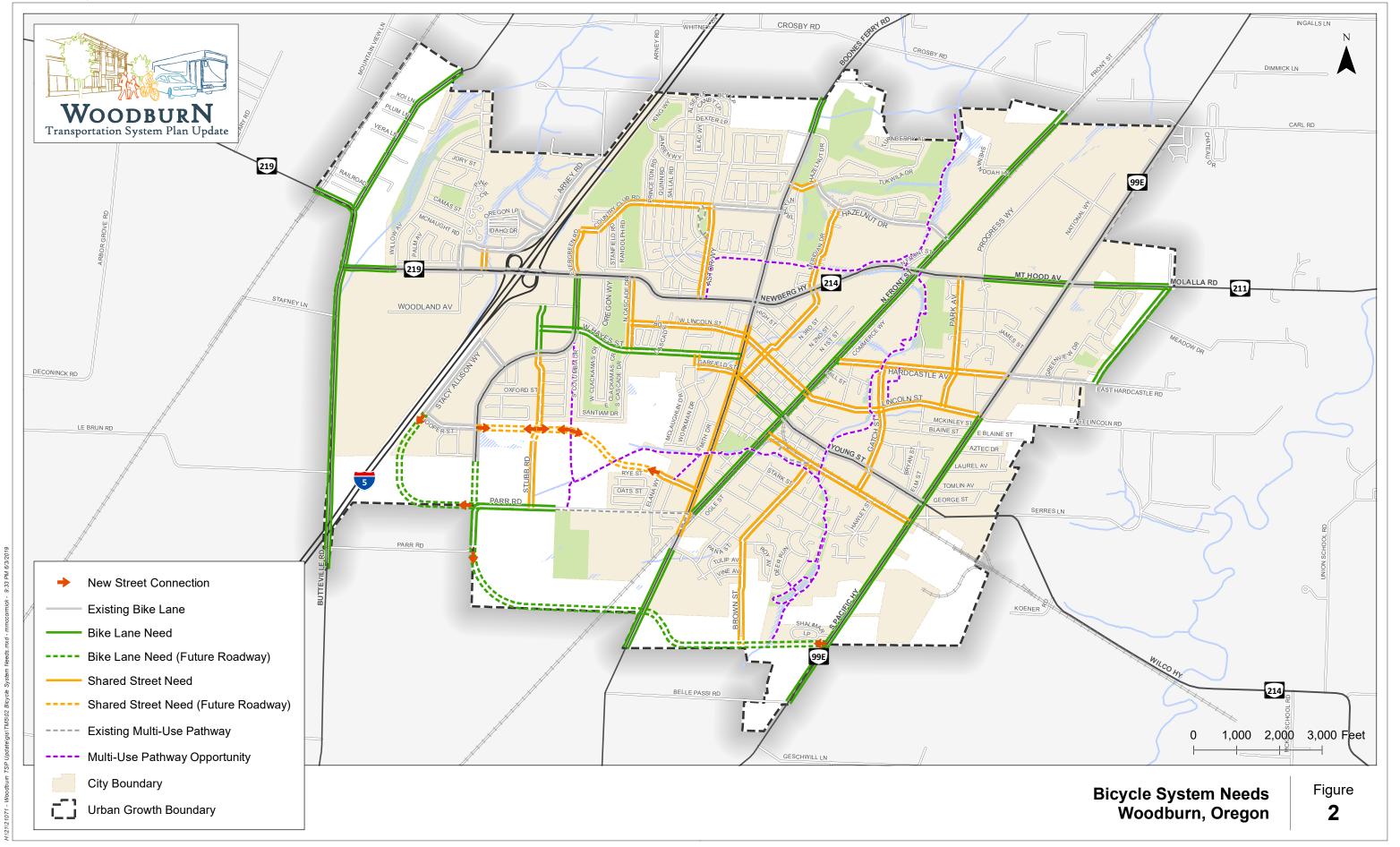
# **Wayfinding Signs**

Wayfinding signs are signs located along roadways or at intersections that direct bicyclists towards destinations in the area and/or to define a bicycle route. They typically include distances and average walk/cycle times. Wayfinding signs are generally used on primary bicycle routes and multi-use paths.

### **Potential Improvements**

The following improvements have been organized by streets segment, intersection, and off-street improvements. Where there are multiple improvements, the improvement shown in **bold text** was identified as the preferred improvement based on an evaluation of environmental, engineering, land use "fatal flaws" and anticipated funding capacity as well as discussions with the project team, advisory committees, and the general public. Figure 2 illustrates the bicycle system needs discussed below.

### **Street Segment Improvements**


The following street segment improvements have been organized by functional classification.

### Major Arterials

Major arterials provide bicycle connectivity between urban centers and regions within the Woodburn UGB. The following provides a summary of the bicycle improvements along major arterial streets.

Woodburn TSP Update

June 2019



### OR 219/OR 214

OR 219/OR 214 currently has a varying cross-section from Butteville Road to OR 99E, with existing bike lanes provided from Willow Avenue to Progress Way. Where there are existing bike lanes on OR 219/OR 214, the BLTS analysis indicates that the roadway is currently NOT suitable for most cyclists. For these segments, this is primarily due to the relatively high travel speeds and narrow bike lanes along the roadway. On the segments without bike lanes, the BLTS analysis indicates that the roadway is also currently NOT suitable for most cyclists. Therefore, the following improvements are being considered along the roadway:

- OR 219 from Butteville Road to Willow Avenue
  - Widen roadway and install bike lanes on both sides of the roadway
  - Widen roadway and install buffered bike lanes on both sides of the roadway
- OR 219/OR 214 from Willow Avenue to Progress Way
  - Widen roadway and widen bike lanes on both sides of the roadway
  - Widen roadway and install buffered bike lanes on both sides of the roadway
- OR 214 from Progress Way to OR 99E
  - Widen roadway and install bike lanes on both sides of the roadway
  - Widen roadway and install buffered bike lanes on both sides of the roadway

#### **OR 99E**

OR 99E currently has a varying cross-section, with existing bike lanes provided from the northern UGB to Lincoln Street and the five-lane roadway transitioning to two lanes south of the City Boundary. Where there are existing bike lanes on OR 99E, the BLTS analysis indicates that the roadway is currently NOT suitable for most cyclists. For these segments, this is primarily due to the relatively high travel speeds and narrow bike lanes along the roadway. On the segments without bike lanes, the BLTS analysis indicates that the roadway is also currently NOT suitable for most cyclists. Therefore, the following improvements are being considered along the roadway:

- OR 99E from northern UGB to Lincoln Street
  - Widen roadway and widen bike lanes on both sides of the roadway
  - Widen roadway and install buffered bike lanes on both sides of the roadway
- OR 99E from Lincoln Street to southern City Boundary
  - Widen roadway and install bike lanes on both sides of the roadway
  - Widen roadway and install buffered bike lanes on both sides of the roadway

- OR 99E from southern City Boundary to southern UGB
  - Widen roadway and install bike lanes on both sides of the roadway
  - Widen roadway and install buffered bike lanes on both sides of the roadway





OR 214, Facing West

OR 99E, Facing North

### Minor Arterials

Minor arterials support bicycle access and circulation within Woodburn, particularly those that are served by local transit service. The following provides a summary of the bicycle improvements along minor arterial streets.

### OR 219 from Western UGB to Butteville Road

OR 219 currently does not have bicycle facilities, and the BLTS analysis indicates that the roadway is currently NOT suitable for most cyclists. Therefore, the following improvements are being considered along the roadway:

- Widen roadway and install bike lanes on both sides of the roadway
- Widen roadway and install buffered bike lanes on both sides of the roadway

# Butteville Road/OR 219 from Northern UGB to Southern UGB

The segment of Butteville Road/OR 219 from northern UGB to southern UGB currently does not have bicycle facilities, and the BLTS analysis indicates that the roadway is currently NOT suitable for most cyclists. Therefore, the following improvements are being considered along the roadway:

- Widen roadway and install bike lanes on both sides of the roadway
- Widen roadway and install buffered bike lanes on both sides of the roadway

## **Evergreen Road from OR 214 to Hayes Street**

The segment of Evergreen Road from OR 214 to Hayes Street does not have bicycle facilities; however, the BLTS analysis indicates that the roadway is currently suitable for most cyclists. This is primarily due to the relatively low travel speeds along the roadway. Although the segment is adequate based on the BLTS analysis, it is a gap in the bike network of existing bike lanes. Therefore, the following improvements are being considered along the roadway:

- Reduce the travel lane width and install bike lanes on both sides of the roadway
- Widen roadway and install bike lanes on both sides of the roadway

## **Boones Ferry Road/Settlemier Avenue**

Boones Ferry Road/Settlemier Avenue currently has a varying cross-section, with existing bike lanes provided from Hazelnut Drive to Harrison Street. Where there are existing bike lanes along the roadway, the BLTS analysis indicates that the roadway is currently NOT suitable for most cyclists. For these segments, this is primarily due to the relatively high travel speeds and narrow bike lanes. On the segments without bike lanes and with posted speeds greater than 25 MPH, the BLTS analysis indicates that the roadway is also currently NOT suitable for most cyclists. On the segments without bike lanes and with posted speeds of 25 MPH, the BLTS analysis indicates that the roadway is currently suitable for most cyclists. Therefore, the following improvements are being considered along the roadway:

- Boones Ferry Road from northern UGB to Hazelnut Drive
  - Perform an engineering study to consider reduction of the posted speed limit
  - o Install shared lane pavement marking and signs
  - Widen roadway and install bike lanes on both sides of the roadway
  - Widen roadway and install buffered bike lanes on both sides of the roadway
- Boones Ferry Road/Settlemier Avenue from Hazelnut Drive to Harrison Street
  - Perform an engineering study to consider reduction of the posted speed limit
  - Reduce the travel lane width and widen bike lanes on both sides of the roadway
  - Widen roadway and widen bike lanes on both sides of the roadway
  - Widen roadway and install buffered bike lanes on both sides of the roadway
- Settlemier Avenue from Harrison Street to railroad tracks
  - Install shared lane pavement marking and signs

- Boones Ferry Road from Dahlia Street to southern UGB
  - Perform an engineering study to consider reduction of the posted speed limit
  - o Reduce the travel lane width and install bike lanes on both sides of the roadway
  - Widen roadway and install bike lanes on both sides of the roadway
  - Widen roadway and install buffered bike lanes on both sides of the roadway

#### **Front Street**

Front Street does not have bicycle facilities. The BLTS analysis indicates that the roadway alternatives between being suitable and NOT being suitable for most cyclists, based on the posted speed limit. Therefore, the following improvements are being considered along the roadway:

- Perform an engineering study to consider reduction of the posted speed limit
- Reduce the travel lane width and install bike lanes on both sides of the roadway
- Widen roadway and install bike lanes on both sides of the roadway
- Widen roadway and install buffered bike lanes on both sides of the roadway

#### **Garfield Street**

Garfield Street currently does not have bicycle facilities; however, the BLTS analysis indicates that the roadway is currently suitable for most cyclists. This is primarily due to the relatively low speeds along the roadway. Therefore, the following improvements are being considered along the roadway:

- Garfield Street from 3rd Street to Front Street
  - Widen roadway and install bike lanes on both sides of the roadway
- Garfield Street from Smith Drive to 3rd Street
  - Install shared lane pavement marking and signs

## **Young Street**

Young Street currently has bike lanes on both sides of the roadway; however, the BLTS analysis indicates that the roadway is currently NOT suitable for most cyclists. This is primarily due to the relatively high travel speeds and narrow bike lanes along the roadway. Therefore, the following improvements are being considered along the roadway:

- Perform an engineering study to consider reduction of the posted speed limit
- Widen roadway and widen bike lanes on both sides of the roadway
- Widen roadway and install buffered bike lanes on both sides of the roadway

#### **OR 211**

OR 211 (east of OR 99E) currently does not have bicycle facilities, and the BLTS analysis indicates that the roadway is currently NOT suitable for most cyclists. Therefore, the following improvements are being considered along the roadway:

- Perform an engineering study to consider reduction of the posted speed limit
- Reduce the travel lane width and install bike lanes on both sides of the roadway
- Widen roadway and install bike lanes on both sides of the roadway
- Widen roadway and install buffered bike lanes on both sides of the roadway

## Service Collectors

Service collectors serve an important function for bicycle access and circulation within Woodburn and may provide direct access to essential destinations, such as schools, parks, churches, and commercial areas. The following provides a summary of the bicycle improvements along service collector streets.

## Arney Road from Robin Avenue to OR 219

The segment of Arney Road from Robin Avenue to OR 219 currently does not have bicycle facilities; however, the BLTS analysis indicates that the roadway is currently suitable for most cyclists. This is primarily due to the relatively low speeds along the roadway. Therefore, the following improvements are being considered along the roadway:

## Install shared lane pavement marking and signs

### Stacy Allison Way from Evergreen Road to Center Street

The segment of Stacy Allison Way from Evergreen Road to Center Street currently does not have bicycle facilities; however, the BLTS analysis indicates that the roadway is currently suitable for most cyclists. This is primarily due to the relatively low speeds along the roadway. Although the segment is adequate based on the BLTS analysis, it is a gap in the bike network of existing bike lanes. Therefore, the following improvements are being considered along the roadway:

- Reduce the travel lane width and install bike lanes on both sides of the roadway
- Widen roadway and install bike lanes on both sides of the roadway
- Enhance the parallel route of Harvard Drive from Stacy Allison Way to Evergreen Road. Install buffered bike lanes on both sides of the roadway

## **Hayes Street**

Hayes Street does not have bicycle facilities; however, the BLTS analysis indicates that the roadway is currently suitable for most cyclists. This is primarily due to the relatively low speeds along the roadway.

Although the segment is adequate based on the BLTS analysis, it is a gap in the bike network of existing bike lanes. Therefore, the following improvements are being considered along the roadway:

- Hayes Street from Harvard Drive to Cascade Drive
  - Install bike lanes on both sides of the roadway
- Hayes Street from Cascade Drive to Settlemier Avenue
  - Reduce the travel lane width and install bike lanes on both sides of the roadway
  - Widen roadway and install bike lanes on both sides of the roadway

### Parr Road from Western UGB to Western City Boundary

The segment of Parr Road from western UGB to western City Boundary currently does not have bicycle facilities; however, the BLTS analysis indicates that the roadway is currently suitable for most cyclists. This is primarily due to the relatively low speeds along the roadway. Although the segment is adequate based on the BLTS analysis, it is a gap in the bike network of existing/planned bike lanes and multi-use paths. Therefore, the following improvements are being considered along the roadway:

- Reduce the travel lane width and install bike lanes on both sides of the roadway
- Widen roadway and install bike lanes on both sides of the roadway

### **Lincoln Street**

Lincoln Street currently does not have bicycle facilities; however, the BLTS analysis indicates that the roadway is currently suitable for most cyclists. This is primarily due to the relatively low speeds along the roadway. Therefore, the following improvements are being considered along the roadway:

Install shared lane pavement marking and signs

### **Cleveland Street**

Cleveland Street currently does not have bicycle facilities; however, the BLTS analysis indicates that the roadway is currently suitable for most cyclists. This is primarily due to the relatively low speeds along the roadway. Therefore, the following improvements are being considered along the roadway:

Install shared lane pavement marking and signs

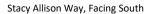
#### **Hardcastle Avenue**

Hardcastle Avenue does not have bicycle facilities; however, the BLTS analysis indicates that the roadway is currently suitable for most cyclists. This is primarily due to the relatively low speeds along the roadway. Although the segment is adequate based on the BLTS analysis, it is a gap in the bike network of existing bike lanes. Therefore, the following improvements are being considered along the roadway:

- Install shared lane pavement marking and signs
- Widen roadway and install bike lanes on both sides of the roadway

#### **Brown Street**

Brown Street does not have bicycle facilities; however, the BLTS analysis indicates that the roadway is currently suitable for most cyclists. This is primarily due to the relatively low speeds along the roadway. Although the segment is adequate based on the BLTS analysis, it is a gap in the bike network of existing/planned bike lanes. Therefore, the following improvements are being considered along the roadway:


- Install shared lane pavement marking and signs
- Widen roadway and install bike lanes on both sides of the roadway

## **Cooley Road**

Cooley Road does not have bicycle facilities. The BLTS analysis indicates that the roadway is NOT suitable for most cyclists, primarily due to the posted speed limit. Therefore, the following improvements are being considered along the roadway:

- Cooley Road from OR 211 to Aubrey Way
  - Widen roadway and install bike lanes on both sides of the roadway
  - Perform an engineering study to consider reduction of the posted speed limit
- Cooley Road from Aubrey Way to Hardcastle Avenue
  - o Install bike lane striping on both sides of the roadway
  - Perform an engineering study to consider reduction of the posted speed limit







Hardcastle Avenue, Facing East

#### Access Streets

Access streets also serve an important function for bicycle access and circulation within Woodburn and may provide direct access to essential destinations. The following provides a summary of the bicycle improvements along access streets. The types of treatments considered along these roadways include shared pavement markings and signs and wayfinding signs to essential destinations.

- Stubb Road
- Astor Way
- Tukwila Drive from Boones Ferry Road to Hazelnut Drive
- 5th Street
- Gatch Street
- Park Avenue

### Local Streets

Local streets play an important role in providing bicycle connectivity within the city and providing direct access to adjacent land uses. The following local streets have been identified as playing a critical role in providing connectivity to essential destinations. The types of treatments considered along these roadways include shared pavement markings and signs and wayfinding signs to essential destinations.

- Evergreen Road from Country Club Court to OR 214
- Country Club Road from Evergreen Road to Astor Way
- Cascade Drive
- Smith Drive from Hayes Street to Garfield Street
- Meridian Drive

## PEDESTRIAN SYSTEM AND CONNECTIVITY

Pedestrian facilities are the elements of the transportation system that enable people to walk safely and efficiently between neighborhoods, retail centers, employment areas, and transit stops. These include facilities for pedestrian movement along key roadways (e.g., sidewalks, multi-use paths, and trails) and for safe roadway crossings (e.g., crosswalks, crossing beacons, pedestrian refuge islands). Each facility plays an important role in developing a comprehensive pedestrian network.

### Solutions Considered

This section summarizes the solutions considered for implementation within the City of Woodburn to address existing gaps and deficiencies in the pedestrian system and future needs.

### **Sidewalks**

Sidewalks are the fundamental building blocks of the pedestrian system. They enable people to walk comfortably, conveniently, and safely from place to place. They also provide an important means of mobility for people with disabilities, families with strollers, and others who may not be able to travel on an unimproved roadside surface. Sidewalks are usually 6 to 8-feet wide and constructed from concrete. They are also frequently separated from the roadway by a curb, landscaping, and/or on-street parking. Sidewalks are widely used in urban and suburban settings. Ideally, sidewalks could be provided along both sides of the roadway; however, some areas with physical or right-of-way constraints may require that sidewalk be located on only one side. Sidewalk solutions include:

- Fill in the gaps
- Install sidewalks on one-side of the roadway
- Install sidewalks on both sides of the roadway
- Re-construct existing sidewalks with appropriate width and buffer
- Improve existing sidewalks with appropriate lighting





Sidewalk Improvements

Sidewalk Improvements

# **Accessways**

Non-vehicular connections between cul-de-sacs and adjacent roadways can significantly reduce travel distances for pedestrians, thereby encouraging more people to walk. Woodburn has a few existing accessways that create connections between neighborhoods and pedestrian and bicycle routes. Potential new connections could use existing City right-of-way between cul-de-sacs or unconnected roadways to provide a paved path, unpaved path, or trail for non-motorized use.

#### Multi-use Paths and Trails

Multi-use paths are paved, bi-directional trails that can serve both pedestrians and bicyclists. Multi-use paths and trails can be constructed adjacent to roadways where the topography, right-of-way, or other issues don't allow for the construction of sidewalks and bike facilities. A minimum width of 10 feet is recommended for low-pedestrian/bicycle-traffic contexts; 12 to 20 feet should be considered in areas with moderate to high levels of bicycle and pedestrian traffic. Multi-use paths can be used to create longer-distance links within and between communities. They play an integral role in recreation, commuting, and accessibility due to their appeal to users of all ages and skill levels.





Accessways

Multi-use Paths and Trails

### **Enhanced Pedestrian Crossings**


Pedestrian crossing facilities enable pedestrians to safely cross streets, railroad tracks, and other transportation facilities. Planning for appropriate pedestrian crossings requires the community to balance vehicular mobility needs with providing crossing locations for desired routes of walkers. Enhanced pedestrian crossing treatments include:

- Median refuge islands
- High visibility pavement markings and signs
- Rapid rectangular flashing beacons (RRFB)
- Pedestrian Hybrid Beacons

- Curb extensions
- Pedestrian signals
  - Pedestrian countdown heads
  - Leading Pedestrian interval

Many of the treatments listed above can be applied together at one crossing location to further alert drivers of the presence of pedestrians in the roadway. See Attachment "A" for a detailed description of enhanced pedestrian crossing treatments.







Enhanced Pedestrian Crossing with Pedestrian Signal

# **Potential Improvements**

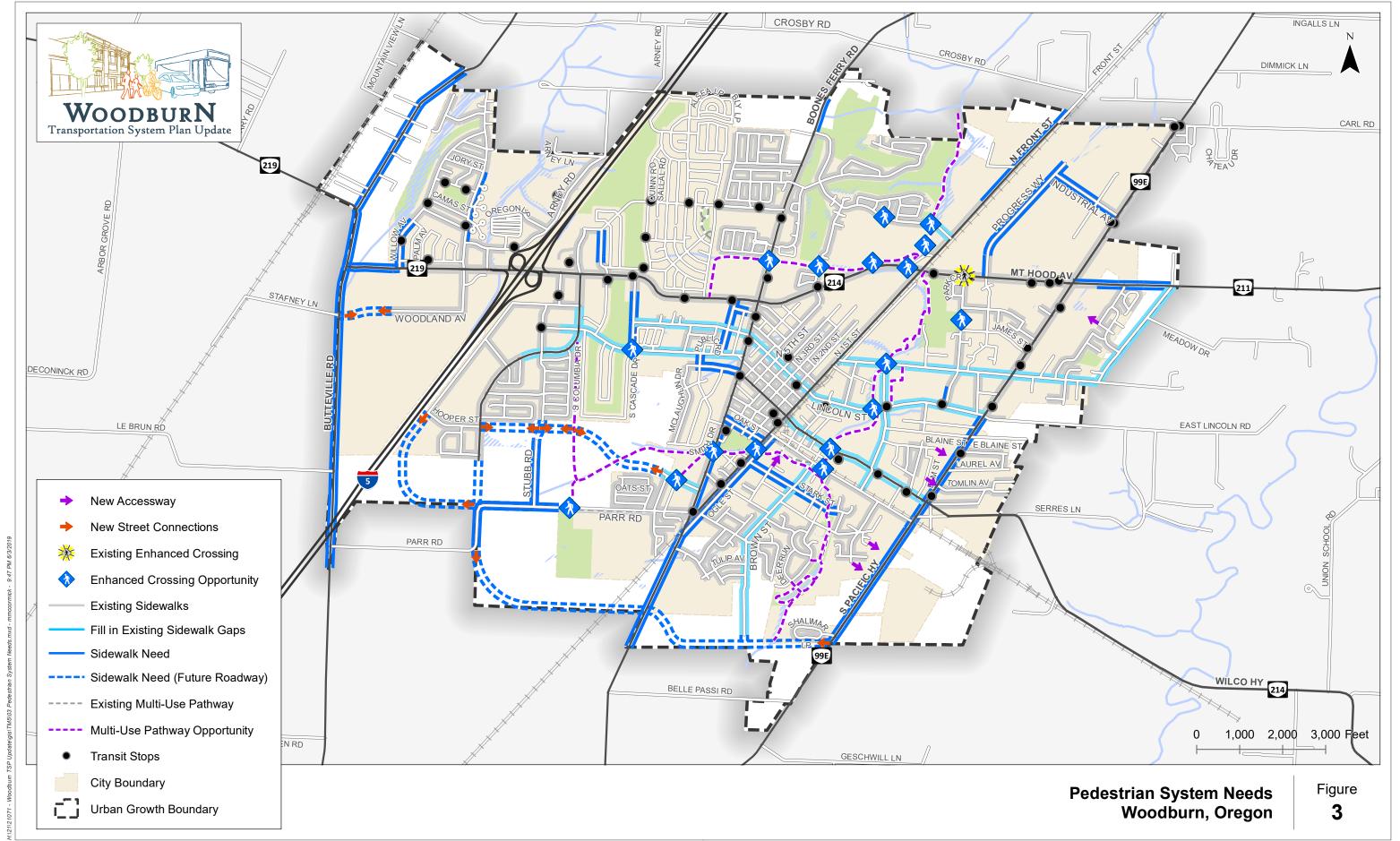
The following improvements have been organized by streets segment, intersection, multi-use pathways, and off-street improvements. Where there are multiple improvements, the improvements shown in **bold text** were identified as the preferred improvement based on an evaluation of environmental, engineering, land use "fatal flaws" and anticipated funding capacity as well as discussions with the project team, advisory committees, and the general public. Figure 3 illustrates the pedestrian system needs discussed below.

## **Street Segment Improvements**

The following street segment improvements have been organized by functional classification.

### Major Arterials

Major arterials provide pedestrian connectivity between urban centers and regions within the Woodburn UGB. The following provides a summary of the pedestrian improvements along major arterial streets.


#### OR 219 from Butteville Road to Willow Avenue

The segment of OR 219 from Butteville Road to Willow Avenue currently does not have sidewalks. Therefore, the following improvements are being considered along the roadway:

- Install new sidewalks of appropriate width along both sides of the roadway
- Install new landscape strips and sidewalks of appropriate width along both sides of the roadway

Woodburn TSP Update

June 2019



#### **OR 99E**

OR 99E currently has continuous sidewalks along both sides of the roadway from northern UGB to Lincoln Street. From Lincoln Street to southern City Boundary, there are several gaps in the sidewalks. South of the southern City Boundary, there are currently no sidewalks. The PLTS analysis indicates that the roadway may not be suitable for all pedestrians along the entirety of the corridor. This is primarily due to sidewalk gaps, poor pavement condition, lack of a buffer, and/or limited street lighting. Therefore, the following improvements are being considered along the roadway:

- OR 99E from northern UGB to Lincoln Street
  - Evaluate light levels and install street lighting
- OR 99E from Lincoln Street to southern City Boundary
  - Remove the existing sidewalks and install new sidewalks of appropriate width along both sides of the roadway
  - Remove the existing sidewalks and install new landscape strips and sidewalks of appropriate width along both sides of the roadway
- OR 99E from southern City Boundary to southern UGB
  - Install new sidewalks of appropriate width along both sides of the roadway
  - Install new landscape strips and sidewalks of appropriate width along both sides of the roadway

### Minor Arterials

Minor arterials support pedestrian access and circulation within Woodburn, particularly those that are served by local transit service. The following provides a summary of the pedestrian improvements along arterial streets.

Butteville Road/OR 219 from Northern UGB to Southern UGB

Butteville Road/OR 219 from northern UGB to southern UGB currently does not have sidewalks. Therefore, the following improvements are being considered along the roadway:

- Install new sidewalks of appropriate width along both sides of the roadway
- Install new landscape strips and sidewalks of appropriate width along both sides of the roadway

### **Evergreen Road**

There are several gaps in the sidewalks along Evergreen Road from Stacy Allison Way to Boean Lane. Therefore, the following improvements are being considered along the roadway:

Fill in the gaps along both sides of the roadway from Stacy Allison Way to Boean Lane

# **Boones Ferry Road/Settlemier Avenue**

Segments of Boones Ferry Road/Settlemier Avenue currently do not have sidewalks. The PLTS analysis indicates that the roadway may not be suitable for all pedestrians along the entirety of the corridor. Therefore, the following improvements are being considered along the roadway:

- Boones Ferry Road from northern UGB to Hazelnut Drive
  - Install new sidewalks of appropriate width along one side of the roadway
- Settlemier Avenue from Oak Street to Parr Road
  - o Install new sidewalks of appropriate width along one side of the roadway
- Boones Ferry Road from Parr Road to southern UGB
  - o Install new sidewalks of appropriate width along both sides of the roadway

#### **Front Street**

Front Street does not have sidewalks from northern UGB to Hazelnut Drive. Therefore, the following improvements are being considered along the roadway:

Install new sidewalks of appropriate width along one side of the roadway from northern
 UGB to Hazelnut Drive

### **Young Street**

There are several gaps in the sidewalks along Young Street from Front Street to OR 99E. Therefore, the following improvements are being considered along the roadway:

Fill in the gaps along both sides of the roadway

OR 211 from OR 99E to Eastern City Boundary/UGB

OR 211 does not have continuous sidewalks. Therefore, the following improvements are being considered along the roadway:

- Install new sidewalks of appropriate width along both sides of the roadway
- Install new landscape strips and sidewalks of appropriate width along both sides of the roadway





Settlemier Avenue, Facing North

Young Street, Facing East

## Service Collectors

Service collectors also serve an important function for pedestrian access and circulation within Woodburn and may provide direct access to essential destinations, such as schools, parks, churches, and commercial areas. The following provides a summary of the pedestrian improvements along service collector streets.

## **Hayes Street**

There are several gaps in the sidewalks along Hayes Street from Harvard Drive to Front Street. Therefore, the following improvements are being considered along the roadway:

Fill in the gaps along both sides of the roadway

## **Parr Road**

Parr Road does not have sidewalks from western UGB to western City Boundary. Therefore, the following improvements are being considered along the roadway:

- Install new sidewalks of appropriate width along both sides of the roadway
- Install new landscape strips and sidewalks of appropriate width along both sides of the roadway

### **Lincoln Street**

There are several gaps in the sidewalks along Lincoln Street from Cascade Drive to OR 99E. Therefore, the following improvements are being considered along the roadway:

Fill in the gaps along both sides of the roadway

#### **Industrial Avenue**

Industrial Avenue does not have continuous sidewalks. Therefore, the following improvements are being considered along the roadway:

Install new sidewalks of appropriate width along both sides of the roadway

### **Progress Way**

Progress Way does not have continuous sidewalks. Therefore, the following improvements are being considered along the roadway:

Install new sidewalks of appropriate width along both sides of the roadway

#### **Hardcastle Avenue**

There are several gaps in the sidewalks along Hardcastle Avenue from Front Street to Cooley Road. Therefore, the following improvements are being considered along the roadway:

Fill in the gaps along both sides of the roadway

### **Brown Street**

There are several gaps in the sidewalks along Brown Street from Cleveland Street to end of roadway. Therefore, the following improvements are being considered along the roadway:

Fill in the gaps along both sides of the roadway

### **Cooley Road**

There are several gaps in the sidewalks along Cooley Road from Front Street to OR 99E. The PLTS analysis indicates that the roadway may not be suitable for all pedestrians along the entirety of the corridor. This is primarily due to sidewalk gaps, lack of a buffer, and/or limited street lighting. Therefore, the following improvements are being considered along the roadway:

- Fill in the gaps along both sides of the roadway
- Evaluate light levels and install street lighting

### Access Streets

Access streets also serve an important function for pedestrian access and circulation within Woodburn and may provide direct access to essential destinations. The following provides a summary of the pedestrian improvements along collector streets.

### **Woodland Avenue**

Woodland Avenue does not have continuous sidewalks. Therefore, the following improvements are being considered along the roadway:

 Install new sidewalks of appropriate width along one side of the roadway from Jory Street to Arney Road

#### Stubb Road

Stubb Road does not have sidewalks. Therefore, the following improvements are being considered along the roadway:

Install new sidewalks of appropriate width along both sides of the roadway

## **Oregon Way**

Oregon Way does not have continuous sidewalks. Therefore, the following improvements are being considered along the roadway:

Install new sidewalks of appropriate width along both sides of the roadway

### **Hazelnut Drive**

There are several gaps in the sidewalks along Hazelnut Drive from Graystone Drive to Front Street. Therefore, the following improvements are being considered along the roadway:

Fill in the gaps along both sides of the roadway from Graystone Drive to Front Street

### **Gatch Street**

There are several gaps in the sidewalks along Gatch Street from Hardcastle Road to Cleveland Street. Therefore, the following improvements are being considered along the roadway:

Fill in the gaps along both sides of the roadway

#### **Park Avenue**

Park Avenue does not have continuous sidewalks. Therefore, the following improvements are being considered along the roadway:

Install new sidewalks of appropriate width along one side of the roadway





Gatch Street, Facing North

Hazelnut Drive, Facing East

## Local Streets

Local streets provide direct access to essential destinations throughout Woodburn, such as schools, parks, churches, and commercial areas. Typically, continuous pedestrian facilities should be provided along at least one side of each street to ensure adequate access for pedestrians.

#### Willow Avenue

Willow Avenue does not have continuous sidewalks. Therefore, the following improvements are being considered along the roadway:

- Install new sidewalks of appropriate width along one side of the roadway from McNaught Road to OR 219
- Install new sidewalks of appropriate width along both sides of the roadway from McNaught Road to OR 219

## **Cascade Drive**

Cascade Drive does not have continuous sidewalks. Therefore, the following improvements are being considered along the roadway:

Install new sidewalks of appropriate width along both sides of the roadway

#### **Leasure Street**

Leasure Street does not have sidewalks. Therefore, the following improvements are being considered along the roadway:

- Install new sidewalks of appropriate width along one side of the roadway
- Install new sidewalks of appropriate width along both sides of the roadway

#### **Church Street**

Church Street does not have continuous sidewalks. Therefore, the following improvements are being considered along the roadway:

- Install new sidewalks of appropriate width along one side of the roadway from Leasure
   Street to Settlemier Avenue
- Install new sidewalks of appropriate width along both sides of the roadway from Leasure
   Street to Settlemier Avenue

#### **Garfield Street**

Garfield Street does not have continuous sidewalks. Therefore, the following improvements are being considered along the roadway:

- Install new sidewalks of appropriate width along one side of the roadway from Smith Drive to Settlemier Avenue
- Install new sidewalks of appropriate width along both sides of the roadway from Smith
   Drive to Settlemier Avenue

#### **Smith Drive**

Smith Drive does not have sidewalks. Therefore, the following improvements are being considered along the roadway:

- Install new sidewalks of appropriate width along one side of the roadway from Hayes Street to Garfield Street
- Install new sidewalks of appropriate width along both sides of the roadway from Hayes
   Street to Garfield Street

#### Ben Brown Lane

There are several gaps in the sidewalks along Ben Brown Lane. Therefore, the following improvements are being considered along the roadway:

Fill in the gaps along both sides of the roadway

## **Oak Street**

Oak Street does not have continuous sidewalks. Therefore, the following improvements are being considered along the roadway:

Install new sidewalks of appropriate width along one side of the roadway

### **Ogle Street**

Ogle Street does not have sidewalks. Therefore, the following improvements are being considered along the roadway:

- Install new sidewalks of appropriate width along one side of the roadway
- Install new sidewalks of appropriate width along both sides of the roadway

#### **Stark Street**

Stark Street does not have continuous sidewalks. Therefore, the following improvements are being considered along the roadway:

- Install new sidewalks of appropriate width along one side of the roadway
- Install new sidewalks of appropriate width along both sides of the roadway

## **Pedestrian Crossing Improvements**

### Front Street/Lincoln Street

There are enhanced pedestrian crossings on the north, south, and west legs of the intersection. The east leg intersects the railroad. Therefore, the following improvement is being considered:

Construct ADA-compliant ramps and sidewalks on the east leg of the intersection

## Front Street/Young Street

There are enhanced pedestrian crossings on the north, south, and west legs of the intersection. The east leg intersects the railroad. Therefore, the following improvement is being considered:

Construct ADA-compliant ramps and sidewalks on the east leg of the intersection

## Cascade Drive/Hayes Street

The Cascade Drive/Hayes Street intersection is an important connection for those traveling between Hayes Street and OR 214. There are no enhanced crossings on Hayes Street at intersection roadways that provide direct access to OR 214. In addition, the Nellie Muir Elementary School is located southeast of the intersection.

Install an enhanced pedestrian crossing to facilitate movement across Hayes Street

## Park Avenue/Legion Park Driveway

Legion Park is one of the largest parks in Woodburn; however, there are not enhanced pedestrian crossing within the vicinity of the site.

Install an enhanced pedestrian crossing to facilitate movement across Park Avenue

## OR 214/N Bulldog Drive

The OR 214/N Bulldog Drive intersection has an existing pedestrian crossing on the east leg of OR 214 that serves the Woodburn High School. As described in the 2017 Woodburn Pedestrian Plan, the crossing is well utilized by students during both the morning and afternoon peak periods correlating to the school day.

Update the existing crossing to an enhanced pedestrian crossing with a pedestrian hybrid beacon coordinated with the surrounding traffic signals to facilitate pedestrian movements across OR 214 while still allowing vehicular movements along OR 214. This treatment would require approval by the State Traffic-Roadway Engineer.

# Hazelnut Drive/Broadmoor Place Accessway

Hazelnut Drive provides an east-west connection of Boones Ferry Road and Front Street north of OR 214. It also serves as the northern boundary to the Woodburn High School. There are no enhanced crossings on Hazelnut Drive.

Install an enhanced pedestrian crossing to facilitate movement across Hazelnut Drive

### OR 99E

OR 99E is an important north-south connection running the length of Woodburn near the eastern edge of the city. It supports commercial uses and provides access to numerous businesses along the corridor as well as providing connectivity to northern and southern industrial uses and downtown Woodburn to the west. Woodburn conducted a study of the OR 99E corridor in 2012 to support the revitalization of the corridor as a business district. Therefore, the following improvements are being considered, all of which would require approval by the State Traffic-Roadway Engineer:

• Install curb extensions on minor street legs of intersections (curb extensions to shorten pedestrian crossing distances parallel to OR 99E, not for crossing of OR 99E) between Arlington Street and Cleveland Street (up to 8 locations). Potential locations include:

- Alexandria Avenue
- James Street
- Williams Street
- o Blaine Street
- Aztec Drive
- o Laurel Avenue
- Tomlin Avenue
- Install countdown pedestrian timers and construct ADA enhancements at key signalized intersections along OR 99E

In addition to the 2012 Highway 99E Corridor Plan, the 2017 Woodburn Pedestrian Plan identified the following new crossing locations along OR 99E, envisioned to include raised median refuge islands, sidewalk infill, supplemental street lighting, and potentially RRFB treatments:

- North of Williams Street
- Between NE Laurel Avenue and Tomlin Avenue
- Between Blaine Street and Aztec Drive
- North of Mount Jefferson Avenue
- North of James Street

## Multi-use Pathway Improvements

Woodburn prepared a master plan in 2007 that outlines a multi-use path system running along Mill Creek and its northern and western tributaries. In addition to these planned facilities, several other potential multi-use path opportunities have been identified. The following are locations where multi-use path opportunities have been identified:

- Mill Creek Greenway
- Mill Creek Greenway Northern tributary
- Mill Creek Greenway Western tributary
- Evergreen Road extension south to planned Mill Creek Greenway
- North-south connection on Hardcastle Avenue and Lincoln Street west of Washington Elementary School
- Extension south of planned Mill Creek Greenway to Belle Passi Road

## Off-street Improvements

The following off-street improvements consist of pedestrian accessways and mid-block crossings.

## Accessway Connections to OR 99E

As part of the study conducted along OR 99E, the following accessway connections to OR 99E are being considered:

- June Way, may not connect directly as it runs parallel to OR 99E
- Johnson street
- Elm Street, may not connect directly as it runs parallel to OR 99E
- Wilson Street
- Hawley Street, may not connect directly as it runs parallel to OR 99E

## A Street Accessway

Right of way between A Street and Cleveland Street has been preserved; however, a new roadway connection may not be feasible. In addition, the planned Mill Creek Greenway will run east-west between the two roadways. Therefore, the following improvement is being considered:

 Install a new accessway that connects A Street north to Cleveland Street and/or Mill Creek Greenway (western tributary).

## Mill Creek Greenway Mid-block Crossings


As part of the planned Mill Creek Greenway multi-use path, the following mid-block crossings have been identified:

- Young Street
- Hazelnut Drive
- Bulldog Drive (two crossing locations)
- OR 214 (state highway)
- Hardcastle Avenue
- Lincoln Street

- Cleveland Street (including railroad crossing)
- Ben Brown Lane extension
- Settlemier Avenue
- Parr Road
- Front Street (including railroad crossing)
- Meridian Drive
- Boones Ferry Road

If and when the Mill Creek Greenway multi-use path is constructed, high-visibility enhanced pedestrian crossings should be considered at the above locations where the multi-use path intersects roadways. Depending on the classification and characteristics of the roadway, the enhanced crossing may include a median refuge island, high visibility pavement markings and signs, RRFB's, pedestrian hybrid beacons, curb extensions, and/or pedestrian signals.







June Way Accessway, Facing West

## SAFE ROUTES TO SCHOOL

The access and connectivity needs for a safe routes to school program have been considered above in the bicycle and pedestrian system sections. The schools in Woodburn are listed below with their primary access and connecting streets identified. To see the potential improvements that will benefit each school, review the projects described in the previous sections.

# Woodburn High School (1785 N Front Street)

Direct access and local connectivity are provided by OR 214, Front Street, Hazelnut Drive, and the planned Mill Creek Greenway multi-use path and its northern tributary extension.

# Washington Elementary School (777 E Lincoln Street)

Direct access and local connectivity are provided by Hardcastle Avenue, Lincoln Street, Gatch Street, Park Avenue, and potential multi-use pathway opportunities to the west.

## Nellie Muir Elementary School (1800 W Hayes Street)

Direct access and local connectivity are provided by Hayes Street, Cascade Drive, Leasure Street, Garfield Street, Smith Drive, and Settlemier Avenue. A pedestrian crossing opportunity on Hayes was identified to benefit this school and the surrounding area.

Heritage Elementary School and Valor Middle School (440/450 Parr Road)

Direct access and local connectivity are provided by Parr road, the planned Mill Creek Greenway western tributary extension, Boones Ferry Road/Settlenier Avenue, and Front Street.

Lincoln Elementary School and French Prairie Middle School (1041/1025 N Boones Ferry Road)

Direct access and local connectivity are provided by Boones Ferry Road/Settlemier Avenue, OR 214, and the planned Mill Creek Greenway northern tributary extension.

St. Luke's School (529 Harrison Street)

Direct access and local connectivity are provided by Harrison Street, 5<sup>th</sup> Street, and Front Street.

# TRANSIT SYSTEM

Public transit can provide important connections to destinations for people that do not drive or bike and can provide an additional option for all transportation system users for certain trips. Public transit links to walking, bicycling, or driving trips: users can walk to and from transit stops and their homes, shopping, or work places; people can drive to park-and-ride locations to access a bus; or people can bring their bikes on transit vehicles and bicycle from a transit stop to their final destination.

Providing transit service in smaller cities is generally led by a local or regional transit agency and is dependent on having the land use and densities that can support service. The city can plan for transit-supportive land use patterns and support future transit viability by designing and building streets that will comfortably accommodate transit stops and include the right-of-way that could allow for transit stops to be located as close as possible to important destinations. At a minimum, a transit stop should be well-signed and have a comfortable space to wait. Benches and shelter from the weather can improve user comfort and including bike parking near bus stops allows people the option to leave their bike at one trip-end instead of bringing it on the bus.

## Service Coverage

Service Coverage is a measure of the area within walking distance of transit service. Areas must be within 1/4-mile of a bus stop (or service route if there are no designated stops) or 1/2 mile of a transit station to be considered an area served by transit. As with the other availability measures, service coverage does not provide a complete picture of transit availability by itself, but when combined with frequency and hours of service, it helps identify the number of opportunities people have to access transit from different locations. Service coverage evaluates the percentage of transit-supportive areas—areas that would typically produce the majority of a system's ridership—that are served by transit.

To qualify as a transit-supportive area (TSA) one of the following thresholds must be met:

- Minimum population density of 3 households/gross acre; or
- Minimum job density of 4 employees/gross acre.

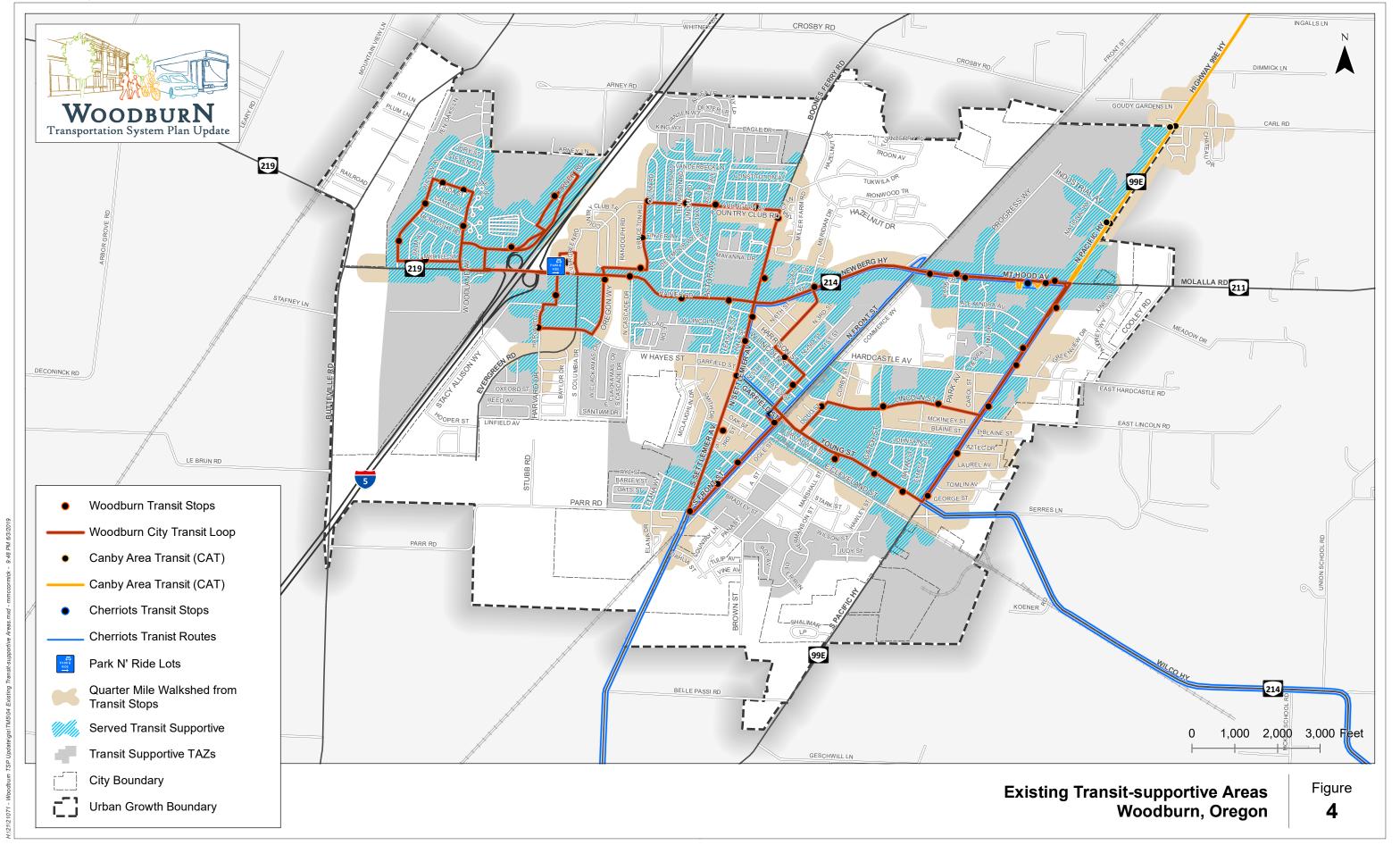

Service coverage is an all-or-nothing issue for transit riders—either service is available for a particular trip or it is not. As a result, there is no direct correlation between service coverage and what a passenger would experience for a given trip. Rather, service coverage reflects the number of potential trip origins and destinations available to potential passengers.

Figure 4 displays the existing transit-supportive areas and service coverage in Woodburn. Areas defined as transit supportive that have service are shown in blue. Areas defined as transit supportive but lacking service are shown in gray. Areas that have transit service, but do not qualify as a TSA, are shown in tan. A majority of the areas shown in gray would require additional transit routes or the development of new pathway connections (increasing the area that is within ¼ mile walking distance) to existing transit routes to be served.

## Future Transit Service Coverage

The future transit level-of-service analysis assumes that existing service frequencies, service hours, and service coverage is the same in the future. The only difference is the population and employment growth assumptions included in the regional traffic model for 2040 and the resulting transit supportive areas. Figure 5 displays the future transit-supportive areas and service coverage based on existing transit service. As shown, the number of transit supportive areas is expected to increase. While many of these areas are expected to be served by existing transit services, the remaining areas will require additional service routes or connections to existing routes in order to be served.

Woodburn TSP Update
June 2019



Woodburn TSP Update

June 2019



## Solutions Considered

This section summarizes the solutions considered for implementation within the City of Woodburn to address existing gaps and deficiencies in the transit system and future needs.

### New or Re-routed Fixed-Route Service

Fixed-route service enhancement can include:

- Increase the service frequency by reducing headways or time between arrivals
- Increase hours of service by providing service earlier in the morning and/or later in the evening
- Increase service coverage by re-routing existing service or implementing new service

## Stop Enhancements

Transit stops are designated locations where residents can access local transit service. Transit stops are normally located at major intersections. The types of amenities provided at each transit stop (i.e. pole, bench, shelter, ridership information, trash receptacles) tend to reflect the level of usage. Potential stop enhancements include:

- Pole and bus stop sign All bus stops require a pole and bus stop sign to identify the bus stop location.
- Bus stop shelters
- Seating
- Trash cans
- Lighting

#### Park-and-Ride Facilities

Park-and-ride facilities provide parking for people who wish to transfer from their personal vehicle to public transportation or carpools/vanpools. Park-and-rides are frequently located near major intersections, at commercial centers, or on express and commuter bus routes. It is Oregon state policy to encourage the development and use of park-and-ride facilities at appropriate urban and rural locations adjacent to or within the highway right-of-way. Park-and-ride facilities can provide an efficient method to provide transit service to low density areas, connecting people to jobs, and providing an alternate mode to complete long-distance commutes.

Park-and-ride facilities may be either shared-use, such as at a school or shopping center, or exclusive-use. Shared-use facilities are generally designated and maintained through agreements reached between the local public transit agency or rideshare program operator and the property owner. Shared lots can save the expense of building a new parking lot, increase the utilization of existing spaces, and

avoid utilization of developable land for surface parking. In the case of shopping centers, the presence of a shared-use park-and-ride has frequently been shown to be mutually beneficial, as park-and-riders tend to patronize the businesses in the center.

## **Potential Improvements**

## New, Enhanced, or Re-routed Service

The following opportunities are being considered for new, enhanced, or re-routed service to address the need for additional service coverage within the surrounding area:

- Woodburn fixed route enhancement opportunities
  - Increase frequency to 30 minutes
  - o Provide Saturday service
  - Provide Sunday service
  - Convert existing route to two-way operations
  - Separate route into two routes with one-way operations
  - Separate route into two routes with two-way operations
  - Add a new fixed route in City center (30-minute frequency to major local destinations)
  - Restructure the "long" loop, expanded to serve the neighborhood in southeast Woodburn
- New or re-routed service to provide service to
  - Parr Road corridor via an extension of Evergreen Road
  - Crosby Road corridor
  - o Butteville Road corridor
  - Employment center southwest of I-5/OR 214 interchange
  - Woodburn Industrial Park along the Progress Way and Industrial Avenue corridors
  - Gateway subarea Avenue
- New service
  - o Provide peak-only employer shuttles
  - Establish a free shuttle between the Woodburn Company Stores and Downtown Woodburn, hourly during peak shopping and entertainment hours

- Intercity service opportunities
  - o Coordinate transfers between the different agency services in Woodburn
  - Provide a stop in Woodburn for SMART Route 1X
  - Provide service to downtown Salem (and east to State offices) incorporate a stop at the planned Park & Ride for the SMART express route between Wilsonville and Salem
  - Provide service to Portland connect to TriMet via the Tualatin Park-and-Ride, directly into downtown Portland, to the Westside Express Service (southern terminus at Wilsonville SMART Central), or the MAX Orange Line light rail service
  - o Provide a new demand-responsive service to Hubbard one day per week
  - Provide service to WES station in Wilsonville

### Stop Enhancements

Woodburn City Transit should evaluate signage at all bus stops to verify that they are visible and accessible. Static bus route information should be provided at each bus stop. In addition, the following bus stops are being considered for shelter installation due to adequate ridership volumes:

Bus stop ID: 755016, Walmart

Bus stop ID: 20419, Garfield Street

### **Other Transit Improvements**

Investigate transferring the paratransit system to a local social service agency

### INTERMODAL ROUTE CONNECTIVITY

The majority of the needs for intermodal route connectivity and access have been considered above in the bicycle, pedestrian, transit, and auto-related system sections. By providing a connected system by each mode and identifying crossing and multi-use pathway opportunities, the overall transportation system of Woodburn becomes further connected and has overlap between modes. Improved transit access and service will allow users from different areas of the city to more easily reach transit, while a connected bicycle and pedestrian network will support their first-mile, last-mile needs.

# **Potential Improvements**

In addition to the improvements identified in earlier sections, the following improvements are being considered to enhance intermodal route connectivity in Woodburn:

- Provide wayfinding to bike routes, multi-use paths, trails (as constructed), parks, schools, and other essential destinations
- Provide bike racks at bus stops

# **RAIL**

Union Pacific Railroad operates a Class I rail line through Woodburn. These tracks parallel the east side of Front Street. A total of five at-grade crossings and one grade separated crossing exist along the rail line. Willamette Valley Railway operates a Shortline Railroad track that parallels the north side of Cleveland Street in the south side of town. A total of five public at-grade crossings exist along this rail line. In addition to these crossings, the rail line serves multiple local businesses along the corridor. Currently, there are no passenger rail terminals in Woodburn.

# **Potential Improvements**

The following improvements are being considered for the rail system in Woodburn:

- Investigate the opportunity to remove private grade railroad crossings by providing alternative access to parcels as development and redevelopment occurs
- Establish a downtown Amtrak passenger rail stop along Front Street in downtown Woodburn, potentially as a public-private partnership at the "Y" property adjacent to Locomotive Park
- Explore a passenger rail stop if commuter rail is extended between Wilsonville and Beaverton down to Salem

## **FREIGHT**

## Freight Mobility and Reliability Solutions

No specific solutions have been identified to address freight mobility and reliability within the City, with the exception of the TSMO solutions identified above for truck signal priority and the capacity-based solutions identified below at several key intersections along OR 219/OR 214 and OR 99E.

## Freight Mobility and Reliability Improvements

No specific improvements have been identified to address freight mobility and reliability within the City, with the exception of the TSMO improvements identified above for truck signal priority and the capacity-based improvements identified below at several key intersections along OR 219/OR 214 and OR 99E.

### **SAFETY**

Traffic safety plays an important role in determining the most appropriate solutions for a given gap or deficiency, particularly in areas where real or perceived safety risks may prevent people from using more active travel modes, such as walking, biking, and taking transit. The real or perceived safety risks may reflect the crash history of an area or the physical and/or operational characteristics of the roadways (narrow travel lanes, winding curves, steep grades, high traffic volumes, high travel speeds, lots of heavy vehicles, etc.). Several methodologies have been developed to analyze and identify solutions for addressing traffic safety within an area. Many of which are documented in the Highway Safety Manual (HSM) as well as several other resources developed by ODOT for addressing safety along roadway segments, at intersections, and for pedestrian and bicyclists.

## Solutions Considered

This section summarizes the solutions considered for implementation within the City of Woodburn to address real or perceived safety issues along roadway segments, at intersections, and/or for pedestrians and bicyclists. Note: many of the solutions overlap, which illustrates how some solutions address multiple safety issues.

## Roadway Segments

There are a variety of potential safety solutions that can be applied within Woodburn to address systemic crashes that occur along roadway segments, such as sideswipe and run off the road crashes as well as general speeding and other driver behaviors.

- Enhanced signs and pavement markings for curves (with and without flashing beacons)
- Rumble strips (e.g. centerline, shoulder line, and edge line)
- Tree/vegetation removal
- Traffic calming
- Enhanced enforcement
- Road diet

#### Intersections

There are a variety of potential safety solutions that can be applied within Woodburn to address systemic crashes that occur at intersections, such as angle crashes, turning movement crashes, rearend crashes, and crashes that involve other travel modes. The solutions include:

- Enhanced signs and pavement markings (e.g. stop signs, warning signs, and/or beacons)
- Signal improvements (e.g. signal timing, signal phasing)
- Left-turn phasing (e.g. permitted, protected, permitted-protected)
- Enhanced enforcement
- Pedestrian and bicycle improvements (see below)
- Intersection lighting
- Traffic calming

## **Pedestrian and Bicycle**

There are a variety of potential safety solutions that can be applied within Woodburn to address pedestrian and bicycle safety. The following provides a summary of the solutions by traffic control.

# Signalized intersections

## **Pedestrian Safety Solutions**

- Street lighting
- Right-turn channelization
- Countdown pedestrian heads
- Leading pedestrian interval
- Left-turn phasing
- Vehicle turning movement restrictions

## **Bicycle Safety Solutions**

- Street lighting
- Bicycle signal
- Bicycle detection
- Pavement markings
- Right-turn channelization
- Leading bicycle interval
- Left-turn phasing
- Vehicle turning movement restrictions

### Unsignalized intersections

# **Pedestrian Safety Solutions**

- Street lighting
- Enhanced crossing treatments
- Reduced curb radii
- Pedestrian refuge island or median
- Speed reduction treatments
- Vehicle turning movement restrictions

# **Bicycle Safety Solutions**

- Street lighting
- Enhanced crossing treatments
- Reduced curb radii
- Skip Striping
- Supplemental signs and markings
- Bicycle boulevards
- Longitudinal bike stencil
- Speed reduction treatments
- Vehicle turning movement restrictions
- Strip bike lanes

# Roadway segment – No traffic control

## **Pedestrian Safety Solutions**

- Street lighting
- Access management
- Sidewalks Street lighting
- Enhanced mid-block crossing treatments
- Road diet
- Pedestrian refuge island or median

## **Bicycle Safety Solutions**

- Access management
- Bicycle route signage
- Longitudinal bike stencil
- Cycle tracks
- Dynamic warning signs
- Enhanced mid-block crossing treatments
- Street lighting
- Restrict on-street parking
- Road diet
- Refuge Island or median

# **Potential Improvements**

A majority of the safety improvements are addressed within previous sections of this memorandum for the pedestrian, bicycle, and motor vehicle systems, with the exception of the safety improvements at a few key intersections and roadways as described below.

# OR 219/Butteville Road (southern intersection)

The crash rate at the southern OR 219/Butteville Road intersection currently exceeds the critical crash rate. The crash data shows a trend for rear-end crashes at the intersection. Of the 4 rear-end crashes

observed in the five years of data, all occurred on the south leg of the intersection as vehicles were exiting Butteville Road. The following improvements are being considered at the intersection:

- Realign OR 219 to improve intersection(s) with Butteville Road
- Enhanced traffic control (traffic signal [if/when warranted], roundabout, or other appropriate geometric enhancements)

## OR 219/Butteville Road (northern intersection)

The following improvements are being considered at the intersection:

 Enhanced traffic control (traffic signal [if/when warranted], roundabout, or other appropriate geometric enhancements)

### Front Street/Lincoln Street

The crash rate at the Front Street/Lincoln Street intersection currently exceeds the critical crash rate. The crash data shows a trend for angle crashes at the intersection. Of the four angle crashes observed in the five years of data, three of the crashes were caused by a driver not yielding the right-of-way. The following improvements are being considered at the intersection:

Enhanced signs and pavement markings (e.g. stop signs, warning signs, and/or beacons)

### Front Street/Young Street/Garfield Street

The crash rate at the Front Street/Young Street/Garfield Street intersection currently exceeds the critical crash rate. The crash data shows a trend for turning movement crashes at the intersection. Of the four turning movement crashes observed in the five years of data, all four involved vehicles traveling westbound from Young Street The following improvements are being considered at the intersection:

Evaluate the intersection layout, signing, and striping in correlation to the railroad tracks.
 Provide clarification for westbound drivers trying to proceed through the intersection

### OR 99E/Tomlin Avenue

The OR 99E/Tomlin Avenue intersection is identified within the top 10 percent of crash sites over the last five-year period in the ODOT Statewide Priority Index System. The following improvements are being considered at the intersection:

- Restrict the southbound left-turn movement
- Evaluate the intersection layout, signing, and striping, including any sight distance constraints

### Butteville Road/Parr Road

The following improvements are being considered at the intersection:

Reconstruct the intersection due to grades on approaches

#### **OR 99E**

The following improvements are being considered at the intersection based on the study conducted on the corridor:

- Update roadway lighting to meet ODOT roadway lighting standards
- OR 99E between Young Street and Cleveland Street
  - Restrict left-turn movements and eventually close the Silverton Avenue intersection on OR 99E and vacate the segment of Silverton Avenue between OR 99E and Birds Eye Avenue
  - Restrict left-turn movements onto Birds Eye Avenue from Hillsboro Silverton
    Highway and eventually close the Birds Eye Avenue intersection on Hillsboro
    Silverton Highway and vacate the segment of Birds Eye Avenue between Hillsboro
    Silverton Highway and Silverton Avenue

# City-wide

A number of safety issues have been identified throughout the planning process along key corridors throughout the city, including OR 99E, OR 219/OR214, Front Street, Evergreen Road, and others. While several projects have been identified along each of these corridors that will address some of the safety concerns, other concerns may not be addressed. Therefore, the following improvements are being considered to address safety issues throughout the city:

 Evaluate traffic safety along OR 99E, OR 219/OR214, Front Street, Evergreen Road, and other key corridors to identify appropriate countermeasures.

## **FUNDING PROGRAMS**

### Revenue

The City of Woodburn has historically relied upon multiple revenue sources to fund the maintenance of its transportation network and make capital improvements. These local gas tax revenue, intergovernmental (primarily state gas tax revenue), franchise fees, and other miscellaneous revenue. Table 5 displays the total revenue by source used to fund transportation projects within Woodburn over the most recent seven years that comprehensive data was available.

**Table 5: City of Woodburn Revenue History** 

| Revenue<br>Source       | FY 2016-<br>2017 | FY 2015-<br>2016 | FY 2014-<br>2015 | FY 2013-<br>2014 | FY 2012-<br>2013 | FY 2011-<br>2012 | FY 2010-<br>2011 | Average     |
|-------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|-------------|
| Taxes                   | \$129,412        | \$115,692        | \$102,517        | \$101,761        | \$106,537        | \$182,109        | \$121,196        | \$122,746   |
| Inter-<br>Government    | \$1,480,082      | \$1,454,076      | \$1,409,311      | \$1,384,277      | \$1,597,518      | \$1,312,024      | \$1,116,011      | \$1,393,328 |
| Franchise               | \$359,820        | \$357,983        | \$336,707        | \$360,046        | \$353,381        | \$326,713        | \$347,621        | \$348,896   |
| Transportation SDC Fees | \$33,396         | \$183,698        | \$440,595        | \$521,933        | \$411,527        | \$400,172        | \$153,268        | \$306,370   |
| Other                   | \$69,856         | \$59,518         | \$49,532         | \$319,086        | \$49,457         | \$88,767         | \$27,147         | \$94,766    |
| Revenue Total           | \$2,072,566      | \$2,170,967      | \$2,338,662      | \$2,687,103      | \$2,518,420      | \$2,309,785      | \$1,765,243      | \$2,266,107 |

Taxes = Local Gas Tax revenue

Inter-Government = State Gas Tax, State Fund Exchange

Other = Misc. revenue, interest income

Based on the information shown in Table 5, the City of Woodburn has generated an average of approximately \$2,266,107 per year in total revenue for transportation-related maintenance/projects.

# **Potential Funding Sources**

The projected transportation funding analysis shows that the City of Woodburn will have a limited source of funds that can solely dedicated to transportation-related capital improvement projects over the next twenty years. As such, Woodburn will likely need to seek additional funds via transportation improvement grants, partnerships with regional and state agencies, and other funding sources to help implement future transportation-related improvements.

Table 6 identifies a list of potential Grant sources and Partnering Opportunities to consider during the course of the 20-year planning horizon. Following Table 6, Table 7 identifies a list of potential new funding sources for Woodburn to consider in an effort to bolster funds for additional capital improvement projects.

**Table 6: Potential Grant Sources and Partnering Opportunities** 

| Funding Source                                            | Description                                                                                                                                                                                                                                                                                                       | Potential Facility Benefit                           | Opportunities                                                                                                                                                                                               |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Statewide Transportation<br>Improvement Program<br>(STIP) | The Statewide Transportation Improvement Program (STIP) is Oregon's 4-year capital improvement program for major state and regional transportation facilities. This scheduling and funding document is updated every two years. Projects included on the STIP are allocated into the five different ODOT regions. | - Streets<br>- Sidewalks<br>- Bike lanes<br>- Trails | The next STIP (2018-2021) will be organized into two different categories that focus on projects that will fix/preserve the existing transportation network and enhance/improve the transportation network. |
| Federal Funding                                           | Large trails or trail networks with a transportation purpose can compete for TIGER grant awards. Additional significant federal funding sources include TAP, STP and CMAQ. Depending upon the location and purpose, trails can also be funded by HUD CDBG funds, USDA rural development programs, or EPA funding. | - Multi-Use Trails                                   | Projects in urban areas have traditionally been funded at a minimum of \$10,000,000 and rural trails of lower project costs are considered for TIGER funding.                                               |
| Oregon Bicycle and<br>Pedestrian Program                  | The Oregon Pedestrian and Bicycle Grant program ended as a standalone solicitation process in 2012. Grant monies are now distributed through the "Enhance" process in the STIP program noted above.                                                                                                               | See STIP above                                       | See STIP above.                                                                                                                                                                                             |
| ATV Grant Program                                         | Operation and maintenance, law enforcement, emergency medical services, land acquisition, leases, planning, development and safety education in Oregon's OHV (off-highway vehicle recreation areas).                                                                                                              | - Multi-Use Trails                                   | http://www.oregon.gov/oprd/ATV/pages/grants.aspx                                                                                                                                                            |

**Table 7: Potential New Funding Sources for Consideration by the City of Woodburn** 

| Funding Source | Description                                                                                                                                                                                                                                                                 | Potential Facility Benefit    | Opportunities                                                                                                                                                                                                                                                                              |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| User Fees      | Fees tacked onto a monthly utility bill or tied to the annual registration of a vehicle to pay for improvements, expansion, and maintenance to the street system. This may be a more equitable assessment given the varying fuel efficiency of vehicles. Regardless of fuel | Primarily Street Improvements | The cost of implementing such a system could be prohibitive given the need to track the number of vehicle miles traveled in every vehicle. Additionally, a user fee specific to a single jurisdiction does not account for the street use from vehicles registered in other jurisdictions. |

|                                             | efficiency, passenger vehicles do equal damage to the street system.                                                                                                                                                                                                                                                                          |                                                                                                                                                            |                                                                                                                                                               |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Street Utility Fees/Road<br>Maintenance Fee | The fee is based on the number of trips a particular land use generates and is usually collected through a regular utility bill. For the communities in Oregon that have adopted this approach, it provides a stable source of revenue to pay for street maintenance allowing for safe and efficient movement of people, goods, and services. | Preservation, restoration, and reconstruction of existing paved residential streets. Includes sidewalks, ramps, curbs and gutters, and utility relocation. | Other cities have adopted street maintenance utility fees at varying amounts charged to residential meters. Woodburn could consider a similar program.        |
| Optional Tax                                | A tax that is paid at the option of the taxpayer to fund improvements. Usually not a legislative requirement to pay the tax and paid at the time other taxes are collected, optional taxes are usually less controversial and easily collected since they require the taxpayer to decide whether or not to pay the additional tax.            | - Streets<br>- Sidewalks<br>- Bike lanes<br>- Multi-Use Trails<br>- Transit                                                                                | The voluntary nature of the tax limits the reliability and stableness of the funding source.                                                                  |
| Sponsorship                                 | Financial backing of a project by a private corporation or public interest group, as a means of enhancing its corporate image.                                                                                                                                                                                                                | - Multi-Use Trails                                                                                                                                         | Sponsorship has primarily been used by transit providers to help offset the cost of providing transit services and maintaining transit related improvements.  |
| Federal Funding                             | Trails with a transportation purpose can compete for TIGER grant awards. Depending upon the location and purpose, trails can also be funded by HUD, CDBG funds, USDA rural development programs, or EPA funding.                                                                                                                              | - Trails                                                                                                                                                   | Projects in urban areas have traditionally been funded at a minimum of \$10,000,000 and rural trails of lower project costs are considered for TIGER funding. |

Attachment A
Pedestrian and Bicycle
Crossing Treatments

# PEDESTRIAN CROSSING TREATMENTS

Pedestrian crossing facilities enable pedestrians to safely cross streets, railroad tracks, and other transportation facilities. Planning for appropriate pedestrian crossings requires the community to balance vehicular mobility needs with providing crossing locations that the desired routes of walkers.

### **Unmarked Crosswalks**

Under Oregon law, pedestrians have the right-of-way at all unsignalized intersections. On narrow, low-speed streets unmarked crosswalks are generally sufficient for pedestrians to cross the street safely, as the low-speed environment makes drivers more responsive to the presence of pedestrians. However, drivers are less likely to yield to pedestrians at unmarked crosswalks on high-speed and/or high-volume roadways, even when the pedestrian has stepped onto the roadway. In these



situations, enhanced pedestrian crossing facilities are needed to remind drivers that they must yield when pedestrians are present.

#### Marked Crosswalks

Marked crosswalks are painted roadway markings that indicate the location of a crosswalk to motorists. Marked crosswalks can be accompanied by signs, curb extensions and/or median refuge islands, and may occur at intersections or at mid-block locations. Research has shown that marked crosswalks in certain situations do not



improve pedestrian safety and can even make it worse. Recent research indicates that on multi-lane roadways (more than two lanes), marked crosswalks should not be installed without accompanying treatments, such as Rectangular Rapid Flash Beacons (RRFBs) or Pedestrian Hybrid beacons. Median refuge islands are another accompanying treatment that may be used for marked crosswalks on multi-lane roadways to although the pedestrian to make a two-stage crossing and focus on one direction at a time.

## Rectangular Rapid Flashing Beacon (RRFB)

RRFBs are user-actuated amber lights that have an irregular flash pattern similar to emergency flashers on police vehicles. These supplemental warning lights are used at unsignalized intersections or mid-block crosswalks to improve safety for pedestrians using a crosswalk. RRFBs could be used at any unsignalized intersection or mid-block crossing where warrants require a higher level of crosswalk protection.



## Pedestrian Hybrid Beacon

A Pedestrian Hybrid Beacon (sometimes called a HAWK signal) is a user-actuated signal that is unlit when not in use. It begins with a yellow light alerting drivers to slow, and then displays a solid red light requiring drivers to remain stopped while pedestrians cross the street. The beacon then shifts to flashing red lights to signal that motorists may proceed, after stopping, and after pedestrians have completed their crossing. A Pedestrian Hybrid Beacon can be used at mid-block crossings or, in



some cases, at unsignalized intersections (the MUTCD suggests that the beacons be located at least 100-feet from an intersection). Pedestrian Hybrid Beacons could be used at any unsignalized intersection or mid-block crossing where warrants require a higher level of crosswalk protection.

## Pedestrian Signal

Pedestrian Signals provide pedestrians with a signal-controlled crossing at a mid-block location or, in some cases at a previously stop-controlled intersection where pedestrian volumes warrant full signalization (the MUTCD no longer allows half signals at intersections). The signal remains green for the mainline traffic movements until actuated by a pushbutton to call a red signal for traffic. They are typically located at midblock crossings with high pedestrian or bicycle demand and/or high traffic volumes, such as where multi-use paths intersect with roadways.



### Pedestrian Countdown Heads

Pedestrian Countdown heads inform pedestrians of the time remaining to cross the street with a countdown timer at the signalized crossing. The countdown should include enough time for a pedestrian to cross the full length of the street, or in rare cases, reach a refuge island. The 2009 Manual on Uniform Traffic Control Devices (MUTCD) requires all new pedestrian signals, and any retrofitted signals to include pedestrian countdown signals.

## Leading Pedestrian Interval (LPI)

Leading pedestrian intervals allow pedestrians to start crossing the street at a signalized intersections five to seven seconds before conflicting vehicles are given a green light and allowed to enter the intersection. They are most commonly used at signalized intersections where left- or right-turning vehicles interfere with pedestrian crossing movements. LPI could be applied at all existing or potential future traffic signals to improve crossing conditions for pedestrians.

## **Geometric Considerations**

There are a number of geometric enhancements that can be considered at pedestrian crossings that may be implemented in conjunction with previously discuss treatments.

#### **Curb Extensions**

Curb extensions create additional space for pedestrians at crosswalks and allow pedestrians and vehicles to better see each other. Curb extensions are typically installed at intersections and midblock crossings located along roadways with on-street parking to help reduce crossing distances and the amount of exposure pedestrians have to vehicle traffic. Curb extensions can narrow the vehicle path, slow down traffic, and prohibit fast turns. Curb extensions could be applied along any street where onstreet parking is allowed or where there is sufficient



shoulder width so the curb extension does not conflict with on-street bike lanes.

#### Raised Median Island

Raised median islands provide a protected area in the middle of the roadway where pedestrians can stop while crossing the street. Raised median islands allow pedestrians to complete two-stage crossings if needed. Raised median islands can narrow the vehicle path and slow down traffic along the roadway. Raised median islands could be applied along any street where they would not interfere with turning movements at driveways and intersecting roadways.



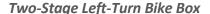
## Other Considerations

## Street Furniture and Lighting

Street furniture includes pedestrian seating, information / wayfinding structures, and trash cans. Street furniture and lighting can be used to enhance the pedestrian experience and encourage pedestrian activity on a street.



# **Bicycle Crossing Treatments**


## **Pavement Markings Through Intersections**

Pavement markings can be extended through the intersection for bicyclists. Green paint can be used in "conflict zones" where vehicles and bicycles may cross paths in intersections, at driveways, or at right-turn pockets. These pavement marking are typically used at signalized intersections to emphasize a connection in a larger bicycle network. They could be used along at all signalized intersections and in other select "conflict zones".



## Bike Box

Bicycle boxes are designated spaces at signalized intersections, placed between a set-back stop bar and the pedestrian crosswalk, that allow bicyclists to queue in front of motor vehicles at red lights. Bike boxes are typically used at signalized intersections to facilitate turn movements as well as other movements for cyclists.



Two-stage left-turn bike boxes allow bicyclists to safely and comfortably make left-turns at multilane intersections from a right-side bicycle lane or cycle track. Bicyclists arriving on a green light travel into the intersection and pull out into the two-stage turn queue box away from through-moving bicycles and in front of cross street traffic, where they can wait to proceed through on the side-street green signal. Two-stage left-turn bike boxes can be applied at signalized intersections to improve bicycle crossing conditions.





# Bike only signal

Bicycle-only signals can be used at intersections to provide a separate signal phase that is dedicated to bicyclists. At this stage, the MUTCD does not allow bicycle signal to operation concurrent with permissive vehicle phases.

## **Bicycle Detection**

Many traffic signals along are actuated, meaning that green indication is given to a movement when a vehicle is detected. However, actuating a signal as a cyclist can be difficult. Bicycle detection allows cyclists to actuate the traffic signal from the bicycle lane with a detector that is calibrated to recognize a bicycle. Pavement markings could be added to show cyclists where to stand to actuate a signal. Bicycle detection is typically applied at signalized intersections that accommodate bicycles and can be used



at all of the signalized intersection to improve bicycle crossing conditions.

## Other Considerations

# **Bicycle Parking**

Bicycle parking facilities provide safe and secure places for people to park their bicycles. The most common bicycle parking facility is the "staple", which provides space for up to two bicycles and is typically located along the side of the road in a commercial area or near the main entrance to a building. Bicycle parking could be applied along streets located adjacent to commercial properties.



Wayfinding signs are signs located along roadways or at intersections that direct bicyclists towards destinations in the area and/or to define a bicycle route. They typically include distances and average walk/cycle times. Wayfinding signs are generally used on primary bicycle routes and multiuse paths.





Attachment B Year 2040 Auto-related Improvement Worksheets

|                                | -         | $\rightarrow$ | •     | •    | 4          | <i>&gt;</i>      |   |
|--------------------------------|-----------|---------------|-------|------|------------|------------------|---|
| Movement                       | EBT       | EBR           | WBL   | WBT  | NBL        | NBR              |   |
| Lane Configurations            | <b>1</b>  |               | *     | 4    | W          |                  |   |
| Traffic Volume (vph)           | 239       | 143           | 330   | 331  | 150        | 245              |   |
| Future Volume (vph)            | 239       | 143           | 330   | 331  | 150        | 245              |   |
| Ideal Flow (vphpl)             | 1750      | 1750          | 1750  | 1750 | 1750       | 1750             |   |
| Total Lost time (s)            | 4.5       |               | 4.5   | 4.5  | 4.5        |                  |   |
| Lane Util. Factor              | 1.00      |               | 1.00  | 1.00 | 1.00       |                  |   |
| Frt                            | 0.95      |               | 1.00  | 1.00 | 0.92       |                  |   |
| Flt Protected                  | 1.00      |               | 0.95  | 1.00 | 0.98       |                  |   |
| Satd. Flow (prot)              | 1417      |               | 1409  | 1357 | 1300       |                  |   |
| Flt Permitted                  | 1.00      |               | 0.48  | 1.00 | 0.98       |                  |   |
| Satd. Flow (perm)              | 1417      |               | 714   | 1357 | 1300       |                  |   |
| Peak-hour factor, PHF          | 0.96      | 0.96          | 0.96  | 0.96 | 0.96       | 0.96             |   |
| Adj. Flow (vph)                | 249       | 149           | 344   | 345  | 156        | 255              |   |
| RTOR Reduction (vph)           | 37        | 0             | 0     | 0    | 99         | 0                |   |
| Lane Group Flow (vph)          | 361       | 0             | 344   | 345  | 312        | 0                |   |
| Heavy Vehicles (%)             | 15%       | 21%           | 18%   | 29%  | 31%        | 15%              |   |
| Turn Type                      | NA        |               | Perm  | NA   | Prot       |                  |   |
| Protected Phases               | 2         |               |       | 6    | 4          |                  |   |
| Permitted Phases               |           |               | 6     |      |            |                  |   |
| Actuated Green, G (s)          | 29.7      |               | 29.7  | 29.7 | 16.0       |                  |   |
| Effective Green, g (s)         | 29.7      |               | 29.7  | 29.7 | 16.0       |                  |   |
| Actuated g/C Ratio             | 0.54      |               | 0.54  | 0.54 | 0.29       |                  |   |
| Clearance Time (s)             | 4.5       |               | 4.5   | 4.5  | 4.5        |                  |   |
| Vehicle Extension (s)          | 3.0       |               | 3.0   | 3.0  | 3.0        |                  |   |
| Lane Grp Cap (vph)             | 769       |               | 387   | 736  | 380        |                  |   |
| v/s Ratio Prot                 | 0.26      |               |       | 0.25 | c0.24      |                  |   |
| v/s Ratio Perm                 |           |               | c0.48 |      |            |                  |   |
| v/c Ratio                      | 0.47      |               | 0.89  | 0.47 | 0.82       |                  |   |
| Uniform Delay, d1              | 7.7       |               | 11.0  | 7.7  | 18.0       |                  |   |
| Progression Factor             | 1.00      |               | 1.00  | 1.00 | 1.00       |                  |   |
| Incremental Delay, d2          | 0.5       |               | 21.1  | 0.5  | 13.3       |                  |   |
| Delay (s)                      | 8.1       |               | 32.2  | 8.1  | 31.3       |                  |   |
| Level of Service               | Α         |               | С     | Α    | С          |                  |   |
| Approach Delay (s)             | 8.1       |               |       | 20.1 | 31.3       |                  |   |
| Approach LOS                   | Α         |               |       | С    | С          |                  |   |
| Intersection Summary           |           |               |       |      |            |                  |   |
| HCM 2000 Control Delay         |           |               | 20.0  | H    | CM 2000    | Level of Service | ) |
| HCM 2000 Volume to Capac       | ity ratio |               | 0.86  |      |            |                  |   |
| Actuated Cycle Length (s)      |           |               | 54.7  |      | um of lost |                  |   |
| Intersection Capacity Utilizat | ion       |               | 79.6% | IC   | U Level o  | f Service        |   |
| Analysis Period (min)          |           |               | 15    |      |            |                  |   |
| c Critical Lane Group          |           |               |       |      |            |                  |   |

|                                   | ۶     | <b>→</b> | •     | •    | <b>←</b>  | 4          | •       | <b>†</b> | ~    | <b>&gt;</b> | <b>+</b> | - ✓    |
|-----------------------------------|-------|----------|-------|------|-----------|------------|---------|----------|------|-------------|----------|--------|
| Movement                          | EBL   | EBT      | EBR   | WBL  | WBT       | WBR        | NBL     | NBT      | NBR  | SBL         | SBT      | SBR    |
| Lane Configurations               |       | <b>^</b> | 7     |      | <b>^</b>  | 7          |         |          |      | 14.54       |          | 7      |
| Traffic Volume (vph)              | 0     | 999      | 447   | 0    | 1073      | 733        | 0       | 0        | 0    | 717         | 0        | 363    |
| Future Volume (vph)               | 0     | 999      | 447   | 0    | 1073      | 733        | 0       | 0        | 0    | 717         | 0        | 363    |
| Ideal Flow (vphpl)                | 1750  | 1750     | 1750  | 1750 | 1750      | 1750       | 1750    | 1750     | 1750 | 1750        | 1750     | 1750   |
| Total Lost time (s)               |       | 4.5      | 4.0   |      | 4.5       | 4.0        |         |          |      | 4.5         |          | 4.5    |
| Lane Util. Factor                 |       | 0.95     | 1.00  |      | 0.95      | 1.00       |         |          |      | 0.97        |          | 1.00   |
| Frpb, ped/bikes                   |       | 1.00     | 0.98  |      | 1.00      | 0.98       |         |          |      | 1.00        |          | 1.00   |
| Flpb, ped/bikes                   |       | 1.00     | 1.00  |      | 1.00      | 1.00       |         |          |      | 1.00        |          | 1.00   |
| Frt                               |       | 1.00     | 0.85  |      | 1.00      | 0.85       |         |          |      | 1.00        |          | 0.85   |
| FIt Protected                     |       | 1.00     | 1.00  |      | 1.00      | 1.00       |         |          |      | 0.95        |          | 1.00   |
| Satd. Flow (prot)                 |       | 2866     | 1255  |      | 2842      | 1173       |         |          |      | 2710        |          | 1271   |
| FIt Permitted                     |       | 1.00     | 1.00  |      | 1.00      | 1.00       |         |          |      | 0.95        |          | 1.00   |
| Satd. Flow (perm)                 |       | 2866     | 1255  |      | 2842      | 1173       |         |          |      | 2710        |          | 1271   |
| Peak-hour factor, PHF             | 0.98  | 0.98     | 0.98  | 0.98 | 0.98      | 0.98       | 0.98    | 0.98     | 0.98 | 0.98        | 0.98     | 0.98   |
| Adj. Flow (vph)                   | 0     | 1019     | 456   | 0    | 1095      | 748        | 0       | 0        | 0    | 732         | 0        | 370    |
| RTOR Reduction (vph)              | 0     | 0        | 0     | 0    | 0         | 0          | 0       | 0        | 0    | 0           | 0        | 25     |
| Lane Group Flow (vph)             | 0     | 1019     | 456   | 0    | 1095      | 748        | 0       | 0        | 0    | 732         | 0        | 345    |
| Confl. Peds. (#/hr)               | 5     |          | 2     | 2    |           | 5          | 1       |          |      |             |          | 1      |
| Heavy Vehicles (%)                | 0%    | 16%      | 16%   | 0%   | 17%       | 24%        | 0%      | 0%       | 0%   | 19%         | 0%       | 17%    |
| Turn Type                         |       | NA       | Free  |      | NA        | Free       |         |          |      | Prot        |          | custom |
| Protected Phases                  |       | 2        |       |      | 6         |            |         |          |      | 4           |          | 4 5    |
| Permitted Phases                  |       |          | Free  |      |           | Free       |         |          |      |             |          |        |
| Actuated Green, G (s)             |       | 75.6     | 120.0 |      | 60.7      | 120.0      |         |          |      | 35.4        |          | 50.8   |
| Effective Green, g (s)            |       | 75.6     | 120.0 |      | 60.7      | 120.0      |         |          |      | 35.4        |          | 50.8   |
| Actuated g/C Ratio                |       | 0.63     | 1.00  |      | 0.51      | 1.00       |         |          |      | 0.29        |          | 0.42   |
| Clearance Time (s)                |       | 4.5      |       |      | 4.5       |            |         |          |      | 4.5         |          |        |
| Vehicle Extension (s)             |       | 6.0      |       |      | 4.0       |            |         |          |      | 2.5         |          |        |
| Lane Grp Cap (vph)                |       | 1805     | 1255  |      | 1437      | 1173       |         |          |      | 799         |          | 538    |
| v/s Ratio Prot                    |       | 0.36     |       |      | c0.39     |            |         |          |      | c0.27       |          | 0.27   |
| v/s Ratio Perm                    |       |          | 0.36  |      |           | c0.64      |         |          |      |             |          |        |
| v/c Ratio                         |       | 0.56     | 0.36  |      | 0.76      | 0.64       |         |          |      | 0.92        |          | 0.64   |
| Uniform Delay, d1                 |       | 12.7     | 0.0   |      | 23.8      | 0.0        |         |          |      | 40.9        |          | 27.4   |
| Progression Factor                |       | 1.00     | 1.00  |      | 1.02      | 1.00       |         |          |      | 1.00        |          | 1.00   |
| Incremental Delay, d2             |       | 1.3      | 8.0   |      | 1.8       | 1.2        |         |          |      | 15.1        |          | 2.3    |
| Delay (s)                         |       | 14.0     | 8.0   |      | 26.0      | 1.2        |         |          |      | 55.9        |          | 29.7   |
| Level of Service                  |       | В        | Α     |      | С         | Α          |         |          |      | Е           |          | С      |
| Approach Delay (s)                |       | 9.9      |       |      | 15.9      |            |         | 0.0      |      |             | 47.1     |        |
| Approach LOS                      |       | Α        |       |      | В         |            |         | Α        |      |             | D        |        |
| Intersection Summary              |       |          | • · = |      |           |            |         |          |      |             |          |        |
| HCM 2000 Control Delay            |       |          | 21.7  | Н    | CM 2000   | Level of S | Service |          | С    |             |          |        |
| HCM 2000 Volume to Capacity       | ratio |          | 0.82  | _    | • •       |            |         |          |      |             |          |        |
| Actuated Cycle Length (s)         |       |          | 120.0 |      | um of los | ` '        |         |          | 13.0 |             |          |        |
| Intersection Capacity Utilization | 1     |          | 64.2% | IC   | U Level   | of Service |         |          | С    |             |          |        |
| Analysis Period (min)             |       |          | 15    |      |           |            |         |          |      |             |          |        |

|                                   | ۶       | <b>→</b> | •     | •    | •          | •          | 1       | <b>†</b> | <b>/</b> | <b>&gt;</b> | ļ    | 4    |
|-----------------------------------|---------|----------|-------|------|------------|------------|---------|----------|----------|-------------|------|------|
| Movement                          | EBL     | EBT      | EBR   | WBL  | WBT        | WBR        | NBL     | NBT      | NBR      | SBL         | SBT  | SBR  |
| Lane Configurations               |         | <b>^</b> | 7     |      | <b>^</b>   | 7          | 7       | ₩        | 7        |             |      |      |
| Traffic Volume (vph)              | 0       | 1464     | 272   | 0    | 1392       | 450        | 393     | 0        | 683      | 0           | 0    | 0    |
| Future Volume (vph)               | 0       | 1464     | 272   | 0    | 1392       | 450        | 393     | 0        | 683      | 0           | 0    | 0    |
| Ideal Flow (vphpl)                | 1750    | 1750     | 1750  | 1750 | 1750       | 1750       | 1750    | 1750     | 1750     | 1750        | 1750 | 1750 |
| Total Lost time (s)               |         | 4.5      | 4.0   |      | 4.5        | 4.0        | 4.5     | 4.5      | 4.5      |             |      |      |
| Lane Util. Factor                 |         | 0.95     | 1.00  |      | 0.95       | 1.00       | 0.95    | 0.91     | 0.95     |             |      |      |
| Frpb, ped/bikes                   |         | 1.00     | 0.98  |      | 1.00       | 0.98       | 1.00    | 0.99     | 0.99     |             |      |      |
| Flpb, ped/bikes                   |         | 1.00     | 1.00  |      | 1.00       | 1.00       | 1.00    | 1.00     | 1.00     |             |      |      |
| Frt                               |         | 1.00     | 0.85  |      | 1.00       | 0.85       | 1.00    | 0.87     | 0.85     |             |      |      |
| Fit Protected                     |         | 1.00     | 1.00  |      | 1.00       | 1.00       | 0.95    | 0.99     | 1.00     |             |      |      |
| Satd. Flow (prot)                 |         | 2866     | 1234  |      | 2725       | 1212       | 1350    | 1107     | 1132     |             |      |      |
| Flt Permitted                     |         | 1.00     | 1.00  |      | 1.00       | 1.00       | 0.95    | 0.99     | 1.00     |             |      |      |
| Satd. Flow (perm)                 |         | 2866     | 1234  |      | 2725       | 1212       | 1350    | 1107     | 1132     |             |      |      |
| Peak-hour factor, PHF             | 0.96    | 0.96     | 0.96  | 0.96 | 0.96       | 0.96       | 0.96    | 0.96     | 0.96     | 0.96        | 0.96 | 0.96 |
| Adj. Flow (vph)                   | 0       | 1525     | 283   | 0    | 1450       | 469        | 409     | 0        | 711      | 0           | 0    | 0    |
| RTOR Reduction (vph)              | 0       | 0        | 0     | 0    | 0          | 0          | 0       | 21       | 21       | 0           | 0    | 0    |
| Lane Group Flow (vph)             | 0       | 1525     | 283   | 0    | 1450       | 469        | 368     | 354      | 356      | 0           | 0    | 0    |
| Confl. Peds. (#/hr)               | 4       |          | 3     | 3    |            | 4          |         |          | 2        | 2           |      |      |
| Heavy Vehicles (%)                | 0%      | 16%      | 18%   | 0%   | 22%        | 20%        | 17%     | 0%       | 23%      | 0%          | 0%   | 0%   |
| Turn Type                         |         | NA       | Free  |      | NA         | Free       | Perm    | NA       | Perm     |             |      |      |
| Protected Phases                  |         | 2        |       |      | 6          |            |         | 8        |          |             |      |      |
| Permitted Phases                  |         |          | Free  |      |            | Free       | 8       |          | 8        |             |      |      |
| Actuated Green, G (s)             |         | 71.5     | 120.0 |      | 71.5       | 120.0      | 39.5    | 39.5     | 39.5     |             |      |      |
| Effective Green, g (s)            |         | 71.5     | 120.0 |      | 71.5       | 120.0      | 39.5    | 39.5     | 39.5     |             |      |      |
| Actuated g/C Ratio                |         | 0.60     | 1.00  |      | 0.60       | 1.00       | 0.33    | 0.33     | 0.33     |             |      |      |
| Clearance Time (s)                |         | 4.5      |       |      | 4.5        |            | 4.5     | 4.5      | 4.5      |             |      |      |
| Vehicle Extension (s)             |         | 4.0      |       |      | 6.0        |            | 2.5     | 2.5      | 2.5      |             |      |      |
| Lane Grp Cap (vph)                |         | 1707     | 1234  |      | 1623       | 1212       | 444     | 364      | 372      |             |      |      |
| v/s Ratio Prot                    |         | 0.53     |       |      | c0.53      |            |         |          |          |             |      |      |
| v/s Ratio Perm                    |         |          | 0.23  |      |            | 0.39       | 0.27    | 0.32     | 0.31     |             |      |      |
| v/c Ratio                         |         | 0.89     | 0.23  |      | 0.89       | 0.39       | 0.83    | 0.97     | 0.96     |             |      |      |
| Uniform Delay, d1                 |         | 21.0     | 0.0   |      | 21.0       | 0.0        | 37.1    | 39.7     | 39.4     |             |      |      |
| Progression Factor                |         | 1.43     | 1.00  |      | 0.73       | 1.00       | 1.00    | 1.00     | 1.00     |             |      |      |
| Incremental Delay, d2             |         | 5.8      | 0.3   |      | 4.2        | 0.5        | 11.8    | 39.3     | 34.9     |             |      |      |
| Delay (s)                         |         | 35.8     | 0.3   |      | 19.5       | 0.5        | 49.0    | 79.0     | 74.3     |             |      |      |
| Level of Service                  |         | D        | Α     |      | В          | Α          | D       | E        | Е        |             |      |      |
| Approach Delay (s)                |         | 30.2     |       |      | 14.8       |            |         | 67.6     |          |             | 0.0  |      |
| Approach LOS                      |         | С        |       |      | В          |            |         | E        |          |             | Α    |      |
| Intersection Summary              |         |          |       |      |            |            |         |          |          |             |      |      |
| HCM 2000 Control Delay            |         |          | 32.8  | H    | CM 2000    | Level of S | Service |          | С        |             |      |      |
| HCM 2000 Volume to Capacity       | / ratio |          | 0.92  |      |            |            |         |          |          |             |      |      |
| Actuated Cycle Length (s)         |         |          | 120.0 |      | um of lost |            |         |          | 9.0      |             |      |      |
| Intersection Capacity Utilization | n       |          | 82.3% | IC   | U Level o  | of Service |         |          | Е        |             |      |      |
| Analysis Period (min)             |         |          | 15    |      |            |            |         |          |          |             |      |      |

|                               | ۶           | <b>→</b> | •     | •                            | <b>←</b>   | •          | •       | <b>†</b> | /    | <b>&gt;</b> | ţ     | 4    |
|-------------------------------|-------------|----------|-------|------------------------------|------------|------------|---------|----------|------|-------------|-------|------|
| Movement                      | EBL         | EBT      | EBR   | WBL                          | WBT        | WBR        | NBL     | NBT      | NBR  | SBL         | SBT   | SBR  |
| Lane Configurations           | ሻ           | <b>^</b> | 7     | ሻ                            | <b>∱</b> ∱ |            | ሻ       | र्स      | 7    | ሻ           |       | 7    |
| Traffic Volume (vph)          | 81          | 1480     | 207   | 320                          | 1245       | 14         | 530     | 25       | 320  | 19          | 33    | 72   |
| Future Volume (vph)           | 81          | 1480     | 207   | 320                          | 1245       | 14         | 530     | 25       | 320  | 19          | 33    | 72   |
| Ideal Flow (vphpl)            | 1750        | 1750     | 1750  | 1750                         | 1750       | 1750       | 1750    | 1750     | 1750 | 1750        | 1750  | 1750 |
| Total Lost time (s)           | 4.0         | 4.5      | 4.5   | 4.0                          | 4.5        |            | 4.5     | 4.5      | 4.5  | 4.5         | 4.5   | 4.5  |
| Lane Util. Factor             | 1.00        | 0.95     | 1.00  | 1.00                         | 0.95       |            | 0.95    | 0.95     | 1.00 | 1.00        | 1.00  | 1.00 |
| Frpb, ped/bikes               | 1.00        | 1.00     | 1.00  | 1.00                         | 1.00       |            | 1.00    | 1.00     | 0.98 | 1.00        | 1.00  | 0.99 |
| Flpb, ped/bikes               | 1.00        | 1.00     | 1.00  | 1.00                         | 1.00       |            | 1.00    | 1.00     | 1.00 | 1.00        | 1.00  | 1.00 |
| Frt                           | 1.00        | 1.00     | 0.85  | 1.00                         | 1.00       |            | 1.00    | 1.00     | 0.85 | 1.00        | 1.00  | 0.85 |
| FIt Protected                 | 0.95        | 1.00     | 1.00  | 0.95                         | 1.00       |            | 0.95    | 0.96     | 1.00 | 0.95        | 1.00  | 1.00 |
| Satd. Flow (prot)             | 1363        | 2842     | 1316  | 1409                         | 2835       |            | 1373    | 1390     | 1261 | 1511        | 1651  | 1095 |
| FIt Permitted                 | 0.09        | 1.00     | 1.00  | 0.08                         | 1.00       |            | 0.95    | 0.96     | 1.00 | 0.95        | 1.00  | 1.00 |
| Satd. Flow (perm)             | 132         | 2842     | 1316  | 124                          | 2835       |            | 1373    | 1390     | 1261 | 1511        | 1651  | 1095 |
| Peak-hour factor, PHF         | 0.97        | 0.97     | 0.97  | 0.97                         | 0.97       | 0.97       | 0.97    | 0.97     | 0.97 | 0.97        | 0.97  | 0.97 |
| Adj. Flow (vph)               | 84          | 1526     | 213   | 330                          | 1284       | 14         | 546     | 26       | 330  | 20          | 34    | 74   |
| RTOR Reduction (vph)          | 0           | 0        | 110   | 0                            | 1          | 0          | 0       | 0        | 246  | 0           | 0     | 70   |
| Lane Group Flow (vph)         | 84          | 1526     | 103   | 330                          | 1297       | 0          | 284     | 288      | 84   | 20          | 34    | 4    |
| Confl. Peds. (#/hr)           | 3           |          |       |                              |            | 3          | 1       |          | 4    | 4           |       | 1    |
| Heavy Vehicles (%)            | 22%         | 17%      | 13%   | 18%                          | 17%        | 23%        | 15%     | 8%       | 16%  | 10%         | 6%    | 34%  |
| Turn Type                     | D.P+P       | NA       | Perm  | D.P+P                        | NA         |            | Split   | NA       | Perm | Split       | NA    | Perm |
| Protected Phases              | 5           | 2        |       | 1                            | 6          |            | 8       | 8        |      | 4           | 4     |      |
| Permitted Phases              | 6           |          | 2     | 2                            |            |            |         |          | 8    |             |       | 4    |
| Actuated Green, G (s)         | 65.6        | 47.8     | 47.8  | 65.6                         | 58.4       |            | 30.4    | 30.4     | 30.4 | 6.5         | 6.5   | 6.5  |
| Effective Green, g (s)        | 65.6        | 47.8     | 47.8  | 65.6                         | 58.4       |            | 30.4    | 30.4     | 30.4 | 6.5         | 6.5   | 6.5  |
| Actuated g/C Ratio            | 0.55        | 0.40     | 0.40  | 0.55                         | 0.49       |            | 0.25    | 0.25     | 0.25 | 0.05        | 0.05  | 0.05 |
| Clearance Time (s)            | 4.0         | 4.5      | 4.5   | 4.0                          | 4.5        |            | 4.5     | 4.5      | 4.5  | 4.5         | 4.5   | 4.5  |
| Vehicle Extension (s)         | 2.5         | 6.2      | 6.2   | 2.5                          | 6.2        |            | 2.5     | 2.5      | 2.5  | 2.5         | 2.5   | 2.5  |
| Lane Grp Cap (vph)            | 146         | 1132     | 524   | 258                          | 1379       |            | 347     | 352      | 319  | 81          | 89    | 59   |
| v/s Ratio Prot                | 0.03        | c0.54    |       | c0.19                        | 0.46       |            | 0.21    | c0.21    |      | 0.01        | c0.02 |      |
| v/s Ratio Perm                | 0.28        |          | 0.08  | 0.51                         |            |            |         |          | 0.07 |             |       | 0.00 |
| v/c Ratio                     | 0.58        | 1.35     | 0.20  | 1.28                         | 0.94       |            | 0.82    | 0.82     | 0.26 | 0.25        | 0.38  | 0.07 |
| Uniform Delay, d1             | 19.5        | 36.1     | 23.6  | 47.7                         | 29.2       |            | 42.2    | 42.2     | 35.8 | 54.4        | 54.8  | 53.9 |
| Progression Factor            | 0.98        | 0.94     | 1.24  | 0.90                         | 0.79       |            | 1.00    | 1.00     | 1.00 | 1.00        | 1.00  | 1.00 |
| Incremental Delay, d2         | 1.8         | 159.0    | 0.3   | 137.2                        | 6.6        |            | 13.6    | 13.4     | 0.3  | 1.2         | 2.0   | 0.4  |
| Delay (s)                     | 20.9        | 193.2    | 29.6  | 179.9                        | 29.6       |            | 55.8    | 55.6     | 36.1 | 55.6        | 56.8  | 54.2 |
| Level of Service              | С           | F        | С     | F                            | С          |            | Е       | Е        | D    | Е           | Е     | D    |
| Approach Delay (s)            |             | 166.1    |       |                              | 60.0       |            |         | 48.5     |      |             | 55.1  |      |
| Approach LOS                  |             | F        |       |                              | Е          |            |         | D        |      |             | Е     |      |
| Intersection Summary          |             |          |       |                              |            |            |         |          |      |             |       |      |
| HCM 2000 Control Delay        |             |          | 100.7 | Н                            | CM 2000    | Level of S | Service |          | F    |             |       |      |
| HCM 2000 Volume to Capa       | acity ratio |          | 1.12  |                              |            |            |         |          |      |             |       |      |
| Actuated Cycle Length (s)     |             |          | 120.0 | S                            | um of lost | time (s)   |         |          | 17.5 |             |       |      |
| Intersection Capacity Utiliza | ation       |          | 97.9% | 97.9% ICU Level of Service F |            |            |         |          |      |             |       |      |
| Analysis Period (min)         |             |          | 15    |                              |            |            |         |          |      |             |       |      |

|                               | •          | <b>→</b>   | •     | •     | +          | •          | •       | <b>†</b> | ~    | <b>/</b> | <b>+</b> | 4    |
|-------------------------------|------------|------------|-------|-------|------------|------------|---------|----------|------|----------|----------|------|
| Movement                      | EBL        | EBT        | EBR   | WBL   | WBT        | WBR        | NBL     | NBT      | NBR  | SBL      | SBT      | SBR  |
| Lane Configurations           | *          | <b>∱</b> } |       | ሻ     | <b>∱</b> } |            | ሻ       | <b>₽</b> |      | ሻ        | <b>₽</b> |      |
| Traffic Volume (vph)          | 153        | 1644       | 41    | 27    | 1494       | 76         | 22      | 27       | 9    | 95       | 22       | 126  |
| Future Volume (vph)           | 153        | 1644       | 41    | 27    | 1494       | 76         | 22      | 27       | 9    | 95       | 22       | 126  |
| Ideal Flow (vphpl)            | 1750       | 1750       | 1750  | 1750  | 1750       | 1750       | 1750    | 1750     | 1750 | 1750     | 1750     | 1750 |
| Total Lost time (s)           | 4.0        | 4.5        |       | 4.0   | 4.5        |            | 4.0     | 4.0      |      | 4.0      | 4.0      |      |
| Lane Util. Factor             | 1.00       | 0.95       |       | 1.00  | 0.95       |            | 1.00    | 1.00     |      | 1.00     | 1.00     |      |
| Frpb, ped/bikes               | 1.00       | 1.00       |       | 1.00  | 1.00       |            | 1.00    | 1.00     |      | 1.00     | 1.00     |      |
| Flpb, ped/bikes               | 1.00       | 1.00       |       | 1.00  | 1.00       |            | 1.00    | 1.00     |      | 1.00     | 1.00     |      |
| Frt                           | 1.00       | 1.00       |       | 1.00  | 0.99       |            | 1.00    | 0.96     |      | 1.00     | 0.87     |      |
| Fit Protected                 | 0.95       | 1.00       |       | 0.95  | 1.00       |            | 0.95    | 1.00     |      | 0.95     | 1.00     |      |
| Satd. Flow (prot)             | 1554       | 2747       |       | 1471  | 2720       |            | 1525    | 1396     |      | 1385     | 1427     |      |
| FIt Permitted                 | 0.07       | 1.00       |       | 0.06  | 1.00       |            | 0.95    | 1.00     |      | 0.95     | 1.00     |      |
| Satd. Flow (perm)             | 113        | 2747       |       | 91    | 2720       |            | 1525    | 1396     |      | 1385     | 1427     |      |
| Peak-hour factor, PHF         | 0.96       | 0.96       | 0.96  | 0.96  | 0.96       | 0.96       | 0.96    | 0.96     | 0.96 | 0.96     | 0.96     | 0.96 |
| Adj. Flow (vph)               | 159        | 1712       | 43    | 28    | 1556       | 79         | 23      | 28       | 9    | 99       | 23       | 131  |
| RTOR Reduction (vph)          | 0          | 1          | 0     | 0     | 2          | 0          | 0       | 9        | 0    | 0        | 120      | 0    |
| Lane Group Flow (vph)         | 159        | 1755       | 0     | 28    | 1633       | 0          | 23      | 28       | 0    | 99       | 34       | 0    |
| Confl. Peds. (#/hr)           | 2          |            | 1     | 1     |            | 2          |         |          |      |          |          |      |
| Heavy Vehicles (%)            | 7%         | 20%        | 42%   | 13%   | 22%        | 6%         | 9%      | 21%      | 20%  | 20%      | 7%       | 7%   |
| Turn Type                     | D.P+P      | NA         |       | pm+pt | NA         |            | Prot    | NA       |      | Prot     | NA       |      |
| Protected Phases              | 5          | 2          |       | 1     | 6          |            | 3       | 8        |      | 7        | 4        |      |
| Permitted Phases              | 6          |            |       | 6     |            |            |         |          |      |          |          |      |
| Actuated Green, G (s)         | 84.8       | 80.8       |       | 72.2  | 72.2       |            | 8.7     | 5.4      |      | 13.3     | 10.0     |      |
| Effective Green, g (s)        | 84.8       | 80.8       |       | 72.2  | 72.2       |            | 8.7     | 5.4      |      | 13.3     | 10.0     |      |
| Actuated g/C Ratio            | 0.71       | 0.67       |       | 0.60  | 0.60       |            | 0.07    | 0.05     |      | 0.11     | 0.08     |      |
| Clearance Time (s)            | 4.0        | 4.5        |       | 4.0   | 4.5        |            | 4.0     | 4.0      |      | 4.0      | 4.0      |      |
| Vehicle Extension (s)         | 2.5        | 6.2        |       | 2.5   | 6.2        |            | 2.5     | 2.5      |      | 2.5      | 2.5      |      |
| Lane Grp Cap (vph)            | 231        | 1849       |       | 100   | 1636       |            | 110     | 62       |      | 153      | 118      |      |
| v/s Ratio Prot                | 0.07       | c0.64      |       | 0.01  | c0.60      |            | 0.02    | c0.02    |      | c0.07    | 0.02     |      |
| v/s Ratio Perm                | 0.42       |            |       | 0.16  |            |            |         |          |      |          |          |      |
| v/c Ratio                     | 0.69       | 0.95       |       | 0.28  | 1.00       |            | 0.21    | 0.46     |      | 0.65     | 0.29     |      |
| Uniform Delay, d1             | 35.0       | 17.7       |       | 17.6  | 23.8       |            | 52.4    | 55.9     |      | 51.1     | 51.7     |      |
| Progression Factor            | 0.38       | 0.90       |       | 1.00  | 1.00       |            | 1.00    | 1.00     |      | 1.00     | 1.00     |      |
| Incremental Delay, d2         | 0.7        | 1.5        |       | 1.1   | 21.8       |            | 0.7     | 3.9      |      | 8.0      | 1.0      |      |
| Delay (s)                     | 14.0       | 17.6       |       | 18.8  | 45.6       |            | 53.1    | 59.7     |      | 59.1     | 52.6     |      |
| Level of Service              | В          | В          |       | В     | D          |            | D       | Ε        |      | E        | D        |      |
| Approach Delay (s)            |            | 17.3       |       |       | 45.1       |            |         | 57.2     |      |          | 55.2     |      |
| Approach LOS                  |            | В          |       |       | D          |            |         | Е        |      |          | Е        |      |
| Intersection Summary          |            |            |       |       |            |            |         |          | _    |          |          |      |
| HCM 2000 Control Delay        |            |            | 32.3  | Н     | CM 2000    | Level of S | Service |          | С    |          |          |      |
| HCM 2000 Volume to Capa       | city ratio |            | 0.94  |       | •          |            |         |          |      |          |          |      |
| Actuated Cycle Length (s)     |            |            | 120.0 |       | um of lost |            |         |          | 16.5 |          |          |      |
| Intersection Capacity Utiliza | tion       |            | 83.5% | IC    | U Level c  | t Service  |         |          | E    |          |          |      |
| Analysis Period (min)         |            |            | 15    |       |            |            |         |          |      |          |          |      |

|                              | •           | <b>→</b> | •        | •    | <b>\</b>   | 4                |     |
|------------------------------|-------------|----------|----------|------|------------|------------------|-----|
| Movement                     | EBL         | EBT      | WBT      | WBR  | SBL        | SBR              |     |
| Lane Configurations          | *           | <b>†</b> | <b>†</b> | 7    | ¥/         | <b>02.</b> (     |     |
| Traffic Volume (vph)         | 128         | 805      | 970      | 170  | 92         | 95               |     |
| Future Volume (vph)          | 128         | 805      | 970      | 170  | 92         | 95               |     |
| deal Flow (vphpl)            | 1750        | 1750     | 1750     | 1750 | 1750       | 1750             |     |
| Total Lost time (s)          | 4.0         | 4.0      | 4.0      | 4.0  | 4.0        |                  |     |
| Lane Util. Factor            | 1.00        | 1.00     | 1.00     | 1.00 | 1.00       |                  |     |
| Frpb, ped/bikes              | 1.00        | 1.00     | 1.00     | 0.96 | 1.00       |                  |     |
| Flpb, ped/bikes              | 1.00        | 1.00     | 1.00     | 1.00 | 1.00       |                  |     |
| Frt                          | 1.00        | 1.00     | 1.00     | 0.85 | 0.93       |                  |     |
| FIt Protected                | 0.95        | 1.00     | 1.00     | 1.00 | 0.98       |                  |     |
| Satd. Flow (prot)            | 1330        | 1446     | 1483     | 1212 | 1253       |                  |     |
| FIt Permitted                | 0.17        | 1.00     | 1.00     | 1.00 | 0.98       |                  |     |
| Satd. Flow (perm)            | 232         | 1446     | 1483     | 1212 | 1253       |                  |     |
| Peak-hour factor, PHF        | 0.94        | 0.94     | 0.94     | 0.94 | 0.94       | 0.94             |     |
| Adj. Flow (vph)              | 136         | 856      | 1032     | 181  | 98         | 101              |     |
| RTOR Reduction (vph)         | 0           | 0        | 0        | 20   | 45         | 0                |     |
| Lane Group Flow (vph)        | 136         | 856      | 1032     | 161  | 154        | 0                |     |
| Confl. Peds. (#/hr)          | 8           |          |          | 8    |            | •                |     |
| Heavy Vehicles (%)           | 25%         | 21%      | 18%      | 18%  | 30%        | 24%              |     |
| Turn Type                    | Perm        | NA       | NA       | Perm | Prot       |                  |     |
| Protected Phases             | . •         | 4        | 8        |      | 6          |                  |     |
| Permitted Phases             | 4           |          |          | 8    |            |                  |     |
| Actuated Green, G (s)        | 61.2        | 61.2     | 61.2     | 61.2 | 14.7       |                  |     |
| Effective Green, g (s)       | 61.2        | 61.2     | 61.2     | 61.2 | 14.7       |                  |     |
| Actuated g/C Ratio           | 0.73        | 0.73     | 0.73     | 0.73 | 0.18       |                  |     |
| Clearance Time (s)           | 4.0         | 4.0      | 4.0      | 4.0  | 4.0        |                  |     |
| Vehicle Extension (s)        | 3.0         | 3.0      | 3.0      | 3.0  | 3.0        |                  |     |
| Lane Grp Cap (vph)           | 169         | 1054     | 1081     | 884  | 219        |                  |     |
| v/s Ratio Prot               |             | 0.59     | c0.70    |      | c0.12      |                  |     |
| v/s Ratio Perm               | 0.59        |          |          | 0.13 |            |                  |     |
| v/c Ratio                    | 0.80        | 0.81     | 0.95     | 0.18 | 0.71       |                  |     |
| Uniform Delay, d1            | 7.4         | 7.5      | 10.1     | 3.5  | 32.6       |                  |     |
| Progression Factor           | 1.00        | 1.00     | 1.00     | 1.00 | 1.00       |                  |     |
| Incremental Delay, d2        | 23.5        | 4.9      | 17.4     | 0.1  | 9.9        |                  |     |
| Delay (s)                    | 31.0        | 12.4     | 27.5     | 3.6  | 42.4       |                  |     |
| Level of Service             | С           | В        | С        | Α    | D          |                  |     |
| Approach Delay (s)           |             | 14.9     | 24.0     |      | 42.4       |                  |     |
| Approach LOS                 |             | В        | С        |      | D          |                  |     |
| ntersection Summary          |             |          |          |      |            |                  |     |
| HCM 2000 Control Delay       |             |          | 21.8     | H    | CM 2000    | Level of Service | С   |
| HCM 2000 Volume to Cap       | acity ratio |          | 0.91     |      |            |                  |     |
| Actuated Cycle Length (s)    |             |          | 83.9     | Sı   | um of lost | time (s)         | 8.0 |
| Intersection Capacity Utiliz | zation      |          | 85.0%    | IC   | U Level c  | of Service       | Ε   |
| Analysis Period (min)        |             |          | 15       |      |            |                  |     |
| o Critical Lana Croup        |             |          |          |      |            |                  |     |

|                               | ۶          | <b>→</b> | •     | •    | •           | •          | 1       | <b>†</b> | <b>/</b> | <b>/</b> | <b>↓</b> |      |
|-------------------------------|------------|----------|-------|------|-------------|------------|---------|----------|----------|----------|----------|------|
| Movement                      | EBL        | EBT      | EBR   | WBL  | WBT         | WBR        | NBL     | NBT      | NBR      | SBL      | SBT      | SBR  |
| Lane Configurations           | ۲          | ĵ.       |       | , j  | ĵ.          |            |         | 4        |          |          | ર્ન      | 7    |
| Traffic Volume (vph)          | 17         | 674      | 129   | 97   | 946         | 9          | 58      | 6        | 123      | 10       | 4        | 77   |
| Future Volume (vph)           | 17         | 674      | 129   | 97   | 946         | 9          | 58      | 6        | 123      | 10       | 4        | 77   |
| Ideal Flow (vphpl)            | 1750       | 1750     | 1750  | 1750 | 1750        | 1750       | 1750    | 1750     | 1750     | 1750     | 1750     | 1750 |
| Total Lost time (s)           | 4.0        | 4.0      |       | 4.0  | 4.0         |            |         | 4.0      |          |          | 4.0      | 4.0  |
| Lane Util. Factor             | 1.00       | 1.00     |       | 1.00 | 1.00        |            |         | 1.00     |          |          | 1.00     | 1.00 |
| Frpb, ped/bikes               | 1.00       | 0.99     |       | 1.00 | 1.00        |            |         | 1.00     |          |          | 1.00     | 0.93 |
| Flpb, ped/bikes               | 1.00       | 1.00     |       | 0.99 | 1.00        |            |         | 0.98     |          |          | 1.00     | 1.00 |
| Frt                           | 1.00       | 0.98     |       | 1.00 | 1.00        |            |         | 0.91     |          |          | 1.00     | 0.85 |
| Flt Protected                 | 0.95       | 1.00     |       | 0.95 | 1.00        |            |         | 0.98     |          |          | 0.96     | 1.00 |
| Satd. Flow (prot)             | 1525       | 1389     |       | 1517 | 1419        |            |         | 1451     |          |          | 1490     | 1293 |
| Flt Permitted                 | 0.18       | 1.00     |       | 0.25 | 1.00        |            |         | 0.89     |          |          | 0.75     | 1.00 |
| Satd. Flow (perm)             | 283        | 1389     |       | 405  | 1419        |            |         | 1313     |          |          | 1160     | 1293 |
| Peak-hour factor, PHF         | 0.91       | 0.91     | 0.91  | 0.91 | 0.91        | 0.91       | 0.91    | 0.91     | 0.91     | 0.91     | 0.91     | 0.91 |
| Adj. Flow (vph)               | 19         | 741      | 142   | 107  | 1040        | 10         | 64      | 7        | 135      | 11       | 4        | 85   |
| RTOR Reduction (vph)          | 0          | 6        | 0     | 0    | 0           | 0          | 0       | 82       | 0        | 0        | 0        | 72   |
| Lane Group Flow (vph)         | 19         | 877      | 0     | 107  | 1050        | 0          | 0       | 124      | 0        | 0        | 15       | 13   |
| Confl. Peds. (#/hr)           | 4          |          | 14    | 14   |             | 4          | 22      |          |          |          |          | 22   |
| Confl. Bikes (#/hr)           |            |          | 4     |      |             |            |         |          |          |          |          |      |
| Heavy Vehicles (%)            | 9%         | 23%      | 16%   | 9%   | 23%         | 38%        | 0%      | 0%       | 10%      | 9%       | 25%      | 7%   |
| Turn Type                     | Perm       | NA       |       | Perm | NA          |            | Perm    | NA       |          | Perm     | NA       | Perm |
| Protected Phases              |            | 4        |       |      | 8           |            |         | 2        |          |          | 6        |      |
| Permitted Phases              | 4          |          |       | 8    |             |            | 2       |          |          | 6        |          | 6    |
| Actuated Green, G (s)         | 63.2       | 63.2     |       | 63.2 | 63.2        |            |         | 12.3     |          |          | 12.3     | 12.3 |
| Effective Green, g (s)        | 63.2       | 63.2     |       | 63.2 | 63.2        |            |         | 12.3     |          |          | 12.3     | 12.3 |
| Actuated g/C Ratio            | 0.76       | 0.76     |       | 0.76 | 0.76        |            |         | 0.15     |          |          | 0.15     | 0.15 |
| Clearance Time (s)            | 4.0        | 4.0      |       | 4.0  | 4.0         |            |         | 4.0      |          |          | 4.0      | 4.0  |
| Vehicle Extension (s)         | 3.0        | 3.0      |       | 3.0  | 3.0         |            |         | 3.0      |          |          | 3.0      | 3.0  |
| Lane Grp Cap (vph)            | 214        | 1051     |       | 306  | 1074        |            |         | 193      |          |          | 170      | 190  |
| v/s Ratio Prot                |            | 0.63     |       |      | c0.74       |            |         |          |          |          |          |      |
| v/s Ratio Perm                | 0.07       |          |       | 0.26 |             |            |         | c0.09    |          |          | 0.01     | 0.01 |
| v/c Ratio                     | 0.09       | 0.83     |       | 0.35 | 0.98        |            |         | 0.64     |          |          | 0.09     | 0.07 |
| Uniform Delay, d1             | 2.6        | 6.7      |       | 3.4  | 9.5         |            |         | 33.5     |          |          | 30.8     | 30.7 |
| Progression Factor            | 1.00       | 1.00     |       | 1.00 | 1.00        |            |         | 1.00     |          |          | 1.00     | 1.00 |
| Incremental Delay, d2         | 0.2        | 5.8      |       | 0.7  | 21.9        |            |         | 7.1      |          |          | 0.2      | 0.1  |
| Delay (s)                     | 2.8        | 12.5     |       | 4.0  | 31.4        |            |         | 40.7     |          |          | 31.0     | 30.8 |
| Level of Service              | А          | В        |       | Α    | С           |            |         | D        |          |          | С        | С    |
| Approach Delay (s)            |            | 12.3     |       |      | 28.9        |            |         | 40.7     |          |          | 30.8     |      |
| Approach LOS                  |            | В        |       |      | С           |            |         | D        |          |          | С        |      |
| Intersection Summary          |            |          |       |      |             |            |         |          |          |          |          |      |
| HCM 2000 Control Delay        |            |          | 23.7  | Н    | CM 2000     | Level of S | Service |          | С        |          |          |      |
| HCM 2000 Volume to Capa       | city ratio |          | 0.92  |      |             |            |         |          |          |          |          |      |
| Actuated Cycle Length (s)     |            |          | 83.5  | S    | um of lost  | time (s)   |         |          | 8.0      |          |          |      |
| Intersection Capacity Utiliza | ition      |          | 88.0% | IC   | CU Level of | of Service |         |          | Е        |          |          |      |
| Analysis Period (min)         |            |          | 15    |      |             |            |         |          |          |          |          |      |
| c Critical Lane Group         |            |          |       |      |             |            |         |          |          |          |          |      |

|                                | ۶         | <b>→</b> | •                   | •        | <b>←</b>   | •          | •       | <b>†</b> | <b>/</b> | <b>\</b> | <b>↓</b>   | 1    |
|--------------------------------|-----------|----------|---------------------|----------|------------|------------|---------|----------|----------|----------|------------|------|
| Movement                       | EBL       | EBT      | EBR                 | WBL      | WBT        | WBR        | NBL     | NBT      | NBR      | SBL      | SBT        | SBR  |
| Lane Configurations            | 7         | <b>↑</b> | 7                   | 7        | 4î         |            | ሻሻ      | <b>^</b> | 7        | 14.54    | <b>∱</b> ∱ |      |
| Traffic Volume (vph)           | 155       | 401      | 262                 | 334      | 288        | 92         | 242     | 495      | 158      | 234      | 971        | 114  |
| Future Volume (vph)            | 155       | 401      | 262                 | 334      | 288        | 92         | 242     | 495      | 158      | 234      | 971        | 114  |
| Ideal Flow (vphpl)             | 1750      | 1750     | 1750                | 1750     | 1750       | 1750       | 1750    | 1750     | 1750     | 1750     | 1750       | 1750 |
| Total Lost time (s)            | 4.5       | 5.5      | 5.5                 | 4.5      | 5.5        |            | 4.5     | 5.5      | 5.5      | 4.5      | 5.5        |      |
| Lane Util. Factor              | 1.00      | 1.00     | 1.00                | 1.00     | 1.00       |            | 0.97    | 0.95     | 1.00     | 0.97     | 0.95       |      |
| Frpb, ped/bikes                | 1.00      | 1.00     | 0.98                | 1.00     | 1.00       |            | 1.00    | 1.00     | 0.99     | 1.00     | 1.00       |      |
| Flpb, ped/bikes                | 1.00      | 1.00     | 1.00                | 1.00     | 1.00       |            | 1.00    | 1.00     | 1.00     | 1.00     | 1.00       |      |
| Frt                            | 1.00      | 1.00     | 0.85                | 1.00     | 0.96       |            | 1.00    | 1.00     | 0.85     | 1.00     | 0.98       |      |
| Flt Protected                  | 0.95      | 1.00     | 1.00                | 0.95     | 1.00       |            | 0.95    | 1.00     | 1.00     | 0.95     | 1.00       |      |
| Satd. Flow (prot)              | 1421      | 1483     | 1218                | 1341     | 1311       |            | 2906    | 2639     | 1064     | 2665     | 2950       |      |
| Flt Permitted                  | 0.95      | 1.00     | 1.00                | 0.95     | 1.00       |            | 0.95    | 1.00     | 1.00     | 0.95     | 1.00       |      |
| Satd. Flow (perm)              | 1421      | 1483     | 1218                | 1341     | 1311       |            | 2906    | 2639     | 1064     | 2665     | 2950       |      |
| Peak-hour factor, PHF          | 0.96      | 0.96     | 0.96                | 0.96     | 0.96       | 0.96       | 0.96    | 0.96     | 0.96     | 0.96     | 0.96       | 0.96 |
| Adj. Flow (vph)                | 161       | 418      | 273                 | 348      | 300        | 96         | 252     | 516      | 165      | 244      | 1011       | 119  |
| RTOR Reduction (vph)           | 0         | 0        | 164                 | 0        | 9          | 0          | 0       | 0        | 115      | 0        | 7          | 0    |
| Lane Group Flow (vph)          | 161       | 418      | 109                 | 348      | 387        | 0          | 252     | 516      | 50       | 244      | 1123       | 0    |
| Confl. Peds. (#/hr)            | 101       | 110      | 5                   | 5        | 001        |            | 202     | 010      | 1        | 1        | 1120       |      |
| Heavy Vehicles (%)             | 17%       | 18%      | 20%                 | 24%      | 25%        | 40%        | 11%     | 26%      | 38%      | 21%      | 10%        | 19%  |
| Turn Type                      | Prot      | NA       | Perm                | Prot     | NA         | 70 /0      | Prot    | NA       | custom   | Prot     | NA         | 1370 |
| Protected Phases               | 3         | 8        | r <del>C</del> illi | 7        | 4          |            | 1       | 6        | Custom   | 5        | 2          |      |
| Permitted Phases               | J         | 0        | 8                   | <i>'</i> | 7          |            | ı       | U        | 2        | J        |            |      |
| Actuated Green, G (s)          | 18.9      | 32.5     | 32.5                | 27.5     | 41.1       |            | 10.5    | 35.5     | 39.5     | 14.5     | 39.5       |      |
| Effective Green, g (s)         | 18.9      | 32.5     | 32.5                | 27.5     | 41.1       |            | 10.5    | 35.5     | 39.5     | 14.5     | 39.5       |      |
| Actuated g/C Ratio             | 0.15      | 0.25     | 0.25                | 0.21     | 0.32       |            | 0.08    | 0.27     | 0.30     | 0.11     | 0.30       |      |
|                                | 4.5       | 5.5      | 5.5                 | 4.5      | 5.5        |            | 4.5     | 5.5      | 5.5      | 4.5      | 5.5        |      |
| Clearance Time (s)             | 3.0       | 3.2      | 3.2                 | 3.0      | 3.5        |            | 3.0     | 5.2      | 5.2      | 3.0      | 5.2        |      |
| Vehicle Extension (s)          |           |          |                     |          |            |            |         |          |          |          |            |      |
| Lane Grp Cap (vph)             | 206       | 370      | 304                 | 283      | 414        |            | 234     | 720      | 323      | 297      | 896        |      |
| v/s Ratio Prot                 | 0.11      | c0.28    | 0.00                | c0.26    | 0.30       |            | c0.09   | 0.20     | 0.05     | 0.09     | c0.38      |      |
| v/s Ratio Perm                 | 0.70      | 4.40     | 0.09                | 4.00     | 0.04       |            | 4.00    | 0.70     | 0.05     | 0.00     | 4.0=       |      |
| v/c Ratio                      | 0.78      | 1.13     | 0.36                | 1.23     | 0.94       |            | 1.08    | 0.72     | 0.16     | 0.82     | 1.25       |      |
| Uniform Delay, d1              | 53.6      | 48.8     | 40.2                | 51.2     | 43.2       |            | 59.8    | 42.7     | 33.1     | 56.5     | 45.2       |      |
| Progression Factor             | 1.00      | 1.00     | 1.00                | 1.00     | 1.00       |            | 1.18    | 0.85     | 0.62     | 1.00     | 1.00       |      |
| Incremental Delay, d2          | 17.3      | 86.9     | 0.8                 | 130.4    | 28.6       |            | 70.3    | 4.1      | 0.7      | 16.5     | 123.2      |      |
| Delay (s)                      | 70.9      | 135.6    | 40.9                | 181.6    | 71.7       |            | 140.9   | 40.2     | 21.2     | 73.0     | 168.5      |      |
| Level of Service               | Е         | F        | D                   | F        | Е          |            | F       | D        | С        | Е        | F          |      |
| Approach Delay (s)             |           | 93.0     |                     |          | 123.1      |            |         | 64.1     |          |          | 151.5      |      |
| Approach LOS                   |           | F        |                     |          | F          |            |         | Е        |          |          | F          |      |
| Intersection Summary           |           |          |                     |          |            |            |         |          |          |          |            |      |
| HCM 2000 Control Delay         |           |          | 112.4               | H        | CM 2000    | Level of S | Service |          | F        |          |            |      |
| HCM 2000 Volume to Capac       | ity ratio |          | 1.19                |          |            |            |         |          |          |          |            |      |
| Actuated Cycle Length (s)      |           |          | 130.0               | Sı       | um of lost | time (s)   |         |          | 20.0     |          |            |      |
| Intersection Capacity Utilizat | ion       |          | 101.5%              |          | U Level c  |            |         |          | G        |          |            |      |
| Analysis Period (min)          |           |          | 15                  |          |            |            |         |          |          |          |            |      |
| c Critical Lane Group          |           |          |                     |          |            |            |         |          |          |          |            |      |

|                              | ۶           | <b>→</b> | •     | •    | <b>←</b>   | •          | 4       | <b>†</b> | /    | <b>/</b> | ļ    | 4    |
|------------------------------|-------------|----------|-------|------|------------|------------|---------|----------|------|----------|------|------|
| Movement                     | EBL         | EBT      | EBR   | WBL  | WBT        | WBR        | NBL     | NBT      | NBR  | SBL      | SBT  | SBR  |
| Lane Configurations          | 7           | f)       |       | ሻ    | ₽          |            |         | ર્ન      | 7    |          | ર્ન  | 7    |
| Traffic Volume (vph)         | 225         | 247      | 132   | 108  | 237        | 24         | 109     | 191      | 57   | 10       | 228  | 266  |
| Future Volume (vph)          | 225         | 247      | 132   | 108  | 237        | 24         | 109     | 191      | 57   | 10       | 228  | 266  |
| Ideal Flow (vphpl)           | 1750        | 1750     | 1750  | 1750 | 1750       | 1750       | 1750    | 1750     | 1750 | 1750     | 1750 | 1750 |
| Total Lost time (s)          | 4.0         | 4.0      |       | 4.0  | 4.0        |            |         | 4.0      | 4.0  |          | 4.0  | 4.0  |
| Lane Util. Factor            | 1.00        | 1.00     |       | 1.00 | 1.00       |            |         | 1.00     | 1.00 |          | 1.00 | 1.00 |
| Frpb, ped/bikes              | 1.00        | 0.99     |       | 1.00 | 1.00       |            |         | 1.00     | 0.97 |          | 1.00 | 0.95 |
| Flpb, ped/bikes              | 1.00        | 1.00     |       | 0.99 | 1.00       |            |         | 0.99     | 1.00 |          | 1.00 | 1.00 |
| Frt                          | 1.00        | 0.95     |       | 1.00 | 0.99       |            |         | 1.00     | 0.85 |          | 1.00 | 0.85 |
| Flt Protected                | 0.95        | 1.00     |       | 0.95 | 1.00       |            |         | 0.98     | 1.00 |          | 1.00 | 1.00 |
| Satd. Flow (prot)            | 1112        | 1312     |       | 1320 | 1278       |            |         | 1540     | 1198 |          | 1454 | 1104 |
| FIt Permitted                | 0.54        | 1.00     |       | 0.41 | 1.00       |            |         | 0.75     | 1.00 |          | 0.98 | 1.00 |
| Satd. Flow (perm)            | 633         | 1312     |       | 568  | 1278       |            |         | 1180     | 1198 |          | 1430 | 1104 |
| Peak-hour factor, PHF        | 0.85        | 0.85     | 0.85  | 0.85 | 0.85       | 0.85       | 0.85    | 0.85     | 0.85 | 0.85     | 0.85 | 0.85 |
| Adj. Flow (vph)              | 265         | 291      | 155   | 127  | 279        | 28         | 128     | 225      | 67   | 12       | 268  | 313  |
| RTOR Reduction (vph)         | 0           | 34       | 0     | 0    | 6          | 0          | 0       | 0        | 43   | 0        | 0    | 200  |
| Lane Group Flow (vph)        | 265         | 412      | 0     | 127  | 301        | 0          | 0       | 353      | 24   | 0        | 280  | 113  |
| Confl. Peds. (#/hr)          | 4           |          | 11    | 11   |            | 4          | 22      |          | 4    | 4        |      | 22   |
| Heavy Vehicles (%)           | 49%         | 27%      | 21%   | 25%  | 37%        | 12%        | 14%     | 9%       | 21%  | 0%       | 21%  | 28%  |
| Turn Type                    | Perm        | NA       |       | Perm | NA         |            | Perm    | NA       | Perm | Perm     | NA   | Perm |
| Protected Phases             |             | 4        |       |      | 8          |            |         | 2        |      |          | 6    |      |
| Permitted Phases             | 4           |          |       | 8    |            |            | 2       |          | 2    | 6        |      | 6    |
| Actuated Green, G (s)        | 24.3        | 24.3     |       | 24.3 | 24.3       |            |         | 18.2     | 18.2 |          | 18.2 | 18.2 |
| Effective Green, g (s)       | 24.3        | 24.3     |       | 24.3 | 24.3       |            |         | 18.2     | 18.2 |          | 18.2 | 18.2 |
| Actuated g/C Ratio           | 0.48        | 0.48     |       | 0.48 | 0.48       |            |         | 0.36     | 0.36 |          | 0.36 | 0.36 |
| Clearance Time (s)           | 4.0         | 4.0      |       | 4.0  | 4.0        |            |         | 4.0      | 4.0  |          | 4.0  | 4.0  |
| Vehicle Extension (s)        | 3.0         | 3.0      |       | 3.0  | 3.0        |            |         | 3.0      | 3.0  |          | 3.0  | 3.0  |
| Lane Grp Cap (vph)           | 304         | 631      |       | 273  | 614        |            |         | 425      | 431  |          | 515  | 397  |
| v/s Ratio Prot               |             | 0.31     |       |      | 0.24       |            |         |          |      |          |      |      |
| v/s Ratio Perm               | c0.42       |          |       | 0.22 |            |            |         | c0.30    | 0.02 |          | 0.20 | 0.10 |
| v/c Ratio                    | 0.87        | 0.65     |       | 0.47 | 0.49       |            |         | 0.83     | 0.06 |          | 0.54 | 0.28 |
| Uniform Delay, d1            | 11.7        | 9.9      |       | 8.8  | 8.9        |            |         | 14.7     | 10.5 |          | 12.8 | 11.5 |
| Progression Factor           | 1.00        | 1.00     |       | 1.00 | 1.00       |            |         | 1.00     | 1.00 |          | 1.00 | 1.00 |
| Incremental Delay, d2        | 22.8        | 2.4      |       | 1.3  | 0.6        |            |         | 12.9     | 0.1  |          | 1.2  | 0.4  |
| Delay (s)                    | 34.5        | 12.3     |       | 10.0 | 9.5        |            |         | 27.7     | 10.6 |          | 14.0 | 11.9 |
| Level of Service             | С           | В        |       | В    | Α          |            |         | С        | В    |          | В    | В    |
| Approach Delay (s)           |             | 20.6     |       |      | 9.7        |            |         | 24.9     |      |          | 12.9 |      |
| Approach LOS                 |             | С        |       |      | Α          |            |         | С        |      |          | В    |      |
| Intersection Summary         |             |          |       |      |            |            |         |          |      |          |      |      |
| HCM 2000 Control Delay       |             |          | 17.1  | H    | CM 2000    | Level of S | Service |          | В    |          |      |      |
| HCM 2000 Volume to Capa      | acity ratio |          | 0.85  |      |            |            |         |          |      |          |      |      |
| Actuated Cycle Length (s)    |             |          | 50.5  | Sı   | um of lost | time (s)   |         |          | 8.0  |          |      |      |
| Intersection Capacity Utiliz | ation       |          | 74.9% | IC   | U Level o  | of Service |         |          | D    |          |      |      |
| Analysis Period (min)        |             |          | 15    |      |            |            |         |          |      |          |      |      |
| o Critical Lana Croup        |             |          |       |      |            |            |         |          |      |          |      |      |

|                               | ۶          | <b>→</b> | •     | •     | <b>←</b>   | •        | 4       | <b>†</b> | ~    | <b>&gt;</b> | <b>↓</b>    | 4    |
|-------------------------------|------------|----------|-------|-------|------------|----------|---------|----------|------|-------------|-------------|------|
| Movement                      | EBL        | EBT      | EBR   | WBL   | WBT        | WBR      | NBL     | NBT      | NBR  | SBL         | SBT         | SBR  |
| Lane Configurations           |            | र्स      | 7     | ¥     | f)         |          | ¥       | ħβ       |      | *           | <b>∱</b> 1≽ |      |
| Traffic Volume (vph)          | 80         | 55       | 67    | 147   | 43         | 53       | 72      | 1117     | 101  | 75          | 1453        | 100  |
| Future Volume (vph)           | 80         | 55       | 67    | 147   | 43         | 53       | 72      | 1117     | 101  | 75          | 1453        | 100  |
| Ideal Flow (vphpl)            | 1750       | 1750     | 1750  | 1750  | 1750       | 1750     | 1750    | 1750     | 1750 | 1750        | 1750        | 1750 |
| Total Lost time (s)           |            | 4.5      | 4.5   | 4.5   | 4.5        |          | 4.5     | 4.5      |      | 4.5         | 4.5         |      |
| Lane Util. Factor             |            | 1.00     | 1.00  | 1.00  | 1.00       |          | 1.00    | 0.95     |      | 1.00        | 0.95        |      |
| Frpb, ped/bikes               |            | 1.00     | 0.98  | 1.00  | 0.99       |          | 1.00    | 1.00     |      | 1.00        | 1.00        |      |
| Flpb, ped/bikes               |            | 1.00     | 1.00  | 0.99  | 1.00       |          | 1.00    | 1.00     |      | 1.00        | 1.00        |      |
| Frt                           |            | 1.00     | 0.85  | 1.00  | 0.92       |          | 1.00    | 0.99     |      | 1.00        | 0.99        |      |
| Flt Protected                 |            | 0.97     | 1.00  | 0.95  | 1.00       |          | 0.95    | 1.00     |      | 0.95        | 1.00        |      |
| Satd. Flow (prot)             |            | 1497     | 1227  | 1464  | 1343       |          | 1363    | 2667     |      | 1458        | 2738        |      |
| Flt Permitted                 |            | 0.71     | 1.00  | 0.55  | 1.00       |          | 0.07    | 1.00     |      | 0.15        | 1.00        |      |
| Satd. Flow (perm)             |            | 1097     | 1227  | 846   | 1343       |          | 106     | 2667     |      | 234         | 2738        |      |
| Peak-hour factor, PHF         | 0.94       | 0.94     | 0.94  | 0.94  | 0.94       | 0.94     | 0.94    | 0.94     | 0.94 | 0.94        | 0.94        | 0.94 |
| Adj. Flow (vph)               | 85         | 59       | 71    | 156   | 46         | 56       | 77      | 1188     | 107  | 80          | 1546        | 106  |
| RTOR Reduction (vph)          | 0          | 0        | 57    | 0     | 35         | 0        | 0       | 4        | 0    | 0           | 3           | 0    |
| Lane Group Flow (vph)         | 0          | 144      | 14    | 156   | 67         | 0        | 77      | 1291     | 0    | 80          | 1649        | 0    |
| Confl. Peds. (#/hr)           | 6          |          | 6     | 6     |            | 6        | 3       |          | 3    | 3           |             | 3    |
| Heavy Vehicles (%)            | 16%        | 9%       | 19%   | 13%   | 15%        | 21%      | 22%     | 23%      | 21%  | 14%         | 20%         | 21%  |
| Turn Type                     | Perm       | NA       | Perm  | Perm  | NA         |          | D.P+P   | NA       |      | D.P+P       | NA          |      |
| Protected Phases              |            | 8        |       |       | 4          |          | 1       | 6        |      | 5           | 2           |      |
| Permitted Phases              | 8          |          | 8     | 4     |            |          | 2       |          |      | 6           |             |      |
| Actuated Green, G (s)         |            | 26.0     | 26.0  | 26.0  | 26.0       |          | 90.5    | 83.4     |      | 90.5        | 81.3        |      |
| Effective Green, g (s)        |            | 26.0     | 26.0  | 26.0  | 26.0       |          | 90.5    | 83.4     |      | 90.5        | 81.3        |      |
| Actuated g/C Ratio            |            | 0.20     | 0.20  | 0.20  | 0.20       |          | 0.70    | 0.64     |      | 0.70        | 0.63        |      |
| Clearance Time (s)            |            | 4.5      | 4.5   | 4.5   | 4.5        |          | 4.5     | 4.5      |      | 4.5         | 4.5         |      |
| Vehicle Extension (s)         |            | 2.5      | 2.5   | 2.5   | 2.5        |          | 2.5     | 4.6      |      | 2.5         | 4.6         |      |
| Lane Grp Cap (vph)            |            | 219      | 245   | 169   | 268        |          | 162     | 1710     |      | 229         | 1712        |      |
| v/s Ratio Prot                |            |          |       |       | 0.05       |          | 0.03    | c0.48    |      | 0.02        | c0.60       |      |
| v/s Ratio Perm                |            | 0.13     | 0.01  | c0.18 |            |          | 0.30    |          |      | 0.22        |             |      |
| v/c Ratio                     |            | 0.66     | 0.06  | 0.92  | 0.25       |          | 0.48    | 0.75     |      | 0.35        | 0.96        |      |
| Uniform Delay, d1             |            | 47.9     | 42.1  | 51.0  | 43.8       |          | 37.6    | 16.2     |      | 9.3         | 22.9        |      |
| Progression Factor            |            | 1.00     | 1.00  | 1.00  | 1.00       |          | 0.85    | 0.91     |      | 1.20        | 1.05        |      |
| Incremental Delay, d2         |            | 6.2      | 0.1   | 47.2  | 0.4        |          | 1.3     | 2.5      |      | 0.1         | 2.2         |      |
| Delay (s)                     |            | 54.1     | 42.2  | 98.2  | 44.1       |          | 33.2    | 17.3     |      | 11.1        | 26.2        |      |
| Level of Service              |            | D        | D     | F     | D          |          | С       | В        |      | В           | С           |      |
| Approach Delay (s)            |            | 50.2     |       |       | 76.8       |          |         | 18.2     |      |             | 25.5        |      |
| Approach LOS                  |            | D        |       |       | Е          |          |         | В        |      |             | С           |      |
| Intersection Summary          |            |          |       |       |            |          |         |          |      |             |             |      |
| HCM 2000 Control Delay        |            |          | 27.9  | H     | CM 2000    | Level of | Service |          | С    |             |             |      |
| HCM 2000 Volume to Capac      | city ratio |          | 0.95  |       |            |          |         |          |      |             |             |      |
| Actuated Cycle Length (s)     |            |          | 130.0 | Sı    | um of lost | time (s) |         |          | 13.5 |             |             |      |
| Intersection Capacity Utiliza | tion       |          | 80.3% |       | U Level o  |          | )       |          | D    |             |             |      |
| Analysis Period (min)         |            |          | 15    |       |            |          |         |          |      |             |             |      |
| c Critical Lane Group         |            |          |       |       |            |          |         |          |      |             |             |      |

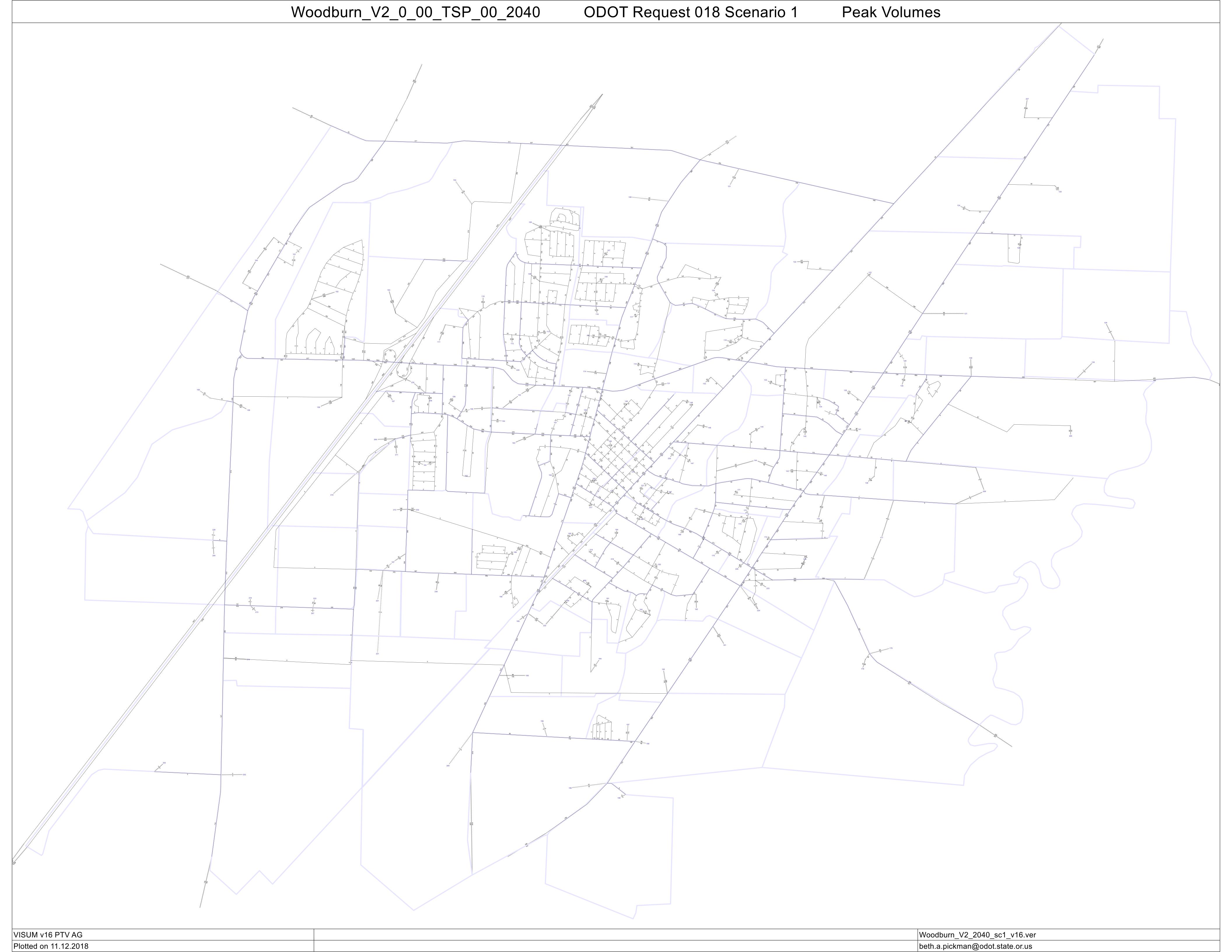
|                                | ۶          | <b>→</b> | •     | •    | +          | •           | •       | <b>†</b>   | ~    | <b>\</b> | <b>↓</b>   | ✓    |
|--------------------------------|------------|----------|-------|------|------------|-------------|---------|------------|------|----------|------------|------|
| Movement                       | EBL        | EBT      | EBR   | WBL  | WBT        | WBR         | NBL     | NBT        | NBR  | SBL      | SBT        | SBR  |
| Lane Configurations            | 7          | f)       |       |      | र्स        | 7           | ,       | <b>∱</b> } |      | J.       | <b>∱</b> } |      |
| Traffic Volume (vph)           | 108        | 11       | 90    | 27   | 11         | 26          | 80      | 1146       | 14   | 17       | 1573       | 123  |
| Future Volume (vph)            | 108        | 11       | 90    | 27   | 11         | 26          | 80      | 1146       | 14   | 17       | 1573       | 123  |
| Ideal Flow (vphpl)             | 1750       | 1750     | 1750  | 1750 | 1750       | 1750        | 1750    | 1750       | 1750 | 1750     | 1750       | 1750 |
| Total Lost time (s)            | 4.5        | 4.5      |       |      | 4.5        | 4.5         | 4.5     | 4.5        |      | 4.5      | 4.5        |      |
| Lane Util. Factor              | 1.00       | 1.00     |       |      | 1.00       | 1.00        | 1.00    | 0.95       |      | 1.00     | 0.95       |      |
| Frpb, ped/bikes                | 1.00       | 0.99     |       |      | 1.00       | 0.97        | 1.00    | 1.00       |      | 1.00     | 1.00       |      |
| Flpb, ped/bikes                | 0.99       | 1.00     |       |      | 1.00       | 1.00        | 1.00    | 1.00       |      | 1.00     | 1.00       |      |
| Frt                            | 1.00       | 0.87     |       |      | 1.00       | 0.85        | 1.00    | 1.00       |      | 1.00     | 0.99       |      |
| Flt Protected                  | 0.95       | 1.00     |       |      | 0.97       | 1.00        | 0.95    | 1.00       |      | 0.95     | 1.00       |      |
| Satd. Flow (prot)              | 1379       | 1173     |       |      | 1406       | 1124        | 1446    | 2629       |      | 1288     | 2720       |      |
| Flt Permitted                  | 0.73       | 1.00     |       |      | 0.77       | 1.00        | 0.07    | 1.00       |      | 0.19     | 1.00       |      |
| Satd. Flow (perm)              | 1060       | 1173     |       |      | 1122       | 1124        | 105     | 2629       |      | 254      | 2720       |      |
| Peak-hour factor, PHF          | 0.94       | 0.94     | 0.94  | 0.94 | 0.94       | 0.94        | 0.94    | 0.94       | 0.94 | 0.94     | 0.94       | 0.94 |
| Adj. Flow (vph)                | 115        | 12       | 96    | 29   | 12         | 28          | 85      | 1219       | 15   | 18       | 1673       | 131  |
| RTOR Reduction (vph)           | 0          | 82       | 0     | 0    | 0          | 24          | 0       | 1          | 0    | 0        | 3          | 0    |
| Lane Group Flow (vph)          | 115        | 26       | 0     | 0    | 41         | 4           | 85      | 1233       | 0    | 18       | 1801       | 0    |
| Confl. Peds. (#/hr)            | 10         |          |       |      |            | 10          | 6       |            | 6    | 6        |            | 6    |
| Confl. Bikes (#/hr)            |            |          | 1     |      |            |             |         |            | 1    |          |            |      |
| Heavy Vehicles (%)             | 19%        | 50%      | 25%   | 5%   | 57%        | 29%         | 15%     | 26%        | 40%  | 29%      | 21%        | 15%  |
| Turn Type                      | Perm       | NA       |       | Perm | NA         | Perm        | D.P+P   | NA         |      | D.P+P    | NA         |      |
| Protected Phases               |            | 8        |       |      | 4          |             | 1       | 6          |      | 5        | 2          |      |
| Permitted Phases               | 8          |          |       | 4    |            | 4           | 2       | •          |      | 6        |            |      |
| Actuated Green, G (s)          | 18.9       | 18.9     |       |      | 18.9       | 18.9        | 97.6    | 93.4       |      | 97.6     | 89.3       |      |
| Effective Green, g (s)         | 18.9       | 18.9     |       |      | 18.9       | 18.9        | 97.6    | 93.4       |      | 97.6     | 89.3       |      |
| Actuated g/C Ratio             | 0.15       | 0.15     |       |      | 0.15       | 0.15        | 0.75    | 0.72       |      | 0.75     | 0.69       |      |
| Clearance Time (s)             | 4.5        | 4.5      |       |      | 4.5        | 4.5         | 4.5     | 4.5        |      | 4.5      | 4.5        |      |
| Vehicle Extension (s)          | 2.5        | 2.5      |       |      | 2.5        | 2.5         | 2.5     | 4.6        |      | 2.5      | 4.6        |      |
| Lane Grp Cap (vph)             | 154        | 170      |       |      | 163        | 163         | 164     | 1888       |      | 224      | 1868       |      |
| v/s Ratio Prot                 | 101        | 0.02     |       |      | .00        | 100         | 0.03    | c0.47      |      | 0.00     | c0.66      |      |
| v/s Ratio Perm                 | c0.11      | 0.02     |       |      | 0.04       | 0.00        | 0.36    | 00.17      |      | 0.06     | 00.00      |      |
| v/c Ratio                      | 0.75       | 0.15     |       |      | 0.25       | 0.02        | 0.52    | 0.65       |      | 0.08     | 0.96       |      |
| Uniform Delay, d1              | 53.3       | 48.6     |       |      | 49.3       | 47.6        | 15.8    | 9.7        |      | 9.6      | 18.9       |      |
| Progression Factor             | 1.00       | 1.00     |       |      | 1.00       | 1.00        | 0.94    | 1.43       |      | 1.21     | 0.53       |      |
| Incremental Delay, d2          | 16.9       | 0.3      |       |      | 0.6        | 0.0         | 1.3     | 1.1        |      | 0.0      | 7.7        |      |
| Delay (s)                      | 70.2       | 48.9     |       |      | 49.9       | 47.7        | 16.1    | 15.1       |      | 11.7     | 17.8       |      |
| Level of Service               | F          | D        |       |      | D          | D           | В       | В          |      | В        | В          |      |
| Approach Delay (s)             |            | 59.9     |       |      | 49.0       |             |         | 15.1       |      |          | 17.7       |      |
| Approach LOS                   |            | E        |       |      | D          |             |         | В          |      |          | В          |      |
| Intersection Summary           |            |          |       |      |            |             |         |            |      |          |            |      |
| HCM 2000 Control Delay         |            |          | 20.1  | Н    | CM 2000    | Level of    | Service |            | С    |          |            |      |
| HCM 2000 Volume to Capac       | city ratio |          | 0.92  | 11   | 2 2000     | _0.0.01     | 20,1100 |            |      |          |            |      |
| Actuated Cycle Length (s)      | , ratio    |          | 130.0 | Sı   | um of lost | time (s)    |         |            | 13.5 |          |            |      |
| Intersection Capacity Utilizat | ion        |          | 80.7% |      | CU Level   |             | •       |            | D    |          |            |      |
| Analysis Period (min)          |            |          | 15    | 10   | 5 20701    | 27 201 1100 |         |            |      |          |            |      |
| c Critical Lane Group          |            |          |       |      |            |             |         |            |      |          |            |      |

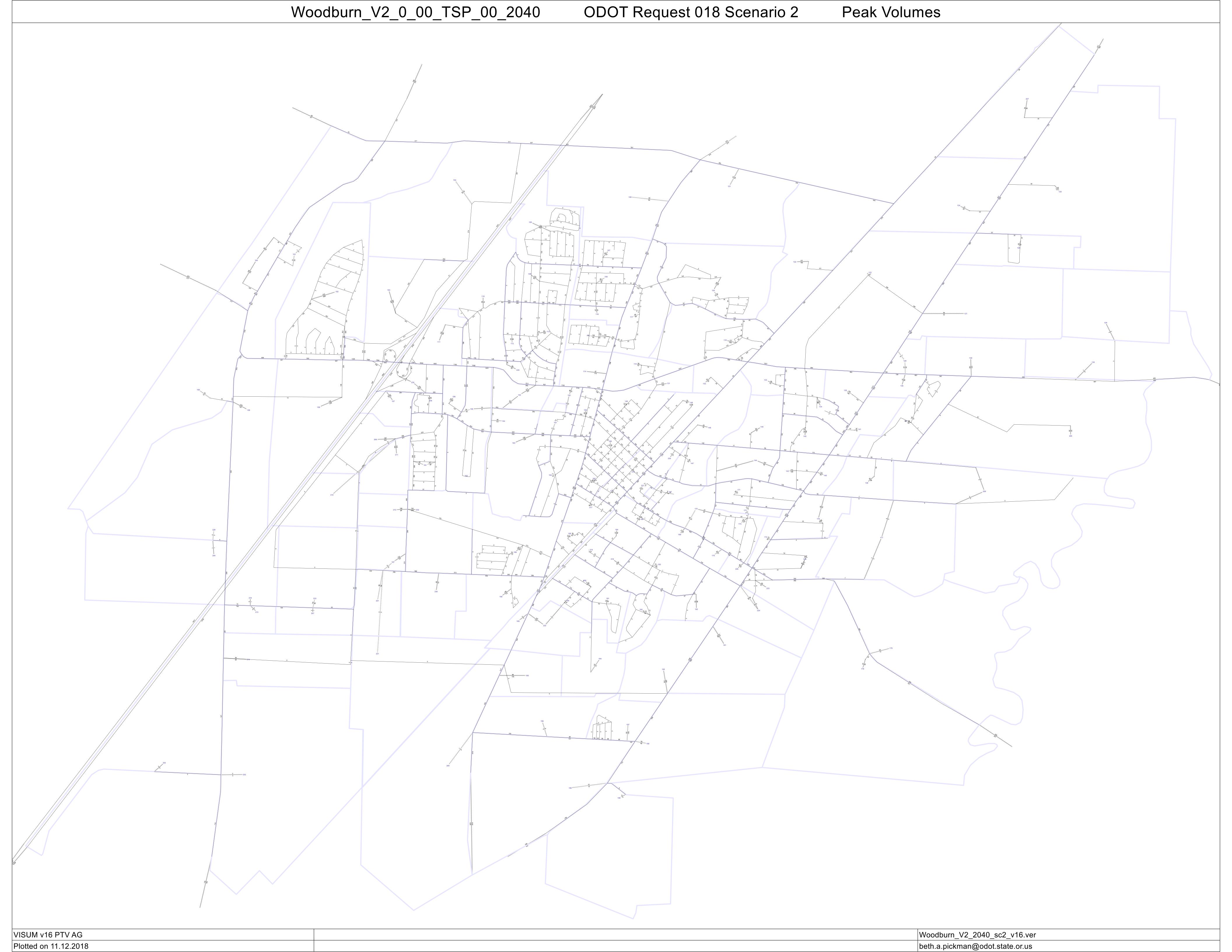
|                        | ۶                                    | <b>→</b> | •    | •         | +          | •        | •       | <b>†</b>    | ~    | <b>/</b> | <b>↓</b>   | -√   |
|------------------------|--------------------------------------|----------|------|-----------|------------|----------|---------|-------------|------|----------|------------|------|
| Movement               | EBL                                  | EBT      | EBR  | WBL       | WBT        | WBR      | NBL     | NBT         | NBR  | SBL      | SBT        | SBR  |
| Lane Configurations    | Ť                                    | f)       |      | Ť         | <b>†</b>   | 7        | Ť       | <b>∱</b> î≽ |      | Ť        | <b>∱</b> ⊅ |      |
| Traffic Volume (vph)   | 159                                  | 180      | 121  | 95        | 223        | 281      | 82      | 789         | 40   | 265      | 1252       | 146  |
| Future Volume (vph)    | 159                                  | 180      | 121  | 95        | 223        | 281      | 82      | 789         | 40   | 265      | 1252       | 146  |
| Ideal Flow (vphpl)     | 1750                                 | 1750     | 1750 | 1750      | 1750       | 1750     | 1750    | 1750        | 1750 | 1750     | 1750       | 1750 |
| Total Lost time (s)    | 4.5                                  | 4.5      |      | 4.5       | 4.5        | 4.5      | 4.5     | 4.5         |      | 4.5      | 4.5        |      |
| Lane Util. Factor      | 1.00                                 | 1.00     |      | 1.00      | 1.00       | 1.00     | 1.00    | 0.95        |      | 1.00     | 0.95       |      |
| Frpb, ped/bikes        | 1.00                                 | 0.99     |      | 1.00      | 1.00       | 1.00     | 1.00    | 1.00        |      | 1.00     | 1.00       |      |
| Flpb, ped/bikes        | 1.00                                 | 1.00     |      | 1.00      | 1.00       | 1.00     | 1.00    | 1.00        |      | 1.00     | 1.00       |      |
| Frt                    | 1.00                                 | 0.94     |      | 1.00      | 1.00       | 0.85     | 1.00    | 0.99        |      | 1.00     | 0.98       |      |
| Flt Protected          | 0.95                                 | 1.00     |      | 0.95      | 1.00       | 1.00     | 0.95    | 1.00        |      | 0.95     | 1.00       |      |
| Satd. Flow (prot)      | 1222                                 | 1304     |      | 1249      | 1562       | 1293     | 1179    | 2697        |      | 1374     | 2765       |      |
| Flt Permitted          | 0.38                                 | 1.00     |      | 0.26      | 1.00       | 1.00     | 0.08    | 1.00        |      | 0.20     | 1.00       |      |
| Satd. Flow (perm)      | 485                                  | 1304     |      | 346       | 1562       | 1293     | 99      | 2697        |      | 283      | 2765       |      |
| Peak-hour factor, PHF  | 0.99                                 | 0.99     | 0.99 | 0.99      | 0.99       | 0.99     | 0.99    | 0.99        | 0.99 | 0.99     | 0.99       | 0.99 |
| Adj. Flow (vph)        | 161                                  | 182      | 122  | 96        | 225        | 284      | 83      | 797         | 40   | 268      | 1265       | 147  |
| RTOR Reduction (vph)   | 0                                    | 19       | 0    | 0         | 0          | 100      | 0       | 3           | 0    | 0        | 7          | 0    |
| Lane Group Flow (vph)  | 161                                  | 285      | 0    | 96        | 225        | 184      | 83      | 834         | 0    | 268      | 1405       | 0    |
| Confl. Peds. (#/hr)    |                                      |          | 4    | 4         |            |          | 1       |             | 2    | 2        |            | 1    |
| Confl. Bikes (#/hr)    |                                      |          |      |           |            |          |         |             | 1    |          |            |      |
| Heavy Vehicles (%)     | 36%                                  | 22%      | 30%  | 33%       | 12%        | 15%      | 41%     | 22%         | 27%  | 21%      | 18%        | 19%  |
| Turn Type              | D.P+P                                | NA       |      | D.P+P     | NA         | Perm     | D.P+P   | NA          |      | D.P+P    | NA         |      |
| Protected Phases       | 7                                    | 4        |      | 3         | 8          |          | 5       | 2           |      | 1        | 6          |      |
| Permitted Phases       | 8                                    |          |      | 4         |            | 8        | 6       |             |      | 2        |            |      |
| Actuated Green, G (s)  | 36.9                                 | 29.4     |      | 36.9      | 26.4       | 26.4     | 75.1    | 50.6        |      | 75.1     | 67.8       |      |
| Effective Green, g (s) | 36.9                                 | 29.4     |      | 36.9      | 26.4       | 26.4     | 75.1    | 50.6        |      | 75.1     | 67.8       |      |
| Actuated g/C Ratio     | 0.28                                 | 0.23     |      | 0.28      | 0.20       | 0.20     | 0.58    | 0.39        |      | 0.58     | 0.52       |      |
| Clearance Time (s)     | 4.5                                  | 4.5      |      | 4.5       | 4.5        | 4.5      | 4.5     | 4.5         |      | 4.5      | 4.5        |      |
| Vehicle Extension (s)  | 3.0                                  | 2.5      |      | 3.0       | 2.5        | 2.5      | 2.5     | 4.6         |      | 2.5      | 4.6        |      |
| Lane Grp Cap (vph)     | 197                                  | 294      |      | 150       | 317        | 262      | 117     | 1049        |      | 369      | 1442       |      |
| v/s Ratio Prot         | c0.07                                | c0.22    |      | 0.04      | 0.14       |          | 0.04    | c0.31       |      | 0.14     | c0.51      |      |
| v/s Ratio Perm         | 0.17                                 |          |      | 0.14      |            | 0.14     | 0.37    |             |      | 0.28     |            |      |
| v/c Ratio              | 0.82                                 | 0.97     |      | 0.64      | 0.71       | 0.70     | 0.71    | 0.79        |      | 0.73     | 0.97       |      |
| Uniform Delay, d1      | 41.5                                 | 49.9     |      | 37.7      | 48.2       | 48.1     | 21.6    | 35.1        |      | 33.5     | 30.3       |      |
| Progression Factor     | 1.00                                 | 1.00     |      | 1.00      | 1.00       | 1.00     | 1.17    | 0.98        |      | 0.57     | 0.52       |      |
| Incremental Delay, d2  | 22.4                                 | 44.3     |      | 9.0       | 6.6        | 7.6      | 11.1    | 4.1         |      | 2.6      | 9.9        |      |
| Delay (s)              | 63.9                                 | 94.2     |      | 46.6      | 54.8       | 55.7     | 36.3    | 38.6        |      | 21.8     | 25.7       |      |
| Level of Service       | Е                                    | F        |      | D         | D          | Е        | D       | D           |      | С        | С          |      |
| Approach Delay (s)     |                                      | 83.7     |      |           | 54.0       |          |         | 38.4        |      |          | 25.1       |      |
| Approach LOS           |                                      | F        |      |           | D          |          |         | D           |      |          | С          |      |
| Intersection Summary   |                                      |          |      |           |            |          |         |             |      |          |            |      |
| HCM 2000 Control Delay |                                      |          | 40.6 | H         | CM 2000    | Level of | Service |             | D    |          |            |      |
| •                      | CM 2000 Volume to Capacity ratio 0.9 |          |      |           |            |          |         |             |      |          |            |      |
| • •                    |                                      | 130.0    | Sı   | um of los | t time (s) |          |         | 18.0        |      |          |            |      |
|                        |                                      | 87.2%    |      | U Level   |            | 9        |         | Е           |      |          |            |      |
| Analysis Period (min)  | nalysis Period (min) 15              |          |      |           |            |          |         |             |      |          |            |      |
| c Critical Lane Group  |                                      |          |      |           |            |          |         |             |      |          |            |      |

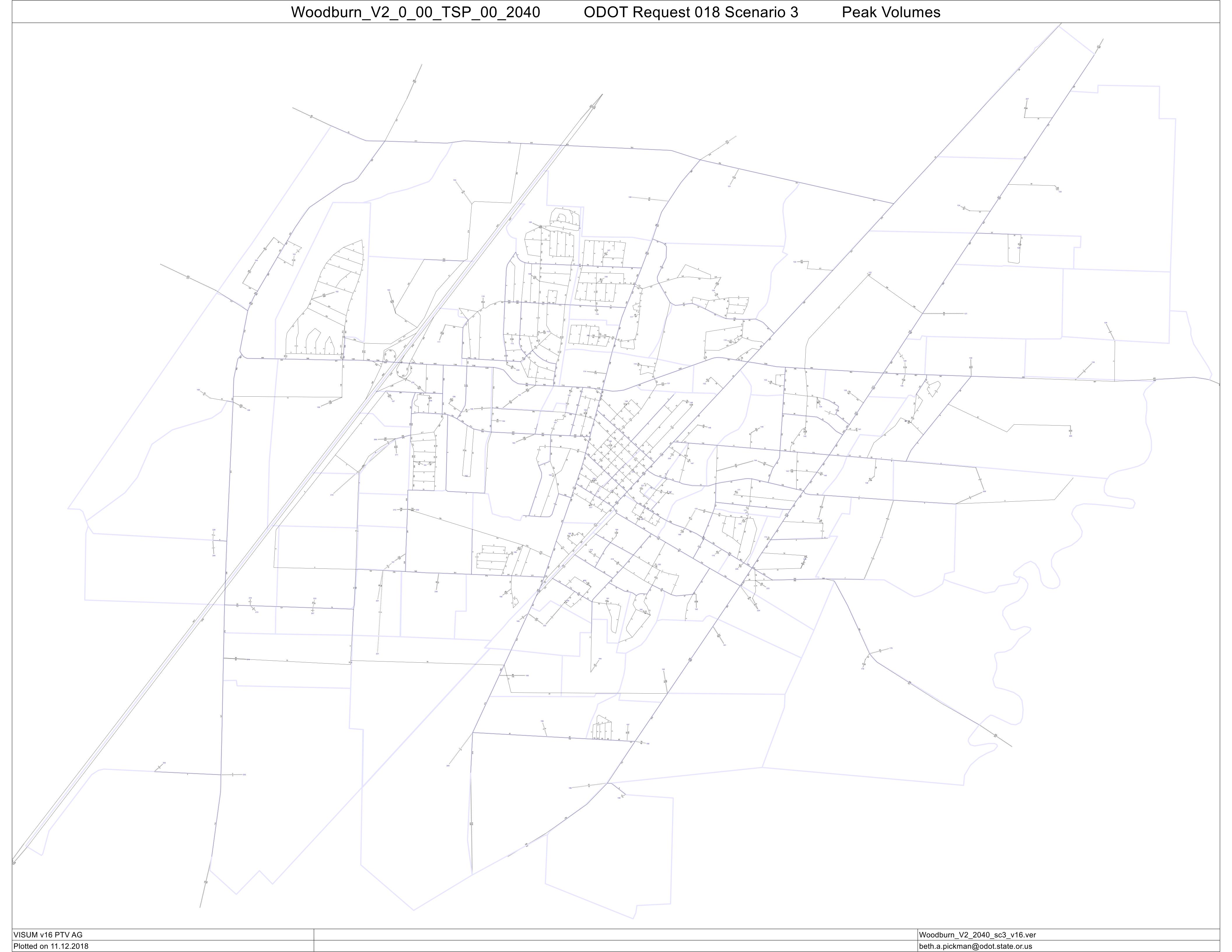
|                                                   | ٠           | •    | •           | <b>†</b> | ļ          | ✓                |  |
|---------------------------------------------------|-------------|------|-------------|----------|------------|------------------|--|
| Movement                                          | EBL         | EBR  | NBL         | NBT      | SBT        | SBR              |  |
| ane Configurations                                | *           | 7    |             | 414      | <b>↑</b> ⊅ |                  |  |
| Fraffic Volume (vph)                              | 87          | 84   | 82          | 917      | 1176       | 245              |  |
| uture Volume (vph)                                | 87          | 84   | 82          | 917      | 1176       | 245              |  |
| deal Flow (vphpl)                                 | 1750        | 1750 | 1750        | 1750     | 1750       | 1750             |  |
| Total Lost time (s)                               | 4.0         | 4.0  |             | 4.0      | 4.0        |                  |  |
| _ane Util. Factor                                 | 1.00        | 1.00 |             | 0.95     | 0.95       |                  |  |
| Frpb, ped/bikes                                   | 1.00        | 0.99 |             | 1.00     | 1.00       |                  |  |
| Flpb, ped/bikes                                   | 1.00        | 1.00 |             | 1.00     | 1.00       |                  |  |
| Frt                                               | 1.00        | 0.85 |             | 1.00     | 0.97       |                  |  |
| FIt Protected                                     | 0.95        | 1.00 |             | 1.00     | 1.00       |                  |  |
| Satd. Flow (prot)                                 | 1374        | 1086 |             | 2639     | 2545       |                  |  |
| FIt Permitted                                     | 0.95        | 1.00 |             | 0.63     | 1.00       |                  |  |
| Satd. Flow (perm)                                 | 1374        | 1086 |             | 1680     | 2545       |                  |  |
| Peak-hour factor, PHF                             | 0.92        | 0.92 | 0.92        | 0.92     | 0.92       | 0.92             |  |
| Adj. Flow (vph)                                   | 95          | 91   | 89          | 997      | 1278       | 266              |  |
| RTOR Reduction (vph)                              | 0           | 81   | 0           | 0        | 10         | 0                |  |
| ane Group Flow (vph)                              | 95          | 10   | 0           | 1086     | 1534       | 0                |  |
| Confl. Peds. (#/hr)                               |             | 1    | 1           |          |            | 1                |  |
| Confl. Bikes (#/hr)                               |             |      |             |          |            | 2                |  |
| Heavy Vehicles (%)                                | 21%         | 35%  | 31%         | 25%      | 29%        | 16%              |  |
| Turn Type                                         | Prot        | Perm | Perm        | NA       | NA         |                  |  |
| Protected Phases                                  | 4           |      |             | 2        | 6          |                  |  |
| Permitted Phases                                  |             | 4    | 2           |          | -          |                  |  |
| Actuated Green, G (s)                             | 14.3        | 14.3 |             | 107.7    | 107.7      |                  |  |
| Effective Green, g (s)                            | 14.3        | 14.3 |             | 107.7    | 107.7      |                  |  |
| Actuated g/C Ratio                                | 0.11        | 0.11 |             | 0.83     | 0.83       |                  |  |
| Clearance Time (s)                                | 4.0         | 4.0  |             | 4.0      | 4.0        |                  |  |
| Vehicle Extension (s)                             | 3.0         | 3.0  |             | 3.0      | 3.0        |                  |  |
| Lane Grp Cap (vph)                                | 151         | 119  |             | 1391     | 2108       |                  |  |
| //s Ratio Prot                                    | c0.07       |      |             |          | 0.60       |                  |  |
| v/s Ratio Perm                                    | 00.01       | 0.01 |             | c0.65    | 0.00       |                  |  |
| v/c Ratio                                         | 0.63        | 0.08 |             | 0.78     | 0.73       |                  |  |
| Uniform Delay, d1                                 | 55.3        | 52.0 |             | 5.4      | 4.8        |                  |  |
| Progression Factor                                | 1.00        | 1.00 |             | 1.00     | 0.46       |                  |  |
| ncremental Delay, d2                              | 8.0         | 0.3  |             | 4.4      | 0.9        |                  |  |
| Delay (s)                                         | 63.3        | 52.3 |             | 9.8      | 3.1        |                  |  |
| Level of Service                                  | E           | D    |             | A        | A          |                  |  |
| Approach Delay (s)                                | 57.9        |      |             | 9.8      | 3.1        |                  |  |
| Approach LOS                                      | E           |      |             | A        | A          |                  |  |
| ntersection Summary                               |             |      |             |          |            |                  |  |
|                                                   |             |      | 9.3         | Ц        | CM 2000    | Loyal of Carries |  |
| HCM 2000 Control Delay<br>HCM 2000 Volume to Capa | ocity ratio |      | 9.3<br>0.76 | Н        | CIVI ZUUU  | Level of Service |  |
|                                                   | acity ratio |      | 130.0       | C        | um of lost | time (c)         |  |
| Actuated Cycle Length (s)                         | ation       |      |             |          |            | ` '              |  |
| Intersection Capacity Utiliz                      | allUII      |      | 89.5%       | IC       | CU Level c | or Service       |  |
| Analysis Period (min) c Critical Lane Group       |             |      | 15          |          |            |                  |  |
| Condical Lane Group                               |             |      |             |          |            |                  |  |

|                                                          | ۶         | <b>→</b>     | •              | •    | -            | •            | •      | <b>†</b> | ~         | <b>/</b>     | ļ         | ✓            |
|----------------------------------------------------------|-----------|--------------|----------------|------|--------------|--------------|--------|----------|-----------|--------------|-----------|--------------|
| Movement                                                 | EBL       | EBT          | EBR            | WBL  | WBT          | WBR          | NBL    | NBT      | NBR       | SBL          | SBT       | SBR          |
| Lane Configurations                                      |           | <b>^</b>     | 7              |      | <b>^</b>     | 7            |        |          |           | ሻሻ           |           | 7            |
| Traffic Volume (vph)                                     | 0         | 999          | 447            | 0    | 1073         | 733          | 0      | 0        | 0         | 717          | 0         | 363          |
| Future Volume (vph)                                      | 0         | 999          | 447            | 0    | 1073         | 733          | 0      | 0        | 0         | 717          | 0         | 363          |
| Ideal Flow (vphpl)                                       | 1750      | 1750         | 1750           | 1750 | 1750         | 1750         | 1750   | 1750     | 1750      | 1750         | 1750      | 1750         |
| Total Lost time (s)                                      |           | 4.5          | 4.0            |      | 4.5          | 4.0          |        |          |           | 4.5          |           | 4.5          |
| Lane Util. Factor                                        |           | 0.95         | 1.00           |      | 0.95         | 1.00         |        |          |           | 0.97         |           | 1.00         |
| Frpb, ped/bikes                                          |           | 1.00         | 0.98           |      | 1.00         | 0.98         |        |          |           | 1.00         |           | 1.00         |
| Flpb, ped/bikes<br>Frt                                   |           | 1.00<br>1.00 | 1.00<br>0.85   |      | 1.00<br>1.00 | 1.00<br>0.85 |        |          |           | 1.00<br>1.00 |           | 1.00<br>0.85 |
| FIt Protected                                            |           | 1.00         | 1.00           |      | 1.00         | 1.00         |        |          |           | 0.95         |           | 1.00         |
| Satd. Flow (prot)                                        |           | 2866         | 1255           |      | 2842         | 1173         |        |          |           | 2710         |           | 1271         |
| Flt Permitted                                            |           | 1.00         | 1.00           |      | 1.00         | 1.00         |        |          |           | 0.95         |           | 1.00         |
| Satd. Flow (perm)                                        |           | 2866         | 1255           |      | 2842         | 1173         |        |          |           | 2710         |           | 1271         |
| Peak-hour factor, PHF                                    | 0.98      | 0.98         | 0.98           | 0.98 | 0.98         | 0.98         | 0.98   | 0.98     | 0.98      | 0.98         | 0.98      | 0.98         |
| Adj. Flow (vph)                                          | 0.30      | 1019         | 456            | 0.30 | 1095         | 748          | 0.30   | 0.30     | 0.30      | 732          | 0.30      | 370          |
| RTOR Reduction (vph)                                     | 0         | 0            | 0              | 0    | 0            | 0            | 0      | 0        | 0         | 0            | 0         | 35           |
| Lane Group Flow (vph)                                    | 0         | 1019         | 456            | 0    | 1095         | 748          | 0      | 0        | 0         | 732          | 0         | 335          |
| Confl. Peds. (#/hr)                                      | 5         | 1010         | 2              | 2    | 1000         | 5            | 1      |          |           | 702          |           | 1            |
| Heavy Vehicles (%)                                       | 0%        | 16%          | 16%            | 0%   | 17%          | 24%          | 0%     | 0%       | 0%        | 19%          | 0%        | 17%          |
| Turn Type                                                |           | NA           | Free           |      | NA           | Free         |        |          |           | Prot         |           | custom       |
| Protected Phases                                         |           | 2            |                |      | 6            |              |        |          |           | 4            |           | 4 5          |
| Permitted Phases                                         |           |              | Free           |      |              | Free         |        |          |           |              |           |              |
| Actuated Green, G (s)                                    |           | 96.0         | 150.0          |      | 82.0         | 150.0        |        |          |           | 45.0         |           | 59.5         |
| Effective Green, g (s)                                   |           | 96.0         | 150.0          |      | 82.0         | 150.0        |        |          |           | 45.0         |           | 59.5         |
| Actuated g/C Ratio                                       |           | 0.64         | 1.00           |      | 0.55         | 1.00         |        |          |           | 0.30         |           | 0.40         |
| Clearance Time (s)                                       |           | 4.5          |                |      | 4.5          |              |        |          |           | 4.5          |           |              |
| Vehicle Extension (s)                                    |           | 6.0          |                |      | 4.0          |              |        |          |           | 2.5          |           |              |
| Lane Grp Cap (vph)                                       |           | 1834         | 1255           |      | 1553         | 1173         |        |          |           | 813          |           | 504          |
| v/s Ratio Prot                                           |           | 0.36         |                |      | c0.39        |              |        |          |           | c0.27        |           | 0.26         |
| v/s Ratio Perm                                           |           |              | 0.36           |      |              | c0.64        |        |          |           |              |           |              |
| v/c Ratio                                                |           | 0.56         | 0.36           |      | 0.71         | 0.64         |        |          |           | 0.90         |           | 0.66         |
| Uniform Delay, d1                                        |           | 15.1         | 0.0            |      | 25.1         | 0.0          |        |          |           | 50.4         |           | 37.1         |
| Progression Factor                                       |           | 1.00         | 1.00           |      | 1.03         | 1.00         |        |          |           | 1.00         |           | 1.00         |
| Incremental Delay, d2                                    |           | 1.2          | 0.8            |      | 1.3          | 1.3          |        |          |           | 13.0         |           | 3.0          |
| Delay (s)                                                |           | 16.3         | 0.8<br>A       |      | 27.0         | 1.3<br>A     |        |          |           | 63.4         |           | 40.0<br>D    |
| Level of Service<br>Approach Delay (s)                   |           | B<br>11.5    | А              |      | C<br>16.6    | А            |        | 0.0      |           | E            | 55.5      | U            |
| Approach LOS                                             |           | 11.5<br>B    |                |      | 10.0         |              |        | Α        |           |              | 55.5<br>E |              |
|                                                          |           | D            |                |      | D            |              |        |          |           |              |           |              |
| Intersection Summary                                     |           |              | 04.0           | 1.1  | ON 4 0000    | f C          | \i     |          |           |              |           |              |
| HCM 2000 Control Delay                                   | ity ratio |              | 24.6           | H    | UNI 2000     | Level of S   | ervice |          | С         |              |           |              |
| HCM 2000 Volume to Capac                                 | ity ratio |              | 0.78           | C.   | ım of loo    | t time (a)   |        |          | 12.0      |              |           |              |
| Actuated Cycle Length (s)                                | on        |              | 150.0<br>64.2% |      | um of lost   | of Service   |        |          | 13.0<br>C |              |           |              |
| Intersection Capacity Utilizati<br>Analysis Period (min) | UII       |              | 15             | iC   | O Level (    | JI SELVICE   |        |          | C         |              |           |              |
| Analysis Feriou (IIIII)                                  |           |              | 10             |      |              |              |        |          |           |              |           |              |

|                               | •          | <b>→</b> | •     | •    | <b>←</b>   | •          | 4       | <b>†</b> | /        | -    | ļ    | 4    |
|-------------------------------|------------|----------|-------|------|------------|------------|---------|----------|----------|------|------|------|
| Movement                      | EBL        | EBT      | EBR   | WBL  | WBT        | WBR        | NBL     | NBT      | NBR      | SBL  | SBT  | SBR  |
| Lane Configurations           |            | <b>^</b> | 7     |      | <b>^</b>   | 7          | ሻ       | 4        | 7        |      |      |      |
| Traffic Volume (vph)          | 0          | 1464     | 272   | 0    | 1392       | 450        | 393     | 0        | 683      | 0    | 0    | 0    |
| Future Volume (vph)           | 0          | 1464     | 272   | 0    | 1392       | 450        | 393     | 0        | 683      | 0    | 0    | 0    |
| Ideal Flow (vphpl)            | 1750       | 1750     | 1750  | 1750 | 1750       | 1750       | 1750    | 1750     | 1750     | 1750 | 1750 | 1750 |
| Total Lost time (s)           |            | 4.5      | 4.0   |      | 4.5        | 4.0        | 4.5     | 4.5      | 4.5      |      |      |      |
| Lane Util. Factor             |            | 0.95     | 1.00  |      | 0.95       | 1.00       | 0.95    | 0.91     | 0.95     |      |      |      |
| Frpb, ped/bikes               |            | 1.00     | 0.98  |      | 1.00       | 0.98       | 1.00    | 0.99     | 0.98     |      |      |      |
| Flpb, ped/bikes               |            | 1.00     | 1.00  |      | 1.00       | 1.00       | 1.00    | 1.00     | 1.00     |      |      |      |
| Frt                           |            | 1.00     | 0.85  |      | 1.00       | 0.85       | 1.00    | 0.87     | 0.85     |      |      |      |
| Flt Protected                 |            | 1.00     | 1.00  |      | 1.00       | 1.00       | 0.95    | 0.99     | 1.00     |      |      |      |
| Satd. Flow (prot)             |            | 2866     | 1234  |      | 2725       | 1212       | 1350    | 1106     | 1131     |      |      |      |
| FIt Permitted                 |            | 1.00     | 1.00  |      | 1.00       | 1.00       | 0.95    | 0.99     | 1.00     |      |      |      |
| Satd. Flow (perm)             |            | 2866     | 1234  |      | 2725       | 1212       | 1350    | 1106     | 1131     |      |      |      |
| Peak-hour factor, PHF         | 0.96       | 0.96     | 0.96  | 0.96 | 0.96       | 0.96       | 0.96    | 0.96     | 0.96     | 0.96 | 0.96 | 0.96 |
| Adj. Flow (vph)               | 0          | 1525     | 283   | 0    | 1450       | 469        | 409     | 0        | 711      | 0    | 0    | 0    |
| RTOR Reduction (vph)          | 0          | 0        | 0     | 0    | 0          | 0          | 0       | 19       | 19       | 0    | 0    | 0    |
| Lane Group Flow (vph)         | 0          | 1525     | 283   | 0    | 1450       | 469        | 368     | 356      | 358      | 0    | 0    | 0    |
| Confl. Peds. (#/hr)           | 4          |          | 3     | 3    |            | 4          |         |          | 2        | 2    |      |      |
| Heavy Vehicles (%)            | 0%         | 16%      | 18%   | 0%   | 22%        | 20%        | 17%     | 0%       | 23%      | 0%   | 0%   | 0%   |
| Turn Type                     |            | NA       | Free  |      | NA         | Free       | Perm    | NA       | Perm     |      |      |      |
| Protected Phases              |            | 2        |       |      | 6          |            |         | 8        |          |      |      |      |
| Permitted Phases              |            |          | Free  |      |            | Free       | 8       |          | 8        |      |      |      |
| Actuated Green, G (s)         |            | 89.7     | 150.0 |      | 89.7       | 150.0      | 51.3    | 51.3     | 51.3     |      |      |      |
| Effective Green, g (s)        |            | 89.7     | 150.0 |      | 89.7       | 150.0      | 51.3    | 51.3     | 51.3     |      |      |      |
| Actuated g/C Ratio            |            | 0.60     | 1.00  |      | 0.60       | 1.00       | 0.34    | 0.34     | 0.34     |      |      |      |
| Clearance Time (s)            |            | 4.5      |       |      | 4.5        |            | 4.5     | 4.5      | 4.5      |      |      |      |
| Vehicle Extension (s)         |            | 4.0      |       |      | 6.0        |            | 2.5     | 2.5      | 2.5      |      |      |      |
| Lane Grp Cap (vph)            |            | 1713     | 1234  |      | 1629       | 1212       | 461     | 378      | 386      |      |      |      |
| v/s Ratio Prot                |            | 0.53     |       |      | c0.53      |            |         |          |          |      |      |      |
| v/s Ratio Perm                |            |          | 0.23  |      |            | 0.39       | 0.27    | 0.32     | 0.32     |      |      |      |
| v/c Ratio                     |            | 0.89     | 0.23  |      | 0.89       | 0.39       | 0.80    | 0.94     | 0.93     |      |      |      |
| Uniform Delay, d1             |            | 25.9     | 0.0   |      | 25.9       | 0.0        | 44.7    | 47.9     | 47.6     |      |      |      |
| Progression Factor            |            | 1.39     | 1.00  |      | 0.76       | 1.00       | 1.00    | 1.00     | 1.00     |      |      |      |
| Incremental Delay, d2         |            | 5.7      | 0.3   |      | 4.2        | 0.5        | 9.0     | 31.5     | 28.0     |      |      |      |
| Delay (s)                     |            | 41.9     | 0.3   |      | 23.8       | 0.5        | 53.7    | 79.4     | 75.5     |      |      |      |
| Level of Service              |            | D        | Α     |      | С          | Α          | D       | E        | E        |      |      |      |
| Approach Delay (s)            |            | 35.4     |       |      | 18.1       |            |         | 69.7     |          |      | 0.0  |      |
| Approach LOS                  |            | D        |       |      | В          |            |         | Е        |          |      | Α    |      |
| Intersection Summary          |            |          |       |      |            |            |         |          |          |      |      |      |
| HCM 2000 Control Delay        |            |          | 36.5  | Н    | CM 2000    | Level of   | Service |          | D        |      |      |      |
| HCM 2000 Volume to Capac      | city ratio |          | 0.91  | - 11 | J.II. 2000 | _0.0.01    | 2311100 |          |          |      |      |      |
| Actuated Cycle Length (s)     | J., 14110  |          | 150.0 | Sı   | um of lost | t time (s) |         |          | 9.0      |      |      |      |
| Intersection Capacity Utiliza | tion       |          | 82.3% |      |            | of Service |         |          | 5.0<br>E |      |      |      |
| Analysis Period (min)         |            |          | 15    | ٠,٠  | 5 25701    |            |         |          |          |      |      |      |
| Critical Lana Craun           |            |          | 10    |      |            |            |         |          |          |      |      |      |


|                             | ۶                                     | <b>→</b> | •     | •     | <b>←</b>   | •          | •       | <b>†</b> | <b>/</b> | <b>/</b> | <b>↓</b> | -√   |
|-----------------------------|---------------------------------------|----------|-------|-------|------------|------------|---------|----------|----------|----------|----------|------|
| Movement                    | EBL                                   | EBT      | EBR   | WBL   | WBT        | WBR        | NBL     | NBT      | NBR      | SBL      | SBT      | SBR  |
| Lane Configurations         | ሻ                                     | <b>^</b> | 7     | Ť     | <b>∱</b> ∱ |            | ሻ       | र्स      | 7        | Ť        | <b>↑</b> | 7    |
| Traffic Volume (vph)        | 81                                    | 1480     | 207   | 320   | 1245       | 14         | 530     | 25       | 320      | 19       | 33       | 72   |
| Future Volume (vph)         | 81                                    | 1480     | 207   | 320   | 1245       | 14         | 530     | 25       | 320      | 19       | 33       | 72   |
| Ideal Flow (vphpl)          | 1750                                  | 1750     | 1750  | 1750  | 1750       | 1750       | 1750    | 1750     | 1750     | 1750     | 1750     | 1750 |
| Total Lost time (s)         | 4.0                                   | 4.5      | 4.5   | 4.0   | 4.5        |            | 4.5     | 4.5      | 4.5      | 4.5      | 4.5      | 4.5  |
| Lane Util. Factor           | 1.00                                  | 0.95     | 1.00  | 1.00  | 0.95       |            | 0.95    | 0.95     | 1.00     | 1.00     | 1.00     | 1.00 |
| Frpb, ped/bikes             | 1.00                                  | 1.00     | 1.00  | 1.00  | 1.00       |            | 1.00    | 1.00     | 0.98     | 1.00     | 1.00     | 0.99 |
| Flpb, ped/bikes             | 1.00                                  | 1.00     | 1.00  | 1.00  | 1.00       |            | 1.00    | 1.00     | 1.00     | 1.00     | 1.00     | 1.00 |
| Frt                         | 1.00                                  | 1.00     | 0.85  | 1.00  | 1.00       |            | 1.00    | 1.00     | 0.85     | 1.00     | 1.00     | 0.85 |
| Flt Protected               | 0.95                                  | 1.00     | 1.00  | 0.95  | 1.00       |            | 0.95    | 0.96     | 1.00     | 0.95     | 1.00     | 1.00 |
| Satd. Flow (prot)           | 1363                                  | 2842     | 1316  | 1409  | 2835       |            | 1373    | 1390     | 1259     | 1511     | 1651     | 1095 |
| FIt Permitted               | 0.10                                  | 1.00     | 1.00  | 0.06  | 1.00       |            | 0.95    | 0.96     | 1.00     | 0.95     | 1.00     | 1.00 |
| Satd. Flow (perm)           | 146                                   | 2842     | 1316  | 92    | 2835       |            | 1373    | 1390     | 1259     | 1511     | 1651     | 1095 |
| Peak-hour factor, PHF       | 0.97                                  | 0.97     | 0.97  | 0.97  | 0.97       | 0.97       | 0.97    | 0.97     | 0.97     | 0.97     | 0.97     | 0.97 |
| Adj. Flow (vph)             | 84                                    | 1526     | 213   | 330   | 1284       | 14         | 546     | 26       | 330      | 20       | 34       | 74   |
| RTOR Reduction (vph)        | 0                                     | 0        | 86    | 0     | 0          | 0          | 0       | 0        | 247      | 0        | 0        | 70   |
| Lane Group Flow (vph)       | 84                                    | 1526     | 128   | 330   | 1298       | 0          | 284     | 288      | 83       | 20       | 34       | 4    |
| Confl. Peds. (#/hr)         | 3                                     |          |       |       |            | 3          | 1       |          | 4        | 4        |          | 1    |
| Heavy Vehicles (%)          | 22%                                   | 17%      | 13%   | 18%   | 17%        | 23%        | 15%     | 8%       | 16%      | 10%      | 6%       | 34%  |
| Turn Type                   | D.P+P                                 | NA       | Perm  | D.P+P | NA         |            | Split   | NA       | Perm     | Split    | NA       | Perm |
| Protected Phases            | 5                                     | 2        |       | 1     | 6          |            | 8       | 8        |          | 4        | 4        |      |
| Permitted Phases            | 6                                     |          | 2     | 2     |            |            |         |          | 8        |          |          | 4    |
| Actuated Green, G (s)       | 86.5                                  | 64.5     | 64.5  | 86.5  | 77.0       |            | 37.7    | 37.7     | 37.7     | 8.3      | 8.3      | 8.3  |
| Effective Green, g (s)      | 86.5                                  | 64.5     | 64.5  | 86.5  | 77.0       |            | 37.7    | 37.7     | 37.7     | 8.3      | 8.3      | 8.3  |
| Actuated g/C Ratio          | 0.58                                  | 0.43     | 0.43  | 0.58  | 0.51       |            | 0.25    | 0.25     | 0.25     | 0.06     | 0.06     | 0.06 |
| Clearance Time (s)          | 4.0                                   | 4.5      | 4.5   | 4.0   | 4.5        |            | 4.5     | 4.5      | 4.5      | 4.5      | 4.5      | 4.5  |
| Vehicle Extension (s)       | 2.5                                   | 6.2      | 6.2   | 2.5   | 6.2        |            | 2.5     | 2.5      | 2.5      | 2.5      | 2.5      | 2.5  |
| Lane Grp Cap (vph)          | 161                                   | 1222     | 565   | 246   | 1455       |            | 345     | 349      | 316      | 83       | 91       | 60   |
| v/s Ratio Prot              | 0.03                                  | 0.54     |       | c0.20 | 0.46       |            | 0.21    | c0.21    |          | 0.01     | c0.02    |      |
| v/s Ratio Perm              | 0.27                                  |          | 0.10  | c0.58 |            |            |         |          | 0.07     |          |          | 0.00 |
| v/c Ratio                   | 0.52                                  | 1.25     | 0.23  | 1.34  | 0.89       |            | 0.82    | 0.83     | 0.26     | 0.24     | 0.37     | 0.07 |
| Uniform Delay, d1           | 21.7                                  | 42.8     | 27.0  | 60.5  | 32.8       |            | 53.0    | 53.0     | 45.0     | 67.8     | 68.3     | 67.2 |
| Progression Factor          | 1.10                                  | 0.94     | 1.07  | 0.74  | 0.53       |            | 1.00    | 1.00     | 1.00     | 1.00     | 1.00     | 1.00 |
| Incremental Delay, d2       | 1.0                                   | 115.1    | 0.4   | 166.6 | 4.5        |            | 14.3    | 14.3     | 0.3      | 1.1      | 1.9      | 0.4  |
| Delay (s)                   | 25.0                                  | 155.2    | 29.4  | 211.6 | 21.8       |            | 67.3    | 67.4     | 45.3     | 68.9     | 70.2     | 67.5 |
| Level of Service            | С                                     | F        | С     | F     | С          |            | Е       | Е        | D        | Е        | Е        | Е    |
| Approach Delay (s)          |                                       | 134.5    |       |       | 60.3       |            |         | 59.3     |          |          | 68.5     |      |
| Approach LOS                |                                       | F        |       |       | E          |            |         | Е        |          |          | E        |      |
| Intersection Summary        |                                       |          |       |       |            |            |         |          |          |          |          |      |
| HCM 2000 Control Delay 90.5 |                                       |          |       | Н     | CM 2000    | Level of S | Service |          | F        |          |          |      |
|                             | ICM 2000 Volume to Capacity ratio 1.1 |          |       |       |            |            |         |          |          |          |          |      |
| , ,                         |                                       |          | 150.0 | Sı    | um of lost | time (s)   |         |          | 17.5     |          |          |      |
|                             | tersection Capacity Utilization       |          |       | IC    | CU Level o | of Service |         |          | F        |          |          |      |
| Analysis Period (min)       |                                       |          | 15    |       |            |            |         |          |          |          |          |      |
| 0.20.011.00.00              |                                       |          |       |       |            |            |         |          |          |          |          |      |


|                               | ٠          | <b>→</b>   | •     | •     | <b>←</b>   | •          | 4       | <b>†</b> | ~    | <b>/</b> | <b>+</b> | 4    |
|-------------------------------|------------|------------|-------|-------|------------|------------|---------|----------|------|----------|----------|------|
| Movement                      | EBL        | EBT        | EBR   | WBL   | WBT        | WBR        | NBL     | NBT      | NBR  | SBL      | SBT      | SBR  |
| Lane Configurations           | Ť          | <b>∱</b> ∱ |       | Ŋ     | ħβ         |            | Ĭ       | f)       |      | , T      | f)       |      |
| Traffic Volume (vph)          | 153        | 1644       | 41    | 27    | 1494       | 76         | 22      | 27       | 9    | 95       | 22       | 126  |
| Future Volume (vph)           | 153        | 1644       | 41    | 27    | 1494       | 76         | 22      | 27       | 9    | 95       | 22       | 126  |
| Ideal Flow (vphpl)            | 1750       | 1750       | 1750  | 1750  | 1750       | 1750       | 1750    | 1750     | 1750 | 1750     | 1750     | 1750 |
| Total Lost time (s)           | 4.0        | 4.5        |       | 4.0   | 4.5        |            | 4.0     | 4.0      |      | 4.0      | 4.0      |      |
| Lane Util. Factor             | 1.00       | 0.95       |       | 1.00  | 0.95       |            | 1.00    | 1.00     |      | 1.00     | 1.00     |      |
| Frpb, ped/bikes               | 1.00       | 1.00       |       | 1.00  | 1.00       |            | 1.00    | 1.00     |      | 1.00     | 1.00     |      |
| Flpb, ped/bikes               | 1.00       | 1.00       |       | 1.00  | 1.00       |            | 1.00    | 1.00     |      | 1.00     | 1.00     |      |
| Frt                           | 1.00       | 1.00       |       | 1.00  | 0.99       |            | 1.00    | 0.96     |      | 1.00     | 0.87     |      |
| Fit Protected                 | 0.95       | 1.00       |       | 0.95  | 1.00       |            | 0.95    | 1.00     |      | 0.95     | 1.00     |      |
| Satd. Flow (prot)             | 1554       | 2747       |       | 1471  | 2719       |            | 1525    | 1396     |      | 1385     | 1427     |      |
| FIt Permitted                 | 0.08       | 1.00       |       | 0.07  | 1.00       |            | 0.95    | 1.00     |      | 0.95     | 1.00     |      |
| Satd. Flow (perm)             | 137        | 2747       |       | 106   | 2719       |            | 1525    | 1396     |      | 1385     | 1427     |      |
| Peak-hour factor, PHF         | 0.96       | 0.96       | 0.96  | 0.96  | 0.96       | 0.96       | 0.96    | 0.96     | 0.96 | 0.96     | 0.96     | 0.96 |
| Adj. Flow (vph)               | 159        | 1712       | 43    | 28    | 1556       | 79         | 23      | 28       | 9    | 99       | 23       | 131  |
| RTOR Reduction (vph)          | 0          | 1          | 0     | 0     | 2          | 0          | 0       | 9        | 0    | 0        | 119      | 0    |
| Lane Group Flow (vph)         | 159        | 1755       | 0     | 28    | 1633       | 0          | 23      | 28       | 0    | 99       | 35       | 0    |
| Confl. Peds. (#/hr)           | 2          |            | 1     | 1     |            | 2          |         |          |      |          |          |      |
| Heavy Vehicles (%)            | 7%         | 20%        | 42%   | 13%   | 22%        | 6%         | 9%      | 21%      | 20%  | 20%      | 7%       | 7%   |
| Turn Type                     | D.P+P      | NA         |       | pm+pt | NA         |            | Prot    | NA       |      | Prot     | NA       |      |
| Protected Phases              | 5          | 2          |       | 1     | 6          |            | 3       | 8        |      | 7        | 4        |      |
| Permitted Phases              | 6          |            |       | 6     |            |            |         |          |      |          |          |      |
| Actuated Green, G (s)         | 110.2      | 106.2      |       | 97.6  | 97.6       |            | 9.8     | 7.1      |      | 16.2     | 13.5     |      |
| Effective Green, g (s)        | 110.2      | 106.2      |       | 97.6  | 97.6       |            | 9.8     | 7.1      |      | 16.2     | 13.5     |      |
| Actuated g/C Ratio            | 0.73       | 0.71       |       | 0.65  | 0.65       |            | 0.07    | 0.05     |      | 0.11     | 0.09     |      |
| Clearance Time (s)            | 4.0        | 4.5        |       | 4.0   | 4.5        |            | 4.0     | 4.0      |      | 4.0      | 4.0      |      |
| Vehicle Extension (s)         | 2.5        | 6.2        |       | 2.5   | 6.2        |            | 2.5     | 2.5      |      | 2.5      | 2.5      |      |
| Lane Grp Cap (vph)            | 219        | 1944       |       | 105   | 1769       |            | 99      | 66       |      | 149      | 128      |      |
| v/s Ratio Prot                | 0.06       | c0.64      |       | 0.01  | c0.60      |            | 0.02    | c0.02    |      | c0.07    | 0.02     |      |
| v/s Ratio Perm                | 0.47       |            |       | 0.17  |            |            |         |          |      |          |          |      |
| v/c Ratio                     | 0.73       | 0.90       |       | 0.27  | 0.92       |            | 0.23    | 0.43     |      | 0.66     | 0.27     |      |
| Uniform Delay, d1             | 39.4       | 17.7       |       | 17.4  | 22.9       |            | 66.5    | 69.5     |      | 64.3     | 63.7     |      |
| Progression Factor            | 0.62       | 0.69       |       | 1.00  | 1.00       |            | 1.00    | 1.00     |      | 1.00     | 1.00     |      |
| Incremental Delay, d2         | 1.0        | 8.0        |       | 1.0   | 9.6        |            | 0.9     | 3.3      |      | 9.6      | 0.8      |      |
| Delay (s)                     | 25.5       | 13.0       |       | 18.4  | 32.5       |            | 67.4    | 72.7     |      | 73.9     | 64.5     |      |
| Level of Service              | С          | В          |       | В     | С          |            | Е       | Е        |      | Е        | Е        |      |
| Approach Delay (s)            |            | 14.0       |       |       | 32.2       |            |         | 70.7     |      |          | 68.2     |      |
| Approach LOS                  |            | В          |       |       | С          |            |         | Е        |      |          | Е        |      |
| Intersection Summary          |            |            |       |       |            |            |         |          |      |          |          |      |
| HCM 2000 Control Delay        |            |            | 26.2  | Н     | CM 2000    | Level of S | Service |          | С    |          |          |      |
| HCM 2000 Volume to Capa       | city ratio |            | 0.88  |       |            |            |         |          |      |          |          |      |
| Actuated Cycle Length (s)     |            |            | 150.0 |       | um of lost |            |         |          | 16.5 |          |          |      |
| Intersection Capacity Utiliza | ation      |            | 83.5% | IC    | CU Level c | of Service |         |          | Е    |          |          |      |
| Analysis Period (min)         |            |            | 15    |       |            |            |         |          |      |          |          |      |


|                                 | ۶         | <b>→</b> | •     | •     | <b>←</b>   | •          | 4       | <b>†</b>   | ~    | <b>&gt;</b> | Ţ     | ✓    |
|---------------------------------|-----------|----------|-------|-------|------------|------------|---------|------------|------|-------------|-------|------|
| Movement                        | EBL       | EBT      | EBR   | WBL   | WBT        | WBR        | NBL     | NBT        | NBR  | SBL         | SBT   | SBR  |
| Lane Configurations             |           | र्स      | 7     | *     | 4î         |            | *       | <b>∱</b> ኈ |      | ሻ           |       | 7    |
| Traffic Volume (vph)            | 80        | 55       | 67    | 147   | 43         | 53         | 72      | 1117       | 101  | 75          | 1453  | 100  |
| Future Volume (vph)             | 80        | 55       | 67    | 147   | 43         | 53         | 72      | 1117       | 101  | 75          | 1453  | 100  |
| Ideal Flow (vphpl)              | 1750      | 1750     | 1750  | 1750  | 1750       | 1750       | 1750    | 1750       | 1750 | 1750        | 1750  | 1750 |
| Total Lost time (s)             |           | 4.5      | 4.5   | 4.5   | 4.5        |            | 4.5     | 4.5        |      | 4.5         | 4.5   | 4.5  |
| Lane Util. Factor               |           | 1.00     | 1.00  | 1.00  | 1.00       |            | 1.00    | 0.95       |      | 1.00        | 0.95  | 1.00 |
| Frpb, ped/bikes                 |           | 1.00     | 0.98  | 1.00  | 0.99       |            | 1.00    | 1.00       |      | 1.00        | 1.00  | 0.97 |
| Flpb, ped/bikes                 |           | 1.00     | 1.00  | 0.99  | 1.00       |            | 1.00    | 1.00       |      | 1.00        | 1.00  | 1.00 |
| Frt                             |           | 1.00     | 0.85  | 1.00  | 0.92       |            | 1.00    | 0.99       |      | 1.00        | 1.00  | 0.85 |
| Flt Protected                   |           | 0.97     | 1.00  | 0.95  | 1.00       |            | 0.95    | 1.00       |      | 0.95        | 1.00  | 1.00 |
| Satd. Flow (prot)               |           | 1497     | 1227  | 1464  | 1343       |            | 1363    | 2667       |      | 1458        | 2771  | 1196 |
| Flt Permitted                   |           | 0.71     | 1.00  | 0.55  | 1.00       |            | 0.09    | 1.00       |      | 0.15        | 1.00  | 1.00 |
| Satd. Flow (perm)               |           | 1097     | 1227  | 846   | 1343       |            | 133     | 2667       |      | 234         | 2771  | 1196 |
| Peak-hour factor, PHF           | 0.94      | 0.94     | 0.94  | 0.94  | 0.94       | 0.94       | 0.94    | 0.94       | 0.94 | 0.94        | 0.94  | 0.94 |
| Adj. Flow (vph)                 | 85        | 59       | 71    | 156   | 46         | 56         | 77      | 1188       | 107  | 80          | 1546  | 106  |
| RTOR Reduction (vph)            | 0         | 0        | 57    | 0     | 35         | 0          | 0       | 4          | 0    | 0           | 0     | 35   |
| Lane Group Flow (vph)           | 0         | 144      | 14    | 156   | 67         | 0          | 77      | 1291       | 0    | 80          | 1546  | 71   |
| Confl. Peds. (#/hr)             | 6         |          | 6     | 6     |            | 6          | 3       |            | 3    | 3           |       | 3    |
| Heavy Vehicles (%)              | 16%       | 9%       | 19%   | 13%   | 15%        | 21%        | 22%     | 23%        | 21%  | 14%         | 20%   | 21%  |
| Turn Type                       | Perm      | NA       | Perm  | Perm  | NA         |            | D.P+P   | NA         |      | D.P+P       | NA    | Perm |
| Protected Phases                |           | 8        |       |       | 4          |            | 1       | 6          |      | 5           | 2     |      |
| Permitted Phases                | 8         |          | 8     | 4     |            |            | 2       |            |      | 6           |       | 2    |
| Actuated Green, G (s)           |           | 26.0     | 26.0  | 26.0  | 26.0       |            | 90.5    | 83.4       |      | 90.5        | 81.3  | 81.3 |
| Effective Green, g (s)          |           | 26.0     | 26.0  | 26.0  | 26.0       |            | 90.5    | 83.4       |      | 90.5        | 81.3  | 81.3 |
| Actuated g/C Ratio              |           | 0.20     | 0.20  | 0.20  | 0.20       |            | 0.70    | 0.64       |      | 0.70        | 0.63  | 0.63 |
| Clearance Time (s)              |           | 4.5      | 4.5   | 4.5   | 4.5        |            | 4.5     | 4.5        |      | 4.5         | 4.5   | 4.5  |
| Vehicle Extension (s)           |           | 2.5      | 2.5   | 2.5   | 2.5        |            | 2.5     | 4.6        |      | 2.5         | 4.6   | 4.6  |
| Lane Grp Cap (vph)              |           | 219      | 245   | 169   | 268        |            | 179     | 1710       |      | 229         | 1732  | 747  |
| v/s Ratio Prot                  |           |          |       |       | 0.05       |            | 0.03    | c0.48      |      | 0.02        | c0.56 |      |
| v/s Ratio Perm                  |           | 0.13     | 0.01  | c0.18 |            |            | 0.27    |            |      | 0.22        |       | 0.06 |
| v/c Ratio                       |           | 0.66     | 0.06  | 0.92  | 0.25       |            | 0.43    | 0.75       |      | 0.35        | 0.89  | 0.10 |
| Uniform Delay, d1               |           | 47.9     | 42.1  | 51.0  | 43.8       |            | 32.2    | 16.2       |      | 9.3         | 20.6  | 9.7  |
| Progression Factor              |           | 1.00     | 1.00  | 1.00  | 1.00       |            | 0.88    | 0.92       |      | 1.16        | 1.10  | 0.74 |
| Incremental Delay, d2           |           | 6.2      | 0.1   | 47.2  | 0.4        |            | 0.9     | 2.5        |      | 0.1         | 0.8   | 0.0  |
| Delay (s)                       |           | 54.1     | 42.2  | 98.2  | 44.1       |            | 29.3    | 17.4       |      | 10.8        | 23.4  | 7.2  |
| Level of Service                |           | D        | D     | F     | D          |            | С       | В          |      | В           | С     | Α    |
| Approach Delay (s)              |           | 50.2     |       |       | 76.8       |            |         | 18.1       |      |             | 21.9  |      |
| Approach LOS                    |           | D        |       |       | Е          |            |         | В          |      |             | С     |      |
| Intersection Summary            |           |          |       |       |            |            | _       |            |      |             |       |      |
| HCM 2000 Control Delay          |           |          | 26.1  | H     | CM 2000    | Level of   | Service |            | С    |             |       |      |
| HCM 2000 Volume to Capac        | ity ratio |          | 0.90  |       |            |            |         |            |      |             |       |      |
| Actuated Cycle Length (s)       |           |          | 130.0 |       | um of lost |            |         |            | 13.5 |             |       |      |
| Intersection Capacity Utilizati | on        |          | 76.9% | IC    | U Level c  | of Service | )       |            | D    |             |       |      |
| Analysis Period (min)           |           |          | 15    |       |            |            |         |            |      |             |       |      |

|                         | ۶                                      | <b>→</b> | •    | •    | +         | •           | 1        | <b>†</b>   | ~         | <b>/</b> | <b>↓</b> | -√   |
|-------------------------|----------------------------------------|----------|------|------|-----------|-------------|----------|------------|-----------|----------|----------|------|
| Movement                | EBL                                    | EBT      | EBR  | WBL  | WBT       | WBR         | NBL      | NBT        | NBR       | SBL      | SBT      | SBR  |
| Lane Configurations     | ሻ                                      | 4î       |      |      | र्स       | 7           | 7        | <b>∱</b> ∱ |           | 7        | <b>^</b> | 7    |
| Traffic Volume (vph)    | 108                                    | 11       | 90   | 27   | 11        | 26          | 80       | 1146       | 14        | 17       | 1573     | 123  |
| Future Volume (vph)     | 108                                    | 11       | 90   | 27   | 11        | 26          | 80       | 1146       | 14        | 17       | 1573     | 123  |
| Ideal Flow (vphpl)      | 1750                                   | 1750     | 1750 | 1750 | 1750      | 1750        | 1750     | 1750       | 1750      | 1750     | 1750     | 1750 |
| Total Lost time (s)     | 4.5                                    | 4.5      |      |      | 4.5       | 4.5         | 4.5      | 4.5        |           | 4.5      | 4.5      | 4.5  |
| Lane Util. Factor       | 1.00                                   | 1.00     |      |      | 1.00      | 1.00        | 1.00     | 0.95       |           | 1.00     | 0.95     | 1.00 |
| Frpb, ped/bikes         | 1.00                                   | 0.99     |      |      | 1.00      | 0.97        | 1.00     | 1.00       |           | 1.00     | 1.00     | 0.96 |
| Flpb, ped/bikes         | 0.99                                   | 1.00     |      |      | 1.00      | 1.00        | 1.00     | 1.00       |           | 1.00     | 1.00     | 1.00 |
| Frt                     | 1.00                                   | 0.87     |      |      | 1.00      | 0.85        | 1.00     | 1.00       |           | 1.00     | 1.00     | 0.85 |
| Flt Protected           | 0.95                                   | 1.00     |      |      | 0.97      | 1.00        | 0.95     | 1.00       |           | 0.95     | 1.00     | 1.00 |
| Satd. Flow (prot)       | 1379                                   | 1173     |      |      | 1406      | 1124        | 1446     | 2629       |           | 1288     | 2748     | 1244 |
| Flt Permitted           | 0.73                                   | 1.00     |      |      | 0.77      | 1.00        | 0.09     | 1.00       |           | 0.18     | 1.00     | 1.00 |
| Satd. Flow (perm)       | 1060                                   | 1173     |      |      | 1122      | 1124        | 134      | 2629       |           | 247      | 2748     | 1244 |
| Peak-hour factor, PHF   | 0.94                                   | 0.94     | 0.94 | 0.94 | 0.94      | 0.94        | 0.94     | 0.94       | 0.94      | 0.94     | 0.94     | 0.94 |
| Adj. Flow (vph)         | 115                                    | 12       | 96   | 29   | 12        | 28          | 85       | 1219       | 15        | 18       | 1673     | 131  |
| RTOR Reduction (vph)    | 0                                      | 82       | 0    | 0    | 0         | 24          | 0        | 0          | 0         | 0        | 0        | 32   |
| Lane Group Flow (vph)   | 115                                    | 26       | 0    | 0    | 41        | 4           | 85       | 1234       | 0         | 18       | 1673     | 99   |
| Confl. Peds. (#/hr)     | 10                                     |          |      |      |           | 10          | 6        |            | 6         | 6        |          | 6    |
| Confl. Bikes (#/hr)     |                                        |          | 1    |      |           |             |          |            | 1         |          |          |      |
| Heavy Vehicles (%)      | 19%                                    | 50%      | 25%  | 5%   | 57%       | 29%         | 15%      | 26%        | 40%       | 29%      | 21%      | 15%  |
| Turn Type               | Perm                                   | NA       |      | Perm | NA        | Perm        | D.P+P    | NA         |           | D.P+P    | NA       | Perm |
| Protected Phases        |                                        | 8        |      |      | 4         |             | 1        | 6          |           | 5        | 2        |      |
| Permitted Phases        | 8                                      |          |      | 4    |           | 4           | 2        |            |           | 6        |          | 2    |
| Actuated Green, G (s)   | 18.9                                   | 18.9     |      |      | 18.9      | 18.9        | 97.6     | 90.6       |           | 97.6     | 88.8     | 88.8 |
| Effective Green, g (s)  | 18.9                                   | 18.9     |      |      | 18.9      | 18.9        | 97.6     | 90.6       |           | 97.6     | 88.8     | 88.8 |
| Actuated g/C Ratio      | 0.15                                   | 0.15     |      |      | 0.15      | 0.15        | 0.75     | 0.70       |           | 0.75     | 0.68     | 0.68 |
| Clearance Time (s)      | 4.5                                    | 4.5      |      |      | 4.5       | 4.5         | 4.5      | 4.5        |           | 4.5      | 4.5      | 4.5  |
| Vehicle Extension (s)   | 2.5                                    | 2.5      |      |      | 2.5       | 2.5         | 2.5      | 4.6        |           | 2.5      | 4.6      | 4.6  |
| Lane Grp Cap (vph)      | 154                                    | 170      |      |      | 163       | 163         | 189      | 1832       |           | 241      | 1877     | 849  |
| v/s Ratio Prot          |                                        | 0.02     |      |      |           |             | 0.03     | c0.47      |           | 0.00     | c0.61    |      |
| v/s Ratio Perm          | c0.11                                  | ****     |      |      | 0.04      | 0.00        | 0.31     |            |           | 0.05     |          | 0.08 |
| v/c Ratio               | 0.75                                   | 0.15     |      |      | 0.25      | 0.02        | 0.45     | 0.67       |           | 0.07     | 0.89     | 0.12 |
| Uniform Delay, d1       | 53.3                                   | 48.6     |      |      | 49.3      | 47.6        | 11.9     | 11.3       |           | 10.3     | 16.7     | 7.1  |
| Progression Factor      | 1.00                                   | 1.00     |      |      | 1.00      | 1.00        | 1.67     | 0.69       |           | 1.39     | 0.64     | 1.32 |
| Incremental Delay, d2   | 16.9                                   | 0.3      |      |      | 0.6       | 0.0         | 0.9      | 1.4        |           | 0.1      | 3.9      | 0.1  |
| Delay (s)               | 70.2                                   | 48.9     |      |      | 49.9      | 47.7        | 20.8     | 9.2        |           | 14.3     | 14.5     | 9.5  |
| Level of Service        | E                                      | D        |      |      | D         | D           | C        | A          |           | В        | В        | А    |
| Approach Delay (s)      | _                                      | 59.9     |      |      | 49.0      | _           |          | 9.9        |           | _        | 14.2     |      |
| Approach LOS            |                                        | E        |      |      | D         |             |          | Α          |           |          | В        |      |
| Intersection Summary    |                                        |          |      |      |           |             |          |            |           |          |          |      |
| HCM 2000 Control Delay  |                                        |          | 16.2 | Н    | CM 2000   | I evel of   | Service  |            | В         |          |          |      |
| HCM 2000 Volume to Capa | city ratio                             |          | 0.86 |      | OW 2000   | LOVOI OI    | OCI VIOC |            |           |          |          |      |
| •                       | ctuated Cycle Length (s) 130.0         |          |      | Q    | um of los | t time (e)  |          |            | 13.5      |          |          |      |
| , ,                     | ntersection Capacity Utilization 76.4% |          |      |      | CU Level  |             | ۵        |            | 13.3<br>D |          |          |      |
| Analysis Period (min)   | atiOH                                  |          | 15   | i C  | O LGVGI ( | or Oct vice |          |            | U         |          |          |      |
| c Critical Lane Group   |                                        |          | 10   |      |           |             |          |            |           |          |          |      |
| o Ontical Lane Group    |                                        |          |      |      |           |             |          |            |           |          |          |      |

Attachment C TPAU Travel Demand Model Alternatives Data







Attachment D Year 2040 Alternatives Worksheets

| Intersection                         | 1=0.5  |       |        |      |             |       |  |  |
|--------------------------------------|--------|-------|--------|------|-------------|-------|--|--|
| Int Delay, s/veh                     | 172.2  |       |        |      |             |       |  |  |
| Movement                             | EBT    | EBR   | WBL    | WBT  | NBL         | NBR   |  |  |
| Lane Configurations                  | f)     |       | 7      |      | W           |       |  |  |
| Traffic Vol, veh/h                   | 387    | 128   | 349    | 335  | 108         | 333   |  |  |
| Future Vol, veh/h                    | 387    | 128   | 349    | 335  | 108         | 333   |  |  |
| Conflicting Peds, #/hr               | 0      | 0     | 0      | 0    | 0           | 0     |  |  |
| Sign Control                         | Free   | Free  | Free   | Free | Stop        | Stop  |  |  |
| RT Channelized                       | -      | None  | -      | None | -           | None  |  |  |
| Storage Length                       | -      | -     | 0      | -    | 0           | -     |  |  |
| Veh in Median Storage                | e, # 0 | -     | -      | 0    | 0           | -     |  |  |
| Grade, %                             | 0      | -     | -      | 0    | 0           | -     |  |  |
| Peak Hour Factor                     | 96     | 96    | 96     | 96   | 96          | 96    |  |  |
| Heavy Vehicles, %                    | 15     | 21    | 18     | 29   | 31          | 15    |  |  |
| Mvmt Flow                            | 403    | 133   | 364    | 349  | 113         | 347   |  |  |
|                                      |        |       |        |      |             |       |  |  |
| Major/Minor                          | Major1 |       | Major2 |      | Minor1      |       |  |  |
|                                      | Major1 |       | Major2 |      |             | 470   |  |  |
| Conflicting Flow All                 | 0      | 0     | 536    | 0    | 1546<br>470 | 470   |  |  |
| Stage 1                              | -      | -     | -      | -    | 1076        |       |  |  |
| Stage 2                              | -      | -     | 4.28   | -    | 6.71        | 6.35  |  |  |
| Critical Hdwy<br>Critical Hdwy Stg 1 | -      | -     |        | -    | 5.71        | 0.33  |  |  |
| , ,                                  | -      | -     | -      | -    | 5.71        |       |  |  |
| Critical Hdwy Stg 2                  | -      | -     | 2.362  | -    |             | 3.435 |  |  |
| Follow-up Hdwy Pot Cap-1 Maneuver    | -      | -     | 956    |      | ~ 108       | 568   |  |  |
|                                      |        | -     | 930    | -    | 573         | 500   |  |  |
| Stage 1<br>Stage 2                   | -      | _     | -      |      | 289         | _     |  |  |
| Platoon blocked, %                   | -      | -     | -      | -    | 209         | -     |  |  |
| Mov Cap-1 Maneuver                   | -      | -     | 956    |      | ~ 67        | 568   |  |  |
| Mov Cap-1 Maneuver                   | -      | -     | 900    | -    | ~ 67        | 200   |  |  |
| Stage 1                              | -      | -     | -      | _    | 573         | _     |  |  |
| Stage 2                              |        | _     |        | _    | 179         | _     |  |  |
| Olaye Z                              | _      | -     | -      | -    | 113         | -     |  |  |
|                                      |        |       |        |      |             |       |  |  |
| Approach                             | EB     |       | WB     |      | NB          |       |  |  |
| HCM Control Delay, s                 | 0      |       | 5.6    | \$   | 631.6       |       |  |  |
| HCM LOS                              |        |       |        |      | F           |       |  |  |
|                                      |        |       |        |      |             |       |  |  |
| Minor Lane/Major Mvn                 | nt I   | NBLn1 | EBT    | EBR  | WBL         | WBT   |  |  |
| Capacity (veh/h)                     |        | 201   | -      | -    | 956         | -     |  |  |
| HCM Lane V/C Ratio                   |        | 2.285 | -      | -    | 0.38        | -     |  |  |
| HCM Control Delay (s)                | ) \$   | 631.6 | -      | -    | 11.1        | -     |  |  |
| HCM Lane LOS                         | · ·    | F     | -      | -    | В           | -     |  |  |
| HCM 95th %tile Q(veh                 | )      | 37    | -      | -    | 1.8         | -     |  |  |
| ·                                    |        |       |        |      |             |       |  |  |
| Notes                                |        |       |        |      |             |       |  |  |

|                                | ۶          | <b>→</b> | •     | •     | <b>←</b> | •          | 4       | <b>†</b> | <b>/</b> | <b>/</b> | <b></b> | 4    |
|--------------------------------|------------|----------|-------|-------|----------|------------|---------|----------|----------|----------|---------|------|
| Movement                       | EBL        | EBT      | EBR   | WBL   | WBT      | WBR        | NBL     | NBT      | NBR      | SBL      | SBT     | SBR  |
| Lane Configurations            | ሻ          | <b>^</b> | 7     | ሻ     | <b>^</b> | 7          | ሻ       | f)       |          | ሻ        | 4       |      |
| Traffic Volume (vph)           | 49         | 659      | 1     | 39    | 658      | 243        | 5       | 7        | 88       | 729      | 3       | 43   |
| Future Volume (vph)            | 49         | 659      | 1     | 39    | 658      | 243        | 5       | 7        | 88       | 729      | 3       | 43   |
| Ideal Flow (vphpl)             | 1750       | 1750     | 1750  | 1750  | 1750     | 1750       | 1750    | 1750     | 1750     | 1750     | 1750    | 1750 |
| Total Lost time (s)            | 4.0        | 4.5      | 4.0   | 4.0   | 4.5      | 4.0        | 4.0     | 4.0      |          | 4.0      | 4.0     |      |
| Lane Util. Factor              | 1.00       | 0.95     | 1.00  | 1.00  | 0.95     | 1.00       | 1.00    | 1.00     |          | 0.95     | 0.95    |      |
| Frpb, ped/bikes                | 1.00       | 1.00     | 0.98  | 1.00  | 1.00     | 1.00       | 1.00    | 1.00     |          | 1.00     | 1.00    |      |
| Flpb, ped/bikes                | 1.00       | 1.00     | 1.00  | 1.00  | 1.00     | 1.00       | 1.00    | 1.00     |          | 1.00     | 1.00    |      |
| Frt                            | 1.00       | 1.00     | 0.85  | 1.00  | 1.00     | 0.85       | 1.00    | 0.86     |          | 1.00     | 0.98    |      |
| Flt Protected                  | 0.95       | 1.00     | 1.00  | 0.95  | 1.00     | 1.00       | 0.95    | 1.00     |          | 0.95     | 0.96    |      |
| Satd. Flow (prot)              | 1614       | 2866     | 975   | 1250  | 2866     | 1430       | 1662    | 1163     |          | 1490     | 1468    |      |
| FIt Permitted                  | 0.95       | 1.00     | 1.00  | 0.95  | 1.00     | 1.00       | 0.95    | 1.00     |          | 0.95     | 0.96    |      |
| Satd. Flow (perm)              | 1614       | 2866     | 975   | 1250  | 2866     | 1430       | 1662    | 1163     |          | 1490     | 1468    |      |
| Peak-hour factor, PHF          | 0.92       | 0.92     | 0.92  | 0.92  | 0.92     | 0.92       | 0.92    | 0.92     | 0.92     | 0.92     | 0.92    | 0.92 |
| Adj. Flow (vph)                | 53         | 716      | 1     | 42    | 715      | 264        | 5       | 8        | 96       | 792      | 3       | 47   |
| RTOR Reduction (vph)           | 0          | 0        | 1     | 0     | 0        | 56         | 0       | 89       | 0        | 0        | 2       | 0    |
| Lane Group Flow (vph)          | 53         | 716      | 0     | 42    | 715      | 208        | 5       | 15       | 0        | 428      | 412     | 0    |
| Confl. Bikes (#/hr)            |            |          | 1     |       |          |            |         |          |          |          |         |      |
| Heavy Vehicles (%)             | 3%         | 16%      | 50%   | 33%   | 16%      | 4%         | 0%      | 50%      | 28%      | 6%       | 20%     | 11%  |
| Turn Type                      | Prot       | NA       | pm+ov | Prot  | NA       | pm+ov      | Split   | NA       |          | Split    | NA      |      |
| Protected Phases               | 5          | 2        | 8     | 1     | 6        | 4          | 8       | 8        |          | 4        | 4       |      |
| Permitted Phases               |            |          | 2     |       |          | 6          |         |          |          |          |         |      |
| Actuated Green, G (s)          | 7.3        | 34.9     | 42.9  | 7.5   | 35.1     | 79.2       | 8.0     | 8.0      |          | 44.1     | 44.1    |      |
| Effective Green, g (s)         | 7.3        | 34.9     | 42.9  | 7.5   | 35.1     | 79.2       | 8.0     | 8.0      |          | 44.1     | 44.1    |      |
| Actuated g/C Ratio             | 0.07       | 0.31     | 0.39  | 0.07  | 0.32     | 0.71       | 0.07    | 0.07     |          | 0.40     | 0.40    |      |
| Clearance Time (s)             | 4.0        | 4.5      | 4.0   | 4.0   | 4.5      | 4.0        | 4.0     | 4.0      |          | 4.0      | 4.0     |      |
| Vehicle Extension (s)          | 2.5        | 4.2      | 2.5   | 2.5   | 4.2      | 2.5        | 2.5     | 2.5      |          | 2.5      | 2.5     |      |
| Lane Grp Cap (vph)             | 106        | 901      | 376   | 84    | 906      | 1020       | 119     | 83       |          | 591      | 583     |      |
| v/s Ratio Prot                 | 0.03       | c0.25    | 0.00  | c0.03 | 0.25     | 0.08       | 0.00    | c0.01    |          | c0.29    | 0.28    |      |
| v/s Ratio Perm                 |            |          | 0.00  |       |          | 0.06       |         |          |          |          |         |      |
| v/c Ratio                      | 0.50       | 0.79     | 0.00  | 0.50  | 0.79     | 0.20       | 0.04    | 0.18     |          | 0.72     | 0.71    |      |
| Uniform Delay, d1              | 50.1       | 34.8     | 20.9  | 49.9  | 34.6     | 5.3        | 47.9    | 48.4     |          | 28.3     | 28.0    |      |
| Progression Factor             | 1.00       | 1.00     | 1.00  | 1.00  | 1.00     | 1.00       | 1.00    | 1.00     |          | 1.00     | 1.00    |      |
| Incremental Delay, d2          | 2.7        | 5.3      | 0.0   | 3.4   | 5.0      | 0.1        | 0.1     | 0.8      |          | 4.1      | 3.6     |      |
| Delay (s)                      | 52.8       | 40.1     | 20.9  | 53.3  | 39.6     | 5.4        | 48.0    | 49.2     |          | 32.4     | 31.6    |      |
| Level of Service               | D          | D        | С     | D     | D        | Α          | D       | D        |          | С        | С       |      |
| Approach Delay (s)             |            | 40.9     |       |       | 31.3     |            |         | 49.1     |          |          | 32.0    |      |
| Approach LOS                   |            | D        |       |       | С        |            |         | D        |          |          | С       |      |
| Intersection Summary           |            |          |       |       |          |            |         |          |          |          |         |      |
| HCM 2000 Control Delay         |            |          | 34.9  | H     | CM 2000  | Level of S | Service |          | С        |          |         |      |
| HCM 2000 Volume to Capac       | city ratio |          | 0.69  |       |          |            |         |          |          |          |         |      |
| Actuated Cycle Length (s)      |            |          | 111.0 |       |          | t time (s) |         |          | 16.5     |          |         |      |
| Intersection Capacity Utilizat | tion       |          | 64.5% | IC    | U Level  | of Service |         |          | С        |          |         |      |
| Analysis Period (min)          |            |          | 15    |       |          |            |         |          |          |          |         |      |

|                                                          | ۶    | <b>→</b>     | •            | •                    | <b>←</b>                  | •            | •       | <b>†</b> | /         | <b>/</b>     | ļ    | -√           |
|----------------------------------------------------------|------|--------------|--------------|----------------------|---------------------------|--------------|---------|----------|-----------|--------------|------|--------------|
| Movement                                                 | EBL  | EBT          | EBR          | WBL                  | WBT                       | WBR          | NBL     | NBT      | NBR       | SBL          | SBT  | SBR          |
| Lane Configurations                                      |      | <b>^</b>     | 7            |                      | <b>^</b>                  | 7            |         |          |           | ሻሻ           |      | 7            |
| Traffic Volume (vph)                                     | 0    | 1156         | 462          | 0                    | 1077                      | 715          | 0       | 0        | 0         | 719          | 0    | 360          |
| Future Volume (vph)                                      | 0    | 1156         | 462          | 0                    | 1077                      | 715          | 0       | 0        | 0         | 719          | 0    | 360          |
| Ideal Flow (vphpl)                                       | 1750 | 1750         | 1750         | 1750                 | 1750                      | 1750         | 1750    | 1750     | 1750      | 1750         | 1750 | 1750         |
| Total Lost time (s)                                      |      | 4.5          | 4.0          |                      | 4.5                       | 4.0          |         |          |           | 4.5          |      | 4.5          |
| Lane Util. Factor                                        |      | 0.95         | 1.00         |                      | 0.95                      | 1.00         |         |          |           | 0.97         |      | 1.00         |
| Frpb, ped/bikes                                          |      | 1.00<br>1.00 | 0.98<br>1.00 |                      | 1.00<br>1.00              | 0.98<br>1.00 |         |          |           | 1.00<br>1.00 |      | 1.00<br>1.00 |
| Flpb, ped/bikes<br>Frt                                   |      | 1.00         | 0.85         |                      | 1.00                      | 0.85         |         |          |           | 1.00         |      | 0.85         |
| FIt Protected                                            |      | 1.00         | 1.00         |                      | 1.00                      | 1.00         |         |          |           | 0.95         |      | 1.00         |
| Satd. Flow (prot)                                        |      | 2866         | 1255         |                      | 2842                      | 1173         |         |          |           | 2710         |      | 1271         |
| Flt Permitted                                            |      | 1.00         | 1.00         |                      | 1.00                      | 1.00         |         |          |           | 0.95         |      | 1.00         |
| Satd. Flow (perm)                                        |      | 2866         | 1255         |                      | 2842                      | 1173         |         |          |           | 2710         |      | 1271         |
| Peak-hour factor, PHF                                    | 0.98 | 0.98         | 0.98         | 0.98                 | 0.98                      | 0.98         | 0.98    | 0.98     | 0.98      | 0.98         | 0.98 | 0.98         |
| Adj. Flow (vph)                                          | 0.00 | 1180         | 471          | 0.00                 | 1099                      | 730          | 0.00    | 0.00     | 0.00      | 734          | 0.00 | 367          |
| RTOR Reduction (vph)                                     | 0    | 0            | 0            | 0                    | 0                         | 0            | 0       | 0        | 0         | 0            | 0    | 9            |
| Lane Group Flow (vph)                                    | 0    | 1180         | 471          | 0                    | 1099                      | 730          | 0       | 0        | 0         | 734          | 0    | 358          |
| Confl. Peds. (#/hr)                                      | 5    |              | 2            | 2                    |                           | 5            | 1       |          |           |              |      | 1            |
| Heavy Vehicles (%)                                       | 0%   | 16%          | 16%          | 0%                   | 17%                       | 24%          | 0%      | 0%       | 0%        | 19%          | 0%   | 17%          |
| Turn Type                                                |      | NA           | Free         |                      | NA                        | Free         |         |          |           | Prot         |      | custom       |
| Protected Phases                                         |      | 2            |              |                      | 6                         |              |         |          |           | 4            |      | 4 5          |
| Permitted Phases                                         |      |              | Free         |                      |                           | Free         |         |          |           |              |      |              |
| Actuated Green, G (s)                                    |      | 59.7         | 100.0        |                      | 45.7                      | 100.0        |         |          |           | 31.3         |      | 45.8         |
| Effective Green, g (s)                                   |      | 59.7         | 100.0        |                      | 45.7                      | 100.0        |         |          |           | 31.3         |      | 45.8         |
| Actuated g/C Ratio                                       |      | 0.60         | 1.00         |                      | 0.46                      | 1.00         |         |          |           | 0.31         |      | 0.46         |
| Clearance Time (s)                                       |      | 4.5          |              |                      | 4.5                       |              |         |          |           | 4.5          |      |              |
| Vehicle Extension (s)                                    |      | 6.0          |              |                      | 4.0                       |              |         |          |           | 2.5          |      |              |
| Lane Grp Cap (vph)                                       |      | 1711         | 1255         |                      | 1298                      | 1173         |         |          |           | 848          |      | 582          |
| v/s Ratio Prot                                           |      | 0.41         |              |                      | c0.39                     |              |         |          |           | c0.27        |      | 0.28         |
| v/s Ratio Perm                                           |      | 0.00         | 0.38         |                      | 0.05                      | c0.62        |         |          |           | 0.07         |      | 0.00         |
| v/c Ratio                                                |      | 0.69         | 0.38         |                      | 0.85                      | 0.62         |         |          |           | 0.87         |      | 0.62         |
| Uniform Delay, d1                                        |      | 13.8         | 0.0          |                      | 24.0                      | 0.0          |         |          |           | 32.4         |      | 20.5         |
| Progression Factor                                       |      | 1.00         | 1.00         |                      | 1.08                      | 1.00         |         |          |           | 1.00         |      | 1.00<br>1.7  |
| Incremental Delay, d2                                    |      | 2.3<br>16.1  | 0.9<br>0.9   |                      | 3.1<br>29.1               | 1.1<br>1.1   |         |          |           | 9.1<br>41.5  |      | 22.1         |
| Delay (s)<br>Level of Service                            |      | В            | 0.9<br>A     |                      | 29.1<br>C                 | Α            |         |          |           | 41.5<br>D    |      | 22.1<br>C    |
| Approach Delay (s)                                       |      | 11.8         | A            |                      | 17.9                      | А            |         | 0.0      |           | U            | 35.0 | C            |
| Approach LOS                                             |      | В            |              |                      | 17.3<br>B                 |              |         | Α        |           |              | D    |              |
|                                                          |      |              |              |                      |                           |              |         | А        |           |              |      |              |
| Intersection Summary  HCM 2000 Control Dolov  19.8       |      |              | 10.0         | Ш                    | HCM 2000 Level of Service |              |         |          |           |              |      |              |
| HCM 2000 Control Delay HCM 2000 Volume to Capacity ratio |      |              | 19.8<br>0.86 | П                    | CIVI ZUUU                 | Level of S   | bervice |          | В         |              |      |              |
| Actuated Cycle Length (s)                                |      |              | 100.0        | Sum of lost time (s) |                           |              |         |          | 13.0      |              |      |              |
| Intersection Capacity Utilization                        | on   |              | 64.1%        |                      |                           | of Service   |         |          | 13.0<br>C |              |      |              |
| Analysis Period (min)                                    | OII  |              | 15           | 10                   | O LEVEL                   | DI GELVICE   |         |          | U         |              |      |              |
| Analysis i enou (IIIII)                                  |      |              | 10           |                      |                           |              |         |          |           |              |      |              |

|                                   | ၨ    | <b>→</b> | •     | •    | <b>+</b>   | •          | 1       | <b>†</b> | <b>/</b> | <b>/</b> | <b>+</b> | -√   |
|-----------------------------------|------|----------|-------|------|------------|------------|---------|----------|----------|----------|----------|------|
| Movement                          | EBL  | EBT      | EBR   | WBL  | WBT        | WBR        | NBL     | NBT      | NBR      | SBL      | SBT      | SBR  |
| Lane Configurations               |      | <b>^</b> | 7     |      | <b>†</b>   | 7          | *       | 4        | 7        |          |          |      |
| Traffic Volume (vph)              | 0    | 1602     | 298   | 0    | 1375       | 427        | 396     | 0        | 680      | 0        | 0        | 0    |
| Future Volume (vph)               | 0    | 1602     | 298   | 0    | 1375       | 427        | 396     | 0        | 680      | 0        | 0        | 0    |
| Ideal Flow (vphpl)                | 1750 | 1750     | 1750  | 1750 | 1750       | 1750       | 1750    | 1750     | 1750     | 1750     | 1750     | 1750 |
| Total Lost time (s)               |      | 4.5      | 4.0   |      | 4.5        | 4.0        | 4.5     | 4.5      | 4.5      |          |          |      |
| Lane Util. Factor                 |      | 0.95     | 1.00  |      | 0.95       | 1.00       | 0.95    | 0.91     | 0.95     |          |          |      |
| Frpb, ped/bikes                   |      | 1.00     | 0.98  |      | 1.00       | 0.98       | 1.00    | 0.99     | 0.99     |          |          |      |
| Flpb, ped/bikes                   |      | 1.00     | 1.00  |      | 1.00       | 1.00       | 1.00    | 1.00     | 1.00     |          |          |      |
| Frt                               |      | 1.00     | 0.85  |      | 1.00       | 0.85       | 1.00    | 0.87     | 0.85     |          |          |      |
| Flt Protected                     |      | 1.00     | 1.00  |      | 1.00       | 1.00       | 0.95    | 0.99     | 1.00     |          |          |      |
| Satd. Flow (prot)                 |      | 2866     | 1234  |      | 2725       | 1212       | 1350    | 1107     | 1132     |          |          |      |
| Flt Permitted                     |      | 1.00     | 1.00  |      | 1.00       | 1.00       | 0.95    | 0.99     | 1.00     |          |          |      |
| Satd. Flow (perm)                 |      | 2866     | 1234  |      | 2725       | 1212       | 1350    | 1107     | 1132     |          |          |      |
| Peak-hour factor, PHF             | 0.96 | 0.96     | 0.96  | 0.96 | 0.96       | 0.96       | 0.96    | 0.96     | 0.96     | 0.96     | 0.96     | 0.96 |
| Adj. Flow (vph)                   | 0.50 | 1669     | 310   | 0.30 | 1432       | 445        | 412     | 0.30     | 708      | 0.50     | 0.50     | 0.50 |
| RTOR Reduction (vph)              | 0    | 0        | 0     | 0    | 0          | 0          | 0       | 12       | 12       | 0        | 0        | 0    |
| Lane Group Flow (vph)             | 0    | 1669     | 310   | 0    | 1432       | 445        | 372     | 362      | 363      | 0        | 0        | 0    |
| Confl. Peds. (#/hr)               | 4    | 1003     | 3     | 3    | 1402       | 4          | 512     | 302      | 2        | 2        | U        | U    |
| Heavy Vehicles (%)                | 0%   | 16%      | 18%   | 0%   | 22%        | 20%        | 17%     | 0%       | 23%      | 0%       | 0%       | 0%   |
|                                   | 0 70 |          | Free  | 0 70 | NA         |            |         | NA       |          | 0 70     | 0 70     | 0 70 |
| Turn Type Protected Phases        |      | NA       | riee  |      |            | Free       | Perm    | NA<br>8  | Perm     |          |          |      |
| Permitted Phases                  |      | 2        | Free  |      | 6          | Free       | 8       | 0        | 8        |          |          |      |
|                                   |      | 56.7     |       |      | EG 7       | 100.0      | 34.3    | 24.2     | 34.3     |          |          |      |
| Actuated Green, G (s)             |      |          | 100.0 |      | 56.7       |            |         | 34.3     |          |          |          |      |
| Effective Green, g (s)            |      | 56.7     | 100.0 |      | 56.7       | 100.0      | 34.3    | 34.3     | 34.3     |          |          |      |
| Actuated g/C Ratio                |      | 0.57     | 1.00  |      | 0.57       | 1.00       | 0.34    | 0.34     | 0.34     |          |          |      |
| Clearance Time (s)                |      | 4.5      |       |      | 4.5        |            | 4.5     | 4.5      | 4.5      |          |          |      |
| Vehicle Extension (s)             |      | 4.0      | 1001  |      | 6.0        | 1010       | 2.5     | 2.5      | 2.5      |          |          |      |
| Lane Grp Cap (vph)                |      | 1625     | 1234  |      | 1545       | 1212       | 463     | 379      | 388      |          |          |      |
| v/s Ratio Prot                    |      | c0.58    |       |      | 0.53       |            |         |          |          |          |          |      |
| v/s Ratio Perm                    |      |          | 0.25  |      |            | 0.37       | 0.28    | 0.33     | 0.32     |          |          |      |
| v/c Ratio                         |      | 1.03     | 0.25  |      | 0.93       | 0.37       | 0.80    | 0.96     | 0.94     |          |          |      |
| Uniform Delay, d1                 |      | 21.6     | 0.0   |      | 19.8       | 0.0        | 29.8    | 32.1     | 31.8     |          |          |      |
| Progression Factor                |      | 1.34     | 1.00  |      | 0.95       | 1.00       | 1.00    | 1.00     | 1.00     |          |          |      |
| Incremental Delay, d2             |      | 26.1     | 0.3   |      | 5.1        | 0.3        | 9.5     | 34.5     | 29.7     |          |          |      |
| Delay (s)                         |      | 55.0     | 0.3   |      | 23.9       | 0.3        | 39.3    | 66.6     | 61.5     |          |          |      |
| Level of Service                  |      | Е        | Α     |      | С          | Α          | D       | Е        | E        |          |          |      |
| Approach Delay (s)                |      | 46.4     |       |      | 18.3       |            |         | 55.8     |          |          | 0.0      |      |
| Approach LOS                      |      | D        |       |      | В          |            |         | Е        |          |          | Α        |      |
| Intersection Summary              |      |          |       |      |            |            |         |          |          |          |          |      |
| HCM 2000 Control Delay            |      |          | 37.9  | H    | CM 2000    | Level of S | Service |          | D        |          |          |      |
| HCM 2000 Volume to Capacity r     | atio |          | 1.00  |      |            |            |         |          |          |          |          |      |
| Actuated Cycle Length (s)         |      |          | 100.0 | Sı   | um of lost | t time (s) |         |          | 9.0      |          |          |      |
| Intersection Capacity Utilization |      |          | 86.3% |      |            | of Service |         |          | Е        |          |          |      |
| Analysis Period (min)             |      |          | 15    |      |            |            |         |          |          |          |          |      |
| c Critical Lane Group             |      |          |       |      |            |            |         |          |          |          |          |      |

|                               | ٠          | <b>→</b> | •     | •     | <b>←</b>   | •          | 4       | <b>†</b> | /    | <b>/</b> | <b>↓</b> | 4    |
|-------------------------------|------------|----------|-------|-------|------------|------------|---------|----------|------|----------|----------|------|
| Movement                      | EBL        | EBT      | EBR   | WBL   | WBT        | WBR        | NBL     | NBT      | NBR  | SBL      | SBT      | SBR  |
| Lane Configurations           | ሻ          | <b>^</b> | 7     | 7     | <b>∱</b> ⊅ |            | *       | र्स      | 7    | ሻ        | <b>↑</b> | 7    |
| Traffic Volume (vph)          | 82         | 1601     | 181   | 287   | 1262       | 14         | 484     | 24       | 322  | 22       | 30       | 73   |
| Future Volume (vph)           | 82         | 1601     | 181   | 287   | 1262       | 14         | 484     | 24       | 322  | 22       | 30       | 73   |
| Ideal Flow (vphpl)            | 1750       | 1750     | 1750  | 1750  | 1750       | 1750       | 1750    | 1750     | 1750 | 1750     | 1750     | 1750 |
| Total Lost time (s)           | 4.0        | 4.5      | 4.5   | 4.0   | 4.5        |            | 4.5     | 4.5      | 4.5  | 4.5      | 4.5      | 4.5  |
| Lane Util. Factor             | 1.00       | 0.95     | 1.00  | 1.00  | 0.95       |            | 0.95    | 0.95     | 1.00 | 1.00     | 1.00     | 1.00 |
| Frpb, ped/bikes               | 1.00       | 1.00     | 1.00  | 1.00  | 1.00       |            | 1.00    | 1.00     | 0.98 | 1.00     | 1.00     | 0.99 |
| Flpb, ped/bikes               | 1.00       | 1.00     | 1.00  | 1.00  | 1.00       |            | 1.00    | 1.00     | 1.00 | 1.00     | 1.00     | 1.00 |
| Frt                           | 1.00       | 1.00     | 0.85  | 1.00  | 1.00       |            | 1.00    | 1.00     | 0.85 | 1.00     | 1.00     | 0.85 |
| Flt Protected                 | 0.95       | 1.00     | 1.00  | 0.95  | 1.00       |            | 0.95    | 0.96     | 1.00 | 0.95     | 1.00     | 1.00 |
| Satd. Flow (prot)             | 1363       | 2842     | 1316  | 1409  | 2835       |            | 1373    | 1391     | 1262 | 1511     | 1651     | 1096 |
| Flt Permitted                 | 0.09       | 1.00     | 1.00  | 0.11  | 1.00       |            | 0.95    | 0.96     | 1.00 | 0.95     | 1.00     | 1.00 |
| Satd. Flow (perm)             | 130        | 2842     | 1316  | 163   | 2835       |            | 1373    | 1391     | 1262 | 1511     | 1651     | 1096 |
| Peak-hour factor, PHF         | 0.97       | 0.97     | 0.97  | 0.97  | 0.97       | 0.97       | 0.97    | 0.97     | 0.97 | 0.97     | 0.97     | 0.97 |
| Adj. Flow (vph)               | 85         | 1651     | 187   | 296   | 1301       | 14         | 499     | 25       | 332  | 23       | 31       | 75   |
| RTOR Reduction (vph)          | 0          | 0        | 98    | 0     | 1          | 0          | 0       | 0        | 248  | 0        | 0        | 71   |
| Lane Group Flow (vph)         | 85         | 1651     | 89    | 296   | 1314       | 0          | 259     | 265      | 84   | 23       | 31       | 5    |
| Confl. Peds. (#/hr)           | 3          |          |       |       |            | 3          | 1       |          | 4    | 4        |          | 1    |
| Heavy Vehicles (%)            | 22%        | 17%      | 13%   | 18%   | 17%        | 23%        | 15%     | 8%       | 16%  | 10%      | 6%       | 34%  |
| Turn Type                     | D.P+P      | NA       | Perm  | D.P+P | NA         |            | Split   | NA       | Perm | Split    | NA       | Perm |
| Protected Phases              | 5          | 2        |       | 1     | 6          |            | 8       | 8        | _    | 4        | 4        |      |
| Permitted Phases              | 6          |          | 2     | 2     |            |            |         |          | 8    |          |          | 4    |
| Actuated Green, G (s)         | 51.3       | 36.5     | 36.5  | 51.3  | 44.1       |            | 25.2    | 25.2     | 25.2 | 6.0      | 6.0      | 6.0  |
| Effective Green, g (s)        | 51.3       | 36.5     | 36.5  | 51.3  | 44.1       |            | 25.2    | 25.2     | 25.2 | 6.0      | 6.0      | 6.0  |
| Actuated g/C Ratio            | 0.51       | 0.36     | 0.36  | 0.51  | 0.44       |            | 0.25    | 0.25     | 0.25 | 0.06     | 0.06     | 0.06 |
| Clearance Time (s)            | 4.0        | 4.5      | 4.5   | 4.0   | 4.5        |            | 4.5     | 4.5      | 4.5  | 4.5      | 4.5      | 4.5  |
| Vehicle Extension (s)         | 2.5        | 6.2      | 6.2   | 2.5   | 6.2        |            | 2.5     | 2.5      | 2.5  | 2.5      | 2.5      | 2.5  |
| Lane Grp Cap (vph)            | 155        | 1037     | 480   | 268   | 1250       |            | 345     | 350      | 318  | 90       | 99       | 65   |
| v/s Ratio Prot                | 0.04       | c0.58    |       | 0.16  | c0.46      |            | 0.19    | c0.19    |      | 0.02     | c0.02    |      |
| v/s Ratio Perm                | 0.24       |          | 0.07  | 0.40  |            |            |         |          | 0.07 |          |          | 0.00 |
| v/c Ratio                     | 0.55       | 1.59     | 0.19  | 1.10  | 1.05       |            | 0.75    | 0.76     | 0.26 | 0.26     | 0.31     | 0.07 |
| Uniform Delay, d1             | 18.5       | 31.8     | 21.6  | 39.3  | 27.9       |            | 34.5    | 34.6     | 30.0 | 44.9     | 45.0     | 44.4 |
| Progression Factor            | 0.85       | 0.95     | 0.95  | 0.79  | 0.69       |            | 1.00    | 1.00     | 1.00 | 1.00     | 1.00     | 1.00 |
| Incremental Delay, d2         | 0.7        | 267.5    | 0.2   | 52.7  | 25.6       |            | 8.5     | 8.6      | 0.3  | 1.1      | 1.3      | 0.3  |
| Delay (s)                     | 16.5       | 297.9    | 20.7  | 83.9  | 45.0       |            | 43.0    | 43.2     | 30.3 | 46.0     | 46.3     | 44.7 |
| Level of Service              | В          | F        | С     | F     | D          |            | D       | D        | С    | D        | D        | D    |
| Approach Delay (s)            |            | 258.5    |       |       | 52.2       |            |         | 38.1     |      |          | 45.3     |      |
| Approach LOS                  |            | F        |       |       | D          |            |         | D        |      |          | D        |      |
| Intersection Summary          |            |          |       |       |            |            |         |          | _    |          |          |      |
| HCM 2000 Control Delay        | .,         |          | 137.1 | Н     | CM 2000    | Level of S | Service |          | F    |          |          |      |
| HCM 2000 Volume to Capa       | city ratio |          | 1.17  | •     |            | C ( )      |         |          | 17.5 |          |          |      |
| Actuated Cycle Length (s)     | £!         |          | 100.0 |       | um of lost |            |         |          | 17.5 |          |          |      |
| Intersection Capacity Utiliza | ition      |          | 98.3% | IC    | U Level o  | of Service |         |          | F    |          |          |      |
| Analysis Period (min)         |            |          | 15    |       |            |            |         |          |      |          |          |      |

|                               | ۶          | <b>→</b>   | •     | •     | +          | •          | •       | <b>†</b> | ~    | <b>/</b> | <b>+</b> | 4    |
|-------------------------------|------------|------------|-------|-------|------------|------------|---------|----------|------|----------|----------|------|
| Movement                      | EBL        | EBT        | EBR   | WBL   | WBT        | WBR        | NBL     | NBT      | NBR  | SBL      | SBT      | SBR  |
| Lane Configurations           | 7          | <b>∱</b> } |       | ሻ     | <b>↑</b> ↑ |            | ሻ       | <b>₽</b> |      | ሻ        | ĵ»       |      |
| Traffic Volume (vph)          | 151        | 1784       | 44    | 33    | 1484       | 84         | 25      | 34       | 12   | 103      | 24       | 113  |
| Future Volume (vph)           | 151        | 1784       | 44    | 33    | 1484       | 84         | 25      | 34       | 12   | 103      | 24       | 113  |
| Ideal Flow (vphpl)            | 1750       | 1750       | 1750  | 1750  | 1750       | 1750       | 1750    | 1750     | 1750 | 1750     | 1750     | 1750 |
| Total Lost time (s)           | 4.0        | 4.5        |       | 4.0   | 4.5        |            | 4.0     | 4.0      |      | 4.0      | 4.0      |      |
| Lane Util. Factor             | 1.00       | 0.95       |       | 1.00  | 0.95       |            | 1.00    | 1.00     |      | 1.00     | 1.00     |      |
| Frpb, ped/bikes               | 1.00       | 1.00       |       | 1.00  | 1.00       |            | 1.00    | 1.00     |      | 1.00     | 1.00     |      |
| Flpb, ped/bikes               | 1.00       | 1.00       |       | 1.00  | 1.00       |            | 1.00    | 1.00     |      | 1.00     | 1.00     |      |
| Frt                           | 1.00       | 1.00       |       | 1.00  | 0.99       |            | 1.00    | 0.96     |      | 1.00     | 0.88     |      |
| Flt Protected                 | 0.95       | 1.00       |       | 0.95  | 1.00       |            | 0.95    | 1.00     |      | 0.95     | 1.00     |      |
| Satd. Flow (prot)             | 1554       | 2747       |       | 1471  | 2719       |            | 1525    | 1391     |      | 1385     | 1433     |      |
| FIt Permitted                 | 0.08       | 1.00       |       | 0.09  | 1.00       |            | 0.95    | 1.00     |      | 0.95     | 1.00     |      |
| Satd. Flow (perm)             | 131        | 2747       |       | 135   | 2719       |            | 1525    | 1391     |      | 1385     | 1433     |      |
| Peak-hour factor, PHF         | 0.96       | 0.96       | 0.96  | 0.96  | 0.96       | 0.96       | 0.96    | 0.96     | 0.96 | 0.96     | 0.96     | 0.96 |
| Adj. Flow (vph)               | 157        | 1858       | 46    | 34    | 1546       | 88         | 26      | 35       | 12   | 107      | 25       | 118  |
| RTOR Reduction (vph)          | 0          | 1          | 0     | 0     | 3          | 0          | 0       | 12       | 0    | 0        | 101      | 0    |
| Lane Group Flow (vph)         | 157        | 1903       | 0     | 34    | 1631       | 0          | 26      | 36       | 0    | 107      | 42       | 0    |
| Confl. Peds. (#/hr)           | 2          |            | 1     | 1     |            | 2          |         |          |      |          |          |      |
| Heavy Vehicles (%)            | 7%         | 20%        | 42%   | 13%   | 22%        | 6%         | 9%      | 21%      | 20%  | 20%      | 7%       | 7%   |
| Turn Type                     | D.P+P      | NA         |       | pm+pt | NA         |            | Prot    | NA       |      | Prot     | NA       |      |
| Protected Phases              | 5          | 2          |       | 1     | 6          |            | 3       | 8        |      | 7        | 4        |      |
| Permitted Phases              | 6          |            |       | 6     |            |            |         |          |      |          |          |      |
| Actuated Green, G (s)         | 62.7       | 58.5       |       | 50.1  | 50.1       |            | 6.0     | 6.7      |      | 14.1     | 14.8     |      |
| Effective Green, g (s)        | 62.7       | 58.5       |       | 50.1  | 50.1       |            | 6.0     | 6.7      |      | 14.1     | 14.8     |      |
| Actuated g/C Ratio            | 0.63       | 0.58       |       | 0.50  | 0.50       |            | 0.06    | 0.07     |      | 0.14     | 0.15     |      |
| Clearance Time (s)            | 4.0        | 4.5        |       | 4.0   | 4.5        |            | 4.0     | 4.0      |      | 4.0      | 4.0      |      |
| Vehicle Extension (s)         | 2.5        | 6.2        |       | 2.5   | 6.2        |            | 2.5     | 2.5      |      | 2.5      | 2.5      |      |
| Lane Grp Cap (vph)            | 261        | 1606       |       | 123   | 1362       |            | 91      | 93       |      | 195      | 212      |      |
| v/s Ratio Prot                | 0.08       | c0.69      |       | 0.01  | c0.60      |            | 0.02    | c0.03    |      | c0.08    | 0.03     |      |
| v/s Ratio Perm                | 0.30       |            |       | 0.13  |            |            |         |          |      |          |          |      |
| v/c Ratio                     | 0.60       | 1.18       |       | 0.28  | 1.20       |            | 0.29    | 0.39     |      | 0.55     | 0.20     |      |
| Uniform Delay, d1             | 35.5       | 20.8       |       | 21.7  | 24.9       |            | 45.0    | 44.7     |      | 40.0     | 37.4     |      |
| Progression Factor            | 0.38       | 1.10       |       | 1.00  | 1.00       |            | 1.00    | 1.00     |      | 1.00     | 1.00     |      |
| Incremental Delay, d2         | 0.3        | 83.8       |       | 0.9   | 96.1       |            | 1.3     | 1.9      |      | 2.5      | 0.3      |      |
| Delay (s)                     | 13.9       | 106.6      |       | 22.6  | 121.1      |            | 46.2    | 46.6     |      | 42.5     | 37.7     |      |
| Level of Service              | В          | F          |       | С     | F          |            | D       | D        |      | D        | D        |      |
| Approach Delay (s)            |            | 99.5       |       |       | 119.1      |            |         | 46.5     |      |          | 39.8     |      |
| Approach LOS                  |            | F          |       |       | F          |            |         | D        |      |          | D        |      |
| Intersection Summary          |            |            |       |       |            |            |         |          |      |          |          |      |
| HCM 2000 Control Delay        |            |            | 102.9 | Н     | CM 2000    | Level of S | Service |          | F    |          |          |      |
| HCM 2000 Volume to Capac      | city ratio |            | 1.05  |       |            |            |         |          |      |          |          |      |
| Actuated Cycle Length (s)     |            |            | 100.0 |       | um of lost |            |         |          | 16.5 |          |          |      |
| Intersection Capacity Utiliza | tion       |            | 84.4% | IC    | CU Level c | of Service |         |          | E    |          |          |      |
| Analysis Period (min)         |            |            | 15    |       |            |            |         |          |      |          |          |      |

| Intersection           |          |       |          |          |         |          |
|------------------------|----------|-------|----------|----------|---------|----------|
| Int Delay, s/veh       | 1.6      |       |          |          |         |          |
| Movement               | EBT      | EBR   | WBL      | WBT      | NBL     | NBR      |
|                        |          | EBK   |          |          | INDL    |          |
| Lane Configurations    | <b>†</b> | 077   | <u>ነ</u> | <b>^</b> | ^       | 110      |
| Traffic Vol, veh/h     | 1499     | 277   | 37       | 1593     | 0       | 119      |
| Future Vol, veh/h      | 1499     | 277   | 37       | 1593     | 0       | 119      |
| Conflicting Peds, #/hr | 0        | 2     | 2        | 0        | 0       | 0        |
| Sign Control           | Free     | Free  | Free     | Free     | Stop    | Stop     |
| RT Channelized         | -        | None  | -        | None     | -       | None     |
| Storage Length         | -        | -     | 130      | -        | -       | 0        |
| Veh in Median Storage  |          | -     | -        | 0        | 0       | -        |
| Grade, %               | 0        | -     | -        | 0        | 0       | -        |
| Peak Hour Factor       | 94       | 94    | 94       | 94       | 94      | 94       |
| Heavy Vehicles, %      | 19       | 17    | 10       | 23       | 0       | 24       |
| Mvmt Flow              | 1595     | 295   | 39       | 1695     | 0       | 127      |
|                        |          |       |          |          |         |          |
| Major/Minar            | Mais -1  |       | /oicr0   |          | line=1  |          |
|                        | Major1   |       | Major2   |          | /linor1 | 0 :-     |
| Conflicting Flow All   | 0        | 0     | 1891     | 0        | -       | 947      |
| Stage 1                | -        | -     | -        | -        | -       | -        |
| Stage 2                | -        | -     | -        | -        | -       | -        |
| Critical Hdwy          | -        | -     | 4.3      | -        | -       | 7.38     |
| Critical Hdwy Stg 1    | -        | -     | -        | -        | -       | -        |
| Critical Hdwy Stg 2    | -        | -     | -        | -        | -       | -        |
| Follow-up Hdwy         | -        | -     | 2.3      | -        | -       | 3.54     |
| Pot Cap-1 Maneuver     | -        | -     | 282      | -        | 0       | 224      |
| Stage 1                | -        | -     | -        | -        | 0       | -        |
| Stage 2                | -        | -     | -        | -        | 0       | -        |
| Platoon blocked, %     | -        | -     |          | -        |         |          |
| Mov Cap-1 Maneuver     | _        | -     | 282      | -        | _       | 224      |
| Mov Cap-2 Maneuver     | _        | _     | 0_       | _        | _       |          |
| Stage 1                | _        | _     | _        | _        | _       | _        |
| Stage 2                | _        | _     | _        | _        | _       |          |
| Slaye 2                | <u>-</u> | _     | _        | <u>-</u> | _       | <u>-</u> |
|                        |          |       |          |          |         |          |
| Approach               | EB       |       | WB       |          | NB      |          |
| HCM Control Delay, s   | 0        |       | 0.5      |          | 40.1    |          |
| HCM LOS                |          |       |          |          | Е       |          |
| J                      |          |       |          |          | _       |          |
|                        |          |       |          |          |         |          |
| Minor Lane/Major Mvm   | t l      | NBLn1 | EBT      | EBR      | WBL     | WBT      |
| Capacity (veh/h)       |          | 224   | -        | -        | 282     | -        |
| HCM Lane V/C Ratio     |          | 0.565 | -        | -        | 0.14    | -        |
| HCM Control Delay (s)  |          | 40.1  | -        | -        | 19.8    | -        |
| HCM Lane LOS           |          | Ε     | -        | -        | С       | -        |
| HCM 95th %tile Q(veh)  |          | 3.1   | -        | -        | 0.5     | -        |
|                        |          |       |          |          |         |          |

| Movement   EBL   EBT   EBR   WBL   WBT   WBR   NBL   NBT   NBR   SBL   SBT   SBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       | ۶          | <b>→</b> | •     | •    | <b>—</b>   | •        | 1       | <b>†</b> | /    | <b>/</b> | ţ     | 4    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------|----------|-------|------|------------|----------|---------|----------|------|----------|-------|------|
| Traffic Volume (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Movement              | EBL        | EBT      | EBR   | WBL  | WBT        | WBR      | NBL     | NBT      | NBR  | SBL      | SBT   | SBR  |
| Future Volume (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |            |          |       |      |            |          |         |          |      |          |       |      |
| Ideal Flow (vphpl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |            |          |       |      |            |          |         |          |      |          |       |      |
| Total Lost time (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |            |          |       |      |            |          |         |          |      |          |       |      |
| Lane Util. Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · · · /               |            |          |       |      |            |          |         |          |      |          |       |      |
| Frpb, ped/bikes         1.00         1.00         0.94         1.00         1.00         0.91         1.00         1.00         0.93         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         0.85         1.00         1.00         0.85         1.00         1.00         0.85         1.00         1.00         0.95         1.00         1.00         0.95         1.00         1.00         0.95         1.00         1.00         0.95         1.00         1.00         0.95         1.00         1.00         0.95         1.00         1.00         0.95         1.00         1.00         0.95         1.00         1.00         0.95         1.00         1.00         0.95         1.00         1.00         0.95         1.00         1.00         0.95         1.00         1.00         0.95         1.00         1.00         0.95         0.95         0.95                                                                                                         |                       |            |          |       |      |            |          |         |          |      |          |       |      |
| Fipb, ped/bikes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |            |          |       |      |            |          |         |          |      |          |       |      |
| Fit         1.00         1.00         0.85         1.00         1.00         0.85         1.00         1.00         0.85         1.00         1.00         0.85         1.00         1.00         0.85         1.00         1.00         0.85         1.00         1.00         0.95         1.00         1.00         0.95         1.00         1.00         0.95         1.00         1.00         0.95         1.00         1.00         0.95         1.00         1.00         0.95         1.00         1.00         0.95         1.00         1.00         0.95         1.00         1.00         0.95         1.00         1.00         0.95         1.00         1.00         0.95         1.00         1.00         0.95         1.00         1.00         0.95         1.00         1.00         1.00         1.00         0.95         1.00         1.00         1.00         0.95         1.00         1.00         1.00         1.00         0.95         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95                                                                                                                     |                       |            |          |       |      |            |          |         |          |      |          |       |      |
| Fit Protected 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |            |          |       |      |            |          |         |          |      |          |       |      |
| Satd. Flow (prot)         1446         2771         1216         1484         2748         1114         1385         1483         1357         1458         1446         1024           Flt Permitted         0.95         1.00         1.00         0.95         1.00         1.00         0.95         1.00         1.00         0.95         1.00         1.00         0.95         1.00         1.00         0.95         1.00         1.00         0.95         1.00         1.00         0.95         1.00         1.00         0.95         1.00         1.00         0.95         1.00         1.00         0.95         1.00         1.00         0.95         1.00         1.00         0.95         1.00         1.00         0.95         1.00         1.00         1.00         0.95         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.                                                                                                           |                       |            |          |       |      |            |          |         |          |      |          |       |      |
| Fit Permitted 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |            |          |       |      |            |          |         |          |      |          |       |      |
| Satd. Flow (perm)         1446         2771         1216         1484         2748         1114         1385         1483         1357         1458         1446         1024           Peak-hour factor, PHF         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95                                                                                                              |                       |            |          |       |      |            |          |         |          |      |          |       |      |
| Peak-hour factor, PHF         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95                                                                                                   |                       |            |          |       |      |            |          |         |          |      |          |       |      |
| Adj. Flow (vph)         209         783         501         64         880         61         378         119         44         81         176         231           RTOR Reduction (vph)         0         0         119         0         0         39         0         0         33         0         0         195           Lane Group Flow (vph)         209         783         382         64         880         22         378         119         11         81         176         36           Confl. Peds. (#/hr)         26         26         26         26         118         2         2         118           Heavy Vehicles (%)         15%         20%         15%         12%         21%         22%         20%         18%         8%         14%         21%         20%           Turn Type         Prot         NA         pm+ov         Prot         NA         Perm         Prot         NA         9.0         9.                                                                                                                                                                      | - " '                 |            |          |       |      |            |          |         |          |      |          |       |      |
| RTOR Reduction (vph)         0         0         119         0         0         39         0         0         33         0         0         195           Lane Group Flow (vph)         209         783         382         64         880         22         378         119         11         81         176         36           Confl. Peds. (#/hr)         26         26         26         26         118         2         2         118           Heavy Vehicles (%)         15%         20%         15%         12%         21%         22%         20%         18%         8%         14%         21%         20%           Turn Type         Prot         NA         pm+ov         Prot         NA         Perm         Prot         NA         Perm           Protected Phases         5         2         3         1         6         3         8         7         4           Permitted Phases         2         6         8         4         4         Actuated Green, G (s)         23.2         64.7         90.1         9.5         51.0         51.0         25.4         34.3         34.3         12.7         21.6         21.6         21.6                                                                                                                                                                            |                       |            |          |       |      |            |          |         |          |      |          |       |      |
| Lane Group Flow (vph)         209         783         382         64         880         22         378         119         11         81         176         36           Confl. Peds. (#/hr)         26         26         26         26         26         118         2         2         118           Heavy Vehicles (%)         15%         20%         15%         12%         21%         22%         20%         18%         8%         14%         21%         20%           Turn Type         Prot         NA         pm+ov         Prot         NA         Perm         Prot         NA         9.00                                                                                                                                                           |                       |            |          |       |      |            |          |         |          |      |          |       |      |
| Confl. Peds. (#/hr)         26         26         26         26         118         2         2         118           Heavy Vehicles (%)         15%         20%         15%         12%         21%         22%         20%         18%         8%         14%         21%         20%           Turn Type         Prot         NA         perm         Prot         NA         9.0         1         1         1         1                                                                                                                                                       |                       |            |          |       |      |            |          |         |          |      |          |       |      |
| Heavy Vehicles (%)         15%         20%         15%         12%         21%         22%         20%         18%         8%         14%         21%         20%           Turn Type         Prot         NA         perm         Prot         NA </td <td></td> |                       |            |          |       |      |            |          |         |          |      |          |       |      |
| Protected Phases         5         2         3         1         6         3         8         7         4           Permitted Phases         2         6         8         4           Actuated Green, G (s)         23.2         64.7         90.1         9.5         51.0         51.0         25.4         34.3         34.3         12.7         21.6         21.6           Effective Green, g (s)         23.2         64.7         90.1         9.5         51.0         51.0         25.4         34.3         34.3         12.7         21.6         21.6           Actuated g/C Ratio         0.17         0.46         0.64         0.07         0.36         0.36         0.18         0.24         0.24         0.09         0.15         0.15           Clearance Time (s)         4.5         5.0         4.5         5.0         5.0         4.5         5.0         5.0         4.5         5.0         5.0         4.5         5.0         5.0         4.5         5.0         5.0         4.5         5.0         5.0         4.5         5.0         5.0         4.5         5.0         5.0         4.5         5.0         5.0         4.5         5.0         5.0                                                                                                                                                             | ` ,                   |            | 20%      |       | 12%  | 21%        | 22%      | 20%     | 18%      | 8%   | 14%      | 21%   | 20%  |
| Permitted Phases 2 6 8 4 Actuated Green, G (s) 23.2 64.7 90.1 9.5 51.0 51.0 25.4 34.3 34.3 12.7 21.6 21.6 Effective Green, g (s) 23.2 64.7 90.1 9.5 51.0 51.0 25.4 34.3 34.3 12.7 21.6 21.6 Actuated g/C Ratio 0.17 0.46 0.64 0.07 0.36 0.36 0.18 0.24 0.24 0.09 0.15 0.15 Clearance Time (s) 4.5 5.0 4.5 4.5 5.0 5.0 4.5 5.0 5.0 4.5 5.0 5.0 Vehicle Extension (s) 2.5 4.8 2.5 2.5 4.8 4.8 2.5 2.5 2.5 2.5 2.5 2.5 Lane Grp Cap (vph) 239 1278 781 100 999 405 250 362 331 132 222 157 v/s Ratio Prot 0.14 0.28 0.09 0.04 c0.32 0.02 0.01 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Turn Type             | Prot       | NA       | pm+ov | Prot | NA         | Perm     | Prot    | NA       | Perm | Prot     | NA    | Perm |
| Actuated Green, G (s) 23.2 64.7 90.1 9.5 51.0 51.0 25.4 34.3 34.3 12.7 21.6 21.6 Effective Green, g (s) 23.2 64.7 90.1 9.5 51.0 51.0 25.4 34.3 34.3 12.7 21.6 21.6 Actuated g/C Ratio 0.17 0.46 0.64 0.07 0.36 0.36 0.18 0.24 0.24 0.09 0.15 0.15 Clearance Time (s) 4.5 5.0 4.5 4.5 5.0 5.0 4.5 5.0 5.0 4.5 5.0 5.0 Vehicle Extension (s) 2.5 4.8 2.5 2.5 4.8 4.8 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Protected Phases      | 5          | 2        | 3     | 1    | 6          |          | 3       | 8        |      | 7        | 4     |      |
| Effective Green, g (s) 23.2 64.7 90.1 9.5 51.0 51.0 25.4 34.3 34.3 12.7 21.6 21.6 Actuated g/C Ratio 0.17 0.46 0.64 0.07 0.36 0.36 0.18 0.24 0.24 0.09 0.15 0.15 Clearance Time (s) 4.5 5.0 4.5 5.0 5.0 4.5 5.0 5.0 4.5 5.0 5.0 Vehicle Extension (s) 2.5 4.8 2.5 2.5 4.8 4.8 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Permitted Phases      |            |          |       |      |            |          |         |          |      |          |       |      |
| Actuated g/C Ratio       0.17       0.46       0.64       0.07       0.36       0.36       0.18       0.24       0.24       0.09       0.15       0.15         Clearance Time (s)       4.5       5.0       4.5       5.0       5.0       5.0       4.5       5.0       5.0       5.0       4.5       5.0       5.0       5.0       5.0       4.5       5.0       5.0       5.0       5.0       4.5       5.0       5.0       5.0       5.0       4.5       5.0       5.0       5.0       5.0       4.5       5.0       5.0       5.0       4.5       5.0       5.0       5.0       4.5       5.0       5.0       4.5       5.0       5.0       4.5       5.0       5.0       4.5       5.0       5.0       4.5       5.0       5.0       4.5       5.0       5.0       4.5       5.0       5.0       4.5       5.0       5.0       4.8       2.5       2.5       2.5       2.5       2.5       2.5       2.5       2.5       2.5       2.5       2.5       2.5       2.5       2.5       2.5       2.5       2.5       2.5       2.5       2.5       2.5       2.5       2.5       2.5       2.5       2.5       <                                                                                                                                                                                                                                    | . ,                   |            |          |       |      |            |          |         |          |      |          |       |      |
| Clearance Time (s)       4.5       5.0       4.5       5.0       5.0       5.0       4.5       5.0       5.0       5.0       4.5       5.0       5.0       5.0       5.0       4.5       5.0       5.0       5.0       5.0       4.5       5.0       5.0       5.0       5.0       4.5       5.0       5.0       5.0       5.0       4.5       5.0       5.0       5.0       4.5       5.0       5.0       5.0       4.5       5.0       5.0       5.0       4.5       5.0       5.0       4.5       5.0       5.0       4.5       5.0       5.0       4.5       5.0       5.0       4.5       5.0       5.0       4.5       5.0       5.0       4.5       5.0       5.0       4.5       5.0       5.0       4.5       5.0       5.0       4.5       5.0       5.0       4.8       4.8       2.5       2.5       2.5       2.5       2.5       2.5       2.5       2.5       2.5       2.5       2.5       2.5       2.5       2.5       2.5       2.5       2.5       2.5       2.5       2.5       2.5       2.5       2.5       2.5       2.5       2.5       2.5       2.5       2.5       2.5       2.5 </td <td></td>                                                                                                    |                       |            |          |       |      |            |          |         |          |      |          |       |      |
| Vehicle Extension (s)         2.5         4.8         2.5         2.5         4.8         4.8         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5         2.5                                                                                                                                              |                       |            |          |       |      |            |          |         |          |      |          |       |      |
| Lane Grp Cap (vph)     239     1278     781     100     999     405     250     362     331     132     222     157       v/s Ratio Prot     c0.14     0.28     0.09     0.04     c0.32     c0.27     0.08     0.06     c0.12       v/s Ratio Perm     0.23     0.02     0.01     0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ` ,                   |            |          |       |      |            |          |         |          |      |          |       |      |
| v/s Ratio Prot     c0.14     0.28     0.09     0.04     c0.32     c0.27     0.08     0.06     c0.12       v/s Ratio Perm     0.23     0.02     0.01     0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |            |          |       |      |            |          |         |          |      |          |       |      |
| v/s Ratio Perm 0.23 0.02 0.01 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,                     |            |          |       |      |            | 405      |         |          | 331  |          |       | 157  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       | c0.14      | 0.28     |       | 0.04 | c0.32      | 0.00     | c0.27   | 0.08     | 0.04 | 0.06     | c0.12 | 0.00 |
| /a Datia 0.07 0.04 0.40 0.04 0.00 0.05 4.54 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       | 0.07       | 0.64     |       | 0.64 | 0.00       |          | 1 51    | 0.22     |      | 0.64     | 0.70  |      |
| v/c Ratio     0.87     0.61     0.49     0.64     0.88     0.05     1.51     0.33     0.03     0.61     0.79     0.23       Uniform Delay, d1     57.1     28.3     13.0     63.7     41.8     29.0     57.4     43.5     40.3     61.4     57.1     52.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |            |          |       |      |            |          |         |          |      |          |       |      |
| Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |            |          |       |      |            |          |         |          |      |          |       |      |
| Incremental Delay, d2 27.7 1.2 0.4 11.7 9.8 0.1 250.0 0.4 0.0 7.0 16.9 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |            |          |       |      |            |          |         |          |      |          |       |      |
| Delay (s) 84.8 29.6 13.4 75.4 51.5 29.1 307.4 43.9 40.3 68.4 74.1 52.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                     |            |          |       |      |            |          |         |          |      |          |       |      |
| Level of Service F C B E D C F D D E E D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |            |          |       |      |            |          |         |          |      |          |       |      |
| Approach Delay (s) 31.9 51.7 227.7 62.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | •          |          | _     | _    |            |          | •       |          | _    | _        |       | _    |
| Approach LOS C D F E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |            |          |       |      |            |          |         |          |      |          |       |      |
| Intersection Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Intersection Summary  |            |          |       |      |            |          |         |          |      |          |       |      |
| HCM 2000 Control Delay 71.9 HCM 2000 Level of Service E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |            |          | 71.9  | Н    | CM 2000    | Level of | Service |          | E    |          |       |      |
| HCM 2000 Volume to Capacity ratio 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                     | city ratio |          |       |      |            |          |         |          |      |          |       |      |
| Actuated Cycle Length (s) 140.2 Sum of lost time (s) 19.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | .,         |          |       | S    | um of lost | time (s) |         |          | 19.0 |          |       |      |
| Intersection Capacity Utilization 99.2% ICU Level of Service F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       | tion       |          |       |      |            |          |         |          |      |          |       |      |
| Analysis Period (min) 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Analysis Period (min) |            |          | 15    |      |            |          |         |          |      |          |       |      |

|                               | ٠          | <b>→</b> | •     | •     | -          | 4          | 4       | <b>†</b> | <b>/</b> | <b>/</b> | <b>+</b> | -√   |
|-------------------------------|------------|----------|-------|-------|------------|------------|---------|----------|----------|----------|----------|------|
| Movement                      | EBL        | EBT      | EBR   | WBL   | WBT        | WBR        | NBL     | NBT      | NBR      | SBL      | SBT      | SBR  |
| Lane Configurations           | 7          | Φ₽       |       | *     | <b>∱</b> ∱ |            | ሻ       | ₽        |          | *        | ₽        |      |
| Traffic Volume (vph)          | 20         | 767      | 31    | 111   | 891        | 71         | 11      | 10       | 55       | 55       | 28       | 20   |
| Future Volume (vph)           | 20         | 767      | 31    | 111   | 891        | 71         | 11      | 10       | 55       | 55       | 28       | 20   |
| Ideal Flow (vphpl)            | 1750       | 1750     | 1750  | 1750  | 1750       | 1750       | 1750    | 1750     | 1750     | 1750     | 1750     | 1750 |
| Total Lost time (s)           | 5.0        | 5.0      |       | 5.0   | 5.0        |            | 5.0     | 5.0      |          | 5.0      | 5.0      |      |
| Lane Util. Factor             | 1.00       | 0.95     |       | 1.00  | 0.95       |            | 1.00    | 1.00     |          | 1.00     | 1.00     |      |
| Frpb, ped/bikes               | 1.00       | 1.00     |       | 1.00  | 1.00       |            | 1.00    | 0.99     |          | 1.00     | 0.99     |      |
| Flpb, ped/bikes               | 1.00       | 1.00     |       | 1.00  | 1.00       |            | 0.99    | 1.00     |          | 1.00     | 1.00     |      |
| Frt                           | 1.00       | 0.99     |       | 1.00  | 0.99       |            | 1.00    | 0.87     |          | 1.00     | 0.94     |      |
| Flt Protected                 | 0.95       | 1.00     |       | 0.95  | 1.00       |            | 0.95    | 1.00     |          | 0.95     | 1.00     |      |
| Satd. Flow (prot)             | 1484       | 2743     |       | 1338  | 2709       |            | 1235    | 1163     |          | 1285     | 1461     |      |
| FIt Permitted                 | 0.25       | 1.00     |       | 0.31  | 1.00       |            | 0.73    | 1.00     |          | 0.71     | 1.00     |      |
| Satd. Flow (perm)             | 398        | 2743     |       | 431   | 2709       |            | 943     | 1163     |          | 966      | 1461     |      |
| Peak-hour factor, PHF         | 0.98       | 0.98     | 0.98  | 0.98  | 0.98       | 0.98       | 0.98    | 0.98     | 0.98     | 0.98     | 0.98     | 0.98 |
| Adj. Flow (vph)               | 20         | 783      | 32    | 113   | 909        | 72         | 11      | 10       | 56       | 56       | 29       | 20   |
| RTOR Reduction (vph)          | 0          | 2        | 0     | 0     | 4          | 0          | 0       | 49       | 0        | 0        | 17       | 0    |
| Lane Group Flow (vph)         | 20         | 813      | 0     | 113   | 977        | 0          | 11      | 17       | 0        | 56       | 32       | 0    |
| Confl. Peds. (#/hr)           | 9          |          | 33    | 33    |            | 9          | 18      |          | 4        | 4        |          | 18   |
| Confl. Bikes (#/hr)           |            |          |       |       |            | 1          |         |          |          |          |          |      |
| Heavy Vehicles (%)            | 12%        | 20%      | 27%   | 24%   | 22%        | 10%        | 33%     | 50%      | 26%      | 29%      | 4%       | 22%  |
| Turn Type                     | D.P+P      | NA       |       | D.P+P | NA         |            | Perm    | NA       |          | Perm     | NA       |      |
| Protected Phases              | 5          | 2        |       | 1     | 6          |            |         | 8        |          |          | 4        |      |
| Permitted Phases              | 6          |          |       | 2     |            |            | 8       |          |          | 4        |          |      |
| Actuated Green, G (s)         | 40.5       | 35.0     |       | 40.5  | 38.7       |            | 8.0     | 8.0      |          | 8.0      | 8.0      |      |
| Effective Green, g (s)        | 40.5       | 35.0     |       | 40.5  | 38.7       |            | 8.0     | 8.0      |          | 8.0      | 8.0      |      |
| Actuated g/C Ratio            | 0.64       | 0.55     |       | 0.64  | 0.61       |            | 0.13    | 0.13     |          | 0.13     | 0.13     |      |
| Clearance Time (s)            | 5.0        | 5.0      |       | 5.0   | 5.0        |            | 5.0     | 5.0      |          | 5.0      | 5.0      |      |
| Vehicle Extension (s)         | 2.5        | 5.3      |       | 2.5   | 5.3        |            | 2.5     | 2.5      |          | 2.5      | 2.5      |      |
| Lane Grp Cap (vph)            | 284        | 1511     |       | 353   | 1650       |            | 118     | 146      |          | 121      | 184      |      |
| v/s Ratio Prot                | 0.00       | 0.30     |       | c0.03 | c0.36      |            |         | 0.01     |          |          | 0.02     |      |
| v/s Ratio Perm                | 0.04       |          |       | 0.18  |            |            | 0.01    |          |          | c0.06    |          |      |
| v/c Ratio                     | 0.07       | 0.54     |       | 0.32  | 0.59       |            | 0.09    | 0.12     |          | 0.46     | 0.17     |      |
| Uniform Delay, d1             | 4.4        | 9.1      |       | 4.7   | 7.6        |            | 24.5    | 24.6     |          | 25.8     | 24.8     |      |
| Progression Factor            | 1.00       | 1.00     |       | 1.00  | 1.00       |            | 1.00    | 1.00     |          | 1.00     | 1.00     |      |
| Incremental Delay, d2         | 0.1        | 0.7      |       | 0.4   | 0.9        |            | 0.3     | 0.3      |          | 2.0      | 0.3      |      |
| Delay (s)                     | 4.5        | 9.8      |       | 5.1   | 8.5        |            | 24.8    | 24.9     |          | 27.8     | 25.1     |      |
| Level of Service              | Α          | Α        |       | Α     | Α          |            | С       | С        |          | С        | С        |      |
| Approach Delay (s)            |            | 9.7      |       |       | 8.2        |            |         | 24.9     |          |          | 26.5     |      |
| Approach LOS                  |            | Α        |       |       | Α          |            |         | С        |          |          | С        |      |
| Intersection Summary          |            |          |       |       |            |            |         |          |          |          |          |      |
| HCM 2000 Control Delay        |            |          | 10.3  | Н     | CM 2000    | Level of S | Service |          | В        |          |          |      |
| HCM 2000 Volume to Capa       | city ratio |          | 0.58  |       |            |            |         |          |          |          |          |      |
| Actuated Cycle Length (s)     |            |          | 63.5  | S     | um of lost | time (s)   |         |          | 15.0     |          |          |      |
| Intersection Capacity Utiliza | ation      |          | 61.6% | IC    | CU Level o | of Service |         |          | В        |          |          |      |
| Analysis Period (min)         |            |          | 15    |       |            |            |         |          |          |          |          |      |
| c Critical Lane Group         |            |          |       |       |            |            |         |          |          |          |          |      |

| Movement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Intersection         |         |        |         |         |         |         |                      |                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------|--------|---------|---------|---------|---------|----------------------|--------------------------------|
| Dovement   EBL   EBT   WBT   WBR   SBL   SBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | 47.6    |        |         |         |         |         |                      |                                |
| ane Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                    |         | EDT    | MOT     | MDD     | 001     | 000     |                      |                                |
| riaffic Vol, veh/h 143 830 1030 133 62 95 ronflicting Pods, #hr 80 0 8 0 0 8 0 0 0 8 0 0 0 8 0 0 0 8 0 0 0 8 0 0 0 8 0 0 0 8 0 0 0 8 0 0 0 8 0 0 0 8 0 0 0 8 0 0 0 8 0 0 0 8 0 0 0 8 0 0 0 8 0 0 0 8 0 0 0 8 0 0 0 8 0 0 0 8 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |         |        |         |         |         | SBR     |                      |                                |
| inture Vol, veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |         | ተተ     |         |         |         |         |                      |                                |
| Conflicting Peds, #hr   8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,                    |         |        |         |         |         |         |                      |                                |
| Free   Free |                      |         |        |         |         |         |         |                      |                                |
| None   None |                      |         |        |         |         |         |         |                      |                                |
| Storage Length   130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      | Free    |        | Free    |         | Stop    |         |                      |                                |
| Veh in Median Storage, # - 0 0 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |         | None   | -       |         |         | None    |                      |                                |
| Grade, % - 0 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Storage Length       |         |        |         | 60      |         | -       |                      |                                |
| Peak Hour Factor 94 94 94 94 94 94 94 94 94 94 94 94 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Veh in Median Storaç | ge,# -  | 0      | 0       | -       | 0       | -       |                      |                                |
| Reavy Vehicles, %   25   21   18   18   30   24     Alymtr Flow   152   883   1096   141   66   101     Algor/Minor   Major   Major   Minor     Conflicting Flow All   1104   0   -   0   1850   556     Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Grade, %             | -       | 0      | 0       | -       | 0       | -       |                      |                                |
| Major/Minor   Major1   Major2   Minor2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Peak Hour Factor     | 94      | 94     | 94      | 94      | 94      | 94      |                      |                                |
| Major/Minor   Major1   Major2   Minor2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Heavy Vehicles, %    | 25      | 21     |         | 18      | 30      | 24      |                      |                                |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mvmt Flow            | 152     | 883    | 1096    | 141     | 66      | 101     |                      |                                |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |         |        |         |         |         |         |                      |                                |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Major/Minor          | Major1  | N      | Major2  | N       | /liner? |         |                      |                                |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |         |        |         |         |         | F = 0   |                      |                                |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |         |        |         |         |         |         |                      |                                |
| Critical Hdwy Stg 1 7.4 7.38 Critical Hdwy Stg 1 6.4 - Critical Hdwy Stg 2 73.8 Critical Hdwy Stg 1 75 Critical Hdwy Stg 1 75 Critical Hdwy Stg 1 75 Critical Hdwy Stg 1 2.227 Critical Hdwy Stg 1 2.227 Critical Hdwy Stg 1 2.227 Critical Hdwy Stg 1 75 Critical Hdwy Stg 1 2.227 Critical Hdwy Stg 1 75 Critical Hdwy Stg 1 75 Critical Hdwy Stg 1 75 Critical Hdwy Stg 2 2.227 Critical Hdwy Stg 2 5 681.6 Critical Hdwy Stg 2 5 681.6 Critical Hdwy Stg 2 F Critical Hdwy Stg 2 F Critical Hdwy Stg 2 F Critical Hdwy Stg 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |         |        |         |         |         |         |                      |                                |
| Critical Hdwy Stg 1 6.4 - Critical Hdwy Stg 2 3.8 3.54 Pot Cap-1 Maneuver 510 48 422 Stage 1 225 - Stage 2 363 - Critical Hdwy Stg 2 363 - Critical Hdwy Stg 1 363 - Critical Hdwy Stg 1 33 419 Mov Cap-1 Maneuver 510 33 419 Mov Cap-2 Maneuver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |         | -      | -       | -       |         |         |                      |                                |
| Critical Hdwy Stg 2 6.4 - Collow-up Hdwy 2.45 3.8 3.54  Pot Cap-1 Maneuver 510 48 422  Stage 1 225 - Stage 2 363 - Platoon blocked, % 33 419  Mov Cap-1 Maneuver 510 33 419  Mov Cap-2 Maneuver 33 - Stage 1 223 - Stage 2 253 - Platoon blocked                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      | 4.6     | -      | -       | -       |         | 7.38    |                      |                                |
| Follow-up Hdwy 2.45 3.8 3.54 Pot Cap-1 Maneuver 510 ~48 422 Stage 1 225 - Stage 2 363 - Platoon blocked, % 33 419 Mov Cap-1 Maneuver 510 ~33 419 Mov Cap-2 Maneuver 223 - Stage 1 223 - Stage 2 533 -  Stage 1 223 - Stage 2 548 Mov Cap-2 Maneuver 733 - Stage 1 223 - Stage 2 75 Stage 2 253 -  Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 Capacity (veh/h) 510 75 HCM Lane V/C Ratio 0.298 2.227 HCM Control Delay (s) 15 \$681.6 HCM Lane LOS C F HCM 95th %tile Q(veh) 1.2 15.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | , ,                  | -       | -      | -       | -       |         | -       |                      |                                |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |         | -      | -       | -       |         |         |                      |                                |
| Stage 1 225 - Stage 2 363 - Platoon blocked, % Nov Cap-1 Maneuver 510 33 419 Nov Cap-2 Maneuver 223 - Stage 1 223 - Stage 2 253 -  Stage 2 75 HCM Control Delay, s 2.2 0 \$681.6 HCM Los F  Alinor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 Capacity (veh/h) 510 75 HCM Lane V/C Ratio 0.298 2.227 HCM Control Delay (s) 15 \$681.6 HCM Lane LOS C F HCM 95th %tile Q(veh) 1.2 - 15.5  Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |         | -      | -       | -       |         |         |                      |                                |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pot Cap-1 Maneuver   | 510     | -      | -       | -       |         | 422     |                      |                                |
| Platoon blocked, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Stage 1              | -       | -      | -       | -       |         | -       |                      |                                |
| Mov Cap-1 Maneuver       510       -       -       ~ 33       419         Mov Cap-2 Maneuver       -       -       -       ~ 33       -         Stage 1       -       -       -       223       -         Stage 2       -       -       -       253       -    Approach         EB       WB       SB         HCM Control Delay, s       2.2       0       \$ 681.6         HCM LOS       F    Alinor Lane/Major Mvmt          EBL       EBT       WBT       WBR SBLn1         Capacity (veh/h)       510       -       -       75         HCM Lane V/C Ratio       0.298       -       -       2.227         HCM Control Delay (s)       15       -       -       \$ 681.6         HCM Lane LOS       C       -       -       F         HCM 95th %tile Q(veh)       1.2       -       -       -       15.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stage 2              | -       | -      | -       | -       | 363     | -       |                      |                                |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Platoon blocked, %   |         | -      | -       | -       |         |         |                      |                                |
| Stage 1         -         -         -         223         -           Stage 2         -         -         -         253         -           Approach         EB         WB         SB           HCM Control Delay, s         2.2         0         \$681.6         -           HCM LOS         F         F         WBT         WBR SBLn1           Capacity (veh/h)         510         -         -         75           HCM Lane V/C Ratio         0.298         -         -         2.227           HCM Control Delay (s)         15         -         \$681.6           HCM Lane LOS         C         -         -         F           HCM 95th %tile Q(veh)         1.2         -         -         15.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mov Cap-1 Maneuve    | r 510   | -      | -       | -       |         | 419     |                      |                                |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mov Cap-2 Maneuve    | r -     | -      | -       | -       | ~ 33    | -       |                      |                                |
| Approach   EB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Stage 1              | -       | -      | -       | -       | 223     | -       |                      |                                |
| SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Stage 2              | -       | -      | -       | -       | 253     | -       |                      |                                |
| ACM Control Delay, s 2.2 0 \$ 681.6  ACM LOS F  Alinor Lane/Major Mvmt EBL EBT WBT WBR SBLn1  Capacity (veh/h) 510 75  HCM Lane V/C Ratio 0.298 2.227  HCM Control Delay (s) 15 \$ 681.6  HCM Lane LOS C F  HCM 95th %tile Q(veh) 1.2 15.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                    |         |        |         |         |         |         |                      |                                |
| ACM Control Delay, s 2.2 0 \$ 681.6  ACM LOS F  Alinor Lane/Major Mvmt EBL EBT WBT WBR SBLn1  Capacity (veh/h) 510 75  HCM Lane V/C Ratio 0.298 2.227  HCM Control Delay (s) 15 \$ 681.6  HCM Lane LOS C F  HCM 95th %tile Q(veh) 1.2 15.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Annroach             | ED      |        | \A/D    |         | CD.     |         |                      |                                |
| Alinor Lane/Major Mvmt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |         |        |         | Φ.      |         |         |                      |                                |
| Minor Lane/Major Mvmt EBL EBT WBT WBR SBLn1 Capacity (veh/h) 510 75 HCM Lane V/C Ratio 0.298 2.227 HCM Control Delay (s) 15 \$681.6 HCM Lane LOS C F HCM 95th %tile Q(veh) 1.2 15.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      | S 2.2   |        | U       | Þ       |         |         |                      |                                |
| Capacity (veh/h) 510 75 HCM Lane V/C Ratio 0.298 2.227 HCM Control Delay (s) 15 \$681.6 HCM Lane LOS C F HCM 95th %tile Q(veh) 1.2 15.5  Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HOM FO2              |         |        |         |         | F       |         |                      |                                |
| Capacity (veh/h) 510 75 HCM Lane V/C Ratio 0.298 2.227 HCM Control Delay (s) 15 \$681.6 HCM Lane LOS C F HCM 95th %tile Q(veh) 1.2 15.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |         |        |         |         |         |         |                      |                                |
| Capacity (veh/h) 510 75 HCM Lane V/C Ratio 0.298 2.227 HCM Control Delay (s) 15 \$681.6 HCM Lane LOS C F HCM 95th %tile Q(veh) 1.2 15.5  Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Minor Lane/Major Mv  | mt      | EBL    | EBT     | WBT     | WBR     | SBLn1   |                      |                                |
| HCM Lane V/C Ratio 0.298 2.227 HCM Control Delay (s) 15 \$681.6 HCM Lane LOS C F HCM 95th %tile Q(veh) 1.2 15.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |         |        | _       | _       |         |         |                      |                                |
| HCM Control Delay (s) 15\$ 681.6<br>HCM Lane LOS C F<br>HCM 95th %tile Q(veh) 1.2 15.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |         |        | _       | _       |         |         |                      |                                |
| ICM Lane LOS C F ICM 95th %tile Q(veh) 1.2 15.5  Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |         |        |         |         |         |         |                      |                                |
| ICM 95th %tile Q(veh) 1.2 15.5  Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |         |        |         |         | -       |         |                      |                                |
| lotes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | h)      |        |         |         | _       |         |                      |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,                    | )       | 1.4    |         |         |         | 10.0    |                      |                                |
| : Volume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Notes                |         |        |         |         |         |         |                      |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ~: Volume exceeds c  | apacity | \$: De | lay exc | eeds 30 | )0s     | +: Comp | outation Not Defined | *: All major volume in platoon |

| Intersection           |         |         |         |        |       |       |                                |        |          |          |       |          |         |
|------------------------|---------|---------|---------|--------|-------|-------|--------------------------------|--------|----------|----------|-------|----------|---------|
| Int Delay, s/veh       | 51.7    |         |         |        |       |       |                                |        |          |          |       |          |         |
| Movement               | EBL     | EBT     | EBR     | WBL    | WBT   | WBR   | NBL                            | NBT    | NBR      | SBL      | SBT   | SBR      |         |
| Lane Configurations    |         | ħβ      |         | ሻ      | ħβ    |       |                                | 4      |          |          | 4     | 7        |         |
| Traffic Vol, veh/h     | 17      | 675     | 123     | 95     | 968   | 10    | 59                             | 6      | 126      | 10       | 4     | 77       |         |
| uture Vol, veh/h       | 17      | 675     | 123     | 95     | 968   | 10    | 59                             | 6      | 126      | 10       | 4     | 77       |         |
| Conflicting Peds, #/hr | 4       | 0       | 14      | 14     | 0     | 4     | 22                             | 0      | 0        | 0        | 0     | 22       |         |
| Sign Control           | Free    | Free    | Free    | Free   | Free  | Free  | Stop                           | Stop   | Stop     | Stop     | Stop  | Stop     |         |
| RT Channelized         | -       | -       | None    | -      | -     | None  | -                              | -      | None     | -        | -     | None     |         |
| Storage Length         | 90      | _       | -       | 185    | _     | -     | _                              | _      | -        | _        | _     | 55       |         |
| /eh in Median Storage, |         | 0       | _       | -      | 0     | _     | -                              | 0      | _        | _        | 0     | -        |         |
| Grade, %               | π -     | 0       | _       | _      | 0     | _     | _                              | 0      | _        | _        | 0     | _        |         |
| Peak Hour Factor       | 91      | 91      | 91      | 91     | 91    | 91    | 91                             | 91     | 91       | 91       | 91    | 91       |         |
| leavy Vehicles, %      | 9       | 23      | 16      | 9      | 23    | 38    | 0                              | 0      | 10       | 9        | 25    | 7        |         |
|                        | 19      | 742     | 135     | 104    |       | 11    | 65                             | 7      |          | 11       | 4     | 85       |         |
| Nvmt Flow              | 19      | 742     | 133     | 104    | 1064  | 11    | 00                             | 1      | 138      | 11       | 4     | 00       |         |
| ajor/Minor N           | /lajor1 |         | N       | Major2 |       | ı     | Minor1                         |        |          | Minor2   |       |          |         |
| Conflicting Flow All   | 1079    | 0       | 0       | 891    | 0     | 0     | 1626                           | 2149   | 452      | 1694     | 2210  | 563      |         |
| <u> </u>               |         |         |         |        |       |       | 861                            | 861    |          | 1000     | 1282  |          |         |
| Stage 1                | -       | -       | -       | -      | -     | -     |                                |        | -        |          |       | -        |         |
| Stage 2                | 4.00    | -       | -       | 4.00   | -     | -     | 765                            | 1288   | -<br>7 4 | 412      | 928   | 7.04     |         |
| ritical Hdwy           | 4.28    | -       | -       | 4.28   | -     | -     | 7.5                            | 6.5    | 7.1      | 7.68     | 7     | 7.04     |         |
| ritical Hdwy Stg 1     | -       | -       | -       | -      | -     | -     | 6.5                            | 5.5    | -        | 6.68     | 6     | -        |         |
| Critical Hdwy Stg 2    | -       | -       | -       | -      | -     | -     | 6.5                            | 5.5    | -        | 6.68     | 6     | -        |         |
| ollow-up Hdwy          | 2.29    | -       | -       | 2.29   | -     | -     | 3.5                            | 4      | 3.4      | 3.59     | 4.25  | 3.37     |         |
| ot Cap-1 Maneuver      | 602     | -       | -       | 714    | -     | -     | 69                             | 49     | 533      | 56       | 32    | 457      |         |
| Stage 1                | -       | -       | -       | -      | -     | -     | 321                            | 375    | -        | 165      | 194   | -        |         |
| Stage 2                | -       | -       | -       | -      | -     | -     | 366                            | 237    | -        | 569      | 297   | -        |         |
| Platoon blocked, %     |         | -       | -       |        | -     | -     |                                |        |          |          |       |          |         |
| Nov Cap-1 Maneuver     | 589     | -       | -       | 714    | -     | -     | ~ 41                           | 40     | 526      | 31       | 26    | 446      |         |
| Nov Cap-2 Maneuver     | -       | -       | -       | -      | -     | -     | ~ 41                           | 40     | -        | 31       | 26    | -        |         |
| Stage 1                | -       | -       | -       | -      | -     | -     | 307                            | 358    | -        | 159      | 165   | -        |         |
| Stage 2                | -       | -       | -       | -      | -     | -     | 241                            | 202    | -        | 398      | 284   | -        |         |
|                        |         |         |         |        |       |       |                                |        |          |          |       |          |         |
| pproach                | EB      |         |         | WB     |       |       | NB                             |        |          | SB       |       |          |         |
| HCM Control Delay, s   | 0.2     |         |         | 1      |       | \$    | 558.4                          |        |          | 47.4     |       |          |         |
| HCM LOS                |         |         |         |        |       |       | F                              |        |          | Е        |       |          |         |
|                        |         |         |         |        |       |       |                                |        |          |          |       |          |         |
| /linor Lane/Major Mvmt |         | NBLn1   | EBL     | EBT    | EBR   | WBL   | WBT                            | WBR :  | SBLn1    | SBLn2    |       |          |         |
| Capacity (veh/h)       |         | 104     | 589     | -      | _     | 714   | -                              | _      | 29       | 446      |       |          |         |
| ICM Lane V/C Ratio     |         |         | 0.032   | _      | -     | 0.146 | -                              | -      | 0.531    | 0.19     |       |          |         |
| ICM Control Delay (s)  | \$      | 558.4   | 11.3    | _      | _     | 10.9  | -                              |        | 225.5    | 15       |       |          |         |
| CM Lane LOS            |         | F       | В       | -      | _     | В     | _                              | _      | F        | С        |       |          |         |
| ICM 95th %tile Q(veh)  |         | 17.7    | 0.1     | -      | -     | 0.5   | -                              | -      | 1.7      | 0.7      |       |          |         |
| lotes                  |         |         |         |        |       |       |                                |        |          |          |       |          |         |
|                        |         |         |         |        |       | Came  | utotio-                        | Not Da | fined    | *. AII . | maior | olumo ir | nlotoon |
| . volume exceeds cap   | 105     | +: Comp | วนเสแบท | NOL DE | HIHEU | . All | *: All major volume in platoon |        |          |          |       |          |         |

|                                   | ۶        | <b>→</b> | •      | •     | -          | •          | 1       | <b>†</b> | <i>&gt;</i> | <b>/</b> | <b>↓</b>   | -√   |
|-----------------------------------|----------|----------|--------|-------|------------|------------|---------|----------|-------------|----------|------------|------|
| Movement                          | EBL      | EBT      | EBR    | WBL   | WBT        | WBR        | NBL     | NBT      | NBR         | SBL      | SBT        | SBR  |
| Lane Configurations               | 7        | <b>†</b> | 7      | Ţ     | î»         |            | ሻሻ      | <b>^</b> | 7           | 7        | <b>∱</b> ∱ |      |
| Traffic Volume (vph)              | 156      | 403      | 261    | 329   | 294        | 92         | 247     | 494      | 156         | 234      | 966        | 117  |
| Future Volume (vph)               | 156      | 403      | 261    | 329   | 294        | 92         | 247     | 494      | 156         | 234      | 966        | 117  |
| Ideal Flow (vphpl)                | 1750     | 1750     | 1750   | 1750  | 1750       | 1750       | 1750    | 1750     | 1750        | 1750     | 1750       | 1750 |
| Total Lost time (s)               | 4.5      | 5.5      | 5.5    | 4.5   | 5.5        |            | 4.5     | 5.5      | 5.5         | 4.5      | 5.5        |      |
| Lane Util. Factor                 | 1.00     | 1.00     | 1.00   | 1.00  | 1.00       |            | 0.97    | 0.95     | 1.00        | 1.00     | 0.95       |      |
| Frpb, ped/bikes                   | 1.00     | 1.00     | 0.98   | 1.00  | 1.00       |            | 1.00    | 1.00     | 0.98        | 1.00     | 1.00       |      |
| Flpb, ped/bikes                   | 1.00     | 1.00     | 1.00   | 1.00  | 1.00       |            | 1.00    | 1.00     | 1.00        | 1.00     | 1.00       |      |
| Frt                               | 1.00     | 1.00     | 0.85   | 1.00  | 0.96       |            | 1.00    | 1.00     | 0.85        | 1.00     | 0.98       |      |
| Flt Protected                     | 0.95     | 1.00     | 1.00   | 0.95  | 1.00       |            | 0.95    | 1.00     | 1.00        | 0.95     | 1.00       |      |
| Satd. Flow (prot)                 | 1421     | 1483     | 1218   | 1341  | 1312       |            | 2906    | 2639     | 1054        | 1374     | 2948       |      |
| FIt Permitted                     | 0.95     | 1.00     | 1.00   | 0.95  | 1.00       |            | 0.95    | 1.00     | 1.00        | 0.95     | 1.00       |      |
| Satd. Flow (perm)                 | 1421     | 1483     | 1218   | 1341  | 1312       |            | 2906    | 2639     | 1054        | 1374     | 2948       |      |
| Peak-hour factor, PHF             | 0.96     | 0.96     | 0.96   | 0.96  | 0.96       | 0.96       | 0.96    | 0.96     | 0.96        | 0.96     | 0.96       | 0.96 |
| Adj. Flow (vph)                   | 162      | 420      | 272    | 343   | 306        | 96         | 257     | 515      | 162         | 244      | 1006       | 122  |
| RTOR Reduction (vph)              | 0        | 0        | 197    | 0     | 8          | 0          | 0       | 0        | 114         | 0        | 7          | 0    |
| Lane Group Flow (vph)             | 163      | 420      | 75     | 343   | 394        | 0          | 257     | 515      | 49          | 244      | 1121       | 0    |
| Confl. Peds. (#/hr)               |          |          | 5      | 5     |            |            |         |          | 1           | 1        |            |      |
| Heavy Vehicles (%)                | 17%      | 18%      | 20%    | 24%   | 25%        | 40%        | 11%     | 26%      | 38%         | 21%      | 10%        | 19%  |
| Turn Type                         | Prot     | NA       | Perm   | Prot  | NA         |            | Prot    | NA       | custom      | Prot     | NA         |      |
| Protected Phases                  | 3        | 8        |        | 7     | 4          |            | 1       | 6        |             | 5        | 2          |      |
| Permitted Phases                  |          |          | 8      |       |            |            |         |          | 2           |          |            |      |
| Actuated Green, G (s)             | 25.5     | 30.5     | 30.5   | 25.5  | 30.5       |            | 14.7    | 38.5     | 39.3        | 15.5     | 39.3       |      |
| Effective Green, g (s)            | 25.5     | 30.5     | 30.5   | 25.5  | 30.5       |            | 14.7    | 38.5     | 39.3        | 15.5     | 39.3       |      |
| Actuated g/C Ratio                | 0.20     | 0.23     | 0.23   | 0.20  | 0.23       |            | 0.11    | 0.30     | 0.30        | 0.12     | 0.30       |      |
| Clearance Time (s)                | 4.5      | 5.5      | 5.5    | 4.5   | 5.5        |            | 4.5     | 5.5      | 5.5         | 4.5      | 5.5        |      |
| Vehicle Extension (s)             | 3.0      | 3.2      | 3.2    | 3.0   | 3.5        |            | 3.0     | 5.2      | 5.2         | 3.0      | 5.2        |      |
| Lane Grp Cap (vph)                | 278      | 347      | 285    | 263   | 307        |            | 328     | 781      | 318         | 163      | 891        |      |
| v/s Ratio Prot                    | 0.11     | 0.28     |        | c0.26 | c0.30      |            | c0.09   | 0.20     |             | c0.18    | c0.38      |      |
| v/s Ratio Perm                    |          |          | 0.06   |       |            |            |         |          | 0.05        |          |            |      |
| v/c Ratio                         | 0.59     | 1.21     | 0.26   | 1.30  | 1.28       |            | 0.78    | 0.66     | 0.15        | 1.50     | 1.26       |      |
| Uniform Delay, d1                 | 47.5     | 49.8     | 40.6   | 52.2  | 49.8       |            | 56.1    | 40.0     | 33.2        | 57.2     | 45.4       |      |
| Progression Factor                | 1.00     | 1.00     | 1.00   | 1.00  | 1.00       |            | 1.27    | 0.93     | 0.60        | 1.00     | 1.00       |      |
| Incremental Delay, d2             | 3.1      | 118.5    | 0.5    | 161.7 | 149.5      |            | 7.7     | 2.8      | 0.7         | 253.0    | 125.3      |      |
| Delay (s)                         | 50.6     | 168.3    | 41.1   | 214.0 | 199.3      |            | 78.9    | 40.0     | 20.7        | 310.3    | 170.7      |      |
| Level of Service                  | D        | F        | D      | F     | F          |            | Е       | D        | С           | F        | F          |      |
| Approach Delay (s)                |          | 105.4    |        |       | 206.0      |            |         | 47.3     |             |          | 195.5      |      |
| Approach LOS                      |          | F        |        |       | F          |            |         | D        |             |          | F          |      |
| Intersection Summary              |          |          |        |       |            |            |         |          |             |          |            |      |
| HCM 2000 Control Delay            |          |          | 142.3  | Н     | CM 2000    | Level of S | Service |          | F           |          |            |      |
| HCM 2000 Volume to Capaci         | ty ratio |          | 1.23   |       |            |            |         |          |             |          |            |      |
| Actuated Cycle Length (s)         |          |          | 130.0  | S     | um of lost | time (s)   |         |          | 20.0        |          |            |      |
| Intersection Capacity Utilization | on       |          | 101.4% |       | CU Level o |            |         |          | G           |          |            |      |
| Analysis Period (min)             |          |          | 15     |       |            |            |         |          |             |          |            |      |
| c Critical Lane Group             |          |          |        |       |            |            |         |          |             |          |            |      |

| Intersection                                             |
|----------------------------------------------------------|
| Intersection Delay, s/veh12.2                            |
| Intersection LOS B                                       |
|                                                          |
| Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR |
| Lane Configurations 💠 💠                                  |
| Traffic Vol, veh/h 26 48 44 34 46 32 9 128 12 47 242 27  |
| Future Vol, veh/h 26 48 44 34 46 32 9 128 12 47 242 27   |
| Peak Hour Factor 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 |
| Heavy Vehicles, % 39 23 6 31 20 86 22 13 27 36 13 16     |
| Mvmt Flow 28 51 47 36 49 34 10 136 13 50 257 29          |
| Number of Lanes 0 1 0 0 1 0 0 1 0 0 1 0                  |
| Approach EB WB NB SB                                     |
| Opposing Approach WB EB SB NB                            |
| Opposing Lanes 1 1 1 1                                   |
| Conflicting Approach Left SB NB EB WB                    |
| Conflicting Lanes Left 1 1 1 1                           |
| Conflicting Approach RighNB SB WB EB                     |
| Conflicting Lanes Right 1 1 1 1                          |
| HCM Control Delay 10.6 10.5 10.3 14.2                    |
| HCM LOS B B B                                            |
|                                                          |
| Lane NBLn1 EBLn1WBLn1 SBLn1                              |
| Vol Left, % 6% 22% 30% 15%                               |
| Vol Thru, % 86% 41% 41% 77%                              |
| Vol Right, % 8% 37% 29% 9%                               |
| Sign Control Stop Stop Stop                              |
| Traffic Vol by Lane 149 118 112 316                      |
| LT Vol 9 26 34 47                                        |
| Through Vol 128 48 46 242                                |
| RT Vol 12 44 32 27                                       |
| Lane Flow Rate 159 126 119 336                           |
| Geometry Grp 1 1 1 1                                     |
| Degree of Util (X) 0.243 0.21 0.197 0.515                |
| Departure Headway (Hd) 5.522 6.009 5.957 5.52            |
| Convergence, Y/N Yes Yes Yes Yes                         |
| Cap 651 598 603 659                                      |
| Service Time 3.552 4.043 3.992 3.52                      |
| HCM Lane V/C Ratio 0.244 0.211 0.197 0.51                |
| HCM Control Delay 10.3 10.6 10.5 14.2                    |
| HCM Lane LOS B B B B                                     |

0.7

3

0.9

| Intersection             |        |           |           |           |      |      |
|--------------------------|--------|-----------|-----------|-----------|------|------|
| Intersection Delay, s/ve | h 12 4 |           |           |           |      |      |
| Intersection LOS         | B      |           |           |           |      |      |
| intoroccion Eco          |        |           |           |           |      |      |
|                          |        |           |           |           |      |      |
| Movement                 | WBL    | WBR       | NBT       | NBR       | SBL  | SBT  |
| Lane Configurations      | ¥      |           | ĵ.        |           |      | सी   |
| Traffic Vol, veh/h       | 143    | 62        | 131       | 147       | 102  | 141  |
| Future Vol, veh/h        | 143    | 62        | 131       | 147       | 102  | 141  |
| Peak Hour Factor         | 0.85   | 0.85      | 0.85      | 0.85      | 0.85 | 0.85 |
| Heavy Vehicles, %        | 12     | 28        | 15        | 19        | 22   | 24   |
| Mvmt Flow                | 168    | 73        | 154       | 173       | 120  | 166  |
| Number of Lanes          | 1      | 0         | 1         | 0         | 0    | 1    |
| A norsa sah              | WB     |           | ND        |           | CD   |      |
| Approach                 | VVD    |           | NB        |           | SB   |      |
| Opposing Approach        |        |           | SB        |           | NB   |      |
| Opposing Lanes           | 0      |           | 1         |           | 1    |      |
| Conflicting Approach Le  |        |           | _         |           | WB   |      |
| Conflicting Lanes Left   | 1      |           | 0         |           | 1    |      |
| Conflicting Approach R   |        |           | WB        |           |      |      |
| Conflicting Lanes Right  |        |           | 1         |           | 0    |      |
| HCM Control Delay        | 12.1   |           | 12.2      |           | 12.9 |      |
| HCM LOS                  | В      |           | В         |           | В    |      |
|                          |        |           |           |           |      |      |
| Lane                     | 1      | NBLn1V    | VBLn1     | SBLn1     |      |      |
| Vol Left, %              |        | 0%        | 70%       | 42%       |      |      |
| Vol Thru, %              |        | 47%       | 0%        | 58%       |      |      |
| Vol Right, %             |        | 53%       | 30%       | 0%        |      |      |
| Sign Control             |        | Stop      | Stop      | Stop      |      |      |
| Traffic Vol by Lane      |        | 278       | 205       | 243       |      |      |
| LT Vol                   |        | 0         | 143       | 102       |      |      |
| Through Vol              |        | 131       | 0         | 141       |      |      |
| RT Vol                   |        | 147       | 62        | 0         |      |      |
| Lane Flow Rate           |        | 327       | 241       | 286       |      |      |
| Geometry Grp             |        | 1         | 1         | 1         |      |      |
| Degree of Util (X)       |        | 0.456     |           | 0.44      |      |      |
| Departure Headway (He    | ۹)     |           | 5.644     |           |      |      |
| Convergence, Y/N         | u)     | Yes       | Yes       | Yes       |      |      |
| Cap                      |        | 723       | 637       | 652       |      |      |
| Service Time             |        |           | 3.677     |           |      |      |
| HCM Lane V/C Ratio       |        |           | 0.378     |           |      |      |
| HCM Control Delay        |        | 12.2      | 12.1      | 12.9      |      |      |
| HCM Lane LOS             |        | 12.2<br>B | 12.1<br>B | 12.9<br>B |      |      |
| HOW LAME LOS             |        | В         | В         | В         |      |      |

2.2

2.4

**HCM Control Delay** 

HCM Lane LOS

HCM 95th-tile Q

| Intersection              |                |         |        |       |       |      |      |      |      |      |      |      |  |
|---------------------------|----------------|---------|--------|-------|-------|------|------|------|------|------|------|------|--|
| Intersection Delay, s/vel | h36 5          |         |        |       |       |      |      |      |      |      |      |      |  |
| Intersection LOS          | E              |         |        |       |       |      |      |      |      |      |      |      |  |
| intoroccion 200           | _              |         |        |       |       |      |      |      |      |      |      |      |  |
|                           |                |         |        |       |       |      |      |      |      |      |      |      |  |
| Movement                  | EBL            | EBT     | EBR    | WBL   | WBT   | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
| Lane Configurations       |                | 4       |        |       | 4     |      |      | 4    |      |      | 4    |      |  |
| Traffic Vol, veh/h        | 20             | 155     | 127    | 68    | 155   | 19   | 57   | 225  | 50   | 6    | 206  | 22   |  |
| Future Vol, veh/h         | 20             | 155     | 127    | 68    | 155   | 19   | 57   | 225  | 50   | 6    | 206  | 22   |  |
| Peak Hour Factor          | 0.85           | 0.85    | 0.85   | 0.85  | 0.85  | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 |  |
| Heavy Vehicles, %         | 25             | 25      | 31     | 16    | 25    | 18   | 30   | 13   | 28   | 54   | 20   | 9    |  |
| Mvmt Flow                 | 24             | 182     | 149    | 80    | 182   | 22   | 67   | 265  | 59   | 7    | 242  | 26   |  |
| Number of Lanes           | 0              | 1       | 0      | 0     | 1     | 0    | 0    | 1    | 0    | 0    | 1    | 0    |  |
| Approach                  | EB             |         |        | WB    |       |      | NB   |      |      | SB   |      |      |  |
| Opposing Approach         | WB             |         |        | EB    |       |      | SB   |      |      | NB   |      |      |  |
| Opposing Lanes            | 1              |         |        | 1     |       |      | 1    |      |      | 1    |      |      |  |
| Conflicting Approach Le   | eft SB         |         |        | NB    |       |      | EB   |      |      | WB   |      |      |  |
| Conflicting Lanes Left    | 1              |         |        | 1     |       |      | 1    |      |      | 1    |      |      |  |
| Conflicting Approach Ri   | gh <b>t</b> NB |         |        | SB    |       |      | WB   |      |      | EB   |      |      |  |
| Conflicting Lanes Right   | 1              |         |        | 1     |       |      | 1    |      |      | 1    |      |      |  |
| HCM Control Delay         | 36.4           |         |        | 27.1  |       |      | 48.4 |      |      | 29.7 |      |      |  |
| HCM LOS                   | Ε              |         |        | D     |       |      | Ε    |      |      | D    |      |      |  |
|                           |                |         |        |       |       |      |      |      |      |      |      |      |  |
| Lane                      | N              | NBLn1 I | EBLn1V | VBLn1 | SBLn1 |      |      |      |      |      |      |      |  |
| Vol Left, %               |                | 17%     | 7%     | 28%   | 3%    |      |      |      |      |      |      |      |  |
| Vol Thru, %               |                | 68%     | 51%    | 64%   | 88%   |      |      |      |      |      |      |      |  |
| Vol Right, %              |                | 15%     | 42%    | 8%    | 9%    |      |      |      |      |      |      |      |  |
| Sign Control              |                | Stop    | Stop   | Stop  | Stop  |      |      |      |      |      |      |      |  |
| Traffic Vol by Lane       |                | 332     | 302    | 242   | 234   |      |      |      |      |      |      |      |  |
| LT Vol                    |                | 57      | 20     | 68    | 6     |      |      |      |      |      |      |      |  |
| Through Vol               |                | 225     | 155    | 155   | 206   |      |      |      |      |      |      |      |  |
| RT Vol                    |                | 50      | 127    | 19    | 22    |      |      |      |      |      |      |      |  |
| Lane Flow Rate            |                | 391     | 355    | 285   | 275   |      |      |      |      |      |      |      |  |
| Geometry Grp              |                | 1       | 1      | 1     | 1     |      |      |      |      |      |      |      |  |
| Degree of Util (X)        |                | 0.886   | 0.798  | 0.668 | 0.686 |      |      |      |      |      |      |      |  |
| Departure Headway (Ho     | d)             | 8.162   | 8.081  | 8.445 | 8.974 |      |      |      |      |      |      |      |  |
| Convergence, Y/N          |                | Yes     | Yes    | Yes   | Yes   |      |      |      |      |      |      |      |  |
| Сар                       |                | 441     | 448    | 427   | 402   |      |      |      |      |      |      |      |  |
| Service Time              |                |         |        |       | 7.061 |      |      |      |      |      |      |      |  |
| HCM Lane V/C Ratio        |                | 0.887   | 0.792  | 0.667 | 0.684 |      |      |      |      |      |      |      |  |

48.4 36.4

Ε

7.2

Ε

9.3

27.1 29.7

D

5

D

4.7

| Intersection              |                |         |        |       |       |      |      |      |      |      |      |      |  |
|---------------------------|----------------|---------|--------|-------|-------|------|------|------|------|------|------|------|--|
| Intersection Delay, s/veh | 133.2          |         |        |       |       |      |      |      |      |      |      |      |  |
| Intersection LOS          | D              |         |        |       |       |      |      |      |      |      |      |      |  |
| moroodion 200             |                |         |        |       |       |      |      |      |      |      |      |      |  |
|                           |                |         |        |       |       |      |      |      |      |      |      |      |  |
| Movement                  | EBL            | EBT     | EBR    | WBL   | WBT   | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
| Lane Configurations       |                | 4       |        |       | 4     |      |      | 4    |      |      | 4    |      |  |
| Traffic Vol, veh/h        | 7              | 118     | 1      | 76    | 141   | 148  | 6    | 191  | 88   | 168  | 208  | 17   |  |
| Future Vol, veh/h         | 7              | 118     | 1      | 76    | 141   | 148  | 6    | 191  | 88   | 168  | 208  | 17   |  |
| Peak Hour Factor          | 0.92           | 0.92    | 0.92   | 0.92  | 0.92  | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |  |
| Heavy Vehicles, %         | 10             | 20      | 40     | 38    | 23    | 14   | 25   | 15   | 22   | 19   | 18   | 24   |  |
| Mvmt Flow                 | 8              | 128     | 1      | 83    | 153   | 161  | 7    | 208  | 96   | 183  | 226  | 18   |  |
| Number of Lanes           | 0              | 1       | 0      | 0     | 1     | 0    | 0    | 1    | 0    | 0    | 1    | 0    |  |
| Approach                  | EB             |         |        | WB    |       |      | NB   |      |      | SB   |      |      |  |
| Opposing Approach         | WB             |         |        | EB    |       |      | SB   |      |      | NB   |      |      |  |
| Opposing Lanes            | 1              |         |        | 1     |       |      | 1    |      |      | 1    |      |      |  |
| Conflicting Approach Let  | ft SB          |         |        | NB    |       |      | EB   |      |      | WB   |      |      |  |
| Conflicting Lanes Left    | 1              |         |        | 1     |       |      | 1    |      |      | 1    |      |      |  |
| Conflicting Approach Rig  | gh <b>t</b> NB |         |        | SB    |       |      | WB   |      |      | EB   |      |      |  |
| Conflicting Lanes Right   | 1              |         |        | 1     |       |      | 1    |      |      | 1    |      |      |  |
| HCM Control Delay         | 15.1           |         |        | 37.7  |       |      | 23.4 |      |      | 42   |      |      |  |
| HCM LOS                   | С              |         |        | Е     |       |      | С    |      |      | Е    |      |      |  |
|                           |                |         |        |       |       |      |      |      |      |      |      |      |  |
| Lane                      | ١              | NBLn1 I | EBLn1V | VBLn1 | SBLn1 |      |      |      |      |      |      |      |  |
| Vol Left, %               |                | 2%      | 6%     | 21%   | 43%   |      |      |      |      |      |      |      |  |
| Vol Thru, %               |                | 67%     | 94%    | 39%   | 53%   |      |      |      |      |      |      |      |  |
| Vol Right, %              |                | 31%     | 1%     | 41%   | 4%    |      |      |      |      |      |      |      |  |
| Sign Control              |                | Stop    | Stop   | Stop  | Stop  |      |      |      |      |      |      |      |  |
| Traffic Vol by Lane       |                | 285     | 126    | 365   | 393   |      |      |      |      |      |      |      |  |
| LT Vol                    |                | 6       | 7      | 76    | 168   |      |      |      |      |      |      |      |  |
| Through Vol               |                | 191     | 118    | 141   | 208   |      |      |      |      |      |      |      |  |
| RT Vol                    |                | 88      | 1      | 148   | 17    |      |      |      |      |      |      |      |  |
| Lane Flow Rate            |                | 310     | 137    | 397   | 427   |      |      |      |      |      |      |      |  |
| Geometry Grp              |                | 1       | 1      | 1     | 1     |      |      |      |      |      |      |      |  |
| Degree of Util (X)        |                | 0.647   | 0.314  | 0.829 | 0.868 |      |      |      |      |      |      |      |  |
| Departure Headway (Hd     | )              | 7.515   | 8.258  | 7.518 | 7.314 |      |      |      |      |      |      |      |  |
| Convergence, Y/N          |                | Yes     | Yes    | Yes   | Yes   |      |      |      |      |      |      |      |  |
| Сар                       |                | 480     | 433    | 480   | 496   |      |      |      |      |      |      |      |  |
| Service Time              |                | 5.585   | 6.349  | 5.577 | 5.377 |      |      |      |      |      |      |      |  |
| HCM Lane V/C Ratio        |                | 0.646   | 0.316  | 0.827 | 0.861 |      |      |      |      |      |      |      |  |
| HCM Control Delay         |                | 23.4    | 15.1   | 37.7  | 42    |      |      |      |      |      |      |      |  |
| HCM Lane LOS              |                | С       | С      | Е     | Е     |      |      |      |      |      |      |      |  |

8.1

9.2

4.5

| Intersection                   |        |          |          |           |           |           |      | ļ    |   |      |      |     |
|--------------------------------|--------|----------|----------|-----------|-----------|-----------|------|------|---|------|------|-----|
| Intersection Delay, s/ve       | h 18 7 |          |          |           |           |           |      |      |   |      |      |     |
| Intersection LOS               | C C    |          |          |           |           |           |      |      |   |      |      |     |
| IIIGISGUIUII LUS               | U      |          |          |           |           |           |      |      |   |      |      |     |
|                                |        |          |          |           |           |           |      |      |   |      |      |     |
| Movement                       | EBL E  | BT       | EBR      | WBL       | WBT       | WBR       | NBL  | NBT  |   | NBR  |      |     |
| Lane Configurations            |        | 4        |          |           | 4         |           |      | 4    |   | 7    |      |     |
| Traffic Vol, veh/h             |        | 148      | 29       | 81        | 88        | 52        | 15   | 196  |   | 33   |      |     |
| Future Vol, veh/h              |        | 148      | 29       | 81        | 88        | 52        | 15   | 196  |   | 33   |      |     |
| Peak Hour Factor               |        | .85      | 0.85     | 0.85      | 0.85      | 0.85      | 0.85 | 0.85 |   | 0.85 |      |     |
| Heavy Vehicles, %              | 14     | 23       | 13       | 11        | 28        | 14        | 43   | 18   |   | 50   |      |     |
| Mvmt Flow                      | 21     | 174      | 34       | 95        | 104       | 61        | 18   | 231  |   | 39   |      |     |
| Number of Lanes                | 0      | 1        | 0        | 0         | 1         | 0         | 0    | 1    | 1 | ı    | 1 0  | 0 1 |
| Approach                       | EB     |          |          | WB        |           |           | NB   |      |   |      | SB   | SB  |
| Opposing Approach              | WB     |          |          | EB        |           |           | SB   |      |   |      | NB   |     |
| Opposing Lanes                 | 1      |          |          | 1         |           |           | 1    |      |   |      | 2    |     |
| Conflicting Approach Le        | eft SB |          |          | NB        |           |           | EB   |      |   |      | WB   |     |
| Conflicting Lanes Left         | 1      |          |          | 2         |           |           | 1    |      |   |      | 1    |     |
| Conflicting Approach Ri        | •      |          |          | SB        |           |           | WB   |      |   |      | EB   |     |
| Conflicting Lanes Right        |        |          |          | 1         |           |           | 1    |      |   |      | 1    |     |
| HCM Control Delay              | 15.7   |          |          | 16.7      |           |           | 18   |      |   |      | 22.4 |     |
| HCM LOS                        | C      |          |          | С         |           |           | C    |      |   |      | C    |     |
|                                |        |          |          |           |           |           |      |      |   |      | -    | -   |
| Lane                           | NR     | n1       | NRI n2   | EBLn1V    | WRI n1    | SRI n1    |      |      |   |      |      |     |
| Vol Left, %                    | IND    | 7%       | 0%       | 9%        | 37%       | 22%       |      |      |   |      |      |     |
|                                | c      | 3%       | 0%       | 76%       | 40%       | 70%       |      |      |   |      |      |     |
| Vol Pight %                    | 5      |          | 100%     | 15%       |           | 8%        |      |      |   |      |      |     |
| Vol Right, %                   | c      |          |          |           | 24%       |           |      |      |   |      |      |     |
| Sign Control                   |        | top      | Stop     | Stop      | Stop      | Stop      |      |      |   |      |      |     |
| Traffic Vol by Lane            |        | 211      | 33       | 195       | 221       | 311       |      |      |   |      |      |     |
| LT Vol                         |        | 15       | 0        | 18        | 81        | 68        |      |      |   |      |      |     |
| Through Vol                    |        | 196      | 0        | 148       | 88        | 217       |      |      |   |      |      |     |
| RT Vol                         |        | 0        | 33       | 29        | 52        | 26        |      |      |   |      |      |     |
| Lane Flow Rate                 |        | 248      | 39       | 229       | 260       | 366       |      |      |   |      |      |     |
| Geometry Grp                   | ^      | 7        | 7        | 2         | 2         | 5         |      |      |   |      |      |     |
| Degree of Util (X)             |        |          | 0.071    |           | 0.498     |           |      |      |   |      |      |     |
| Departure Headway (He          | ,      | 776      |          | 7.026     |           |           |      |      |   |      |      |     |
| Convergence, Y/N               |        | Yes      | Yes      | Yes       | Yes       | Yes       |      |      |   |      |      |     |
| Cap                            |        | 462      | 541      | 509       | 520       | 542       |      |      |   |      |      |     |
| Service Time                   |        |          |          | 5.104     |           |           |      |      |   |      |      |     |
| HCM Lane V/C Ratio             |        |          | 0.072    | 0.45      |           | 0.675     |      |      |   |      |      |     |
|                                |        |          |          |           |           |           |      |      |   |      |      |     |
| HCM Control Delay HCM Lane LOS | 1      | 9.3<br>C | 9.9<br>A | 15.7<br>C | 16.7<br>C | 22.4<br>C |      |      |   |      |      |     |

2.3

2.7

5

3.1

| Intersection              |               |      |       |       |        |        |        |        |       |      |      |      |  |
|---------------------------|---------------|------|-------|-------|--------|--------|--------|--------|-------|------|------|------|--|
| Intersection Delay, s/veh | 64.3          |      |       |       |        |        |        |        |       |      |      |      |  |
| Intersection LOS          | F             |      |       |       |        |        |        |        |       |      |      |      |  |
|                           |               |      |       |       |        |        |        |        |       |      |      |      |  |
| Movement                  | EBL I         | EBT  | EBR   | WBL   | WBT    | WBR    | NBL    | NBT    | NBR   | SBL  | SBT  | SBR  |  |
| Lane Configurations       | ř             | ĥ    |       | 7     | f)     |        |        | र्स    | 7     |      | ની   | 7    |  |
| Traffic Vol, veh/h        | 193           | 231  | 123   | 110   | 237    | 22     | 112    | 185    | 60    | 10   | 231  | 264  |  |
| Future Vol, veh/h         | 193           | 231  | 123   | 110   | 237    | 22     | 112    | 185    | 60    | 10   | 231  | 264  |  |
| Peak Hour Factor          | 0.85          | 0.85 | 0.85  | 0.85  | 0.85   | 0.85   | 0.85   | 0.85   | 0.85  | 0.85 | 0.85 | 0.85 |  |
| Heavy Vehicles, %         | 49            | 27   | 21    | 25    | 37     | 12     | 14     | 9      | 21    | 0    | 21   | 28   |  |
| Mvmt Flow                 | 227           | 272  | 145   | 129   | 279    | 26     | 132    | 218    | 71    | 12   | 272  | 311  |  |
| Number of Lanes           | 1             | 1    | 0     | 1     | 1      | 0      | 0      | 1      | 1     | 0    | 1    | 1    |  |
| Approach                  | EB            |      |       | WB    |        |        | NB     |        |       | SB   |      |      |  |
| Opposing Approach         | WB            |      |       | EB    |        |        | SB     |        |       | NB   |      |      |  |
| Opposing Lanes            | 2             |      |       | 2     |        |        | 2      |        |       | 2    |      |      |  |
| Conflicting Approach Left | SB            |      |       | NB    |        |        | EB     |        |       | WB   |      |      |  |
| Conflicting Lanes Left    | 2             |      |       | 2     |        |        | 2      |        |       | 2    |      |      |  |
| Conflicting Approach Rigi | h <b>t</b> NB |      |       | SB    |        |        | WB     |        |       | EB   |      |      |  |
| Conflicting Lanes Right   | 2             |      |       | 2     |        |        | 2      |        |       | 2    |      |      |  |
|                           | 95.3          |      |       | 46.2  |        |        | 69.7   |        |       | 40.2 |      |      |  |
| HCM LOS                   | F             |      |       | Е     |        |        | F      |        |       | Е    |      |      |  |
|                           |               |      |       |       |        |        |        |        |       |      |      |      |  |
| Lane                      | NB            | Ln1I | NBLn2 | EBLn1 | EBLn2\ | VBLn1\ | NBLn2  | SBLn1  | SBLn2 |      |      |      |  |
| Vol Left, %               |               | 38%  | 0%    | 100%  | 0%     | 100%   | 0%     | 4%     | 0%    |      |      |      |  |
| Vol Thru, %               |               | 62%  | 0%    | 0%    | 65%    | 0%     | 92%    | 96%    | 0%    |      |      |      |  |
| Vol Right, %              |               |      | 100%  | 0%    | 35%    | 0%     | 8%     |        | 100%  |      |      |      |  |
| Sign Control              | (             | Stop | Stop  | Stop  | Stop   | Stop   | Stop   | Stop   | Stop  |      |      |      |  |
| Traffic Vol by Lane       |               | 297  | 60    | 193   | 354    | 110    | 259    | 241    | 264   |      |      |      |  |
| LT Vol                    |               | 112  | 0     | 193   | 0      | 110    | 0      | 10     | 0     |      |      |      |  |
| Through Vol               |               | 185  | 0     | 0     | 231    | 0      | 237    | 231    | 0     |      |      |      |  |
| RT Vol                    |               | 0    | 60    | 0     | 123    | 0      | 22     | 0      | 264   |      |      |      |  |
| Lane Flow Rate            |               | 349  | 71    | 227   | 416    | 129    | 305    | 284    | 311   |      |      |      |  |
| Geometry Grp              |               | 7    | 7     | 7     | 7      | 7      | 7      | 7      | 7     |      |      |      |  |
| Degree of Util (X)        | 0.            | 992  | 0.181 | 0.703 | 1.153  | 0.386  | 0.878  | 0.759  | 0.8   |      |      |      |  |
| Departure Headway (Hd)    |               |      | 9.691 | 11.14 | 9.965  | 11.208 | 10.833 | 10.094 | 9.711 |      |      |      |  |
| Convergence, Y/N          |               | Yes  | Yes   | Yes   | Yes    | Yes    | Yes    | Yes    | Yes   |      |      |      |  |
| Сар                       |               | 342  | 373   | 325   | 362    | 324    | 338    | 360    | 376   |      |      |      |  |
| Service Time              | 8.            | 417  | 7.391 | 8.935 | 7.76   | 8.908  | 8.533  | 7.794  | 7.411 |      |      |      |  |
| HCM Lane V/C Ratio        |               | 1.02 | 0.19  | 0.698 | 1.149  | 0.398  | 0.902  | 0.789  | 0.827 |      |      |      |  |
| HCM Control Delay         |               | 80.8 | 14.5  | 36.7  | 127.2  | 20.8   | 57     | 38.5   | 41.7  |      |      |      |  |
| HCM Lane LOS              |               | F    | В     | Е     | F      | С      | F      | Е      | Е     |      |      |      |  |
| 1101405(1 (1 0            |               |      | ^ -   | -     | 400    |        |        |        |       |      |      |      |  |

11

0.7

5 16.3

1.8

8.2

6

6.9

|                               | ۶          | <b>→</b> | •     | •    | <b>←</b>   | 4          | 4       | <b>†</b>   | <i>&gt;</i> | <b>/</b> | <b>↓</b>   | √    |
|-------------------------------|------------|----------|-------|------|------------|------------|---------|------------|-------------|----------|------------|------|
| Movement                      | EBL        | EBT      | EBR   | WBL  | WBT        | WBR        | NBL     | NBT        | NBR         | SBL      | SBT        | SBR  |
| Lane Configurations           |            | र्स      | 7     |      | र्स        | 7          | ሻ       | <b>∱</b> ∱ |             | ሻ        | <b>∱</b> ∱ |      |
| Traffic Volume (vph)          | 78         | 55       | 68    | 151  | 40         | 52         | 68      | 1118       | 103         | 73       | 1449       | 91   |
| Future Volume (vph)           | 78         | 55       | 68    | 151  | 40         | 52         | 68      | 1118       | 103         | 73       | 1449       | 91   |
| Ideal Flow (vphpl)            | 1750       | 1750     | 1750  | 1750 | 1750       | 1750       | 1750    | 1750       | 1750        | 1750     | 1750       | 1750 |
| Total Lost time (s)           |            | 4.5      | 4.5   |      | 4.5        | 4.5        | 4.5     | 4.5        |             | 4.5      | 4.5        |      |
| Lane Util. Factor             |            | 1.00     | 1.00  |      | 1.00       | 1.00       | 1.00    | 0.95       |             | 1.00     | 0.95       |      |
| Frpb, ped/bikes               |            | 1.00     | 0.98  |      | 1.00       | 0.98       | 1.00    | 1.00       |             | 1.00     | 1.00       |      |
| Flpb, ped/bikes               |            | 1.00     | 1.00  |      | 1.00       | 1.00       | 1.00    | 1.00       |             | 1.00     | 1.00       |      |
| Frt                           |            | 1.00     | 0.85  |      | 1.00       | 0.85       | 1.00    | 0.99       |             | 1.00     | 0.99       |      |
| Flt Protected                 |            | 0.97     | 1.00  |      | 0.96       | 1.00       | 0.95    | 1.00       |             | 0.95     | 1.00       |      |
| Satd. Flow (prot)             |            | 1499     | 1227  |      | 1478       | 1206       | 1363    | 2666       |             | 1458     | 2740       |      |
| Flt Permitted                 |            | 0.55     | 1.00  |      | 0.59       | 1.00       | 0.06    | 1.00       |             | 0.14     | 1.00       |      |
| Satd. Flow (perm)             |            | 844      | 1227  |      | 904        | 1206       | 92      | 2666       |             | 220      | 2740       |      |
| Peak-hour factor, PHF         | 0.94       | 0.94     | 0.94  | 0.94 | 0.94       | 0.94       | 0.94    | 0.94       | 0.94        | 0.94     | 0.94       | 0.94 |
| Adj. Flow (vph)               | 83         | 59       | 72    | 161  | 43         | 55         | 72      | 1189       | 110         | 78       | 1541       | 97   |
| RTOR Reduction (vph)          | 0          | 0        | 55    | 0    | 0          | 42         | 0       | 5          | 0           | 0        | 3          | 0    |
| Lane Group Flow (vph)         | 0          | 142      | 17    | 0    | 204        | 13         | 72      | 1294       | 0           | 78       | 1635       | 0    |
| Confl. Peds. (#/hr)           | 6          |          | 6     | 6    |            | 6          | 3       |            | 3           | 3        |            | 3    |
| Heavy Vehicles (%)            | 16%        | 9%       | 19%   | 13%  | 15%        | 21%        | 22%     | 23%        | 21%         | 14%      | 20%        | 21%  |
| Turn Type                     | Perm       | NA       | Perm  | Perm | NA         | Perm       | D.P+P   | NA         |             | D.P+P    | NA         |      |
| Protected Phases              |            | 8        |       |      | 4          |            | 1       | 6          |             | 5        | 2          |      |
| Permitted Phases              | 8          |          | 8     | 4    |            | 4          | 2       |            |             | 6        |            |      |
| Actuated Green, G (s)         |            | 30.3     | 30.3  |      | 30.3       | 30.3       | 86.2    | 80.1       |             | 86.2     | 77.0       |      |
| Effective Green, g (s)        |            | 30.3     | 30.3  |      | 30.3       | 30.3       | 86.2    | 80.1       |             | 86.2     | 77.0       |      |
| Actuated g/C Ratio            |            | 0.23     | 0.23  |      | 0.23       | 0.23       | 0.66    | 0.62       |             | 0.66     | 0.59       |      |
| Clearance Time (s)            |            | 4.5      | 4.5   |      | 4.5        | 4.5        | 4.5     | 4.5        |             | 4.5      | 4.5        |      |
| Vehicle Extension (s)         |            | 2.5      | 2.5   |      | 2.5        | 2.5        | 2.5     | 4.6        |             | 2.5      | 4.6        |      |
| Lane Grp Cap (vph)            |            | 196      | 285   |      | 210        | 281        | 150     | 1642       |             | 203      | 1622       |      |
| v/s Ratio Prot                |            |          |       |      |            |            | 0.03    | c0.49      |             | 0.02     | c0.60      |      |
| v/s Ratio Perm                |            | 0.17     | 0.01  |      | c0.23      | 0.01       | 0.28    |            |             | 0.24     |            |      |
| v/c Ratio                     |            | 0.72     | 0.06  |      | 0.97       | 0.05       | 0.48    | 0.79       |             | 0.38     | 1.01       |      |
| Uniform Delay, d1             |            | 46.0     | 38.8  |      | 49.4       | 38.6       | 41.1    | 18.6       |             | 11.2     | 26.5       |      |
| Progression Factor            |            | 1.00     | 1.00  |      | 1.00       | 1.00       | 0.80    | 0.71       |             | 1.15     | 1.13       |      |
| Incremental Delay, d2         |            | 11.7     | 0.1   |      | 53.6       | 0.0        | 1.2     | 2.7        |             | 0.1      | 8.7        |      |
| Delay (s)                     |            | 57.7     | 38.8  |      | 103.1      | 38.7       | 34.0    | 15.9       |             | 13.0     | 38.6       |      |
| Level of Service              |            | Е        | D     |      | F          | D          | С       | В          |             | В        | D          |      |
| Approach Delay (s)            |            | 51.4     |       |      | 89.4       |            |         | 16.9       |             |          | 37.4       |      |
| Approach LOS                  |            | D        |       |      | F          |            |         | В          |             |          | D          |      |
| Intersection Summary          |            |          |       |      |            |            |         |            |             |          |            |      |
| HCM 2000 Control Delay        |            |          | 34.1  | H    | CM 2000    | Level of   | Service |            | С           |          |            |      |
| HCM 2000 Volume to Capa       | city ratio |          | 1.00  |      |            |            |         |            |             |          |            |      |
| Actuated Cycle Length (s)     |            |          | 130.0 |      | ım of lost |            |         |            | 13.5        |          |            |      |
| Intersection Capacity Utiliza | ation      |          | 81.7% | IC   | U Level o  | of Service | Э       |            | D           |          |            |      |
| Analysis Period (min)         |            |          | 15    |      |            |            |         |            |             |          |            |      |
| o Critical Lana Croup         |            |          |       |      |            |            |         |            |             |          |            |      |

|                                   | ۶     | <b>→</b> | •     | •    | •         | •          | 4       | <b>†</b>   | <b>/</b> | <b>&gt;</b> | <b>↓</b>   | 4    |
|-----------------------------------|-------|----------|-------|------|-----------|------------|---------|------------|----------|-------------|------------|------|
| Movement                          | EBL   | EBT      | EBR   | WBL  | WBT       | WBR        | NBL     | NBT        | NBR      | SBL         | SBT        | SBR  |
| Lane Configurations               |       | 4        |       |      | ર્ન       | 7          | Ť       | <b>∱</b> } |          | 7           | <b>∱</b> } |      |
| Traffic Volume (vph)              | 110   | 11       | 91    | 27   | 11        | 26         | 78      | 1143       | 14       | 17          | 1571       | 122  |
| Future Volume (vph)               | 110   | 11       | 91    | 27   | 11        | 26         | 78      | 1143       | 14       | 17          | 1571       | 122  |
| Ideal Flow (vphpl)                | 1750  | 1750     | 1750  | 1750 | 1750      | 1750       | 1750    | 1750       | 1750     | 1750        | 1750       | 1750 |
| Total Lost time (s)               |       | 4.5      |       |      | 4.5       | 4.5        | 4.5     | 4.5        |          | 4.5         | 4.5        |      |
| Lane Util. Factor                 |       | 1.00     |       |      | 1.00      | 1.00       | 1.00    | 0.95       |          | 1.00        | 0.95       |      |
| Frpb, ped/bikes                   |       | 0.99     |       |      | 1.00      | 0.97       | 1.00    | 1.00       |          | 1.00        | 1.00       |      |
| Flpb, ped/bikes                   |       | 0.99     |       |      | 1.00      | 1.00       | 1.00    | 1.00       |          | 1.00        | 1.00       |      |
| Frt                               |       | 0.94     |       |      | 1.00      | 0.85       | 1.00    | 1.00       |          | 1.00        | 0.99       |      |
| Flt Protected                     |       | 0.97     |       |      | 0.97      | 1.00       | 0.95    | 1.00       |          | 0.95        | 1.00       |      |
| Satd. Flow (prot)                 |       | 1288     |       |      | 1406      | 1124       | 1446    | 2629       |          | 1289        | 2720       |      |
| Flt Permitted                     |       | 0.82     |       |      | 0.73      | 1.00       | 0.05    | 1.00       |          | 0.17        | 1.00       |      |
| Satd. Flow (perm)                 |       | 1078     |       |      | 1064      | 1124       | 75      | 2629       |          | 227         | 2720       |      |
| Peak-hour factor, PHF             | 0.94  | 0.94     | 0.94  | 0.94 | 0.94      | 0.94       | 0.94    | 0.94       | 0.94     | 0.94        | 0.94       | 0.94 |
| Adj. Flow (vph)                   | 117   | 12       | 97    | 29   | 12        | 28         | 83      | 1216       | 15       | 18          | 1671       | 130  |
| RTOR Reduction (vph)              | 0     | 21       | 0     | 0    | 0         | 22         | 0       | 0          | 0        | 0           | 4          | 0    |
| Lane Group Flow (vph)             | 0     | 205      | 0     | 0    | 41        | 6          | 83      | 1231       | 0        | 18          | 1797       | 0    |
| Confl. Peds. (#/hr)               | 10    |          |       |      |           | 10         | 6       |            | 6        | 6           |            | 6    |
| Confl. Bikes (#/hr)               |       |          | 1     |      |           |            |         |            | 1        |             |            |      |
| Heavy Vehicles (%)                | 19%   | 50%      | 25%   | 5%   | 57%       | 29%        | 15%     | 26%        | 40%      | 29%         | 21%        | 15%  |
| Turn Type                         | Perm  | NA       |       | Perm | NA        | Perm       | D.P+P   | NA         |          | D.P+P       | NA         |      |
| Protected Phases                  |       | 8        |       |      | 4         |            | 1       | 6          |          | 5           | 2          |      |
| Permitted Phases                  | 8     |          |       | 4    |           | 4          | 2       |            |          | 6           |            |      |
| Actuated Green, G (s)             |       | 26.6     |       |      | 26.6      | 26.6       | 89.9    | 82.9       |          | 89.9        | 81.1       |      |
| Effective Green, g (s)            |       | 26.6     |       |      | 26.6      | 26.6       | 89.9    | 82.9       |          | 89.9        | 81.1       |      |
| Actuated g/C Ratio                |       | 0.20     |       |      | 0.20      | 0.20       | 0.69    | 0.64       |          | 0.69        | 0.62       |      |
| Clearance Time (s)                |       | 4.5      |       |      | 4.5       | 4.5        | 4.5     | 4.5        |          | 4.5         | 4.5        |      |
| Vehicle Extension (s)             |       | 2.5      |       |      | 2.5       | 2.5        | 2.5     | 4.6        |          | 2.5         | 4.6        |      |
| Lane Grp Cap (vph)                |       | 220      |       |      | 217       | 229        | 144     | 1676       |          | 214         | 1696       |      |
| v/s Ratio Prot                    |       |          |       |      |           |            | 0.04    | c0.47      |          | 0.00        | c0.66      |      |
| v/s Ratio Perm                    |       | c0.19    |       |      | 0.04      | 0.01       | 0.36    |            |          | 0.05        |            |      |
| v/c Ratio                         |       | 0.93     |       |      | 0.19      | 0.03       | 0.58    | 0.73       |          | 0.08        | 1.06       |      |
| Uniform Delay, d1                 |       | 50.8     |       |      | 42.8      | 41.3       | 25.6    | 16.0       |          | 15.7        | 24.5       |      |
| Progression Factor                |       | 1.00     |       |      | 1.00      | 1.00       | 1.44    | 0.81       |          | 1.31        | 0.67       |      |
| Incremental Delay, d2             |       | 41.1     |       |      | 0.3       | 0.0        | 3.1     | 2.0        |          | 0.0         | 32.3       |      |
| Delay (s)                         |       | 91.8     |       |      | 43.1      | 41.4       | 40.1    | 15.0       |          | 20.7        | 48.6       |      |
| Level of Service                  |       | F        |       |      | D         | D          | D       | В          |          | С           | D          |      |
| Approach Delay (s)                |       | 91.8     |       |      | 42.4      |            |         | 16.6       |          |             | 48.3       |      |
| Approach LOS                      |       | F        |       |      | D         |            |         | В          |          |             | D          |      |
| Intersection Summary              |       |          |       |      |           |            |         |            |          |             |            |      |
| HCM 2000 Control Delay            |       |          | 38.9  | H    | CM 2000   | Level of   | Service |            | D        |             |            |      |
| HCM 2000 Volume to Capacity       | ratio |          | 1.02  |      |           |            |         |            |          |             |            |      |
| Actuated Cycle Length (s)         |       |          | 130.0 | S    | um of los | t time (s) |         |            | 13.5     |             |            |      |
| Intersection Capacity Utilization |       |          | 87.3% |      | CU Level  |            | •       |            | E        |             |            |      |
| Analysis Period (min)             |       |          | 15    |      |           |            |         |            |          |             |            |      |
| c Critical Lane Group             |       |          |       |      |           |            |         |            |          |             |            |      |

|                               | ۶          | <b>→</b> | •      | •    | <b>+</b>  | •          | •       | <b>†</b>   | ~    | <b>\</b> | <b>↓</b>   | ✓    |
|-------------------------------|------------|----------|--------|------|-----------|------------|---------|------------|------|----------|------------|------|
| Movement                      | EBL        | EBT      | EBR    | WBL  | WBT       | WBR        | NBL     | NBT        | NBR  | SBL      | SBT        | SBR  |
| Lane Configurations           | ¥          | eĵ.      |        |      | 4         | 7          | Į,      | <b>↑</b> ↑ |      | , J      | <b>↑</b> ↑ |      |
| Traffic Volume (vph)          | 160        | 180      | 121    | 95   | 225       | 280        | 83      | 789        | 40   | 265      | 1251       | 149  |
| Future Volume (vph)           | 160        | 180      | 121    | 95   | 225       | 280        | 83      | 789        | 40   | 265      | 1251       | 149  |
| Ideal Flow (vphpl)            | 1750       | 1750     | 1750   | 1750 | 1750      | 1750       | 1750    | 1750       | 1750 | 1750     | 1750       | 1750 |
| Total Lost time (s)           | 4.5        | 4.5      |        |      | 4.5       | 4.5        | 4.5     | 4.5        |      | 4.5      | 4.5        |      |
| Lane Util. Factor             | 1.00       | 1.00     |        |      | 1.00      | 1.00       | 1.00    | 0.95       |      | 1.00     | 0.95       |      |
| Frpb, ped/bikes               | 1.00       | 0.99     |        |      | 1.00      | 1.00       | 1.00    | 1.00       |      | 1.00     | 1.00       |      |
| Flpb, ped/bikes               | 1.00       | 1.00     |        |      | 1.00      | 1.00       | 1.00    | 1.00       |      | 1.00     | 1.00       |      |
| Frt                           | 1.00       | 0.94     |        |      | 1.00      | 0.85       | 1.00    | 0.99       |      | 1.00     | 0.98       |      |
| Flt Protected                 | 0.95       | 1.00     |        |      | 0.99      | 1.00       | 0.95    | 1.00       |      | 0.95     | 1.00       |      |
| Satd. Flow (prot)             | 1222       | 1304     |        |      | 1457      | 1293       | 1179    | 2697       |      | 1374     | 2763       |      |
| FIt Permitted                 | 0.30       | 1.00     |        |      | 0.47      | 1.00       | 0.10    | 1.00       |      | 0.26     | 1.00       |      |
| Satd. Flow (perm)             | 382        | 1304     |        |      | 697       | 1293       | 122     | 2697       |      | 369      | 2763       |      |
| Peak-hour factor, PHF         | 0.99       | 0.99     | 0.99   | 0.99 | 0.99      | 0.99       | 0.99    | 0.99       | 0.99 | 0.99     | 0.99       | 0.99 |
| Adj. Flow (vph)               | 162        | 182      | 122    | 96   | 227       | 283        | 84      | 797        | 40   | 268      | 1264       | 151  |
| RTOR Reduction (vph)          | 0          | 18       | 0      | 0    | 0         | 65         | 0       | 3          | 0    | 0        | 7          | 0    |
| Lane Group Flow (vph)         | 162        | 286      | 0      | 0    | 323       | 218        | 84      | 834        | 0    | 268      | 1408       | 0    |
| Confl. Peds. (#/hr)           |            |          | 4      | 4    |           |            | 1       |            | 2    | 2        |            | 1    |
| Confl. Bikes (#/hr)           |            |          |        |      |           |            |         |            | 1    |          |            |      |
| Heavy Vehicles (%)            | 36%        | 22%      | 30%    | 33%  | 12%       | 15%        | 41%     | 22%        | 27%  | 21%      | 18%        | 19%  |
| Turn Type                     | Perm       | NA       |        | Perm | NA        | Perm       | D.P+P   | NA         |      | D.P+P    | NA         |      |
| Protected Phases              |            | 4        |        |      | 8         |            | 5       | 2          |      | 1        | 6          |      |
| Permitted Phases              | 4          |          |        | 8    | -         | 8          | 6       |            |      | 2        |            |      |
| Actuated Green, G (s)         | 34.5       | 34.5     |        |      | 34.5      | 34.5       | 82.0    | 66.5       |      | 82.0     | 73.7       |      |
| Effective Green, g (s)        | 34.5       | 34.5     |        |      | 34.5      | 34.5       | 82.0    | 66.5       |      | 82.0     | 73.7       |      |
| Actuated g/C Ratio            | 0.27       | 0.27     |        |      | 0.27      | 0.27       | 0.63    | 0.51       |      | 0.63     | 0.57       |      |
| Clearance Time (s)            | 4.5        | 4.5      |        |      | 4.5       | 4.5        | 4.5     | 4.5        |      | 4.5      | 4.5        |      |
| Vehicle Extension (s)         | 2.5        | 2.5      |        |      | 2.5       | 2.5        | 2.5     | 4.6        |      | 2.5      | 4.6        |      |
| Lane Grp Cap (vph)            | 101        | 346      |        |      | 184       | 343        | 144     | 1379       |      | 352      | 1566       |      |
| v/s Ratio Prot                |            | 0.22     |        |      |           | 0.0        | 0.04    | 0.31       |      | 0.09     | c0.51      |      |
| v/s Ratio Perm                | 0.42       | V.LL     |        |      | c0.46     | 0.17       | 0.33    | 0.01       |      | c0.39    | 00.01      |      |
| v/c Ratio                     | 1.60       | 0.83     |        |      | 1.76      | 0.64       | 0.58    | 0.60       |      | 0.76     | 0.90       |      |
| Uniform Delay, d1             | 47.8       | 44.9     |        |      | 47.8      | 42.2       | 17.0    | 22.5       |      | 28.9     | 24.9       |      |
| Progression Factor            | 1.00       | 1.00     |        |      | 1.00      | 1.00       | 1.00    | 1.00       |      | 1.35     | 1.37       |      |
| Incremental Delay, d2         | 312.9      | 14.5     |        |      | 361.3     | 3.4        | 4.9     | 2.0        |      | 0.9      | 0.9        |      |
| Delay (s)                     | 360.6      | 59.4     |        |      | 409.1     | 45.6       | 21.9    | 24.4       |      | 39.9     | 35.0       |      |
| Level of Service              | F          | E        |        |      | F         | D          | C       | C          |      | D        | C          |      |
| Approach Delay (s)            |            | 164.1    |        |      | 239.3     |            |         | 24.2       |      |          | 35.7       |      |
| Approach LOS                  |            | F        |        |      | F         |            |         | C          |      |          | D          |      |
| Intersection Summary          |            |          |        |      |           |            |         |            |      |          |            |      |
| HCM 2000 Control Delay        |            |          | 82.7   | Н    | CM 2000   | Level of   | Service |            | F    |          |            |      |
| HCM 2000 Volume to Capa       | city ratio |          | 1.15   |      |           |            |         |            |      |          |            |      |
| Actuated Cycle Length (s)     |            |          | 130.0  | Sı   | um of los | t time (s) |         |            | 13.5 |          |            |      |
| Intersection Capacity Utiliza | ition      |          | 100.1% |      | CU Level  |            | Э       |            | G    |          |            |      |
| Analysis Period (min)         |            |          | 15     |      |           |            |         |            |      |          |            |      |
| c Critical Lane Group         |            |          |        |      |           |            |         |            |      |          |            |      |

| Intersection           |          |          |         |          |            |          |                      |                                |  |
|------------------------|----------|----------|---------|----------|------------|----------|----------------------|--------------------------------|--|
| Int Delay, s/veh       | 12.1     |          |         |          |            |          |                      |                                |  |
| Movement               | EBL      | EBR      | NBL     | NBT      | SBT        | SBR      |                      |                                |  |
|                        |          |          | INDL    |          |            | SBR      |                      |                                |  |
| Lane Configurations    | <b>\</b> | 7        | 00      | 414      | <b>↑</b> } | 007      |                      |                                |  |
| Traffic Vol, veh/h     | 86       | 84       | 80      | 919      | 1180       | 237      |                      |                                |  |
| Future Vol, veh/h      | 86       | 84       | 80      | 919      | 1180       | 237      |                      |                                |  |
| Conflicting Peds, #/hr | 0        | 1        | _ 1     | _ 0      | _ 0        | _ 1      |                      |                                |  |
| Sign Control           | Stop     | Stop     | Free    | Free     | Free       | Free     |                      |                                |  |
| RT Channelized         | -        |          | -       | None     | -          | None     |                      |                                |  |
| Storage Length         | 110      | 0        | -       | -        | -          | -        |                      |                                |  |
| Veh in Median Storage  | e, # 0   | -        | -       | 0        | 0          | -        |                      |                                |  |
| Grade, %               | 0        | -        | -       | 0        | 0          | -        |                      |                                |  |
| Peak Hour Factor       | 92       | 92       | 92      | 92       | 92         | 92       |                      |                                |  |
| Heavy Vehicles, %      | 21       | 35       | 31      | 25       | 29         | 16       |                      |                                |  |
| Mvmt Flow              | 93       | 91       | 87      | 999      | 1283       | 258      |                      |                                |  |
|                        |          |          |         |          |            |          |                      |                                |  |
| Majar/Mina-            | Mina     |          | Ania na | _        | 4-10       |          |                      |                                |  |
|                        | Minor2   |          | Major1  |          | Major2     |          |                      |                                |  |
| Conflicting Flow All   | 2085     |          | 1541    | 0        | -          | 0        |                      |                                |  |
| Stage 1                | 1412     | -        | -       | -        | -          | -        |                      |                                |  |
| Stage 2                | 673      | -        | -       | -        | -          | -        |                      |                                |  |
| Critical Hdwy          | 7.22     | 7.6      | 4.72    | -        | -          | -        |                      |                                |  |
| Critical Hdwy Stg 1    | 6.22     | -        | -       | -        | -          | -        |                      |                                |  |
| Critical Hdwy Stg 2    | 6.22     | -        | -       | -        | -          | -        |                      |                                |  |
| Follow-up Hdwy         | 3.71     | 3.65     | 2.51    | -        | -          | -        |                      |                                |  |
| Pot Cap-1 Maneuver     | ~ 36     | 279      | 310     | -        | -          | -        |                      |                                |  |
| Stage 1                | 161      | -        | -       | -        | -          | -        |                      |                                |  |
| Stage 2                | 421      | _        | _       | _        | _          | _        |                      |                                |  |
| Platoon blocked, %     |          |          |         | _        | _          | _        |                      |                                |  |
| Mov Cap-1 Maneuver     | ~ 13     | 278      | 310     | _        | _          | _        |                      |                                |  |
| Mov Cap-2 Maneuver     |          | -        | -       | _        | _          | _        |                      |                                |  |
| Stage 1                | 161      | _        | _       | _        | _          | _        |                      |                                |  |
| Stage 2                | 155      | -        | _       | _        | _          | _        |                      |                                |  |
| Glaye 2                | 100      | <u>-</u> | _       | <u>-</u> | _          | <u>-</u> |                      |                                |  |
|                        |          |          |         |          |            |          |                      |                                |  |
| Approach               | EB       |          | NB      |          | SB         |          |                      |                                |  |
| HCM Control Delay, s   | 143.4    |          | 6.9     |          | 0          |          |                      |                                |  |
| HCM LOS                | F        |          |         |          |            |          |                      |                                |  |
|                        |          |          |         |          |            |          |                      |                                |  |
| Minor Long/Major Mar   | mt .     | NDI      | NDT     | EDI 54 I | EDI ~2     | CDT      | CDD                  |                                |  |
| Minor Lane/Major Mvr   | IIC      | NBL      | MRI     | EBLn1 I  |            | SBT      | SBR                  |                                |  |
| Capacity (veh/h)       |          | 310      | -       | 78       | 278        | -        | -                    |                                |  |
| HCM Lane V/C Ratio     |          | 0.281    |         | 1.198    |            | -        | -                    |                                |  |
| HCM Control Delay (s   | )        | 21.1     |         | 259.8    | 24.2       | -        | -                    |                                |  |
| HCM Lane LOS           |          | С        | Α       | F        | С          | -        | -                    |                                |  |
| HCM 95th %tile Q(veh   | 1)       | 1.1      | -       | 7        | 1.4        | -        | -                    |                                |  |
| Notes                  |          |          |         |          |            |          |                      |                                |  |
|                        | nacity   | ¢. Da    | lov ovo | oodo 20  | )Oc        | L. Com   | utation Not Defined  | *: All major volume in platean |  |
| ~: Volume exceeds ca   | pacity   | φ; D6    | iay exc | eeds 30  | JUS        | +. Comp  | outation Not Defined | *: All major volume in platoon |  |

| Intersection                          |       |           |          |          |        |       |
|---------------------------------------|-------|-----------|----------|----------|--------|-------|
|                                       | 54.8  |           |          |          |        |       |
| • •                                   |       | EDD       | VA/DI    | WOT      | ND     | NDD   |
|                                       | EBT   | EBR       | WBL      | WBT      | NBL    | NBR   |
| Lane Configurations                   | 4     | 445       | <b>\</b> | <b>^</b> | **     | 000   |
| Traffic Vol, veh/h                    | 392   | 115       | 231      | 340      | 103    | 233   |
| Future Vol, veh/h                     | 392   | 115       | 231      | 340      | 103    | 233   |
| Conflicting Peds, #/hr                | _ 0   | _ 0       | 0        | _ 0      | 0      | 0     |
|                                       | Free  | Free      | Free     | Free     | Stop   | Stop  |
| RT Channelized                        | -     | None      |          | None     | -      | None  |
| Storage Length                        | -     | -         | 0        | -        | 0      | -     |
| Veh in Median Storage, #              |       | -         | -        | 0        | 0      | -     |
| Grade, %                              | 0     | -         | -        | 0        | 0      | -     |
| Peak Hour Factor                      | 96    | 96        | 96       | 96       | 96     | 96    |
| Heavy Vehicles, %                     | 15    | 21        | 18       | 29       | 31     | 15    |
| Mvmt Flow                             | 408   | 120       | 241      | 354      | 107    | 243   |
|                                       |       |           |          |          |        |       |
| Major/Minor M                         | oior1 | N         | Majara   |          | Minor1 |       |
|                                       | ajor1 |           | Major2   |          | Minor1 | 400   |
| Conflicting Flow All                  | 0     | 0         | 528      | 0        | 1303   | 468   |
| Stage 1                               | -     | -         | -        | -        | 468    | -     |
| Stage 2                               | -     | -         | -        | -        | 835    | -     |
| Critical Hdwy                         | -     | -         | 4.28     | -        | 6.71   | 6.35  |
| Critical Hdwy Stg 1                   | -     | -         | -        | -        | 5.71   | -     |
| Critical Hdwy Stg 2                   | -     | -         | -        | -        | 5.71   | -     |
| Follow-up Hdwy                        | -     | -         | 2.362    | -        | 3.779  | 3.435 |
| Pot Cap-1 Maneuver                    | -     | -         | 963      | -        | 154    | 569   |
| Stage 1                               | -     | -         | -        | -        | 574    | -     |
| Stage 2                               | -     | -         | -        | -        | 380    | -     |
| Platoon blocked, %                    | -     | -         |          | -        |        |       |
| Mov Cap-1 Maneuver                    | -     | _         | 963      | -        | 115    | 569   |
| Mov Cap-2 Maneuver                    | _     | _         | -        | _        | 115    | -     |
| Stage 1                               | _     | _         | _        | _        | 574    | _     |
| Stage 2                               | _     | _         | _        | _        | 285    | _     |
| Olago 2                               |       |           |          |          | 200    |       |
|                                       |       |           |          |          |        |       |
| Approach                              | EB    |           | WB       |          | NB     |       |
| HCM Control Delay, s                  | 0     |           | 4        |          | 223.8  |       |
| HCM LOS                               |       |           |          |          | F      |       |
|                                       |       |           |          |          |        |       |
| Minar Lang/Major Mymt                 |       | UDI n1    | ГОТ      | EDD      | WDI    | WDT   |
| Minor Lane/Major Mvmt                 | ı     | VBLn1     | EBT      | EBR      | WBL    | WBT   |
| Capacity (veh/h)                      |       | 257       | -        | -        | 963    | -     |
| HCM Lane V/C Ratio                    |       | 1.362     | -        | -        | 0.25   | -     |
| HCM Control Delay (s)                 |       | 223.8     | -        | -        | 10     | -     |
| HCM Lane LOS<br>HCM 95th %tile Q(veh) |       | F<br>18.7 | -        | -        | Α      | -     |
|                                       |       |           | _        | _        | 1      | _     |

|                                | ۶            | <b>→</b> | •            | •            | +        | •            | 1            | <b>†</b>     | <b>/</b> | <b>/</b>     | <b>+</b>     | ✓       |
|--------------------------------|--------------|----------|--------------|--------------|----------|--------------|--------------|--------------|----------|--------------|--------------|---------|
| Movement                       | EBL          | EBT      | EBR          | WBL          | WBT      | WBR          | NBL          | NBT          | NBR      | SBL          | SBT          | SBR     |
| Lane Configurations            | ሻ            | <b>^</b> | 7            | ሻ            | <b>^</b> | 7            | ሻ            | f.           |          | Ť            | 4            |         |
| Traffic Volume (vph)           | 32           | 589      | 1            | 34           | 565      | 262          | 3            | 5            | 85       | 753          | 2            | 25      |
| Future Volume (vph)            | 32           | 589      | 1            | 34           | 565      | 262          | 3            | 5            | 85       | 753          | 2            | 25      |
| Ideal Flow (vphpl)             | 1750         | 1750     | 1750         | 1750         | 1750     | 1750         | 1750         | 1750         | 1750     | 1750         | 1750         | 1750    |
| Total Lost time (s)            | 4.0          | 4.5      | 4.0          | 4.0          | 4.5      | 4.0          | 4.0          | 4.0          |          | 4.0          | 4.0          |         |
| Lane Util. Factor              | 1.00         | 0.95     | 1.00         | 1.00         | 0.95     | 1.00         | 1.00         | 1.00         |          | 0.95         | 0.95         |         |
| Frpb, ped/bikes                | 1.00         | 1.00     | 0.98         | 1.00         | 1.00     | 1.00         | 1.00         | 1.00         |          | 1.00         | 1.00         |         |
| Flpb, ped/bikes                | 1.00         | 1.00     | 1.00         | 1.00         | 1.00     | 1.00         | 1.00         | 1.00<br>0.86 |          | 1.00         | 1.00<br>0.99 |         |
| Frt<br>Flt Protected           | 1.00<br>0.95 | 1.00     | 0.85<br>1.00 | 1.00<br>0.95 | 1.00     | 0.85<br>1.00 | 1.00<br>0.95 | 1.00         |          | 1.00<br>0.95 | 0.99         |         |
| Satd. Flow (prot)              | 1614         | 2866     | 975          | 1250         | 2866     | 1430         | 1662         | 1162         |          | 1490         | 1479         |         |
| Flt Permitted                  | 0.95         | 1.00     | 1.00         | 0.95         | 1.00     | 1.00         | 0.95         | 1.00         |          | 0.95         | 0.96         |         |
| Satd. Flow (perm)              | 1614         | 2866     | 975          | 1250         | 2866     | 1430         | 1662         | 1162         |          | 1490         | 1479         |         |
| Peak-hour factor, PHF          | 0.92         | 0.92     | 0.92         | 0.92         | 0.92     | 0.92         | 0.92         | 0.92         | 0.92     | 0.92         | 0.92         | 0.92    |
| Adj. Flow (vph)                | 35           | 640      | 1            | 37           | 614      | 285          | 3            | 5            | 92       | 818          | 2            | 27      |
| RTOR Reduction (vph)           | 0            | 0        | 1            | 0            | 0        | 69           | 0            | 85           | 0        | 0            | 1            | 0       |
| Lane Group Flow (vph)          | 35           | 640      | 0            | 37           | 614      | 216          | 3            | 12           | 0        | 425          | 421          | 0       |
| Confl. Bikes (#/hr)            | 00           | 0-10     | 1            | 01           | 017      | 210          | , ,          | 12           | U        | 720          | 721          | J       |
| Heavy Vehicles (%)             | 3%           | 16%      | 50%          | 33%          | 16%      | 4%           | 0%           | 50%          | 28%      | 6%           | 20%          | 11%     |
| Turn Type                      | Prot         | NA       | pm+ov        | Prot         | NA       | pm+ov        | Split        | NA           |          | Split        | NA           | 1 1 / 0 |
| Protected Phases               | 5            | 2        | 8            | 1            | 6        | 4            | 8            | 8            |          | 4            | 4            |         |
| Permitted Phases               |              |          | 2            |              |          | 6            |              |              |          |              |              |         |
| Actuated Green, G (s)          | 4.7          | 30.6     | 38.4         | 5.4          | 31.3     | 74.3         | 7.8          | 7.8          |          | 43.0         | 43.0         |         |
| Effective Green, g (s)         | 4.7          | 30.6     | 38.4         | 5.4          | 31.3     | 74.3         | 7.8          | 7.8          |          | 43.0         | 43.0         |         |
| Actuated g/C Ratio             | 0.05         | 0.30     | 0.37         | 0.05         | 0.30     | 0.72         | 0.08         | 0.08         |          | 0.42         | 0.42         |         |
| Clearance Time (s)             | 4.0          | 4.5      | 4.0          | 4.0          | 4.5      | 4.0          | 4.0          | 4.0          |          | 4.0          | 4.0          |         |
| Vehicle Extension (s)          | 2.5          | 4.2      | 2.5          | 2.5          | 4.2      | 2.5          | 2.5          | 2.5          |          | 2.5          | 2.5          |         |
| Lane Grp Cap (vph)             | 73           | 848      | 362          | 65           | 868      | 1028         | 125          | 87           |          | 620          | 615          |         |
| v/s Ratio Prot                 | 0.02         | c0.22    | 0.00         | c0.03        | 0.21     | 0.09         | 0.00         | c0.01        |          | c0.29        | 0.28         |         |
| v/s Ratio Perm                 |              |          | 0.00         |              |          | 0.06         |              |              |          |              |              |         |
| v/c Ratio                      | 0.48         | 0.75     | 0.00         | 0.57         | 0.71     | 0.21         | 0.02         | 0.14         |          | 0.69         | 0.68         |         |
| Uniform Delay, d1              | 48.1         | 32.9     | 20.4         | 47.8         | 31.9     | 4.8          | 44.2         | 44.6         |          | 24.6         | 24.6         |         |
| Progression Factor             | 1.00         | 1.00     | 1.00         | 1.00         | 1.00     | 1.00         | 1.00         | 1.00         |          | 1.00         | 1.00         |         |
| Incremental Delay, d2          | 3.6          | 4.2      | 0.0          | 9.0          | 2.9      | 0.1          | 0.1          | 0.5          |          | 2.9          | 2.9          |         |
| Delay (s)                      | 51.7         | 37.1     | 20.4         | 56.8         | 34.9     | 4.9          | 44.3         | 45.1         |          | 27.5         | 27.5         |         |
| Level of Service               | D            | D        | С            | E            | С        | Α            | D            | D            |          | С            | C            |         |
| Approach Delay (s)             |              | 37.9     |              |              | 26.6     |              |              | 45.1         |          |              | 27.5         |         |
| Approach LOS                   |              | D        |              |              | С        |              |              | D            |          |              | С            |         |
| Intersection Summary           |              |          |              |              |          |              |              |              |          |              |              |         |
| HCM 2000 Control Delay         |              |          | 30.6         | H            | CM 2000  | Level of S   | Service      |              | С        |              |              |         |
| HCM 2000 Volume to Capac       | city ratio   |          | 0.65         |              |          |              |              |              |          |              |              |         |
| Actuated Cycle Length (s)      |              |          | 103.3        |              |          | st time (s)  |              |              | 16.5     |              |              |         |
| Intersection Capacity Utilizat | tion         |          | 62.5%        | IC           | U Level  | of Service   |              |              | В        |              |              |         |
| Analysis Period (min)          |              |          | 15           |              |          |              |              |              |          |              |              |         |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ۶     | <b>→</b>     | •             | •    | <b>←</b>     | 4             | •        | <b>†</b> | ~    | <b>\</b>     | <b>+</b> | - ✓          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------|---------------|------|--------------|---------------|----------|----------|------|--------------|----------|--------------|
| Movement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EBL   | EBT          | EBR           | WBL  | WBT          | WBR           | NBL      | NBT      | NBR  | SBL          | SBT      | SBR          |
| Lane Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | <b>^</b>     | 7             |      | <b>^</b>     | 7             |          |          |      | 1/1          |          | 7            |
| Traffic Volume (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0     | 1112         | 462           | 0    | 1081         | 715           | 0        | 0        | 0    | 774          | 0        | 307          |
| Future Volume (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0     | 1112         | 462           | 0    | 1081         | 715           | 0        | 0        | 0    | 774          | 0        | 307          |
| Ideal Flow (vphpl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1750  | 1750         | 1750          | 1750 | 1750         | 1750          | 1750     | 1750     | 1750 | 1750         | 1750     | 1750         |
| Total Lost time (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 4.5          | 4.0           |      | 4.5          | 4.0           |          |          |      | 4.5          |          | 4.5          |
| Lane Util. Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | 0.95         | 1.00          |      | 0.95         | 1.00          |          |          |      | 0.97         |          | 1.00         |
| Frpb, ped/bikes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 1.00         | 0.98          |      | 1.00         | 0.98          |          |          |      | 1.00         |          | 1.00         |
| Flpb, ped/bikes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 1.00         | 1.00          |      | 1.00         | 1.00          |          |          |      | 1.00         |          | 1.00         |
| Frt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 1.00         | 0.85          |      | 1.00         | 0.85          |          |          |      | 1.00         |          | 0.85         |
| FIt Protected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | 1.00         | 1.00          |      | 1.00         | 1.00          |          |          |      | 0.95         |          | 1.00         |
| Satd. Flow (prot)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | 2866         | 1255          |      | 2842         | 1173          |          |          |      | 2710         |          | 1271         |
| FIt Permitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | 1.00         | 1.00          |      | 1.00         | 1.00          |          |          |      | 0.95         |          | 1.00         |
| Satd. Flow (perm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | 2866         | 1255          |      | 2842         | 1173          |          |          |      | 2710         |          | 1271         |
| Peak-hour factor, PHF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.98  | 0.98         | 0.98          | 0.98 | 0.98         | 0.98          | 0.98     | 0.98     | 0.98 | 0.98         | 0.98     | 0.98         |
| Adj. Flow (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0     | 1135         | 471           | 0    | 1103         | 730           | 0        | 0        | 0    | 790          | 0        | 313          |
| RTOR Reduction (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0     | 0            | 0             | 0    | 0            | 0             | 0        | 0        | 0    | 0            | 0        | 8            |
| Lane Group Flow (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0     | 1135         | 471           | 0    | 1103         | 730           | 0        | 0        | 0    | 790          | 0        | 305          |
| Confl. Peds. (#/hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5     | 400/         | 2             | 2    | 4=0/         | 5             | 1        | 00/      | 00/  | 400/         | 00/      | 1            |
| Heavy Vehicles (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0%    | 16%          | 16%           | 0%   | 17%          | 24%           | 0%       | 0%       | 0%   | 19%          | 0%       | 17%          |
| Turn Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | NA           | Free          |      | NA           | Free          |          |          |      | Prot         |          | custom       |
| Protected Phases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 2            |               |      | 6            | <b>-</b>      |          |          |      | 4            |          | 4 5          |
| Permitted Phases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | FO 4         | Free          |      | 44.4         | Free          |          |          |      | 20.0         |          | 47.4         |
| Actuated Green, G (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | 58.4         | 100.0         |      | 44.4         | 100.0         |          |          |      | 32.6         |          | 47.1         |
| Effective Green, g (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 58.4<br>0.58 | 100.0<br>1.00 |      | 44.4<br>0.44 | 100.0<br>1.00 |          |          |      | 32.6<br>0.33 |          | 47.1<br>0.47 |
| Actuated g/C Ratio Clearance Time (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | 4.5          | 1.00          |      | 4.5          | 1.00          |          |          |      | 4.5          |          | 0.47         |
| Vehicle Extension (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | 6.0          |               |      | 4.0          |               |          |          |      | 2.5          |          |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 1673         | 1255          |      | 1261         | 1173          |          |          |      | 883          |          | 598          |
| Lane Grp Cap (vph) v/s Ratio Prot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | 0.40         | 1200          |      | c0.39        | 1173          |          |          |      | c0.29        |          | 0.24         |
| v/s Ratio Perm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | 0.40         | 0.38          |      | 00.39        | c0.62         |          |          |      | 00.29        |          | 0.24         |
| v/c Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | 0.68         | 0.38          |      | 0.87         | 0.62          |          |          |      | 0.89         |          | 0.51         |
| Uniform Delay, d1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | 14.3         | 0.0           |      | 25.3         | 0.02          |          |          |      | 32.1         |          | 18.4         |
| Progression Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | 1.00         | 1.00          |      | 1.11         | 1.00          |          |          |      | 1.00         |          | 1.00         |
| Incremental Delay, d2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | 2.2          | 0.9           |      | 3.6          | 1.00          |          |          |      | 11.5         |          | 0.5          |
| Delay (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | 16.6         | 0.9           |      | 31.6         | 1.0           |          |          |      | 43.5         |          | 18.9         |
| Level of Service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | В            | A             |      | C            | A             |          |          |      | D            |          | В            |
| Approach Delay (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | 12.0         | , ,           |      | 19.4         | , ,           |          | 0.0      |      |              | 36.5     |              |
| Approach LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | В            |               |      | В            |               |          | A        |      |              | D        |              |
| Intersection Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |              |               |      |              |               |          |          |      |              |          |              |
| HCM 2000 Control Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |              | 20.9          | Н    | CM 2000      | Level of S    | Service  |          | С    |              |          |              |
| HCM 2000 Volume to Capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ratio |              | 0.88          | - 11 | JIII 2000    | 20701010      | 231 1100 |          | 0    |              |          |              |
| Actuated Cycle Length (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7440  |              | 100.0         | Si   | um of los    | t time (s)    |          |          | 13.0 |              |          |              |
| Intersection Capacity Utilization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1     |              | 64.4%         |      |              | of Service    |          |          | C    |              |          |              |
| Analysis Period (min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |              | 15            |      | . 5 _5.01    | 2. 23. 1100   |          |          |      |              |          |              |
| and the state of t |       |              |               |      |              |               |          |          |      |              |          |              |

|                                   | ۶    | <b>→</b> | •     | •    | •         | •          | •       | <b>†</b> | <b>/</b>     | <b>&gt;</b> | ļ    | 4    |
|-----------------------------------|------|----------|-------|------|-----------|------------|---------|----------|--------------|-------------|------|------|
| Movement                          | EBL  | EBT      | EBR   | WBL  | WBT       | WBR        | NBL     | NBT      | NBR          | SBL         | SBT  | SBR  |
| Lane Configurations               |      | <b>^</b> | 7     |      | ^↑        | 7          | ሻ       | 4        | 7            |             |      |      |
| Traffic Volume (vph)              | 0    | 1663     | 248   | 0    | 1399      | 472        | 384     | 0        | 693          | 0           | 0    | 0    |
| Future Volume (vph)               | 0    | 1663     | 248   | 0    | 1399      | 472        | 384     | 0        | 693          | 0           | 0    | 0    |
|                                   | 1750 | 1750     | 1750  | 1750 | 1750      | 1750       | 1750    | 1750     | 1750         | 1750        | 1750 | 1750 |
| Total Lost time (s)               |      | 4.5      | 4.0   |      | 4.5       | 4.0        | 4.5     | 4.5      | 4.5          |             |      |      |
| Lane Util. Factor                 |      | 0.95     | 1.00  |      | 0.95      | 1.00       | 0.95    | 0.91     | 0.95         |             |      |      |
| Frpb, ped/bikes                   |      | 1.00     | 0.98  |      | 1.00      | 0.98       | 1.00    | 0.99     | 0.99         |             |      |      |
| Flpb, ped/bikes                   |      | 1.00     | 1.00  |      | 1.00      | 1.00       | 1.00    | 1.00     | 1.00         |             |      |      |
| Frt                               |      | 1.00     | 0.85  |      | 1.00      | 0.85       | 1.00    | 0.87     | 0.85         |             |      |      |
| Flt Protected                     |      | 1.00     | 1.00  |      | 1.00      | 1.00       | 0.95    | 0.99     | 1.00         |             |      |      |
| Satd. Flow (prot)                 |      | 2866     | 1234  |      | 2725      | 1212       | 1350    | 1106     | 1132         |             |      |      |
| Flt Permitted                     |      | 1.00     | 1.00  |      | 1.00      | 1.00       | 0.95    | 0.99     | 1.00         |             |      |      |
| Satd. Flow (perm)                 |      | 2866     | 1234  |      | 2725      | 1212       | 1350    | 1106     | 1132         |             |      |      |
| Peak-hour factor, PHF             | 0.96 | 0.96     | 0.96  | 0.96 | 0.96      | 0.96       | 0.96    | 0.96     | 0.96         | 0.96        | 0.96 | 0.96 |
| Adj. Flow (vph)                   | 0    | 1732     | 258   | 0    | 1457      | 492        | 400     | 0        | 722          | 0           | 0    | 0    |
| RTOR Reduction (vph)              | 0    | 0        | 0     | 0    | 0         | 0          | 0       | 10       | 10           | 0           | 0    | 0    |
| Lane Group Flow (vph)             | 0    | 1732     | 258   | 0    | 1457      | 492        | 360     | 377      | 365          | 0           | 0    | 0    |
| Confl. Peds. (#/hr)               | 4    |          | 3     | 3    |           | 4          |         |          | 2            | 2           |      |      |
| Heavy Vehicles (%)                | 0%   | 16%      | 18%   | 0%   | 22%       | 20%        | 17%     | 0%       | 23%          | 0%          | 0%   | 0%   |
| Turn Type                         |      | NA       | Free  |      | NA        | Free       | Perm    | NA       | Perm         |             |      |      |
| Protected Phases                  |      | 2        |       |      | 6         |            |         | 8        |              |             |      |      |
| Permitted Phases                  |      |          | Free  |      |           | Free       | 8       |          | 8            |             |      |      |
| Actuated Green, G (s)             |      | 56.0     | 100.0 |      | 56.0      | 100.0      | 35.0    | 35.0     | 35.0         |             |      |      |
| Effective Green, g (s)            |      | 56.0     | 100.0 |      | 56.0      | 100.0      | 35.0    | 35.0     | 35.0         |             |      |      |
| Actuated g/C Ratio                |      | 0.56     | 1.00  |      | 0.56      | 1.00       | 0.35    | 0.35     | 0.35         |             |      |      |
| Clearance Time (s)                |      | 4.5      |       |      | 4.5       |            | 4.5     | 4.5      | 4.5          |             |      |      |
| Vehicle Extension (s)             |      | 4.0      |       |      | 6.0       |            | 2.5     | 2.5      | 2.5          |             |      |      |
| Lane Grp Cap (vph)                |      | 1604     | 1234  |      | 1526      | 1212       | 472     | 387      | 396          |             |      |      |
| v/s Ratio Prot                    |      | c0.60    | 1_0   |      | 0.53      |            |         |          |              |             |      |      |
| v/s Ratio Perm                    |      | 00.00    | 0.21  |      | 0.00      | 0.41       | 0.27    | 0.34     | 0.32         |             |      |      |
| v/c Ratio                         |      | 1.08     | 0.21  |      | 0.95      | 0.41       | 0.76    | 0.97     | 0.92         |             |      |      |
| Uniform Delay, d1                 |      | 22.0     | 0.0   |      | 20.8      | 0.0        | 28.8    | 32.0     | 31.2         |             |      |      |
| Progression Factor                |      | 1.36     | 1.00  |      | 0.95      | 1.00       | 1.00    | 1.00     | 1.00         |             |      |      |
| Incremental Delay, d2             |      | 44.4     | 0.3   |      | 9.0       | 0.5        | 6.9     | 38.4     | 26.4         |             |      |      |
| Delay (s)                         |      | 74.3     | 0.3   |      | 28.7      | 0.5        | 35.7    | 70.4     | 57.6         |             |      |      |
| Level of Service                  |      | E        | А     |      | С         | А          | D       | Е        | E            |             |      |      |
| Approach Delay (s)                |      | 64.7     |       |      | 21.6      | , ,        | _       | 55.0     | <del>-</del> |             | 0.0  |      |
| Approach LOS                      |      | E        |       |      | С         |            |         | D        |              |             | A    |      |
| Intersection Summary              |      |          |       |      |           |            |         |          |              |             |      |      |
| HCM 2000 Control Delay            |      |          | 46.0  | H    | CM 2000   | Level of S | Service |          | D            |             |      |      |
| HCM 2000 Volume to Capacity r     | atio |          | 1.04  |      |           |            |         |          |              |             |      |      |
| Actuated Cycle Length (s)         |      |          | 100.0 | Sı   | um of los | t time (s) |         |          | 9.0          |             |      |      |
| Intersection Capacity Utilization |      |          | 88.7% |      |           | of Service |         |          | E            |             |      |      |
| Analysis Period (min)             |      |          | 15    |      |           |            |         |          |              |             |      |      |
| c Critical Lane Group             |      |          |       |      |           |            |         |          |              |             |      |      |

|                              | ٠           | <b>→</b> | •     | €     | +          | •          | 4       | <b>†</b> | <b>/</b> | <b>/</b> | <b>+</b> | -√   |
|------------------------------|-------------|----------|-------|-------|------------|------------|---------|----------|----------|----------|----------|------|
| Movement                     | EBL         | EBT      | EBR   | WBL   | WBT        | WBR        | NBL     | NBT      | NBR      | SBL      | SBT      | SBR  |
| Lane Configurations          | Ť           | <b>^</b> | 7     | ሻ     | <b>∱</b> ∱ |            | 7       | ર્ન      | 7        | Ť        | <b>↑</b> | 7    |
| Traffic Volume (vph)         | 85          | 1491     | 252   | 307   | 1143       | 11         | 556     | 24       | 291      | 17       | 35       | 73   |
| Future Volume (vph)          | 85          | 1491     | 252   | 307   | 1143       | 11         | 556     | 24       | 291      | 17       | 35       | 73   |
| Ideal Flow (vphpl)           | 1750        | 1750     | 1750  | 1750  | 1750       | 1750       | 1750    | 1750     | 1750     | 1750     | 1750     | 1750 |
| Total Lost time (s)          | 4.0         | 4.5      | 4.5   | 4.0   | 4.5        |            | 4.5     | 4.5      | 4.5      | 4.5      | 4.5      | 4.5  |
| Lane Util. Factor            | 1.00        | 0.95     | 1.00  | 1.00  | 0.95       |            | 0.95    | 0.95     | 1.00     | 1.00     | 1.00     | 1.00 |
| Frpb, ped/bikes              | 1.00        | 1.00     | 1.00  | 1.00  | 1.00       |            | 1.00    | 1.00     | 0.98     | 1.00     | 1.00     | 0.99 |
| Flpb, ped/bikes              | 1.00        | 1.00     | 1.00  | 1.00  | 1.00       |            | 1.00    | 1.00     | 1.00     | 1.00     | 1.00     | 1.00 |
| Frt                          | 1.00        | 1.00     | 0.85  | 1.00  | 1.00       |            | 1.00    | 1.00     | 0.85     | 1.00     | 1.00     | 0.85 |
| Flt Protected                | 0.95        | 1.00     | 1.00  | 0.95  | 1.00       |            | 0.95    | 0.96     | 1.00     | 0.95     | 1.00     | 1.00 |
| Satd. Flow (prot)            | 1363        | 2842     | 1316  | 1409  | 2836       |            | 1373    | 1389     | 1262     | 1511     | 1651     | 1096 |
| FIt Permitted                | 0.10        | 1.00     | 1.00  | 0.12  | 1.00       |            | 0.95    | 0.96     | 1.00     | 0.95     | 1.00     | 1.00 |
| Satd. Flow (perm)            | 143         | 2842     | 1316  | 181   | 2836       |            | 1373    | 1389     | 1262     | 1511     | 1651     | 1096 |
| Peak-hour factor, PHF        | 0.97        | 0.97     | 0.97  | 0.97  | 0.97       | 0.97       | 0.97    | 0.97     | 0.97     | 0.97     | 0.97     | 0.97 |
| Adj. Flow (vph)              | 88          | 1537     | 260   | 316   | 1178       | 11         | 573     | 25       | 300      | 18       | 36       | 75   |
| RTOR Reduction (vph)         | 0           | 0        | 155   | 0     | 1          | 0          | 0       | 0        | 214      | 0        | 0        | 70   |
| Lane Group Flow (vph)        | 88          | 1537     | 105   | 316   | 1188       | 0          | 298     | 300      | 86       | 18       | 36       | 5    |
| Confl. Peds. (#/hr)          | 3           |          |       |       |            | 3          | 1       |          | 4        | 4        |          | 1    |
| Heavy Vehicles (%)           | 22%         | 17%      | 13%   | 18%   | 17%        | 23%        | 15%     | 8%       | 16%      | 10%      | 6%       | 34%  |
| Turn Type                    | D.P+P       | NA       | Perm  | D.P+P | NA         |            | Split   | NA       | Perm     | Split    | NA       | Perm |
| Protected Phases             | 5           | 2        |       | 1     | 6          |            | 8       | 8        |          | 4        | 4        |      |
| Permitted Phases             | 6           |          | 2     | 2     |            |            |         |          | 8        |          |          | 4    |
| Actuated Green, G (s)        | 47.5        | 32.8     | 32.8  | 47.5  | 40.1       |            | 28.8    | 28.8     | 28.8     | 6.2      | 6.2      | 6.2  |
| Effective Green, g (s)       | 47.5        | 32.8     | 32.8  | 47.5  | 40.1       |            | 28.8    | 28.8     | 28.8     | 6.2      | 6.2      | 6.2  |
| Actuated g/C Ratio           | 0.48        | 0.33     | 0.33  | 0.48  | 0.40       |            | 0.29    | 0.29     | 0.29     | 0.06     | 0.06     | 0.06 |
| Clearance Time (s)           | 4.0         | 4.5      | 4.5   | 4.0   | 4.5        |            | 4.5     | 4.5      | 4.5      | 4.5      | 4.5      | 4.5  |
| Vehicle Extension (s)        | 2.5         | 6.2      | 6.2   | 2.5   | 6.2        |            | 2.5     | 2.5      | 2.5      | 2.5      | 2.5      | 2.5  |
| Lane Grp Cap (vph)           | 158         | 932      | 431   | 266   | 1137       |            | 395     | 400      | 363      | 93       | 102      | 67   |
| v/s Ratio Prot               | 0.04        | c0.54    |       | 0.17  | c0.42      |            | c0.22   | 0.22     |          | 0.01     | c0.02    |      |
| v/s Ratio Perm               | 0.22        |          | 0.08  | 0.39  |            |            |         |          | 0.07     |          |          | 0.00 |
| v/c Ratio                    | 0.56        | 1.65     | 0.24  | 1.19  | 1.05       |            | 0.75    | 0.75     | 0.24     | 0.19     | 0.35     | 0.07 |
| Uniform Delay, d1            | 19.4        | 33.6     | 24.5  | 39.3  | 29.9       |            | 32.4    | 32.3     | 27.2     | 44.5     | 45.0     | 44.2 |
| Progression Factor           | 0.89        | 0.94     | 1.03  | 0.80  | 0.72       |            | 1.00    | 1.00     | 1.00     | 1.00     | 1.00     | 1.00 |
| Incremental Delay, d2        | 0.3         | 292.6    | 0.1   | 88.3  | 23.2       |            | 7.6     | 7.3      | 0.2      | 0.7      | 1.5      | 0.3  |
| Delay (s)                    | 17.6        | 324.1    | 25.5  | 119.7 | 44.9       |            | 40.0    | 39.7     | 27.5     | 45.3     | 46.5     | 44.5 |
| Level of Service             | В           | F        | С     | F     | D          |            | D       | D        | С        | D        | D        | D    |
| Approach Delay (s)           |             | 268.6    |       |       | 60.6       |            |         | 35.7     |          |          | 45.2     |      |
| Approach LOS                 |             | F        |       |       | Е          |            |         | D        |          |          | D        |      |
| Intersection Summary         |             |          |       |       |            |            |         |          |          |          |          |      |
| HCM 2000 Control Delay       |             |          | 143.8 | Н     | CM 2000    | Level of S | Service |          | F        |          |          |      |
| HCM 2000 Volume to Capa      | acity ratio |          | 1.16  |       |            |            |         |          |          |          |          |      |
| Actuated Cycle Length (s)    |             |          | 100.0 | S     | um of lost | time (s)   |         |          | 17.5     |          |          |      |
| Intersection Capacity Utiliz | ation       |          | 98.1% | IC    | CU Level o | of Service |         |          | F        |          |          |      |
| Analysis Period (min)        |             |          | 15    |       |            |            |         |          |          |          |          |      |
| 0.10.110                     |             |          |       |       |            |            |         |          |          |          |          |      |

|                                                   | •            | <b>→</b>   | •     | •         | +                          | •          | 4          | <b>†</b>   | ~         | <b>/</b> | <b>+</b> | 4    |
|---------------------------------------------------|--------------|------------|-------|-----------|----------------------------|------------|------------|------------|-----------|----------|----------|------|
| Movement                                          | EBL          | EBT        | EBR   | WBL       | WBT                        | WBR        | NBL        | NBT        | NBR       | SBL      | SBT      | SBR  |
| Lane Configurations                               | Ť            | <b>∱</b> ∱ |       | Ŋ         | ħβ                         |            | ň          | f)         |           | , j      | f)       |      |
| Traffic Volume (vph)                              | 138          | 1640       | 54    | 47        | 1391                       | 89         | 31         | 49         | 18        | 104      | 32       | 100  |
| Future Volume (vph)                               | 138          | 1640       | 54    | 47        | 1391                       | 89         | 31         | 49         | 18        | 104      | 32       | 100  |
| Ideal Flow (vphpl)                                | 1750         | 1750       | 1750  | 1750      | 1750                       | 1750       | 1750       | 1750       | 1750      | 1750     | 1750     | 1750 |
| Total Lost time (s)                               | 4.0          | 4.5        |       | 4.0       | 4.5                        |            | 4.0        | 4.0        |           | 4.0      | 4.0      |      |
| Lane Util. Factor                                 | 1.00         | 0.95       |       | 1.00      | 0.95                       |            | 1.00       | 1.00       |           | 1.00     | 1.00     |      |
| Frpb, ped/bikes                                   | 1.00         | 1.00       |       | 1.00      | 1.00                       |            | 1.00       | 1.00       |           | 1.00     | 1.00     |      |
| Flpb, ped/bikes                                   | 1.00         | 1.00       |       | 1.00      | 1.00                       |            | 1.00       | 1.00       |           | 1.00     | 1.00     |      |
| Frt                                               | 1.00         | 1.00       |       | 1.00      | 0.99                       |            | 1.00       | 0.96       |           | 1.00     | 0.89     |      |
| Flt Protected                                     | 0.95         | 1.00       |       | 0.95      | 1.00                       |            | 0.95       | 1.00       |           | 0.95     | 1.00     |      |
| Satd. Flow (prot)                                 | 1554         | 2740       |       | 1471      | 2718                       |            | 1525       | 1391       |           | 1385     | 1449     |      |
| Flt Permitted                                     | 0.08         | 1.00       |       | 0.09      | 1.00                       |            | 0.95       | 1.00       |           | 0.95     | 1.00     |      |
| Satd. Flow (perm)                                 | 130          | 2740       | 0.00  | 139       | 2718                       | 0.00       | 1525       | 1391       | 0.00      | 1385     | 1449     | 0.00 |
| Peak-hour factor, PHF                             | 0.96         | 0.96       | 0.96  | 0.96      | 0.96                       | 0.96       | 0.96       | 0.96       | 0.96      | 0.96     | 0.96     | 0.96 |
| Adj. Flow (vph)                                   | 144          | 1708       | 56    | 49        | 1449                       | 93         | 32         | 51         | 19        | 108      | 33       | 104  |
| RTOR Reduction (vph)                              | 0            | 2          | 0     | 0         | 4                          | 0          | 0          | 15         | 0         | 0        | 92       | 0    |
| Lane Group Flow (vph)                             | 144          | 1762       | 0     | 49        | 1538                       | 0          | 32         | 55         | 0         | 108      | 45       | 0    |
| Confl. Peds. (#/hr)                               | 2            | 200/       | 1     | 1         | 220/                       | 2          | 9%         | 040/       | 200/      | 200/     | 70/      | 70/  |
| Heavy Vehicles (%)                                | 7%           | 20%        | 42%   | 13%       | 22%                        | 6%         |            | 21%        | 20%       | 20%      | 7%       | 7%   |
| Turn Type                                         | D.P+P        | NA         |       | pm+pt     | NA                         |            | Prot       | NA         |           | Prot     | NA       |      |
| Protected Phases                                  | 5            | 2          |       | 1         | 6                          |            | 3          | 8          |           | 7        | 4        |      |
| Permitted Phases                                  | 6            | 56.3       |       | 6<br>50.4 | E0 4                       |            | 0.4        | 7.9        |           | 13.4     | 11.9     |      |
| Actuated Green, G (s)                             | 62.2<br>62.2 | 56.3       |       | 50.4      | 50.4<br>50.4               |            | 9.4<br>9.4 | 7.9<br>7.9 |           | 13.4     | 11.9     |      |
| Effective Green, g (s)                            | 0.62         | 0.56       |       | 0.50      | 0.50                       |            | 0.09       | 0.08       |           | 0.13     | 0.12     |      |
| Actuated g/C Ratio Clearance Time (s)             | 4.0          | 4.5        |       | 4.0       | 4.5                        |            | 4.0        | 4.0        |           | 4.0      | 4.0      |      |
| Vehicle Extension (s)                             | 2.5          | 6.2        |       | 2.5       | 6.2                        |            | 2.5        | 2.5        |           | 2.5      | 2.5      |      |
|                                                   | 2.3          | 1542       |       | 148       | 1369                       |            | 143        | 109        |           | 185      | 172      |      |
| Lane Grp Cap (vph)<br>v/s Ratio Prot              | 0.07         | c0.64      |       | 0.02      | c0.57                      |            | 0.02       | c0.04      |           | c0.08    | 0.03     |      |
| v/s Ratio Prot<br>v/s Ratio Perm                  | 0.07         | CU.04      |       | 0.02      | 00.57                      |            | 0.02       | CU.U4      |           | CU.U6    | 0.03     |      |
| v/c Ratio                                         | 0.29         | 1.14       |       | 0.13      | 1.12                       |            | 0.22       | 0.51       |           | 0.58     | 0.26     |      |
| Uniform Delay, d1                                 | 33.7         | 21.9       |       | 21.2      | 24.8                       |            | 41.9       | 44.2       |           | 40.7     | 40.1     |      |
| Progression Factor                                | 0.38         | 1.05       |       | 1.00      | 1.00                       |            | 1.00       | 1.00       |           | 1.00     | 1.00     |      |
| Incremental Delay, d2                             | 0.30         | 65.1       |       | 1.00      | 65.7                       |            | 0.6        | 2.7        |           | 3.9      | 0.6      |      |
| Delay (s)                                         | 13.1         | 88.1       |       | 22.2      | 90.5                       |            | 42.5       | 46.9       |           | 44.5     | 40.7     |      |
| Level of Service                                  | В            | F          |       | C         | 50.6<br>F                  |            | 72.0<br>D  | 70.5<br>D  |           | D        | D        |      |
| Approach Delay (s)                                |              | 82.4       |       | 0         | 88.4                       |            | D          | 45.5       |           | D        | 42.4     |      |
| Approach LOS                                      |              | F          |       |           | F                          |            |            | D          |           |          | D        |      |
| Intersection Summary                              |              | •          |       |           | •                          |            |            |            |           |          |          |      |
|                                                   |              |            | 81.4  | Ш         | CM 2000                    | Lovel of C | Convice    |            | F         |          |          |      |
| HCM 2000 Control Delay<br>HCM 2000 Volume to Capa | noity ratio  |            | 1.01  | П         | CM 2000                    | Level of S | oei vice   |            | Г         |          |          |      |
| Actuated Cycle Length (s)                         | acity ratio  |            | 100.0 | c         | um of lost                 | time (c)   |            |            | 16.5      |          |          |      |
| Intersection Capacity Utiliza                     | ation        |            | 80.0% |           | UIII OI IOSI<br>CU Level c | . ,        |            |            | 10.5<br>D |          |          |      |
|                                                   | auOH         |            | 15    | IC        | o Level (                  | n service  |            |            | D         |          |          |      |
| Analysis Period (min)                             |              |            | 10    |           |                            |            |            |            |           |          |          |      |

| Intersection           |            |          |          |          |          |          |
|------------------------|------------|----------|----------|----------|----------|----------|
| Int Delay, s/veh       | 1.3        |          |          |          |          |          |
| Movement               | EBT        | EBR      | WBL      | WBT      | NBL      | NBR      |
|                        |            | EBK      |          |          | INDL     |          |
| Lane Configurations    | <b>↑</b> ↑ | 000      | <u>ች</u> | <b>^</b> | ^        | 7        |
| Traffic Vol, veh/h     | 1347       | 283      | 30       | 1519     | 0        | 117      |
| Future Vol, veh/h      | 1347       | 283      | 30       | 1519     | 0        | 117      |
| Conflicting Peds, #/hr | 0          | _ 2      | _ 2      | _ 0      | 0        | 0        |
| Sign Control           | Free       | Free     | Free     | Free     | Stop     | Stop     |
| RT Channelized         | -          | None     | -        | None     | -        | None     |
| Storage Length         | -          | -        | 130      | -        | -        | 0        |
| Veh in Median Storage  |            | -        | -        | 0        | 0        | -        |
| Grade, %               | 0          | -        | -        | 0        | 0        | -        |
| Peak Hour Factor       | 94         | 94       | 94       | 94       | 94       | 94       |
| Heavy Vehicles, %      | 19         | 17       | 10       | 23       | 0        | 24       |
| Mvmt Flow              | 1433       | 301      | 32       | 1616     | 0        | 124      |
|                        |            |          |          |          |          |          |
| Major/Minar            | Mais =1    | ,        | /oicr0   |          | line-1   |          |
|                        | Major1     |          | Major2   |          | Minor1   |          |
| Conflicting Flow All   | 0          | 0        | 1736     | 0        | -        | 869      |
| Stage 1                | -          | -        | -        | -        | -        | -        |
| Stage 2                | -          | -        | -        | -        | -        | -        |
| Critical Hdwy          | -          | -        | 4.3      | -        | -        | 7.38     |
| Critical Hdwy Stg 1    | -          | -        | -        | -        | -        | -        |
| Critical Hdwy Stg 2    | -          | -        | -        | -        | -        | -        |
| Follow-up Hdwy         | -          | -        | 2.3      | -        | -        | 3.54     |
| Pot Cap-1 Maneuver     | -          | -        | 326      | -        | 0        | 255      |
| Stage 1                | -          | -        | -        | -        | 0        | -        |
| Stage 2                | -          | -        | -        | -        | 0        | -        |
| Platoon blocked, %     | -          | -        |          | -        |          |          |
| Mov Cap-1 Maneuver     | _          | -        | 326      | _        | _        | 255      |
| Mov Cap-2 Maneuver     | _          | _        | -        | _        | _        |          |
| Stage 1                | _          | _        | _        | _        | _        | _        |
| Stage 2                |            |          |          |          |          |          |
| Slaye 2                | <u>-</u>   | <u>-</u> | _        | _        | <u>-</u> | <u>-</u> |
|                        |            |          |          |          |          |          |
| Approach               | EB         |          | WB       |          | NB       |          |
| HCM Control Delay, s   | 0          |          | 0.3      |          | 31.9     |          |
| HCM LOS                |            |          |          |          | D        |          |
| J                      |            |          |          |          |          |          |
|                        |            |          |          |          |          |          |
| Minor Lane/Major Mvm   | it l       | NBLn1    | EBT      | EBR      | WBL      | WBT      |
| Capacity (veh/h)       |            | 255      | -        | -        | 326      | -        |
| HCM Lane V/C Ratio     |            | 0.488    | -        | -        | 0.098    | -        |
| HCM Control Delay (s)  |            | 31.9     | -        | -        | 17.2     | -        |
| HCM Lane LOS           |            | D        | -        | -        | С        | -        |
| HCM 95th %tile Q(veh)  |            | 2.5      | -        | -        | 0.3      | -        |
|                        |            |          |          |          |          |          |

|                                                | ٠            | <b>→</b>  | •            | •            | <b>←</b>     | •            | 1              | <b>†</b>     | /            | <b>/</b>     | ţ            | 4            |
|------------------------------------------------|--------------|-----------|--------------|--------------|--------------|--------------|----------------|--------------|--------------|--------------|--------------|--------------|
| Movement                                       | EBL          | EBT       | EBR          | WBL          | WBT          | WBR          | NBL            | NBT          | NBR          | SBL          | SBT          | SBR          |
| Lane Configurations                            | ሻ            | <b>^</b>  | 7            | Ť            | <b>^</b>     | 7            | ሻ              | <b>†</b>     | 7            | Ť            | <b>↑</b>     | 7            |
| Traffic Volume (vph)                           | 183          | 750       | 428          | 71           | 860          | 69           | 328            | 119          | 49           | 92           | 177          | 206          |
| Future Volume (vph)                            | 183          | 750       | 428          | 71           | 860          | 69           | 328            | 119          | 49           | 92           | 177          | 206          |
| Ideal Flow (vphpl)                             | 1750         | 1750      | 1750         | 1750         | 1750         | 1750         | 1750           | 1750         | 1750         | 1750         | 1750         | 1750         |
| Total Lost time (s)                            | 4.5          | 5.0       | 4.5          | 4.5          | 5.0          | 5.0          | 4.5            | 5.0          | 5.0          | 4.5          | 5.0          | 5.0          |
| Lane Util. Factor                              | 1.00         | 0.95      | 1.00         | 1.00         | 0.95         | 1.00         | 1.00           | 1.00         | 1.00         | 1.00         | 1.00         | 1.00         |
| Frpb, ped/bikes                                | 1.00         | 1.00      | 0.94<br>1.00 | 1.00<br>1.00 | 1.00<br>1.00 | 0.91<br>1.00 | 1.00           | 1.00         | 0.99<br>1.00 | 1.00<br>1.00 | 1.00<br>1.00 | 0.82         |
| Flpb, ped/bikes<br>Frt                         | 1.00<br>1.00 | 1.00      | 0.85         | 1.00         | 1.00         | 0.85         | 1.00<br>1.00   | 1.00<br>1.00 | 0.85         | 1.00         | 1.00         | 1.00<br>0.85 |
| FIt Protected                                  | 0.95         | 1.00      | 1.00         | 0.95         | 1.00         | 1.00         | 0.95           | 1.00         | 1.00         | 0.95         | 1.00         | 1.00         |
| Satd. Flow (prot)                              | 1446         | 2771      | 1215         | 1484         | 2748         | 1114         | 1385           | 1483         | 1357         | 1458         | 1446         | 1022         |
| Flt Permitted                                  | 0.95         | 1.00      | 1.00         | 0.95         | 1.00         | 1.00         | 0.95           | 1.00         | 1.00         | 0.95         | 1.00         | 1.00         |
| Satd. Flow (perm)                              | 1446         | 2771      | 1215         | 1484         | 2748         | 1114         | 1385           | 1483         | 1357         | 1458         | 1446         | 1022         |
| Peak-hour factor, PHF                          | 0.95         | 0.95      | 0.95         | 0.95         | 0.95         | 0.95         | 0.95           | 0.95         | 0.95         | 0.95         | 0.95         | 0.95         |
| Adj. Flow (vph)                                | 193          | 789       | 451          | 75           | 905          | 73           | 345            | 125          | 52           | 97           | 186          | 217          |
| RTOR Reduction (vph)                           | 0            | 0         | 112          | 0            | 0            | 46           | 0              | 0            | 40           | 0            | 0            | 183          |
| Lane Group Flow (vph)                          | 193          | 789       | 339          | 75           | 905          | 27           | 345            | 125          | 12           | 97           | 186          | 34           |
| Confl. Peds. (#/hr)                            | 26           |           | 26           | 26           |              | 26           | 118            |              | 2            | 2            |              | 118          |
| Heavy Vehicles (%)                             | 15%          | 20%       | 15%          | 12%          | 21%          | 22%          | 20%            | 18%          | 8%           | 14%          | 21%          | 20%          |
| Turn Type                                      | Prot         | NA        | pm+ov        | Prot         | NA           | Perm         | Prot           | NA           | Perm         | Prot         | NA           | Perm         |
| Protected Phases                               | 5            | 2         | 3            | 1            | 6            |              | 3              | 8            |              | 7            | 4            |              |
| Permitted Phases                               |              |           | 2            |              |              | 6            |                |              | 8            |              |              | 4            |
| Actuated Green, G (s)                          | 22.1         | 64.0      | 89.3         | 10.4         | 52.3         | 52.3         | 25.3           | 33.4         | 33.4         | 14.3         | 22.4         | 22.4         |
| Effective Green, g (s)                         | 22.1         | 64.0      | 89.3         | 10.4         | 52.3         | 52.3         | 25.3           | 33.4         | 33.4         | 14.3         | 22.4         | 22.4         |
| Actuated g/C Ratio                             | 0.16         | 0.45      | 0.63         | 0.07         | 0.37         | 0.37         | 0.18           | 0.24         | 0.24         | 0.10         | 0.16         | 0.16         |
| Clearance Time (s)                             | 4.5          | 5.0       | 4.5          | 4.5          | 5.0          | 5.0          | 4.5            | 5.0          | 5.0          | 4.5          | 5.0          | 5.0          |
| Vehicle Extension (s)                          | 2.5          | 4.8       | 2.5          | 2.5          | 4.8          | 4.8          | 2.5            | 2.5          | 2.5          | 2.5          | 2.5          | 2.5          |
| Lane Grp Cap (vph)                             | 226          | 1256      | 768          | 109          | 1018         | 412          | 248            | 351          | 321          | 147          | 229          | 162          |
| v/s Ratio Prot                                 | c0.13        | 0.28      | 0.08         | 0.05         | c0.33        | 0.00         | c0.25          | 0.08         | 0.04         | 0.07         | c0.13        | 0.00         |
| v/s Ratio Perm                                 | 0.05         | 0.00      | 0.20         | 0.00         | 0.00         | 0.02         | 4.00           | 0.00         | 0.01         | 0.00         | 0.04         | 0.03         |
| v/c Ratio                                      | 0.85         | 0.63      | 0.44         | 0.69         | 0.89         | 0.07         | 1.39           | 0.36         | 0.04         | 0.66         | 0.81         | 0.21         |
| Uniform Delay, d1                              | 57.9         | 29.5      | 13.2         | 63.8         | 41.7         | 28.6         | 57.9           | 44.9         | 41.5         | 61.1         | 57.3         | 51.7         |
| Progression Factor                             | 1.00         | 1.00      | 1.00         | 1.00         | 1.00         | 1.00         | 1.00           | 1.00         | 1.00         | 1.00         | 1.00         | 1.00         |
| Incremental Delay, d2                          | 25.2<br>83.2 | 30.8      | 0.3<br>13.5  | 15.2<br>79.0 | 10.2<br>51.9 | 0.1<br>28.8  | 198.9<br>256.8 | 0.5<br>45.3  | 0.0<br>41.5  | 9.2<br>70.2  | 18.8<br>76.2 | 52.2         |
| Delay (s)<br>Level of Service                  | 03.2<br>F    | 30.6<br>C | 13.5<br>B    | 79.0<br>E    | 51.9<br>D    | 20.0<br>C    | 200.0<br>F     | 45.5<br>D    | 41.5<br>D    | 70.2<br>E    | 70.2<br>E    | 52.2<br>D    |
| Approach Delay (s)                             | , i          | 32.4      | U            | L            | 52.2         | U            |                | 184.7        | D            | L            | 64.6         | D            |
| Approach LOS                                   |              | 02.4<br>C |              |              | 02.2<br>D    |              |                | F            |              |              | 04.0<br>E    |              |
| Intersection Summary                           |              |           |              |              |              |              |                |              |              |              | _            |              |
| HCM 2000 Control Delay                         |              |           | 65.6         | ш            | CM 2000      | Level of     | Sorvico        |              | E            |              |              |              |
| HCM 2000 Control Delay HCM 2000 Volume to Capa | city ratio   |           | 0.97         | П            | CIVI ZUUU    | Level OI     | Sel vice       |              | Е            |              |              |              |
| Actuated Cycle Length (s)                      | icity ratio  |           | 141.1        | Q            | um of los    | t time (e)   |                |              | 19.0         |              |              |              |
| Intersection Capacity Utiliza                  | ation        |           | 97.1%        |              |              | of Service   |                |              | 19.0<br>F    |              |              |              |
| Analysis Period (min)                          | A.G.O.I.     |           | 15           | 10           | O LOVOI (    | C. OCI VICE  | ·              |              | '            |              |              |              |
| A maryolo i onou (min)                         |              |           | 10           |              |              |              |                |              |              |              |              |              |

|                               | ۶          | <b>→</b>   | •     | •     | <b>+</b>   | •          | 1       | <b>†</b> | ~    | <b>/</b> | ļ    | 4    |
|-------------------------------|------------|------------|-------|-------|------------|------------|---------|----------|------|----------|------|------|
| Movement                      | EBL        | EBT        | EBR   | WBL   | WBT        | WBR        | NBL     | NBT      | NBR  | SBL      | SBT  | SBR  |
| Lane Configurations           | ሻ          | <b>∱</b> ∱ |       | *     | <b>∱</b> ∱ |            | ሻ       | ₽        |      | *        | ₽    |      |
| Traffic Volume (vph)          | 22         | 792        | 32    | 108   | 932        | 73         | 12      | 11       | 55   | 54       | 27   | 21   |
| Future Volume (vph)           | 22         | 792        | 32    | 108   | 932        | 73         | 12      | 11       | 55   | 54       | 27   | 21   |
| Ideal Flow (vphpl)            | 1750       | 1750       | 1750  | 1750  | 1750       | 1750       | 1750    | 1750     | 1750 | 1750     | 1750 | 1750 |
| Total Lost time (s)           | 5.0        | 5.0        |       | 5.0   | 5.0        |            | 5.0     | 5.0      |      | 5.0      | 5.0  |      |
| Lane Util. Factor             | 1.00       | 0.95       |       | 1.00  | 0.95       |            | 1.00    | 1.00     |      | 1.00     | 1.00 |      |
| Frpb, ped/bikes               | 1.00       | 1.00       |       | 1.00  | 1.00       |            | 1.00    | 0.99     |      | 1.00     | 0.99 |      |
| Flpb, ped/bikes               | 1.00       | 1.00       |       | 1.00  | 1.00       |            | 0.99    | 1.00     |      | 1.00     | 1.00 |      |
| Frt                           | 1.00       | 0.99       |       | 1.00  | 0.99       |            | 1.00    | 0.87     |      | 1.00     | 0.94 |      |
| Flt Protected                 | 0.95       | 1.00       |       | 0.95  | 1.00       |            | 0.95    | 1.00     |      | 0.95     | 1.00 |      |
| Satd. Flow (prot)             | 1484       | 2743       |       | 1338  | 2710       |            | 1235    | 1163     |      | 1285     | 1450 |      |
| Flt Permitted                 | 0.24       | 1.00       |       | 0.30  | 1.00       |            | 0.73    | 1.00     |      | 0.71     | 1.00 |      |
| Satd. Flow (perm)             | 376        | 2743       |       | 417   | 2710       |            | 942     | 1163     |      | 965      | 1450 |      |
| Peak-hour factor, PHF         | 0.98       | 0.98       | 0.98  | 0.98  | 0.98       | 0.98       | 0.98    | 0.98     | 0.98 | 0.98     | 0.98 | 0.98 |
| Adj. Flow (vph)               | 22         | 808        | 33    | 110   | 951        | 74         | 12      | 11       | 56   | 55       | 28   | 21   |
| RTOR Reduction (vph)          | 0          | 2          | 0     | 0     | 3          | 0          | 0       | 49       | 0    | 0        | 18   | 0    |
| Lane Group Flow (vph)         | 22         | 839        | 0     | 110   | 1022       | 0          | 12      | 18       | 0    | 55       | 31   | 0    |
| Confl. Peds. (#/hr)           | 9          |            | 33    | 33    |            | 9          | 18      |          | 4    | 4        |      | 18   |
| Confl. Bikes (#/hr)           |            |            |       |       |            | 1          |         |          |      |          |      |      |
| Heavy Vehicles (%)            | 12%        | 20%        | 27%   | 24%   | 22%        | 10%        | 33%     | 50%      | 26%  | 29%      | 4%   | 22%  |
| Turn Type                     | D.P+P      | NA         |       | D.P+P | NA         |            | Perm    | NA       |      | Perm     | NA   |      |
| Protected Phases              | 5          | 2          |       | 1     | 6          |            |         | 8        |      |          | 4    |      |
| Permitted Phases              | 6          |            |       | 2     |            |            | 8       |          |      | 4        |      |      |
| Actuated Green, G (s)         | 41.9       | 36.4       |       | 41.9  | 40.1       |            | 8.0     | 8.0      |      | 8.0      | 8.0  |      |
| Effective Green, g (s)        | 41.9       | 36.4       |       | 41.9  | 40.1       |            | 8.0     | 8.0      |      | 8.0      | 8.0  |      |
| Actuated g/C Ratio            | 0.65       | 0.56       |       | 0.65  | 0.62       |            | 0.12    | 0.12     |      | 0.12     | 0.12 |      |
| Clearance Time (s)            | 5.0        | 5.0        |       | 5.0   | 5.0        |            | 5.0     | 5.0      |      | 5.0      | 5.0  |      |
| Vehicle Extension (s)         | 2.5        | 5.3        |       | 2.5   | 5.3        |            | 2.5     | 2.5      |      | 2.5      | 2.5  |      |
| Lane Grp Cap (vph)            | 273        | 1538       |       | 347   | 1674       |            | 116     | 143      |      | 118      | 178  |      |
| v/s Ratio Prot                | 0.00       | 0.31       |       | c0.03 | c0.38      |            |         | 0.02     |      |          | 0.02 |      |
| v/s Ratio Perm                | 0.05       |            |       | 0.18  |            |            | 0.01    |          |      | c0.06    |      |      |
| v/c Ratio                     | 0.08       | 0.55       |       | 0.32  | 0.61       |            | 0.10    | 0.13     |      | 0.47     | 0.17 |      |
| Uniform Delay, d1             | 4.4        | 9.0        |       | 4.6   | 7.6        |            | 25.3    | 25.3     |      | 26.5     | 25.5 |      |
| Progression Factor            | 1.00       | 1.00       |       | 1.00  | 1.00       |            | 1.00    | 1.00     |      | 1.00     | 1.00 |      |
| Incremental Delay, d2         | 0.1        | 0.8        |       | 0.4   | 1.0        |            | 0.3     | 0.3      |      | 2.1      | 0.3  |      |
| Delay (s)                     | 4.5        | 9.8        |       | 5.0   | 8.6        |            | 25.6    | 25.6     |      | 28.6     | 25.8 |      |
| Level of Service              | Α          | Α          |       | Α     | Α          |            | С       | С        |      | С        | С    |      |
| Approach Delay (s)            |            | 9.6        |       |       | 8.3        |            |         | 25.6     |      |          | 27.3 |      |
| Approach LOS                  |            | Α          |       |       | Α          |            |         | С        |      |          | С    |      |
| Intersection Summary          |            |            |       |       |            |            |         |          |      |          |      |      |
| HCM 2000 Control Delay        |            |            | 10.3  | Н     | CM 2000    | Level of S | Service |          | В    |          |      |      |
| HCM 2000 Volume to Capac      | city ratio |            | 0.59  |       |            |            |         |          |      |          |      |      |
| Actuated Cycle Length (s)     |            |            | 64.9  | S     | um of lost | time (s)   |         |          | 15.0 |          |      |      |
| Intersection Capacity Utiliza | tion       |            | 62.8% |       | CU Level o |            |         |          | В    |          |      |      |
| Analysis Period (min)         |            |            | 15    |       |            |            |         |          |      |          |      |      |
| c Critical Lane Group         |            |            |       |       |            |            |         |          |      |          |      |      |

| Intersection           |        |          |              |          |        |         |                      |                                |
|------------------------|--------|----------|--------------|----------|--------|---------|----------------------|--------------------------------|
| Int Delay, s/veh       | 53.2   |          |              |          |        |         |                      |                                |
| Movement               | EBL    | EBT      | WBT          | WBR      | SBL    | SBR     |                      |                                |
| Lane Configurations    | Ť      | <b>^</b> | <b>^</b>     | 7        | ¥      |         |                      |                                |
| Traffic Vol, veh/h     | 148    | 851      | 1067         | 125      | 59     | 100     |                      |                                |
| Future Vol, veh/h      | 148    | 851      | 1067         | 125      | 59     | 100     |                      |                                |
| Conflicting Peds, #/hr | 8      | 0        | 0            | 8        | 0      | 0       |                      |                                |
| Sign Control           | Free   | Free     | Free         | Free     | Stop   | Stop    |                      |                                |
| RT Channelized         | -      |          | _            |          | -      |         |                      |                                |
| Storage Length         | 130    | -        | _            | 60       | 0      | -       |                      |                                |
| Veh in Median Storage  |        | 0        | 0            | -        | 0      | _       |                      |                                |
| Grade, %               | -, "   | 0        | 0            | _        | 0      | _       |                      |                                |
| Peak Hour Factor       | 94     | 94       | 94           | 94       | 94     | 94      |                      |                                |
| Heavy Vehicles, %      | 25     | 21       | 18           | 18       | 30     | 24      |                      |                                |
| Mvmt Flow              | 157    | 905      | 1135         | 133      | 63     | 106     |                      |                                |
| MINITE FIOM            | 15/    | 905      | 1133         | 133      | 03     | 106     |                      |                                |
| Major/Minor            | Major1 | ı        | Major?       |          | Minor2 |         |                      |                                |
|                        | Major1 |          | Major2       |          |        | E70     |                      |                                |
| Conflicting Flow All   | 1143   | 0        | -            |          | 1911   | 576     |                      |                                |
| Stage 1                | -      | -        | -            | -        | 1143   | -       |                      |                                |
| Stage 2                | -      | -        | -            | -        | 768    | -       |                      |                                |
| Critical Hdwy          | 4.6    | -        | -            | -        | 7.4    | 7.38    |                      |                                |
| Critical Hdwy Stg 1    | -      | -        | -            | -        | 6.4    | -       |                      |                                |
| Critical Hdwy Stg 2    | -      | -        | -            | -        | 6.4    | -       |                      |                                |
| Follow-up Hdwy         | 2.45   | -        | -            | -        | 3.8    | 3.54    |                      |                                |
| Pot Cap-1 Maneuver     | 491    | -        | -            | -        | ~ 43   | 409     |                      |                                |
| Stage 1                | -      | -        | -            | -        | 214    | -       |                      |                                |
| Stage 2                | -      | -        | -            | -        | 353    | -       |                      |                                |
| Platoon blocked, %     |        | -        | _            | _        |        |         |                      |                                |
| Mov Cap-1 Maneuver     | 491    | _        | _            | _        | ~ 29   | 406     |                      |                                |
| Mov Cap-2 Maneuver     | -      | _        | _            | _        | ~ 29   | -       |                      |                                |
| Stage 1                | _      | _        | _            | _        | 212    | _       |                      |                                |
| Stage 2                | _      | _        | _            | <u>_</u> | 238    | _       |                      |                                |
| Olage 2                |        | _        | <del>-</del> |          | 200    | _       |                      |                                |
| Annroach               | EB     |          | WB           |          | SB     |         |                      |                                |
| Approach               |        |          |              |          |        |         |                      |                                |
| HCM Control Delay, s   | 2.3    |          | 0            |          | \$ 772 |         |                      |                                |
| HCM LOS                |        |          |              |          | F      |         |                      |                                |
|                        |        |          |              |          |        |         |                      |                                |
| Minor Lane/Major Mvm   | nt     | EBL      | EBT          | WBT      | WBR    | SBLn1   |                      |                                |
| Capacity (veh/h)       |        | 491      | -            | -        | -      | 70      |                      |                                |
| HCM Lane V/C Ratio     |        | 0.321    | -            | -        | -      | 2.416   |                      |                                |
| HCM Control Delay (s)  |        | 15.8     | -            | -        | -      | \$772   |                      |                                |
| HCM Lane LOS           |        | С        | -            | -        | -      | F       |                      |                                |
| HCM 95th %tile Q(veh   | )      | 1.4      | -            | -        | -      | 16.3    |                      |                                |
| Notes                  |        |          |              |          |        |         |                      |                                |
| ~: Volume exceeds car  | nacity | \$∙ Do   | lav evo      | eeds 30  | ηne    | +· Com  | outation Not Defined | *: All major volume in platoon |
| . Volume exceeds Ca    | pacity | ψ. De    | iay ext      | eeus 30  | 000    | ·. Comp | Julation Not Delined | . Ali major volume in piatoon  |

| Intersection           |        |            |          |         |       |          |          |        |       |          |         |          |           |
|------------------------|--------|------------|----------|---------|-------|----------|----------|--------|-------|----------|---------|----------|-----------|
| Int Delay, s/veh       | 48.4   |            |          |         |       |          |          |        |       |          |         |          |           |
| Movement               | EBL    | EBT        | EBR      | WBL     | WBT   | WBR      | NBL      | NBT    | NBR   | SBL      | SBT     | SBR      |           |
| Lane Configurations    | ች      | <b>†</b> } |          | ሻ       | ħβ    |          |          | 4      |       |          | 4       | 7        |           |
| Traffic Vol, veh/h     | 17     | 698        | 117      | 99      | 998   | 10       | 53       | 5      | 125   | 11       | 4       | 76       |           |
| uture Vol, veh/h       | 17     | 698        | 117      | 99      | 998   | 10       | 53       | 5      | 125   | 11       | 4       | 76       |           |
| Conflicting Peds, #/hr | 4      | 0          | 14       | 14      | 0     | 4        | 22       | 0      | 0     | 0        | 0       | 22       |           |
| Sign Control           | Free   | Free       | Free     | Free    | Free  | Free     | Stop     | Stop   | Stop  | Stop     | Stop    | Stop     |           |
| RT Channelized         | -      | -          | None     | -       | -     | None     | -        | -      | None  | -        | -       | None     |           |
| Storage Length         | 90     | _          | -        | 185     | _     | -        | _        | _      | -     | _        | _       | 55       |           |
| /eh in Median Storage, |        | 0          | _        | -       | 0     | _        | -        | 0      | _     | _        | 0       | -        |           |
| Grade, %               | π -    | 0          | _        | _       | 0     | <u>-</u> | _        | 0      | _     | _        | 0       | -        |           |
| Peak Hour Factor       | 91     | 91         | 91       | 91      | 91    | 91       | 91       | 91     | 91    | 91       | 91      | 91       |           |
| Heavy Vehicles, %      | 9      | 23         | 16       | 9       | 23    | 38       | 0        | 0      | 10    | 9        | 25      | 7        |           |
|                        | 19     |            | 129      | 109     |       | 11       | 58       | 5      | 137   | 12       | 4       | 84       |           |
| Mvmt Flow              | 19     | 767        | 129      | 109     | 1097  | 11       | 50       | 5      | 137   | 12       | 4       | 04       |           |
| lajor/Minor M          | 1ajor1 |            | ı        | Major2  |       |          | Minor1   |        |       | Minor2   |         |          |           |
| Conflicting Flow All   | 1112   | 0          | 0        | 910     | 0     | 0        | 1673     | 2212   | 462   | 1748     | 2271    | 580      |           |
| Stage 1                | -      | -          |          | 910     | -     | -        | 883      | 883    | 402   |          | 1324    | 500      |           |
| •                      | -      |            | -        | -       |       |          | 790      | 1329   | -     | 424      | 947     | -        |           |
| Stage 2                | 4.00   | -          | -        | 4.28    | -     | -        |          | 6.5    | 7.1   |          |         | 7.04     |           |
| critical Hdwy          | 4.28   | -          | -        | 4.20    | -     | -        | 7.5      |        |       | 7.68     | 7       | 7.04     |           |
| Critical Hdwy Stg 1    | -      | -          | -        | -       | -     | -        | 6.5      | 5.5    | -     | 6.68     | 6       | -        |           |
| Critical Hdwy Stg 2    | -      | -          | -        | -       | -     | -        | 6.5      | 5.5    | -     | 6.68     | 6       | -        |           |
| ollow-up Hdwy          | 2.29   | -          | -        | 2.29    | -     | -        | 3.5      | 4      | 3.4   | 3.59     | 4.25    | 3.37     |           |
| ot Cap-1 Maneuver      | 585    | -          | -        | 702     | -     | -        | 64       | 45     | 525   | 51       | 29      | 445      |           |
| Stage 1                | -      | -          | -        | -       | -     | -        | 311      | 367    | -     | 155      | 184     | -        |           |
| Stage 2                | -      | -          | -        | -       | -     | -        | 354      | 226    | -     | 560      | 290     | -        |           |
| Platoon blocked, %     |        | -          | -        |         | -     | -        |          |        |       |          |         |          |           |
| Mov Cap-1 Maneuver     | 573    | -          | -        | 702     | -     | -        | ~ 37     | 36     | 518   | 28       | 23      | 434      |           |
| Mov Cap-2 Maneuver     | -      | -          | -        | -       | -     | -        | ~ 37     | 36     | -     | 28       | 23      | _        |           |
| Stage 1                | -      | -          | -        | -       | -     | -        | 297      | 350    | -     | 149      | 155     | -        |           |
| Stage 2                | -      | -          | -        | -       | -     | -        | 230      | 190    | -     | 392      | 277     | -        |           |
|                        |        |            |          |         |       |          |          |        |       |          |         |          |           |
| Approach               | EB     |            |          | WB      |       |          | NB       |        |       | SB       |         |          |           |
| HCM Control Delay, s   | 0.2    |            |          | 1       |       | \$       | 549.4    |        |       | 58.3     |         |          |           |
| HCM LOS                |        |            |          |         |       |          | F        |        |       | F        |         |          |           |
|                        |        |            |          |         |       |          |          |        |       |          |         |          |           |
| Minor Lane/Major Mvmt  | l l    | NBLn1      | EBL      | EBT     | EBR   | WBL      | WBT      | WBR S  | SBLn1 | SBLn2    |         |          |           |
| Capacity (veh/h)       |        | 101        | 573      | -       | -     | 702      | -        | -      | 26    | 434      |         |          |           |
| ICM Lane V/C Ratio     |        | 1.991      | 0.033    | -       | -     | 0.155    | -        | -      | 0.634 | 0.192    |         |          |           |
| ICM Control Delay (s)  | \$     | 549.4      | 11.5     | -       | -     | 11.1     | -        |        | 276.2 | 15.3     |         |          |           |
| ICM Lane LOS           | •      | F          | В        | -       | -     | В        | -        | _      | F     | С        |         |          |           |
| HCM 95th %tile Q(veh)  |        | 17         | 0.1      | -       | _     | 0.5      | -        | -      | 2     | 0.7      |         |          |           |
| Votes                  |        |            |          |         |       |          |          |        |       |          |         |          |           |
|                        | ooit:  | ¢. Da      | Nov ovo  | oods 20 | Mc    | L. Com   | utation  | Not Do | fined | *. AII . | majory  | olumo in | nlatoon   |
| : Volume exceeds cap   | acity  | φ: De      | elay exc | eeus 30 | 108 - | +: Comp  | outation | NOT DE | illea | . All    | najor v | olume in | n platoon |

|                               | ۶          | <b>→</b> | •      | •     | <b>+</b>   | •          | 4       | <b>†</b> | <i>&gt;</i> | <b>/</b> | <b>↓</b>    | 4    |
|-------------------------------|------------|----------|--------|-------|------------|------------|---------|----------|-------------|----------|-------------|------|
| Movement                      | EBL        | EBT      | EBR    | WBL   | WBT        | WBR        | NBL     | NBT      | NBR         | SBL      | SBT         | SBR  |
| Lane Configurations           | ሻ          | <b>^</b> | 7      | 7     | f)         |            | 14.14   | <b>^</b> | 7           | 7        | <b>∱</b> 1> |      |
| Traffic Volume (vph)          | 169        | 414      | 260    | 307   | 310        | 93         | 248     | 478      | 144         | 235      | 939         | 129  |
| Future Volume (vph)           | 169        | 414      | 260    | 307   | 310        | 93         | 248     | 478      | 144         | 235      | 939         | 129  |
| Ideal Flow (vphpl)            | 1750       | 1750     | 1750   | 1750  | 1750       | 1750       | 1750    | 1750     | 1750        | 1750     | 1750        | 1750 |
| Total Lost time (s)           | 4.5        | 5.5      | 5.5    | 4.5   | 5.5        |            | 4.5     | 5.5      | 5.5         | 4.5      | 5.5         |      |
| Lane Util. Factor             | 1.00       | 1.00     | 1.00   | 1.00  | 1.00       |            | 0.97    | 0.95     | 1.00        | 1.00     | 0.95        |      |
| Frpb, ped/bikes               | 1.00       | 1.00     | 0.98   | 1.00  | 1.00       |            | 1.00    | 1.00     | 0.98        | 1.00     | 1.00        |      |
| Flpb, ped/bikes               | 1.00       | 1.00     | 1.00   | 1.00  | 1.00       |            | 1.00    | 1.00     | 1.00        | 1.00     | 1.00        |      |
| Frt                           | 1.00       | 1.00     | 0.85   | 1.00  | 0.97       |            | 1.00    | 1.00     | 0.85        | 1.00     | 0.98        |      |
| Flt Protected                 | 0.95       | 1.00     | 1.00   | 0.95  | 1.00       |            | 0.95    | 1.00     | 1.00        | 0.95     | 1.00        |      |
| Satd. Flow (prot)             | 1421       | 1483     | 1218   | 1341  | 1315       |            | 2906    | 2639     | 1054        | 1374     | 2939        |      |
| Flt Permitted                 | 0.95       | 1.00     | 1.00   | 0.95  | 1.00       |            | 0.95    | 1.00     | 1.00        | 0.95     | 1.00        |      |
| Satd. Flow (perm)             | 1421       | 1483     | 1218   | 1341  | 1315       |            | 2906    | 2639     | 1054        | 1374     | 2939        |      |
| Peak-hour factor, PHF         | 0.96       | 0.96     | 0.96   | 0.96  | 0.96       | 0.96       | 0.96    | 0.96     | 0.96        | 0.96     | 0.96        | 0.96 |
| Adj. Flow (vph)               | 176        | 431      | 271    | 320   | 323        | 97         | 258     | 498      | 150         | 245      | 978         | 134  |
| RTOR Reduction (vph)          | 0          | 0        | 191    | 0     | 8          | 0          | 0       | 0        | 105         | 0        | 8           | 0    |
| Lane Group Flow (vph)         | 176        | 431      | 80     | 320   | 412        | 0          | 258     | 498      | 45          | 245      | 1104        | 0    |
| Confl. Peds. (#/hr)           |            |          | 5      | 5     |            |            |         |          | 1           | 1        |             |      |
| Heavy Vehicles (%)            | 17%        | 18%      | 20%    | 24%   | 25%        | 40%        | 11%     | 26%      | 38%         | 21%      | 10%         | 19%  |
| Turn Type                     | Prot       | NA       | Perm   | Prot  | NA         |            | Prot    | NA       | custom      | Prot     | NA          |      |
| Protected Phases              | 3          | 8        |        | 7     | 4          |            | 1       | 6        |             | 5        | 2           |      |
| Permitted Phases              |            |          | 8      |       |            |            |         |          | 2           |          |             |      |
| Actuated Green, G (s)         | 25.5       | 30.5     | 30.5   | 25.5  | 30.5       |            | 14.7    | 38.5     | 39.3        | 15.5     | 39.3        |      |
| Effective Green, g (s)        | 25.5       | 30.5     | 30.5   | 25.5  | 30.5       |            | 14.7    | 38.5     | 39.3        | 15.5     | 39.3        |      |
| Actuated g/C Ratio            | 0.20       | 0.23     | 0.23   | 0.20  | 0.23       |            | 0.11    | 0.30     | 0.30        | 0.12     | 0.30        |      |
| Clearance Time (s)            | 4.5        | 5.5      | 5.5    | 4.5   | 5.5        |            | 4.5     | 5.5      | 5.5         | 4.5      | 5.5         |      |
| Vehicle Extension (s)         | 3.0        | 3.2      | 3.2    | 3.0   | 3.5        |            | 3.0     | 5.2      | 5.2         | 3.0      | 5.2         |      |
| Lane Grp Cap (vph)            | 278        | 347      | 285    | 263   | 308        |            | 328     | 781      | 318         | 163      | 888         |      |
| v/s Ratio Prot                | 0.12       | 0.29     |        | c0.24 | c0.31      |            | c0.09   | 0.19     |             | c0.18    | c0.38       |      |
| v/s Ratio Perm                |            |          | 0.07   |       |            |            |         |          | 0.04        |          |             |      |
| v/c Ratio                     | 0.63       | 1.24     | 0.28   | 1.22  | 1.34       |            | 0.79    | 0.64     | 0.14        | 1.50     | 1.24        |      |
| Uniform Delay, d1             | 48.0       | 49.8     | 40.7   | 52.2  | 49.8       |            | 56.1    | 39.7     | 33.1        | 57.2     | 45.4        |      |
| Progression Factor            | 1.00       | 1.00     | 1.00   | 1.00  | 1.00       |            | 1.27    | 0.91     | 0.54        | 1.00     | 1.00        |      |
| Incremental Delay, d2         | 4.7        | 131.1    | 0.6    | 127.0 | 171.8      |            | 8.1     | 2.7      | 0.6         | 255.6    | 118.8       |      |
| Delay (s)                     | 52.6       | 180.8    | 41.3   | 179.3 | 221.5      |            | 79.3    | 39.0     | 18.5        | 312.9    | 164.2       |      |
| Level of Service              | D          | F        | D      | F     | F          |            | Е       | D        | В           | F        | F           |      |
| Approach Delay (s)            |            | 112.1    |        |       | 203.3      |            |         | 47.1     |             |          | 191.0       |      |
| Approach LOS                  |            | F        |        |       | F          |            |         | D        |             |          | F           |      |
| Intersection Summary          |            |          |        |       |            |            |         |          |             |          |             |      |
| HCM 2000 Control Delay        |            |          | 141.9  | Н     | CM 2000    | Level of S | Service |          | F           |          |             |      |
| HCM 2000 Volume to Capa       | city ratio |          | 1.22   |       |            |            |         |          |             |          |             |      |
| Actuated Cycle Length (s)     |            |          | 130.0  | S     | um of lost | time (s)   |         |          | 20.0        |          |             |      |
| Intersection Capacity Utiliza | ation      |          | 100.2% |       | CU Level o |            |         |          | G           |          |             |      |
| Analysis Period (min)         |            |          | 15     |       |            |            |         |          |             |          |             |      |
| 0.101 1.1 0                   |            |          |        |       |            |            |         |          |             |          |             |      |

| Intersection                   |               |        |       |       |      |      |      |      |      |      |      |
|--------------------------------|---------------|--------|-------|-------|------|------|------|------|------|------|------|
| Intersection Delay, s/veh      | 12.1          |        |       |       |      |      |      |      |      |      |      |
| Intersection LOS               | В             |        |       |       |      |      |      |      |      |      |      |
|                                |               |        |       |       |      |      |      |      |      |      |      |
| Movement                       | EBL EBT       | EBR    | WBL   | WBT   | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SB   |
| Lane Configurations            | 4             |        |       | 4     |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h             | 25 48         |        | 33    | 45    | 30   | 9    | 130  | 13   | 46   | 242  | 27   |
| Future Vol, veh/h              | 25 48         |        | 33    | 45    | 30   | 9    | 130  | 13   | 46   | 242  | 27   |
|                                | 0.94 0.94     |        | 0.94  | 0.94  | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 |
| Heavy Vehicles, %              | 39 23         |        | 31    | 20    | 86   | 22   | 13   | 27   | 36   | 13   | 16   |
| Mvmt Flow                      | 27 51         |        | 35    | 48    | 32   | 10   | 138  | 14   | 49   | 257  | 29   |
| Number of Lanes                | 0 1           | -      | 0     | 1     | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                       | EB            |        | WB    |       |      | NB   |      |      | SB   |      |      |
|                                | WB            |        | EB    |       |      | SB   |      |      | NB   |      |      |
| Opposing Lanes                 | 1             |        | 1     |       |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left      | : SB          |        | NB    |       |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left         | 1             |        | 1     |       |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Righ      | h <b>t</b> NB |        | SB    |       |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right        | 1             |        | 1     |       |      | 1    |      |      | 1    |      |      |
|                                | 10.6          |        | 10.4  |       |      | 10.3 |      |      | 14.2 |      |      |
| HCM LOS                        | В             |        | В     |       |      | В    |      |      | В    |      |      |
|                                |               |        |       |       |      |      |      |      |      |      |      |
| Lane                           | NBLn1         | EBLn1\ | NBLn1 | SBLn1 |      |      |      |      |      |      |      |
| Vol Left, %                    | 6%            |        | 31%   | 15%   |      |      |      |      |      |      |      |
| Vol Thru, %                    | 86%           |        | 42%   | 77%   |      |      |      |      |      |      |      |
| Vol Right, %                   | 9%            |        | 28%   | 9%    |      |      |      |      |      |      |      |
| Sign Control                   | Stop          | Stop   | Stop  | Stop  |      |      |      |      |      |      |      |
| Traffic Vol by Lane            | 152           |        | 108   | 315   |      |      |      |      |      |      |      |
| LT Vol                         | 9             | 25     | 33    | 46    |      |      |      |      |      |      |      |
| Through Vol                    | 130           |        | 45    | 242   |      |      |      |      |      |      |      |
| RT Vol                         | 13            |        | 30    | 27    |      |      |      |      |      |      |      |
| Lane Flow Rate                 | 162           |        | 115   | 335   |      |      |      |      |      |      |      |
| Geometry Grp                   | 1             |        | 1     | 1     |      |      |      |      |      |      |      |
| Degree of Util (X)             |               | 0.209  |       | 0.513 |      |      |      |      |      |      |      |
| Departure Headway (Hd)         | 5.501         | 5.995  | 5.963 |       |      |      |      |      |      |      |      |
| Convergence, Y/N               | Yes           |        | Yes   | Yes   |      |      |      |      |      |      |      |
| Cap                            | 653           |        | 602   | 660   |      |      |      |      |      |      |      |
| Service Time                   | 3.529         |        |       |       |      |      |      |      |      |      |      |
| HCM Lane V/C Ratio             | 0.248         |        |       |       |      |      |      |      |      |      |      |
| HCM Control Delay HCM Lane LOS | 10.3          | 10.6   | 10.4  | 14.2  |      |      |      |      |      |      |      |
|                                | В             | В      | В     | В     |      |      |      |      |      |      |      |

0.7

2.9

| Intersection                                                                                                                                                            |            |                                                                                                     |                                                                                                    |                                                                                                    |      |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------|------|
| Intersection Delay, s/veh                                                                                                                                               | n 12 2     |                                                                                                     |                                                                                                    |                                                                                                    |      |      |
| Intersection LOS                                                                                                                                                        | 112.2<br>B |                                                                                                     |                                                                                                    |                                                                                                    |      |      |
| intersection LOS                                                                                                                                                        | D          |                                                                                                     |                                                                                                    |                                                                                                    |      |      |
|                                                                                                                                                                         |            |                                                                                                     |                                                                                                    |                                                                                                    |      |      |
| Movement                                                                                                                                                                |            | WBR                                                                                                 | NBT                                                                                                | NBR                                                                                                | SBL  | SBT  |
| Lane Configurations                                                                                                                                                     | N/F        |                                                                                                     | ₽                                                                                                  |                                                                                                    |      | सी   |
| Traffic Vol, veh/h                                                                                                                                                      | 137        | 62                                                                                                  | 131                                                                                                | 143                                                                                                | 103  | 139  |
| Future Vol, veh/h                                                                                                                                                       | 137        | 62                                                                                                  | 131                                                                                                | 143                                                                                                | 103  | 139  |
| Peak Hour Factor                                                                                                                                                        | 0.85       | 0.85                                                                                                | 0.85                                                                                               | 0.85                                                                                               | 0.85 | 0.85 |
| Heavy Vehicles, %                                                                                                                                                       | 12         | 28                                                                                                  | 15                                                                                                 | 19                                                                                                 | 22   | 24   |
| Mvmt Flow                                                                                                                                                               | 161        | 73                                                                                                  | 154                                                                                                | 168                                                                                                | 121  | 164  |
| Number of Lanes                                                                                                                                                         | 1          | 0                                                                                                   | 1                                                                                                  | 0                                                                                                  | 0    | 1    |
|                                                                                                                                                                         | •          |                                                                                                     | •                                                                                                  |                                                                                                    |      |      |
| Approach                                                                                                                                                                | WB         |                                                                                                     | NB                                                                                                 |                                                                                                    | SB   |      |
| Opposing Approach                                                                                                                                                       |            |                                                                                                     | SB                                                                                                 |                                                                                                    | NB   |      |
| Opposing Lanes                                                                                                                                                          | 0          |                                                                                                     | 1                                                                                                  |                                                                                                    | 1    |      |
| Conflicting Approach Le                                                                                                                                                 | ft NB      |                                                                                                     |                                                                                                    |                                                                                                    | WB   |      |
| Conflicting Lanes Left                                                                                                                                                  | 1          |                                                                                                     | 0                                                                                                  |                                                                                                    | 1    |      |
| Conflicting Approach Rig                                                                                                                                                | ghtSB      |                                                                                                     | WB                                                                                                 |                                                                                                    |      |      |
| Conflicting Lanes Right                                                                                                                                                 | 1          |                                                                                                     | 1                                                                                                  |                                                                                                    | 0    |      |
| HCM Control Delay                                                                                                                                                       | 11.9       |                                                                                                     | 11.9                                                                                               |                                                                                                    | 12.7 |      |
| HCM LOS                                                                                                                                                                 | В          |                                                                                                     | В                                                                                                  |                                                                                                    | В    |      |
|                                                                                                                                                                         |            |                                                                                                     |                                                                                                    |                                                                                                    |      |      |
| Lana                                                                                                                                                                    | N          | IDI 54V                                                                                             | VBLn1                                                                                              | CDI n1                                                                                             |      |      |
| Lane                                                                                                                                                                    | IN.        |                                                                                                     |                                                                                                    |                                                                                                    |      |      |
| Vol Left, %                                                                                                                                                             |            | 0%                                                                                                  | 69%                                                                                                | 43%                                                                                                |      |      |
| Vol Thru, %                                                                                                                                                             |            | 48%                                                                                                 |                                                                                                    | ·                                                                                                  |      |      |
| Vol Right, %                                                                                                                                                            |            |                                                                                                     | 0%                                                                                                 | 57%                                                                                                |      |      |
|                                                                                                                                                                         |            | 52%                                                                                                 | 31%                                                                                                | 0%                                                                                                 |      |      |
| Sign Control                                                                                                                                                            |            | 52%<br>Stop                                                                                         | 31%<br>Stop                                                                                        | 0%<br>Stop                                                                                         |      |      |
| Traffic Vol by Lane                                                                                                                                                     |            | 52%<br>Stop<br>274                                                                                  | 31%<br>Stop<br>199                                                                                 | 0%<br>Stop<br>242                                                                                  |      |      |
|                                                                                                                                                                         |            | 52%<br>Stop<br>274<br>0                                                                             | 31%<br>Stop                                                                                        | 0%<br>Stop<br>242<br>103                                                                           |      |      |
| Traffic Vol by Lane                                                                                                                                                     |            | 52%<br>Stop<br>274                                                                                  | 31%<br>Stop<br>199                                                                                 | 0%<br>Stop<br>242                                                                                  |      |      |
| Traffic Vol by Lane<br>LT Vol                                                                                                                                           |            | 52%<br>Stop<br>274<br>0                                                                             | 31%<br>Stop<br>199<br>137                                                                          | 0%<br>Stop<br>242<br>103                                                                           |      |      |
| Traffic Vol by Lane<br>LT Vol<br>Through Vol                                                                                                                            |            | 52%<br>Stop<br>274<br>0<br>131                                                                      | 31%<br>Stop<br>199<br>137<br>0                                                                     | 0%<br>Stop<br>242<br>103<br>139                                                                    |      |      |
| Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate                                                                                                            |            | 52%<br>Stop<br>274<br>0<br>131<br>143                                                               | 31%<br>Stop<br>199<br>137<br>0<br>62                                                               | 0%<br>Stop<br>242<br>103<br>139                                                                    |      |      |
| Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp                                                                                               |            | 52%<br>Stop<br>274<br>0<br>131<br>143<br>322                                                        | 31%<br>Stop<br>199<br>137<br>0<br>62<br>234<br>1                                                   | 0%<br>Stop<br>242<br>103<br>139<br>0<br>285                                                        |      |      |
| Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)                                                                            |            | 52%<br>Stop<br>274<br>0<br>131<br>143<br>322<br>1<br>0.446                                          | 31%<br>Stop<br>199<br>137<br>0<br>62<br>234<br>1<br>0.365                                          | 0%<br>Stop<br>242<br>103<br>139<br>0<br>285<br>1                                                   |      |      |
| Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Ho                                                      |            | 52%<br>Stop<br>274<br>0<br>131<br>143<br>322<br>1<br>0.446<br>4.983                                 | 31%<br>Stop<br>199<br>137<br>0<br>62<br>234<br>1<br>0.365<br>5.617                                 | 0%<br>Stop<br>242<br>103<br>139<br>0<br>285<br>1<br>0.436<br>5.516                                 |      |      |
| Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hot Convergence, Y/N                                    |            | 52%<br>Stop<br>274<br>0<br>131<br>143<br>322<br>1<br>0.446<br>4.983<br>Yes                          | 31%<br>Stop<br>199<br>137<br>0<br>62<br>234<br>1<br>0.365<br>5.617<br>Yes                          | 0%<br>Stop<br>242<br>103<br>139<br>0<br>285<br>1<br>0.436<br>5.516<br>Yes                          |      |      |
| Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd Convergence, Y/N Cap                                 | d) -       | 52%<br>Stop<br>274<br>0<br>131<br>143<br>322<br>1<br>0.446<br>4.983<br>Yes<br>725                   | 31%<br>Stop<br>199<br>137<br>0<br>62<br>234<br>1<br>0.365<br>5.617<br>Yes<br>641                   | 0%<br>Stop<br>242<br>103<br>139<br>0<br>285<br>1<br>0.436<br>5.516<br>Yes<br>655                   |      |      |
| Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd Convergence, Y/N Cap Service Time                    | i) ·       | 52%<br>Stop<br>274<br>0<br>131<br>143<br>322<br>1<br>0.446<br>4.983<br>Yes<br>725<br>2.992          | 31%<br>Stop<br>199<br>137<br>0<br>62<br>234<br>1<br>0.365<br>5.617<br>Yes<br>641<br>3.647          | 0%<br>Stop<br>242<br>103<br>139<br>0<br>285<br>1<br>0.436<br>5.516<br>Yes<br>655<br>3.525          |      |      |
| Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Ho Convergence, Y/N Cap Service Time HCM Lane V/C Ratio | i) ·       | 52%<br>Stop<br>274<br>0<br>131<br>143<br>322<br>1<br>0.446<br>4.983<br>Yes<br>725<br>2.992<br>0.444 | 31%<br>Stop<br>199<br>137<br>0<br>62<br>234<br>1<br>0.365<br>5.617<br>Yes<br>641<br>3.647<br>0.365 | 0%<br>Stop<br>242<br>103<br>139<br>0<br>285<br>1<br>0.436<br>5.516<br>Yes<br>655<br>3.525<br>0.435 |      |      |
| Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd Convergence, Y/N Cap Service Time                    | i) ·       | 52%<br>Stop<br>274<br>0<br>131<br>143<br>322<br>1<br>0.446<br>4.983<br>Yes<br>725<br>2.992          | 31%<br>Stop<br>199<br>137<br>0<br>62<br>234<br>1<br>0.365<br>5.617<br>Yes<br>641<br>3.647          | 0%<br>Stop<br>242<br>103<br>139<br>0<br>285<br>1<br>0.436<br>5.516<br>Yes<br>655<br>3.525          |      |      |

2.2

2.3

| Intersection                   |                |        |                       |       |                   |      |      |      |      |      |      |      |  |
|--------------------------------|----------------|--------|-----------------------|-------|-------------------|------|------|------|------|------|------|------|--|
| Intersection Delay, s/vel      | h20.2          |        |                       |       |                   |      |      |      |      |      |      |      |  |
| Intersection LOS               | С              |        |                       |       |                   |      |      |      |      |      |      |      |  |
|                                |                |        |                       |       |                   |      |      |      |      |      |      |      |  |
| Movement                       | EBL E          | BT EI  | BR W                  | 3L V  | NBT               | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
| Lane Configurations            |                | \$     |                       |       | 4                 |      |      | 4    |      |      | 4    |      |  |
| Traffic Vol, veh/h             |                |        | 56                    | 54    | 146               | 41   | 22   | 210  | 37   | 12   | 198  | 25   |  |
| Future Vol, veh/h              | 24 1           | 51     | 56                    | 54    | 146               | 41   | 22   | 210  | 37   | 12   | 198  | 25   |  |
| Peak Hour Factor               | 0.85 0.        | 35 0.  | 85 0.                 | 35 (  | 0.85              | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 |  |
| Heavy Vehicles, %              | 25             | 25     | 31                    | 16    | 25                | 18   | 30   | 13   | 28   | 54   | 20   | 9    |  |
| Mvmt Flow                      | 28 1           | 78     | 66                    | 64    | 172               | 48   | 26   | 247  | 44   | 14   | 233  | 29   |  |
| Number of Lanes                | 0              | 1      | 0                     | 0     | 1                 | 0    | 0    | 1    | 0    | 0    | 1    | 0    |  |
| Approach                       | EB             |        | V                     | /B    |                   |      | NB   |      |      | SB   |      |      |  |
| Opposing Approach              | WB             |        | [                     | ΞB    |                   |      | SB   |      |      | NB   |      |      |  |
| Opposing Lanes                 | 1              |        |                       | 1     |                   |      | 1    |      |      | 1    |      |      |  |
| Conflicting Approach Le        | ft SB          |        | ١                     | ΙB    |                   |      | EB   |      |      | WB   |      |      |  |
| Conflicting Lanes Left         | 1              |        |                       | 1     |                   |      | 1    |      |      | 1    |      |      |  |
| Conflicting Approach Rig       | gh <b>t</b> NB |        | (                     | SB    |                   |      | WB   |      |      | EB   |      |      |  |
| Conflicting Lanes Right        | 1              |        |                       | 1     |                   |      | 1    |      |      | 1    |      |      |  |
| HCM Control Delay              | 18.6           |        | 18                    | .9    |                   |      | 21.7 |      |      | 21.2 |      |      |  |
| HCM LOS                        | С              |        |                       | С     |                   |      | С    |      |      | С    |      |      |  |
|                                |                |        |                       |       |                   |      |      |      |      |      |      |      |  |
| Lane                           | NBL            | า1 EBL | n1WBL                 | n1 SB | BLn1              |      |      |      |      |      |      |      |  |
| Vol Left, %                    |                | % 10   | )% 22                 | .%    | 5%                |      |      |      |      |      |      |      |  |
| Vol Thru, %                    | 78             | % 65   | 5% 61                 | % 8   | 84%               |      |      |      |      |      |      |      |  |
| Vol Right, %                   | 14             | % 24   | <b>1</b> % 17         | % ′   | 11%               |      |      |      |      |      |      |      |  |
| Sign Control                   | St             | op St  | op St                 | ор S  | Stop              |      |      |      |      |      |      |      |  |
| Traffic Vol by Lane            |                |        | 31 2                  | 41    | 235               |      |      |      |      |      |      |      |  |
| LT Vol                         |                |        | 24                    | 54    | 12                |      |      |      |      |      |      |      |  |
| Through Vol                    |                |        | 51 1                  | 46    | 198               |      |      |      |      |      |      |      |  |
| RT Vol                         |                |        |                       | 41    | 25                |      |      |      |      |      |      |      |  |
| Lane Flow Rate                 | 3              |        |                       | 34    | 276               |      |      |      |      |      |      |      |  |
| Geometry Grp                   |                | 1      | 1                     | 1     | 1                 |      |      |      |      |      |      |      |  |
| Degree of Util (X)             | 0.6            |        |                       |       | .587              |      |      |      |      |      |      |      |  |
| Departure Headway (Ho          | ,              |        |                       | 33 7. |                   |      |      |      |      |      |      |      |  |
| Convergence, Y/N               |                |        |                       |       | Yes               |      |      |      |      |      |      |      |  |
| Cap                            |                |        |                       |       | 470               |      |      |      |      |      |      |      |  |
| Service Time                   |                |        | 93 5.1                |       |                   |      |      |      |      |      |      |      |  |
| HOME VIO D-4:-                 |                |        |                       |       | E07               |      |      |      |      |      |      |      |  |
| HCM Lane V/C Ratio             |                | 32 0.5 |                       | 62 0. |                   |      |      |      |      |      |      |      |  |
| HCM Control Delay HCM Lane LOS |                |        | 47 0.5<br>3.6 18<br>C |       | .587<br>21.2<br>C |      |      |      |      |      |      |      |  |

3.4

3.7

4.3

| Intersection              |                |         |        |       |       |      |      |      |      |      |      |      |  |
|---------------------------|----------------|---------|--------|-------|-------|------|------|------|------|------|------|------|--|
| Intersection Delay, s/vel | h23.9          |         |        |       |       |      |      |      |      |      |      |      |  |
| Intersection LOS          | С              |         |        |       |       |      |      |      |      |      |      |      |  |
|                           |                |         |        |       |       |      |      |      |      |      |      |      |  |
| Movement                  | EBL            | EBT     | EBR    | WBL   | WBT   | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
| Lane Configurations       |                | 4       |        |       | 4     |      |      | 4    |      |      | 4    |      |  |
| Traffic Vol, veh/h        | 12             | 192     | 3      | 67    | 174   | 102  | 9    | 171  | 73   | 104  | 180  | 21   |  |
| Future Vol, veh/h         | 12             | 192     | 3      | 67    | 174   | 102  | 9    | 171  | 73   | 104  | 180  | 21   |  |
| Peak Hour Factor          | 0.92           | 0.92    | 0.92   | 0.92  | 0.92  | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |  |
| Heavy Vehicles, %         | 10             | 20      | 40     | 38    | 23    | 14   | 25   | 15   | 22   | 19   | 18   | 24   |  |
| Mvmt Flow                 | 13             | 209     | 3      | 73    | 189   | 111  | 10   | 186  | 79   | 113  | 196  | 23   |  |
| Number of Lanes           | 0              | 1       | 0      | 0     | 1     | 0    | 0    | 1    | 0    | 0    | 1    | 0    |  |
| Approach                  | EB             |         |        | WB    |       |      | NB   |      |      | SB   |      |      |  |
| Opposing Approach         | WB             |         |        | EB    |       |      | SB   |      |      | NB   |      |      |  |
| Opposing Lanes            | 1              |         |        | 1     |       |      | 1    |      |      | 1    |      |      |  |
| Conflicting Approach Le   |                |         |        | NB    |       |      | EB   |      |      | WB   |      |      |  |
| Conflicting Lanes Left    | 1              |         |        | 1     |       |      | 1    |      |      | 1    |      |      |  |
| Conflicting Approach Rig  | ah <b>t</b> NB |         |        | SB    |       |      | WB   |      |      | EB   |      |      |  |
| Conflicting Lanes Right   | 1              |         |        | 1     |       |      | 1    |      |      | 1    |      |      |  |
| HCM Control Delay         | 17.1           |         |        | 30.4  |       |      | 19.9 |      |      | 24.5 |      |      |  |
| HCM LOS                   | С              |         |        | D     |       |      | С    |      |      | С    |      |      |  |
|                           |                |         |        |       |       |      |      |      |      |      |      |      |  |
| Lane                      | N              | NBLn1 I | EBLn1V | VBLn1 | SBLn1 |      |      |      |      |      |      |      |  |
| Vol Left, %               |                | 4%      | 6%     | 20%   | 34%   |      |      |      |      |      |      |      |  |
| Vol Thru, %               |                | 68%     | 93%    | 51%   | 59%   |      |      |      |      |      |      |      |  |
| Vol Right, %              |                | 29%     | 1%     | 30%   | 7%    |      |      |      |      |      |      |      |  |
| Sign Control              |                | Stop    | Stop   | Stop  | Stop  |      |      |      |      |      |      |      |  |
| Traffic Vol by Lane       |                | 253     | 207    | 343   | 305   |      |      |      |      |      |      |      |  |
| LT Vol                    |                | 9       | 12     | 67    | 104   |      |      |      |      |      |      |      |  |
| Through Vol               |                | 171     | 192    | 174   | 180   |      |      |      |      |      |      |      |  |
| RT Vol                    |                | 73      | 3      | 102   | 21    |      |      |      |      |      |      |      |  |
| Lane Flow Rate            |                | 275     | 225    | 373   | 332   |      |      |      |      |      |      |      |  |
| Geometry Grp              |                | 1       | 1      | 1     | 1     |      |      |      |      |      |      |      |  |
| Degree of Util (X)        |                | 0.568   | 0.47   | 0.762 | 0.676 |      |      |      |      |      |      |      |  |
| Departure Headway (Ho     | d)             | 7.433   | 7.517  | 7.361 | 7.345 |      |      |      |      |      |      |      |  |
| Convergence, Y/N          |                | Yes     | Yes    | Yes   | Yes   |      |      |      |      |      |      |      |  |
| Сар                       |                | 484     | 479    | 492   | 491   |      |      |      |      |      |      |      |  |
| Service Time              |                | 5.493   | 5.58   | 5.413 | 5.401 |      |      |      |      |      |      |      |  |
| HCM Lane V/C Ratio        |                | 0.568   | 0.47   | 0.758 | 0.676 |      |      |      |      |      |      |      |  |
| HCM Control Delay         |                | 19.9    | 17.1   | 30.4  | 24.5  |      |      |      |      |      |      |      |  |
| HCM Lane LOS              |                | С       | С      | D     | С     |      |      |      |      |      |      |      |  |
| HCM 95th-tile Q           |                | 3.5     | 2.5    | 6.6   | 5     |      |      |      |      |      |      |      |  |

| Intersection                              |           |            |       |            |            |       |           |      |      |      |      |      |  |
|-------------------------------------------|-----------|------------|-------|------------|------------|-------|-----------|------|------|------|------|------|--|
| Intersection Delay, s/veh                 | 15.2      |            |       |            |            |       |           |      |      |      |      |      |  |
| Intersection LOS                          | С         |            |       |            |            |       |           |      |      |      |      |      |  |
|                                           |           |            |       |            |            |       |           |      |      |      |      |      |  |
| Movement                                  | EBL       | EBT        | EBR   | WBL        | WBT        | WBR   | NBL       | NBT  | NBR  | SBL  | SBT  | SBR  |  |
| Lane Configurations                       |           | 4          |       |            | 4          |       |           | 4    | 7    |      | 4    |      |  |
| Traffic Vol, veh/h                        | 16        | 134        | 25    | 75         | 87         | 50    | 13        | 168  | 29   | 62   | 187  | 24   |  |
| Future Vol, veh/h                         | 16        | 134        | 25    | 75         | 87         | 50    | 13        | 168  | 29   | 62   | 187  | 24   |  |
| Peak Hour Factor                          | 0.85      | 0.85       | 0.85  | 0.85       | 0.85       | 0.85  | 0.85      | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 |  |
| Heavy Vehicles, %                         | 14        | 23         | 13    | 11         | 28         | 14    | 43        | 18   | 50   | 9    | 21   | 12   |  |
| Mvmt Flow                                 | 19        | 158        | 29    | 88         | 102        | 59    | 15        | 198  | 34   | 73   | 220  | 28   |  |
| Number of Lanes                           | 0         | 1          | 0     | 0          | 1          | 0     | 0         | 1    | 1    | 0    | 1    | 0    |  |
| Approach                                  | EB        |            |       | WB         |            |       | NB        |      |      | SB   |      |      |  |
|                                           | WB        |            |       | EB         |            |       | SB        |      |      | NB   |      |      |  |
| Opposing Approach Opposing Lanes          | 1         |            |       | 1          |            |       | 3B<br>1   |      |      | 2    |      |      |  |
| Conflicting Approach Let                  |           |            |       | NB         |            |       | EB        |      |      | WB   |      |      |  |
| Conflicting Lanes Left                    | 1         |            |       | 2          |            |       | 1         |      |      | 1    |      |      |  |
| Conflicting Approach Rig                  |           |            |       | SB         |            |       | WB        |      |      | EB   |      |      |  |
| Conflicting Lanes Right                   | 2         |            |       | 1          |            |       | 1         |      |      | 1    |      |      |  |
| HCM Control Delay                         | 13.5      |            |       | 14.4       |            |       | 14.9      |      |      | 17   |      |      |  |
| HCM LOS                                   | 13.3<br>B |            |       | В          |            |       | 14.3<br>B |      |      | C    |      |      |  |
| I IOWI LOS                                | Ъ         |            |       | D          |            |       | D         |      |      | U    |      |      |  |
|                                           |           | IDL A      | NDL O | EDL AL     | VDL .4.    | ODL 4 |           |      |      |      |      |      |  |
| Lane                                      | N         |            |       | EBLn1V     |            |       |           |      |      |      |      |      |  |
| Vol Left, %                               |           | 7%         | 0%    | 9%         | 35%        | 23%   |           |      |      |      |      |      |  |
| Vol Thru, %                               |           | 93%        | 0%    | 77%        | 41%        | 68%   |           |      |      |      |      |      |  |
| Vol Right, %                              |           | 0%         | 100%  | 14%        | 24%        | 9%    |           |      |      |      |      |      |  |
| Sign Control                              |           | Stop       | Stop  | Stop       | Stop       | Stop  |           |      |      |      |      |      |  |
| Traffic Vol by Lane                       |           | 181        | 29    | 175        | 212        | 273   |           |      |      |      |      |      |  |
| LT Vol                                    |           | 13         | 0     | 16         | 75         | 62    |           |      |      |      |      |      |  |
| Through Vol                               |           | 168        | 0     | 134        | 87         | 187   |           |      |      |      |      |      |  |
| RT Vol                                    |           | 0          | 29    | 25         | 50         | 24    |           |      |      |      |      |      |  |
| Lane Flow Rate                            |           | 213        | 34    | 206        | 249        | 321   |           |      |      |      |      |      |  |
| Geometry Grp                              |           | 7          | 7     | 2          | 2          | 5     |           |      |      |      |      |      |  |
| Degree of Util (X)                        |           | 0.437      | 0.059 | 0.374      | 0.442      | 0.56  |           |      |      |      |      |      |  |
| Departure Headway (Hd<br>Convergence, Y/N | )         |            |       | 6.532      |            |       |           |      |      |      |      |      |  |
|                                           |           | Yes<br>488 | Yes   | Yes<br>550 | Yes<br>564 | Yes   |           |      |      |      |      |      |  |
| Cap<br>Service Time                       |           |            | 577   | 4.583      |            | 578   |           |      |      |      |      |      |  |
| HCM Lane V/C Ratio                        |           |            |       |            |            |       |           |      |      |      |      |      |  |
|                                           |           |            |       | 0.375      |            |       |           |      |      |      |      |      |  |
| HCM Control Delay                         |           | 15.8       | 9.3   | 13.5       | 14.4       | 17    |           |      |      |      |      |      |  |
| HCM Lane LOS                              |           | С          | A     | B          | В          | C     |           |      |      |      |      |      |  |
| HCM 95th-tile Q                           |           | 2.2        | 0.2   | 1.7        | 2.2        | 3.4   |           |      |      |      |      |      |  |

| Intersection               |           |          |      |           |          |      |           |       |      |           |      |      |  |
|----------------------------|-----------|----------|------|-----------|----------|------|-----------|-------|------|-----------|------|------|--|
| Intersection Delay, s/vel  | h44.3     |          |      |           |          |      |           |       |      |           |      |      |  |
| Intersection LOS           | Е         |          |      |           |          |      |           |       |      |           |      |      |  |
|                            |           |          |      |           |          |      |           |       |      |           |      |      |  |
| Movement                   | EBL       | EBT      | EBR  | WBL       | WBT      | WBR  | NBL       | NBT   | NBR  | SBL       | SBT  | SBR  |  |
| Lane Configurations        | ሻ         | <b>1</b> |      | ሻ         | <b>1</b> |      |           | 4     | 7    |           | 4    | 7    |  |
| Traffic Vol, veh/h         | 109       | 177      | 178  | 110       | 156      | 9    | 152       | 149   | 66   | 5         | 195  | 146  |  |
| Future Vol, veh/h          | 109       | 177      | 178  | 110       | 156      | 9    | 152       | 149   | 66   | 5         | 195  | 146  |  |
| Peak Hour Factor           | 0.85      | 0.85     | 0.85 | 0.85      | 0.85     | 0.85 | 0.85      | 0.85  | 0.85 | 0.85      | 0.85 | 0.85 |  |
| Heavy Vehicles, %          | 49        | 27       | 21   | 25        | 37       | 12   | 14        | 9     | 21   | 0         | 21   | 28   |  |
| Mvmt Flow                  | 128       | 208      | 209  | 129       | 184      | 11   | 179       | 175   | 78   | 6         | 229  | 172  |  |
| Number of Lanes            | 1         | 1        | 0    | 1         | 1        | 0    | 0         | 1     | 1    | 0         | 1    | 1    |  |
|                            | EB        |          |      | WB        |          |      | NB        |       |      | SB        |      |      |  |
| Approach                   |           |          |      |           |          |      |           |       |      |           |      |      |  |
| Opposing Approach          | WB        |          |      | EB        |          |      | SB        |       |      | NB        |      |      |  |
| Opposing Lanes             | 2         |          |      | 2         |          |      | 2         |       |      | 2         |      |      |  |
| Conflicting Approach Le    | en SB     |          |      | NB<br>2   |          |      | EB<br>2   |       |      | WB<br>2   |      |      |  |
| Conflicting Lanes Left     |           |          |      | SB        |          |      |           |       |      | EB        |      |      |  |
| Conflicting Approach Right |           |          |      | 2         |          |      | WB<br>2   |       |      | 2         |      |      |  |
| Conflicting Lanes Right    | 2<br>69.6 |          |      | 21.6      |          |      | 50.5      |       |      | 21.8      |      |      |  |
| HCM Control Delay HCM LOS  | 09.0<br>F |          |      | 21.0<br>C |          |      | 50.5<br>F |       |      | 21.0<br>C |      |      |  |
| HCIVI LOS                  | Г         |          |      | C         |          |      | Г         |       |      | C         |      |      |  |
|                            |           |          |      |           |          |      |           |       |      |           |      |      |  |
| Lane                       | <u> </u>  |          |      | EBLn1     |          |      |           |       |      |           |      |      |  |
| Vol Left, %                |           | 50%      |      | 100%      |          | 100% | 0%        | 3%    | 0%   |           |      |      |  |
| Vol Thru, %                |           | 50%      | 0%   | 0%        | 50%      | 0%   | 95%       | 97%   | 0%   |           |      |      |  |
| Vol Right, %               |           | 0%       |      | 0%        | 50%      | 0%   | 5%        |       | 100% |           |      |      |  |
| Sign Control               |           | Stop     | Stop | Stop      | Stop     | Stop | Stop      | Stop  | Stop |           |      |      |  |
| Traffic Vol by Lane        |           | 301      | 66   | 109       | 355      | 110  | 165       | 200   | 146  |           |      |      |  |
| LT Vol                     |           | 152      | 0    | 109       | 0        | 110  | 0         | 5     | 0    |           |      |      |  |
| Through Vol                |           | 149      | 0    | 0         | 177      | 0    | 156       | 195   | 0    |           |      |      |  |
| RT Vol                     |           | 0        | 66   | 0         | 178      | 0    | 9         | 0     | 146  |           |      |      |  |
| Lane Flow Rate             |           | 354      | 78   | 128       | 418      | 129  | 194       | 235   | 172  |           |      |      |  |
| Geometry Grp               |           | 7        | 7    | 7         | 7        | 7    | 7         | 7     | 7    |           |      |      |  |
| Degree of Util (X)         |           | 0.915    | 0.18 |           |          |      | 0.528     | 0.593 |      |           |      |      |  |
| Departure Headway (Ho      | d)        |          |      | 10.219    |          |      |           |       |      |           |      |      |  |
| Convergence, Y/N           |           | Yes      | Yes  | Yes       | Yes      | Yes  | Yes       | Yes   | Yes  |           |      |      |  |
| Cap                        |           | 382      | 426  | 355       | 409      | 348  | 361       | 391   | 405  |           |      |      |  |
| Service Time               |           |          |      | 7.875     |          |      |           |       |      |           |      |      |  |
| HCM Lane V/C Ratio         |           |          |      | 0.361     |          |      |           |       |      |           |      |      |  |
| HCM Control Delay          |           | 58.7     | 13   | 18.6      | 85.2     | 18.9 | 23.4      | 24.7  | 17.9 |           |      |      |  |
| HCM Lane LOS               |           | F        | В    | С         | F        | С    | С         | С     | С    |           |      |      |  |
| HCM 95th-tile Q            |           | 9.5      | 0.6  | 1.6       | 13.5     | 1.6  | 2.9       | 3.7   | 2    |           |      |      |  |

|                               | ۶          | <b>→</b> | •     | •    | <b>←</b>   | 4          | 4       | <b>†</b>   | <i>&gt;</i> | <b>/</b> | <b>↓</b>   | √    |
|-------------------------------|------------|----------|-------|------|------------|------------|---------|------------|-------------|----------|------------|------|
| Movement                      | EBL        | EBT      | EBR   | WBL  | WBT        | WBR        | NBL     | NBT        | NBR         | SBL      | SBT        | SBR  |
| Lane Configurations           |            | र्स      | 7     |      | र्स        | 7          | ሻ       | <b>∱</b> ∱ |             | ሻ        | <b>∱</b> ∱ |      |
| Traffic Volume (vph)          | 78         | 56       | 67    | 150  | 41         | 52         | 68      | 1086       | 102         | 73       | 1396       | 90   |
| Future Volume (vph)           | 78         | 56       | 67    | 150  | 41         | 52         | 68      | 1086       | 102         | 73       | 1396       | 90   |
| Ideal Flow (vphpl)            | 1750       | 1750     | 1750  | 1750 | 1750       | 1750       | 1750    | 1750       | 1750        | 1750     | 1750       | 1750 |
| Total Lost time (s)           |            | 4.5      | 4.5   |      | 4.5        | 4.5        | 4.5     | 4.5        |             | 4.5      | 4.5        |      |
| Lane Util. Factor             |            | 1.00     | 1.00  |      | 1.00       | 1.00       | 1.00    | 0.95       |             | 1.00     | 0.95       |      |
| Frpb, ped/bikes               |            | 1.00     | 0.98  |      | 1.00       | 0.98       | 1.00    | 1.00       |             | 1.00     | 1.00       |      |
| Flpb, ped/bikes               |            | 1.00     | 1.00  |      | 1.00       | 1.00       | 1.00    | 1.00       |             | 1.00     | 1.00       |      |
| Frt                           |            | 1.00     | 0.85  |      | 1.00       | 0.85       | 1.00    | 0.99       |             | 1.00     | 0.99       |      |
| Flt Protected                 |            | 0.97     | 1.00  |      | 0.96       | 1.00       | 0.95    | 1.00       |             | 0.95     | 1.00       |      |
| Satd. Flow (prot)             |            | 1500     | 1227  |      | 1478       | 1206       | 1363    | 2666       |             | 1458     | 2740       |      |
| Flt Permitted                 |            | 0.55     | 1.00  |      | 0.59       | 1.00       | 0.07    | 1.00       |             | 0.15     | 1.00       |      |
| Satd. Flow (perm)             |            | 846      | 1227  |      | 903        | 1206       | 107     | 2666       |             | 233      | 2740       |      |
| Peak-hour factor, PHF         | 0.94       | 0.94     | 0.94  | 0.94 | 0.94       | 0.94       | 0.94    | 0.94       | 0.94        | 0.94     | 0.94       | 0.94 |
| Adj. Flow (vph)               | 83         | 60       | 71    | 160  | 44         | 55         | 72      | 1155       | 109         | 78       | 1485       | 96   |
| RTOR Reduction (vph)          | 0          | 0        | 54    | 0    | 0          | 42         | 0       | 5          | 0           | 0        | 3          | 0    |
| Lane Group Flow (vph)         | 0          | 143      | 17    | 0    | 204        | 13         | 72      | 1259       | 0           | 78       | 1578       | 0    |
| Confl. Peds. (#/hr)           | 6          |          | 6     | 6    |            | 6          | 3       |            | 3           | 3        |            | 3    |
| Heavy Vehicles (%)            | 16%        | 9%       | 19%   | 13%  | 15%        | 21%        | 22%     | 23%        | 21%         | 14%      | 20%        | 21%  |
| Turn Type                     | Perm       | NA       | Perm  | Perm | NA         | Perm       | D.P+P   | NA         |             | D.P+P    | NA         |      |
| Protected Phases              |            | 8        |       |      | 4          |            | 1       | 6          |             | 5        | 2          |      |
| Permitted Phases              | 8          |          | 8     | 4    |            | 4          | 2       |            |             | 6        |            |      |
| Actuated Green, G (s)         |            | 30.3     | 30.3  |      | 30.3       | 30.3       | 86.2    | 80.1       |             | 86.2     | 77.0       |      |
| Effective Green, g (s)        |            | 30.3     | 30.3  |      | 30.3       | 30.3       | 86.2    | 80.1       |             | 86.2     | 77.0       |      |
| Actuated g/C Ratio            |            | 0.23     | 0.23  |      | 0.23       | 0.23       | 0.66    | 0.62       |             | 0.66     | 0.59       |      |
| Clearance Time (s)            |            | 4.5      | 4.5   |      | 4.5        | 4.5        | 4.5     | 4.5        |             | 4.5      | 4.5        |      |
| Vehicle Extension (s)         |            | 2.5      | 2.5   |      | 2.5        | 2.5        | 2.5     | 4.6        |             | 2.5      | 4.6        |      |
| Lane Grp Cap (vph)            |            | 197      | 285   |      | 210        | 281        | 159     | 1642       |             | 211      | 1622       |      |
| v/s Ratio Prot                |            |          |       |      |            |            | 0.03    | c0.47      |             | 0.02     | c0.58      |      |
| v/s Ratio Perm                |            | 0.17     | 0.01  |      | c0.23      | 0.01       | 0.27    |            |             | 0.23     |            |      |
| v/c Ratio                     |            | 0.73     | 0.06  |      | 0.97       | 0.05       | 0.45    | 0.77       |             | 0.37     | 0.97       |      |
| Uniform Delay, d1             |            | 46.0     | 38.8  |      | 49.4       | 38.6       | 39.6    | 18.2       |             | 10.9     | 25.5       |      |
| Progression Factor            |            | 1.00     | 1.00  |      | 1.00       | 1.00       | 0.77    | 0.71       |             | 1.07     | 1.10       |      |
| Incremental Delay, d2         |            | 11.8     | 0.1   |      | 53.6       | 0.0        | 1.1     | 2.5        |             | 0.1      | 2.9        |      |
| Delay (s)                     |            | 57.8     | 38.8  |      | 103.1      | 38.7       | 31.5    | 15.4       |             | 11.7     | 31.0       |      |
| Level of Service              |            | Е        | D     |      | F          | D          | С       | В          |             | В        | С          |      |
| Approach Delay (s)            |            | 51.5     |       |      | 89.4       |            |         | 16.3       |             |          | 30.0       |      |
| Approach LOS                  |            | D        |       |      | F          |            |         | В          |             |          | С          |      |
| Intersection Summary          |            |          |       |      |            |            |         |            |             |          |            |      |
| HCM 2000 Control Delay        |            |          | 30.5  | H    | CM 2000    | Level of   | Service |            | С           |          |            |      |
| HCM 2000 Volume to Capa       | city ratio |          | 0.97  |      |            |            |         |            |             |          |            |      |
| Actuated Cycle Length (s)     |            |          | 130.0 |      | um of lost |            |         |            | 13.5        |          |            |      |
| Intersection Capacity Utiliza | ation      |          | 80.1% | IC   | U Level    | of Service | Э       |            | D           |          |            |      |
| Analysis Period (min)         |            |          | 15    |      |            |            |         |            |             |          |            |      |
| o Critical Lana Croup         |            |          |       |      |            |            |         |            |             |          |            |      |

| Line Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        | ۶          | <b>→</b> | •    | •    | +         | •          | •       | <b>†</b> | <i>&gt;</i> | <b>/</b> | <b>↓</b> | -✓   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------|----------|------|------|-----------|------------|---------|----------|-------------|----------|----------|------|
| Traffic Volume (vph) 105 11 91 28 10 25 76 1114 15 16 1527 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Movement               | EBL        | EBT      | EBR  | WBL  | WBT       | WBR        | NBL     | NBT      | NBR         | SBL      | SBT      | SBR  |
| Future Volume (vph) 105 11 91 28 10 25 76 1114 15 16 1527 113 (deal Flow (vphpl) 1750 1750 1750 1750 1750 1750 1750 1750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lane Configurations    |            |          |      |      |           |            |         |          |             |          |          |      |
| Ideal Flow (priph)   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750   1750      |                        |            |          |      |      |           |            |         |          |             |          |          |      |
| Total Lost time (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |            |          |      |      |           |            |         |          |             |          |          |      |
| Lane Util. Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · · · · /              | 1750       |          | 1750 | 1750 |           |            |         |          | 1750        |          |          | 1750 |
| Fipb, pedibikes 0.99 1.00 0.97 1.00 1.00 1.00 1.00 Fipb, pedibikes 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |            |          |      |      |           |            |         |          |             |          |          |      |
| Fipb, ped/bikes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |            |          |      |      |           |            |         |          |             |          |          |      |
| Fit Protected 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |            |          |      |      |           |            |         |          |             |          |          |      |
| Fit Protected 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |            |          |      |      |           |            |         |          |             |          |          |      |
| Satd. Flow (prort)  1286  1419  1124  1446  2628  1289  2722  Fit Permitted  0.82  0.72  1.00  0.06  1.00  0.18  1.00  Satd. Flow (perm)  1079  1058  1124  90  2628  239  2722  Peak-hour factor, PHF  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94  0.94 |                        |            |          |      |      |           |            |         |          |             |          |          |      |
| Fit Permitted  0.82 301. Flow (perm) 1079 1058 11124 90 2628 2339 2722 Peak-hour factor, PHF 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |            |          |      |      |           |            |         |          |             |          |          |      |
| Satd, Flow (perm)         1079         1058         1124         90         2628         239         2722           Peak-hour factor, PHF         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |            |          |      |      |           |            |         |          |             |          |          |      |
| Peak-hour factor, PHF         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.94         0.98         0.98         0.98         0.98         0.98         0.98         0.04         0.06         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |            |          |      |      |           |            |         |          |             |          |          |      |
| Adj. Flow (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Satd. Flow (perm)      |            | 1079     |      |      | 1058      | 1124       | 90      |          |             | 239      | 2722     |      |
| RTOR Reduction (vph) 0 22 0 0 0 0 22 0 1 0 0 0 3 0 0 1 1 0 0 3 0 0 1 1 0 0 1 3 0 0 1 1 0 0 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Peak-hour factor, PHF  | 0.94       | 0.94     | 0.94 | 0.94 | 0.94      | 0.94       | 0.94    | 0.94     | 0.94        | 0.94     | 0.94     | 0.94 |
| Lane Group Flow (vph) 0 199 0 0 41 5 81 1200 0 17 1741 0  Confl. Peds. (#hr) 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Adj. Flow (vph)        | 112        |          | 97   | 30   | 11        |            | 81      | 1185     | 16          | 17       | 1624     | 120  |
| Confi.   Peds. (#/hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RTOR Reduction (vph)   | 0          |          | 0    | 0    |           | 22         |         | •        | 0           | 0        | 3        | 0    |
| Confi. Bikes (#/hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lane Group Flow (vph)  |            | 199      | 0    | 0    | 41        |            |         | 1200     | 0           |          | 1741     |      |
| Heavy Vehicles (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Confl. Peds. (#/hr)    | 10         |          |      |      |           | 10         | 6       |          | 6           | 6        |          | 6    |
| Tum Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Confl. Bikes (#/hr)    |            |          | 1    |      |           |            |         |          | 1           |          |          |      |
| Protected Phases   8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Heavy Vehicles (%)     | 19%        | 50%      | 25%  | 5%   | 57%       | 29%        | 15%     | 26%      | 40%         | 29%      | 21%      | 15%  |
| Permitted Phases   8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Turn Type              | Perm       | NA       |      | Perm | NA        | Perm       | D.P+P   | NA       |             | D.P+P    | NA       |      |
| Actuated Green, G (s) 26.2 26.2 26.2 90.3 83.3 90.3 81.7  Effective Green, g (s) 26.2 26.2 26.2 90.3 83.3 90.3 81.7  Actuated g/C Ratio 0.20 0.20 0.20 0.69 0.64 0.69 0.63  Clearance Time (s) 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5  Vehicle Extension (s) 2.5 2.5 2.5 2.5 2.5 4.6 2.5 4.6  Lane Grp Cap (vph) 217 213 226 152 1683 222 1710  v/s Ratio Prot 0.04 c0.46 0.00 c0.64  v/s Ratio Perm c0.18 0.04 0.00 0.33 0.05  v/c Ratio Perm c0.18 0.04 0.00 0.33 0.05  v/c Ratio 0.92 0.19 0.02 0.53 0.71 0.08 1.02  Uniform Delay, d1 50.8 43.1 41.6 19.7 15.4 14.9 24.1  Progression Factor 1.00 1.00 1.00 1.55 0.80 1.32 0.66  Incremental Delay, d2 38.3 0.3 0.0 2.0 1.9 0.0 18.6  Delay (s) 89.1 43.4 41.7 32.5 14.2 19.6 34.4  Level of Service F D D C B B C  Approach Delay (s) 89.1 42.7 15.3 34.3  Approach LOS F D B C  HCM 2000 Volume to Capacity ratio 0.98  Actuated Cycle Length (s) 13.0 Sum of lost time (s) 13.5  Intersection Capacity Utilization 85.3% ICU Level of Service E  Analysis Period (min) 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Protected Phases       |            | 8        |      |      | 4         |            | 1       | 6        |             | 5        | 2        |      |
| Effective Green, g (s)       26.2       26.2       26.2       90.3       83.3       90.3       81.7         Actuated g/C Ratio       0.20       0.20       0.20       0.69       0.64       0.69       0.63         Clearance Time (s)       4.5       4.5       4.5       4.5       4.5       4.5       4.5         Vehicle Extension (s)       2.5       2.5       2.5       2.5       4.6       2.5       4.6         Lane Grp Cap (vph)       217       213       226       152       1683       222       1710         V/s Ratio Prot       0.04       0.04       0.04       0.04       0.06       0.00       c0.64         V/s Ratio Perm       c0.18       0.04       0.00       0.33       0.05       0.05         V/c Ratio       0.92       0.19       0.02       0.53       0.71       0.08       1.02         Uniform Delay, d1       50.8       43.1       41.6       19.7       15.4       14.9       24.1         Progression Factor       1.00       1.00       1.00       1.55       0.80       1.32       0.66         Incremental Delay, (s)       89.1       43.4       41.7       32.5       14.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Permitted Phases       | 8          |          |      | 4    |           | 4          | 2       |          |             | 6        |          |      |
| Actuated g/C Ratio 0.20 0.20 0.20 0.69 0.64 0.69 0.63  Clearance Time (s) 4.5 4.5 4.5 4.5 4.5 4.5 4.5  Vehicle Extension (s) 2.5 2.5 2.5 2.5 4.6 2.5 4.6  Lane Grp Cap (vph) 217 213 226 152 1683 222 1710  v/s Ratio Prot 0.04 c0.46 0.00 c0.64  v/s Ratio Perm c0.18 0.04 0.00 0.33 0.05  v/c Ratio Perm c0.92 0.19 0.02 0.53 0.71 0.08 1.02  Uniform Delay, d1 50.8 43.1 41.6 19.7 15.4 14.9 24.1  Progression Factor 1.00 1.00 1.00 1.55 0.80 1.32 0.66  Incremental Delay, d2 38.3 0.3 0.0 2.0 1.9 0.0 18.6  Delay (s) 89.1 43.4 41.7 32.5 14.2 19.6 34.4  Level of Service F D D C B B C  Approach Delay (s) 89.1 42.7 15.3 34.3  Approach LOS F D B C  Intersection Summary  HCM 2000 Control Delay 30.8 HCM 2000 Level of Service C  HCM 2000 Volume to Capacity ratio 0.98  Actuated Cycle Length (s) 130.0 Sum of lost time (s) 13.5  Intersection Capacity Utilization 85.3% ICU Level of Service E  Analysis Period (min) 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Actuated Green, G (s)  |            | 26.2     |      |      | 26.2      | 26.2       | 90.3    | 83.3     |             | 90.3     | 81.7     |      |
| Clearance Time (s)       4.5       4.5       4.5       4.5       4.5       4.5       4.5       4.5       4.5       4.5       4.5       4.5       4.5       4.5       4.5       4.5       4.5       4.5       4.5       4.5       4.5       4.6       2.5       4.6       2.5       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.6       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.1       4.1       4.1       4.1 </td <td>Effective Green, g (s)</td> <td></td> <td>26.2</td> <td></td> <td></td> <td>26.2</td> <td>26.2</td> <td>90.3</td> <td>83.3</td> <td></td> <td>90.3</td> <td>81.7</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Effective Green, g (s) |            | 26.2     |      |      | 26.2      | 26.2       | 90.3    | 83.3     |             | 90.3     | 81.7     |      |
| Vehicle Extension (s)         2.5         2.5         2.5         2.5         4.6         2.5         4.6           Lane Grp Cap (vph)         217         213         226         152         1683         222         1710           v/s Ratio Prot         0.04         c0.04         c0.046         0.00         c0.64           v/s Ratio Perm         c0.18         0.04         0.00         0.33         0.05           v/c Ratio         0.92         0.19         0.02         0.53         0.71         0.08         1.02           Uniform Delay, d1         50.8         43.1         41.6         19.7         15.4         14.9         24.1           Progression Factor         1.00         1.00         1.00         1.55         0.80         1.32         0.66           Incremental Delay, d2         38.3         0.3         0.0         2.0         1.9         0.0         18.6           Delay (s)         89.1         43.4         41.7         32.5         14.2         19.6         34.4           Level of Service         F         D         D         C         B         B         C           Approach LOS         F         D         D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Actuated g/C Ratio     |            | 0.20     |      |      | 0.20      | 0.20       | 0.69    | 0.64     |             | 0.69     | 0.63     |      |
| Lane Grp Cap (vph)       217       213       226       152       1683       222       1710         v/s Ratio Prot       0.04       c0.46       0.00       c0.64         v/s Ratio Perm       c0.18       0.04       0.00       0.33       0.05         v/c Ratio       0.92       0.19       0.02       0.53       0.71       0.08       1.02         Uniform Delay, d1       50.8       43.1       41.6       19.7       15.4       14.9       24.1         Progression Factor       1.00       1.00       1.00       1.55       0.80       1.32       0.66         Incremental Delay, d2       38.3       0.3       0.0       2.0       1.9       0.0       18.6         Delay (s)       89.1       43.4       41.7       32.5       14.2       19.6       34.4         Level of Service       F       D       D       C       B       B       C         Approach LOS       F       D       D       B       C         Intersection Summary         HCM 2000 Control Delay       30.8       HCM 2000 Level of Service       C         HCM 2000 Volume to Capacity ratio       0.98         Actuated Cycle Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Clearance Time (s)     |            | 4.5      |      |      | 4.5       | 4.5        | 4.5     | 4.5      |             | 4.5      | 4.5      |      |
| v/s Ratio Prot       0.04       c0.46       0.00       c0.64         v/s Ratio Perm       c0.18       0.04       0.00       0.33       0.05         v/c Ratio       0.92       0.19       0.02       0.53       0.71       0.08       1.02         Uniform Delay, d1       50.8       43.1       41.6       19.7       15.4       14.9       24.1         Progression Factor       1.00       1.00       1.00       1.05       0.80       1.32       0.66         Incremental Delay, d2       38.3       0.3       0.0       2.0       1.9       0.0       18.6         Delay (s)       89.1       43.4       41.7       32.5       14.2       19.6       34.4         Level of Service       F       D       D       C       B       B       C         Approach LOS       F       D       D       C       B       B       C         Intersection Summary       B       C       C       C       C         HCM 2000 Control Delay       30.8       HCM 2000 Level of Service       C       C         HCM 2000 Volume to Capacity ratio       0.98       3.3       C       C       C         HCM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Vehicle Extension (s)  |            | 2.5      |      |      | 2.5       | 2.5        | 2.5     | 4.6      |             | 2.5      | 4.6      |      |
| v/s Ratio Perm         c0.18         0.04         0.00         0.33         0.05           v/c Ratio         0.92         0.19         0.02         0.53         0.71         0.08         1.02           Uniform Delay, d1         50.8         43.1         41.6         19.7         15.4         14.9         24.1           Progression Factor         1.00         1.00         1.00         1.55         0.80         1.32         0.66           Incremental Delay, d2         38.3         0.3         0.0         2.0         1.9         0.0         18.6           Delay (s)         89.1         43.4         41.7         32.5         14.2         19.6         34.4           Level of Service         F         D         D         C         B         B         C           Approach LOS         F         D         D         C         B         B         C           Intersection Summary         B         C         C         C         C         C           HCM 2000 Volume to Capacity ratio         0.98         Actuated Cycle Length (s)         130.0         Sum of lost time (s)         13.5         Intersection Capacity Utilization         85.3%         ICU Level of Service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lane Grp Cap (vph)     |            | 217      |      |      | 213       | 226        | 152     | 1683     |             | 222      | 1710     |      |
| v/c Ratio       0.92       0.19       0.02       0.53       0.71       0.08       1.02         Uniform Delay, d1       50.8       43.1       41.6       19.7       15.4       14.9       24.1         Progression Factor       1.00       1.00       1.00       1.55       0.80       1.32       0.66         Incremental Delay, d2       38.3       0.3       0.0       2.0       1.9       0.0       18.6         Delay (s)       89.1       43.4       41.7       32.5       14.2       19.6       34.4         Level of Service       F       D       D       C       B       B       C         Approach Delay (s)       89.1       42.7       15.3       34.3         Approach LOS       F       D       B       C         Intersection Summary         HCM 2000 Control Delay       30.8       HCM 2000 Level of Service       C         HCM 2000 Volume to Capacity ratio       0.98         Actuated Cycle Length (s)       130.0       Sum of lost time (s)       13.5         Intersection Capacity Utilization       85.3%       ICU Level of Service       E         Analysis Period (min)       15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | v/s Ratio Prot         |            |          |      |      |           |            | 0.04    | c0.46    |             | 0.00     | c0.64    |      |
| Uniform Delay, d1       50.8       43.1       41.6       19.7       15.4       14.9       24.1         Progression Factor       1.00       1.00       1.00       1.55       0.80       1.32       0.66         Incremental Delay, d2       38.3       0.3       0.0       2.0       1.9       0.0       18.6         Delay (s)       89.1       43.4       41.7       32.5       14.2       19.6       34.4         Level of Service       F       D       D       C       B       B       C         Approach Delay (s)       89.1       42.7       15.3       34.3         Approach LOS       F       D       B       C         Intersection Summary       B       C         HCM 2000 Control Delay       30.8       HCM 2000 Level of Service       C         HCM 2000 Volume to Capacity ratio       0.98         Actuated Cycle Length (s)       13.0       Sum of lost time (s)       13.5         Intersection Capacity Utilization       85.3%       ICU Level of Service       E         Analysis Period (min)       15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | v/s Ratio Perm         |            | c0.18    |      |      | 0.04      | 0.00       | 0.33    |          |             | 0.05     |          |      |
| Progression Factor         1.00         1.00         1.00         1.55         0.80         1.32         0.66           Incremental Delay, d2         38.3         0.3         0.0         2.0         1.9         0.0         18.6           Delay (s)         89.1         43.4         41.7         32.5         14.2         19.6         34.4           Level of Service         F         D         D         C         B         B         C           Approach Delay (s)         89.1         42.7         15.3         34.3         34.3           Approach LOS         F         D         B         C         C           Intersection Summary           HCM 2000 Control Delay         30.8         HCM 2000 Level of Service         C           HCM 2000 Volume to Capacity ratio         0.98           Actuated Cycle Length (s)         130.0         Sum of lost time (s)         13.5           Intersection Capacity Utilization         85.3%         ICU Level of Service         E           Analysis Period (min)         15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | v/c Ratio              |            | 0.92     |      |      | 0.19      | 0.02       | 0.53    | 0.71     |             | 0.08     | 1.02     |      |
| Incremental Delay, d2   38.3   0.3   0.0   2.0   1.9   0.0   18.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Uniform Delay, d1      |            | 50.8     |      |      | 43.1      | 41.6       | 19.7    | 15.4     |             | 14.9     | 24.1     |      |
| Delay (s)         89.1         43.4         41.7         32.5         14.2         19.6         34.4           Level of Service         F         D         D         C         B         B         C           Approach Delay (s)         89.1         42.7         15.3         34.3         34.3           Approach LOS         F         D         B         C           Intersection Summary           HCM 2000 Control Delay         30.8         HCM 2000 Level of Service         C           HCM 2000 Volume to Capacity ratio         0.98           Actuated Cycle Length (s)         130.0         Sum of lost time (s)         13.5           Intersection Capacity Utilization         85.3%         ICU Level of Service         E           Analysis Period (min)         15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Progression Factor     |            | 1.00     |      |      | 1.00      | 1.00       | 1.55    | 0.80     |             | 1.32     | 0.66     |      |
| Level of Service         F         D         D         C         B         B         C           Approach Delay (s)         89.1         42.7         15.3         34.3           Approach LOS         F         D         B         C           Intersection Summary           HCM 2000 Control Delay         30.8         HCM 2000 Level of Service         C           HCM 2000 Volume to Capacity ratio         0.98         C           Actuated Cycle Length (s)         130.0         Sum of lost time (s)         13.5           Intersection Capacity Utilization         85.3%         ICU Level of Service         E           Analysis Period (min)         15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Incremental Delay, d2  |            | 38.3     |      |      | 0.3       | 0.0        | 2.0     | 1.9      |             | 0.0      | 18.6     |      |
| Approach Delay (s)         89.1         42.7         15.3         34.3           Approach LOS         F         D         B         C           Intersection Summary           HCM 2000 Control Delay         30.8         HCM 2000 Level of Service         C           HCM 2000 Volume to Capacity ratio         0.98           Actuated Cycle Length (s)         130.0         Sum of lost time (s)         13.5           Intersection Capacity Utilization         85.3%         ICU Level of Service         E           Analysis Period (min)         15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Delay (s)              |            | 89.1     |      |      | 43.4      | 41.7       | 32.5    | 14.2     |             | 19.6     | 34.4     |      |
| Approach LOS F D B C  Intersection Summary  HCM 2000 Control Delay 30.8 HCM 2000 Level of Service C  HCM 2000 Volume to Capacity ratio 0.98  Actuated Cycle Length (s) 130.0 Sum of lost time (s) 13.5  Intersection Capacity Utilization 85.3% ICU Level of Service E  Analysis Period (min) 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Level of Service       |            | F        |      |      | D         | D          | С       | В        |             | В        | С        |      |
| Intersection Summary  HCM 2000 Control Delay 30.8 HCM 2000 Level of Service C  HCM 2000 Volume to Capacity ratio 0.98  Actuated Cycle Length (s) 130.0 Sum of lost time (s) 13.5  Intersection Capacity Utilization 85.3% ICU Level of Service E  Analysis Period (min) 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Approach Delay (s)     |            | 89.1     |      |      | 42.7      |            |         | 15.3     |             |          | 34.3     |      |
| HCM 2000 Control Delay 30.8 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.98 Actuated Cycle Length (s) 130.0 Sum of lost time (s) 13.5 Intersection Capacity Utilization 85.3% ICU Level of Service E Analysis Period (min) 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Approach LOS           |            | F        |      |      | D         |            |         | В        |             |          | С        |      |
| HCM 2000 Control Delay 30.8 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.98 Actuated Cycle Length (s) 130.0 Sum of lost time (s) 13.5 Intersection Capacity Utilization 85.3% ICU Level of Service E Analysis Period (min) 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Intersection Summary   |            |          |      |      |           |            |         |          |             |          |          |      |
| HCM 2000 Volume to Capacity ratio 0.98  Actuated Cycle Length (s) 130.0 Sum of lost time (s) 13.5  Intersection Capacity Utilization 85.3% ICU Level of Service E  Analysis Period (min) 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                      |            |          | 30.8 | Н    | CM 2000   | Level of   | Service |          | С           |          |          |      |
| Actuated Cycle Length (s) 130.0 Sum of lost time (s) 13.5 Intersection Capacity Utilization 85.3% ICU Level of Service E Analysis Period (min) 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                      | city ratio |          |      |      |           |            |         |          |             |          |          |      |
| Intersection Capacity Utilization 85.3% ICU Level of Service E Analysis Period (min) 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | ,          |          |      | Sı   | um of los | t time (s) |         |          | 13.5        |          |          |      |
| Analysis Period (min) 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | , , ,                  | tion       |          |      |      |           |            | 9       |          |             |          |          |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |            |          |      |      |           |            |         |          |             |          |          |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | c Critical Lane Group  |            |          |      |      |           |            |         |          |             |          |          |      |

|                               | ۶          | <b>→</b> | •     | •    | +         | •          | •       | <b>†</b>   | <i>&gt;</i> | <b>/</b> | <b>↓</b>   | -√   |
|-------------------------------|------------|----------|-------|------|-----------|------------|---------|------------|-------------|----------|------------|------|
| Movement                      | EBL        | EBT      | EBR   | WBL  | WBT       | WBR        | NBL     | NBT        | NBR         | SBL      | SBT        | SBR  |
| Lane Configurations           | ሻ          | f)       |       |      | र्स       | 7          | ሻ       | <b>∱</b> ∱ |             | 7        | <b>∱</b> ∱ |      |
| Traffic Volume (vph)          | 149        | 180      | 120   | 99   | 221       | 277        | 81      | 773        | 42          | 262      | 1225       | 137  |
| Future Volume (vph)           | 149        | 180      | 120   | 99   | 221       | 277        | 81      | 773        | 42          | 262      | 1225       | 137  |
| Ideal Flow (vphpl)            | 1750       | 1750     | 1750  | 1750 | 1750      | 1750       | 1750    | 1750       | 1750        | 1750     | 1750       | 1750 |
| Total Lost time (s)           | 4.5        | 4.5      |       |      | 4.5       | 4.5        | 4.5     | 4.5        |             | 4.5      | 4.5        |      |
| Lane Util. Factor             | 1.00       | 1.00     |       |      | 1.00      | 1.00       | 1.00    | 0.95       |             | 1.00     | 0.95       |      |
| Frpb, ped/bikes               | 1.00       | 0.99     |       |      | 1.00      | 1.00       | 1.00    | 1.00       |             | 1.00     | 1.00       |      |
| Flpb, ped/bikes               | 1.00       | 1.00     |       |      | 1.00      | 1.00       | 1.00    | 1.00       |             | 1.00     | 1.00       |      |
| Frt                           | 1.00       | 0.94     |       |      | 1.00      | 0.85       | 1.00    | 0.99       |             | 1.00     | 0.98       |      |
| Flt Protected                 | 0.95       | 1.00     |       |      | 0.98      | 1.00       | 0.95    | 1.00       |             | 0.95     | 1.00       |      |
| Satd. Flow (prot)             | 1222       | 1305     |       |      | 1453      | 1293       | 1179    | 2695       |             | 1374     | 2767       |      |
| Flt Permitted                 | 0.30       | 1.00     |       |      | 0.46      | 1.00       | 0.11    | 1.00       |             | 0.26     | 1.00       |      |
| Satd. Flow (perm)             | 382        | 1305     |       |      | 682       | 1293       | 134     | 2695       |             | 378      | 2767       |      |
| Peak-hour factor, PHF         | 0.99       | 0.99     | 0.99  | 0.99 | 0.99      | 0.99       | 0.99    | 0.99       | 0.99        | 0.99     | 0.99       | 0.99 |
| Adj. Flow (vph)               | 151        | 182      | 121   | 100  | 223       | 280        | 82      | 781        | 42          | 265      | 1237       | 138  |
| RTOR Reduction (vph)          | 0          | 18       | 0     | 0    | 0         | 65         | 0       | 3          | 0           | 0        | 6          | 0    |
| Lane Group Flow (vph)         | 151        | 285      | 0     | 0    | 323       | 215        | 82      | 820        | 0           | 265      | 1369       | 0    |
| Confl. Peds. (#/hr)           |            |          | 4     | 4    |           |            | 1       |            | 2           | 2        |            | 1    |
| Confl. Bikes (#/hr)           |            |          |       |      |           |            |         |            | 1           |          |            |      |
| Heavy Vehicles (%)            | 36%        | 22%      | 30%   | 33%  | 12%       | 15%        | 41%     | 22%        | 27%         | 21%      | 18%        | 19%  |
| Turn Type                     | Perm       | NA       |       | Perm | NA        | Perm       | D.P+P   | NA         |             | D.P+P    | NA         |      |
| Protected Phases              |            | 4        |       |      | 8         |            | 5       | 2          |             | 1        | 6          |      |
| Permitted Phases              | 4          |          |       | 8    |           | 8          | 6       |            |             | 2        |            |      |
| Actuated Green, G (s)         | 34.5       | 34.5     |       |      | 34.5      | 34.5       | 82.0    | 66.5       |             | 82.0     | 73.8       |      |
| Effective Green, g (s)        | 34.5       | 34.5     |       |      | 34.5      | 34.5       | 82.0    | 66.5       |             | 82.0     | 73.8       |      |
| Actuated g/C Ratio            | 0.27       | 0.27     |       |      | 0.27      | 0.27       | 0.63    | 0.51       |             | 0.63     | 0.57       |      |
| Clearance Time (s)            | 4.5        | 4.5      |       |      | 4.5       | 4.5        | 4.5     | 4.5        |             | 4.5      | 4.5        |      |
| Vehicle Extension (s)         | 2.5        | 2.5      |       |      | 2.5       | 2.5        | 2.5     | 4.6        |             | 2.5      | 4.6        |      |
| Lane Grp Cap (vph)            | 101        | 346      |       |      | 180       | 343        | 150     | 1378       |             | 357      | 1570       |      |
| v/s Ratio Prot                |            | 0.22     |       |      |           |            | 0.03    | 0.30       |             | 0.09     | c0.49      |      |
| v/s Ratio Perm                | 0.40       |          |       |      | c0.47     | 0.17       | 0.31    |            |             | c0.38    |            |      |
| v/c Ratio                     | 1.50       | 0.82     |       |      | 1.79      | 0.63       | 0.55    | 0.60       |             | 0.74     | 0.87       |      |
| Uniform Delay, d1             | 47.8       | 44.9     |       |      | 47.8      | 42.1       | 15.9    | 22.3       |             | 28.6     | 24.1       |      |
| Progression Factor            | 1.00       | 1.00     |       |      | 1.00      | 1.00       | 1.00    | 1.00       |             | 1.34     | 1.36       |      |
| Incremental Delay, d2         | 267.6      | 14.3     |       |      | 378.8     | 3.1        | 3.2     | 1.9        |             | 1.9      | 1.8        |      |
| Delay (s)                     | 315.3      | 59.1     |       |      | 426.6     | 45.2       | 19.1    | 24.2       |             | 40.3     | 34.4       |      |
| Level of Service              | F          | Е        |       |      | F         | D          | В       | С          |             | D        | С          |      |
| Approach Delay (s)            |            | 144.3    |       |      | 249.5     |            |         | 23.7       |             |          | 35.4       |      |
| Approach LOS                  |            | F        |       |      | F         |            |         | С          |             |          | D          |      |
| Intersection Summary          |            |          |       |      |           |            |         |            |             |          |            |      |
| HCM 2000 Control Delay        |            |          | 82.0  | Н    | CM 2000   | Level of   | Service |            | F           |          |            |      |
| HCM 2000 Volume to Capa       | city ratio |          | 1.15  |      |           |            |         |            |             |          |            |      |
| Actuated Cycle Length (s)     |            |          | 130.0 | S    | um of los | t time (s) |         |            | 13.5        |          |            |      |
| Intersection Capacity Utiliza | ation      |          | 98.8% | IC   | CU Level  | of Service | Э       |            | F           |          |            |      |
| Analysis Period (min)         |            |          | 15    |      |           |            |         |            |             |          |            |      |
| c Critical Lane Group         |            |          |       |      |           |            |         |            |             |          |            |      |

| Intersection           |           |        |          |         |            |         |                      |                                |  |
|------------------------|-----------|--------|----------|---------|------------|---------|----------------------|--------------------------------|--|
| Int Delay, s/veh       | 8.7       |        |          |         |            |         |                      |                                |  |
| Movement               | EBL       | EBR    | NBL      | NBT     | SBT        | SBR     |                      |                                |  |
| Lane Configurations    | ሻ         | 7      |          | 414     | <b>ተ</b> ኈ |         |                      |                                |  |
| Traffic Vol, veh/h     | 78        | 79     | 76       | 910     | 1175       | 218     |                      |                                |  |
| Future Vol, veh/h      | 78        | 79     | 76       | 910     | 1175       | 218     |                      |                                |  |
| Conflicting Peds, #/hr | 0         | 1      | 1        | 0       | 0          | 1       |                      |                                |  |
| Sign Control           | Stop      | Stop   | Free     | Free    | Free       | Free    |                      |                                |  |
| RT Channelized         | Slop<br>- |        |          | None    | -          |         |                      |                                |  |
|                        | 110       | 0      | _        | None -  | -          | NOHE -  |                      |                                |  |
| Storage Length         |           |        |          |         |            |         |                      |                                |  |
| Veh in Median Storage  |           | -      | -        | 0       | 0          | -       |                      |                                |  |
| Grade, %               | 0         | -      | -        | 0       | 0          | -       |                      |                                |  |
| Peak Hour Factor       | 92        | 92     | 92       | 92      | 92         | 92      |                      |                                |  |
| Heavy Vehicles, %      | 21        | 35     | 31       | 25      | 29         | 16      |                      |                                |  |
| Mvmt Flow              | 85        | 86     | 83       | 989     | 1277       | 237     |                      |                                |  |
|                        |           |        |          |         |            |         |                      |                                |  |
|                        | Minor2    |        | Major1   |         | Major2     |         |                      |                                |  |
| Conflicting Flow All   | 2057      | 759    | 1515     | 0       | -          | 0       |                      |                                |  |
| Stage 1                | 1397      | -      | -        | -       | -          | -       |                      |                                |  |
| Stage 2                | 660       | -      | -        | -       | -          | -       |                      |                                |  |
| Critical Hdwy          | 7.22      | 7.6    | 4.72     | -       | -          | _       |                      |                                |  |
| Critical Hdwy Stg 1    | 6.22      | -      | -        | -       | -          | -       |                      |                                |  |
| Critical Hdwy Stg 2    | 6.22      | _      | -        | _       | -          | _       |                      |                                |  |
| Follow-up Hdwy         | 3.71      | 3.65   | 2.51     | _       | _          | _       |                      |                                |  |
| Pot Cap-1 Maneuver     | ~ 38      | 285    | 319      | _       | -          | _       |                      |                                |  |
| Stage 1                | 164       | -      | -        | _       | _          | _       |                      |                                |  |
| Stage 2                | 428       | _      | _        | _       | _          | _       |                      |                                |  |
| Platoon blocked, %     | 720       |        |          | _       | _          | _       |                      |                                |  |
|                        | ~ 16      | 284    | 319      |         |            |         |                      |                                |  |
| Mov Cap-1 Maneuver     |           |        |          | -       | -          | -       |                      |                                |  |
| Mov Cap-2 Maneuver     |           | -      | -        | -       | -          | -       |                      |                                |  |
| Stage 1                | 164       | -      | -        | -       | -          | -       |                      |                                |  |
| Stage 2                | 180       | -      | -        | -       | -          | -       |                      |                                |  |
|                        |           |        |          |         |            |         |                      |                                |  |
| Approach               | EB        |        | NB       |         | SB         |         |                      |                                |  |
| HCM Control Delay, s   |           |        | 6.2      |         | 0          |         |                      |                                |  |
| HCM LOS                | F         |        |          |         |            |         |                      |                                |  |
|                        |           |        |          |         |            |         |                      |                                |  |
| Minor Lane/Major Mvr   | nt        | NBL    | NBT I    | EBLn1 l | EBLn2      | SBT     | SBR                  |                                |  |
| Capacity (veh/h)       |           | 319    | -        | 86      | 284        | _       | -                    |                                |  |
| HCM Lane V/C Ratio     |           | 0.259  | -        |         | 0.302      | -       | -                    |                                |  |
| HCM Control Delay (s   | )         | 20.2   | 5        | 180     | 23.1       | _       | -                    |                                |  |
| HCM Lane LOS           | ,         | C      | A        | F       | C          | _       | -                    |                                |  |
| HCM 95th %tile Q(veh   | 1)        | 1      | -        | 5.6     | 1.2        | -       | -                    |                                |  |
| ,                      | ,         |        |          | 3.0     |            |         |                      |                                |  |
| Notes                  | no site   | ф. D   | lov: s:: | 00d= 20 | )Oc        | Ca      | vutation Not Define  | * All major values in al-t-    |  |
| ~: Volume exceeds ca   | pacity    | \$: De | iay exc  | eeds 30 | JUS        | +: Comp | outation Not Defined | *: All major volume in platoon |  |

| ## Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Movement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Cane Configurations   Cane Configurations   Cane Configurations   Cane Configurations   Cane Configurations   Cane Configurations   Cane Conficing Follow   Cane Conficing Follow   Cane Conficing Follow   Cane Conficing Follow   Cane Configurations   Cane Configu |
| Traffic Vol, veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Future Vol, veh/h  Conflicting Peds, #hr  O  O  O  O  O  O  O  O  O  O  O  O  O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Conflicting Peds, #/hr   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Sign Control   Free   Free   Free   Free   Stop   Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| RT Channelized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Storage Length 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Veh in Median Storage, # 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Grade, % 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Peak Hour Factor 96 96 96 96 96 96 96 96 96 96 96 96 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Heavy Vehicles, %   15   21   18   29   31   15   15   15   124   269   357   105   254   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105   105  |
| Major/Minor   Major   Major   Major   Minor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Major/Minor   Major1   Major2   Minor1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Conflicting Flow All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Critical Hdwy Stg 1 4.28 - 6.71 6.35 Critical Hdwy Stg 1 5.71 - Critical Hdwy Stg 2 5.75 - Critical Hdwy St 2 5.75 - Critical Hdwy St 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Critical Hdwy Stg 1 5.71 - Critical Hdwy Stg 2 5.71 - Follow-up Hdwy - 2.362 - 3.779 3.435 Pot Cap-1 Maneuver - 962 - 141 570 Stage 1 575 - Stage 2 355 - Platon blocked, % Mov Cap-1 Maneuver - 962 - ~102 570 Mov Cap-1 Maneuver - 962 - ~102 570 Mov Cap-2 Maneuver ~575 - Stage 1 575 - Stage 1 575 - Stage 2 702 570 Mov Cap-2 Maneuver 256 -  Stage 1 575 - Stage 2 575 - Stage 2 256 -  Approach EB WB NB HCM Control Delay, s 0 4.4 274.1 HCM LOS F  Minor Lane/Major Mvmt NBLn1 EBT EBR WBL WBT  Capacity (veh/h) 243 - 962 - HCM Lane V/C Ratio 1.479 - 0.279 - HCM Control Delay (s) 274.1 - 10.2 - HCM Lane LOS F - B - HCM 95th %tile Q(veh) 21 - 1.1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Critical Hdwy Stg 2 5.71 - Follow-up Hdwy - 2.362 - 3.779 3.435 Pot Cap-1 Maneuver - 962 - 141 570 Stage 1 575 - Stage 2 3555 - Platon blocked, % 102 570 Mov Cap-1 Maneuver - 962 - ~102 570 Mov Cap-2 Maneuver - 962 - ~102 - 575 Stage 1 575 - Stage 2 256 -  Mov Cap-2 Maneuver 256 102 - 575 Stage 2 256 102 - 575  Mov Cap-2 Maneuver 702 - 702 - 703 Stage 1 256 103  Approach EB WB NB HCM Control Delay, s 0 4.4 274.1 HCM LOS F  Minor Lane/Major Mvmt NBLn1 EBT EBR WBL WBT  Capacity (veh/h) 243 - 962 - 10.29 HCM Lane V/C Ratio 1.479 - 0.279 - 10.29 HCM Control Delay (s) 274.1 - 10.2 - 10.2 - 10.2 - 10.2 - 10.2 - 10.2 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 10.3 - 1                                                                                       |
| Follow-up Hdwy - 2.362 - 3.779 3.435 Pot Cap-1 Maneuver - 962 - 141 570 Stage 1 575 - Stage 2 3555 - Platoon blocked, % Mov Cap-1 Maneuver - 962 - ~102 570 Mov Cap-2 Maneuver - 962 - ~102 570 Mov Cap-2 Maneuver 575 - Stage 1 575 - Stage 2 2566 -  Approach EB WB NB HCM Control Delay, s 0 4.4 274.1 HCM LOS F  Minor Lane/Major Mvmt NBLn1 EBT EBR WBL WBT Capacity (veh/h) 243 - 962 - HCM Lane V/C Ratio 1.479 - 0.279 - HCM Control Delay (s) 274.1 - 10.2 - HCM Lane LOS F - B - HCM 95th %tile Q(veh) 21 - 1.1 - Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Pot Cap-1 Maneuver - 962 - 141 570 Stage 1 575 - Stage 2 355 - Platoon blocked, % Mov Cap-1 Maneuver - 962 - ~102 570 Mov Cap-1 Maneuver - 962 - ~102 570 Mov Cap-2 Maneuver 575 - Stage 1 575 - Stage 2 256 -  Approach EB WB NB HCM Control Delay, s 0 4.4 274.1 HCM LOS F  Minor Lane/Major Mvmt NBLn1 EBT EBR WBL WBT Capacity (veh/h) 243 - 962 - HCM Lane V/C Ratio 1.479 - 0.279 - HCM Control Delay (s) 274.1 - 10.2 - HCM Lane LOS F - B - HCM 95th %tile Q(veh) 21 - 1.1 - Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Stage 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Platoon blocked, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Mov Cap-1 Maneuver         -         962         -         ~ 102         570           Mov Cap-2 Maneuver         -         -         -         ~ 102         -           Stage 1         -         -         -         575         -           Stage 2         -         -         -         256         -    Approach  EB  WB  NB  HCM Control Delay, s  0  4.4  274.1  F  Minor Lane/Major Mvmt  NBLn1  EBT  EBR  WBL  WBT  Capacity (veh/h)  243  - 962  - HCM Lane V/C Ratio  1.479  - 0.279  - HCM Control Delay (s)  274.1  - 10.2  - HCM Control Delay (s)  274.1  - 10.2  - HCM Lane LOS  F  - B  - HCM 95th %tile Q(veh)  21  - 1.1  - Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Mov Cap-2 Maneuver 102 575 256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Stage 1         -         -         -         575         -           Stage 2         -         -         -         256         -           Approach         EB         WB         NB           HCM Control Delay, s         0         4.4         274.1           HCM LOS         F         -         -           Minor Lane/Major Mvmt         NBLn1         EBT         EBR         WBL         WBT           Capacity (veh/h)         243         -         -         962         -           HCM Lane V/C Ratio         1.479         -         0.279         -           HCM Control Delay (s)         274.1         -         10.2         -           HCM Lane LOS         F         -         B         -           HCM 95th %tile Q(veh)         21         -         1.1         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Stage 2         -         -         -         256         -           Approach         EB         WB         NB           HCM Control Delay, s         0         4.4         274.1           HCM LOS         F    Minor Lane/Major Mvmt  NBLn1  EBT  EBR  WBL  WBT  Capacity (veh/h)  243  - 962  - HCM Lane V/C Ratio  1.479  - 0.279  - HCM Control Delay (s)  274.1  - 10.2  - HCM Control Delay (s)  74.1  - 10.2  - HCM Lane LOS  F  - B  - HCM 95th %tile Q(veh)  21  - 1.1  Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Approach EB WB NB  HCM Control Delay, s 0 4.4 274.1  HCM LOS F  Minor Lane/Major Mvmt NBLn1 EBT EBR WBL WBT  Capacity (veh/h) 243 962 -  HCM Lane V/C Ratio 1.479 0.279 -  HCM Control Delay (s) 274.1 - 10.2 -  HCM Lane LOS F - B -  HCM 95th %tile Q(veh) 21 - 1.1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CM Control Delay, s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CM Control Delay, s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Minor Lane/Major Mvmt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Minor Lane/Major Mvmt         NBLn1         EBT         EBR         WBL         WBT           Capacity (veh/h)         243         -         -         962         -           HCM Lane V/C Ratio         1.479         -         -         0.279         -           HCM Control Delay (s)         274.1         -         -         10.2         -           HCM Lane LOS         F         -         -         B         -           HCM 95th %tile Q(veh)         21         -         1.1         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Capacity (veh/h) 243 962 - HCM Lane V/C Ratio 1.479 0.279 - HCM Control Delay (s) 274.1 10.2 - HCM Lane LOS F - B - HCM 95th %tile Q(veh) 21 - 1.1 - Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Capacity (veh/h) 243 962 - HCM Lane V/C Ratio 1.479 0.279 - HCM Control Delay (s) 274.1 10.2 - HCM Lane LOS F - B - HCM 95th %tile Q(veh) 21 1.1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Capacity (veh/h) 243 962 - HCM Lane V/C Ratio 1.479 0.279 - HCM Control Delay (s) 274.1 10.2 - HCM Lane LOS F - B - HCM 95th %tile Q(veh) 21 - 1.1 - Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| HCM Lane V/C Ratio 1.479 0.279 - HCM Control Delay (s) 274.1 10.2 - HCM Lane LOS F - B - HCM 95th %tile Q(veh) 21 - 1.1 - Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| HCM Control Delay (s) 274.1 10.2 - HCM Lane LOS F - B - HCM 95th %tile Q(veh) 21 1.1 - Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| HCM Lane LOS F B - HCM 95th %tile Q(veh) 21 1.1 - Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| HCM 95th %tile Q(veh) 21 1.1 - Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ~: Volume exceeds capacity   \$: Delay exceeds 300s   +: Computation Not Defined   *: All major volume in plate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

|                                   | ۶        | <b>→</b> | •     | •     | <b>—</b>  | •           | 4       | <b>†</b> | <b>/</b> | <b>/</b> | <b>↓</b> | 4    |
|-----------------------------------|----------|----------|-------|-------|-----------|-------------|---------|----------|----------|----------|----------|------|
| Movement                          | EBL      | EBT      | EBR   | WBL   | WBT       | WBR         | NBL     | NBT      | NBR      | SBL      | SBT      | SBR  |
| Lane Configurations               | ሻ        | <b>^</b> | 7     | ሻ     | <b>^</b>  | 7           | ň       | f)       |          | ሻ        | 4        |      |
| Traffic Volume (vph)              | 33       | 584      | 1     | 33    | 593       | 257         | 3       | 5        | 79       | 744      | 2        | 28   |
| Future Volume (vph)               | 33       | 584      | 1     | 33    | 593       | 257         | 3       | 5        | 79       | 744      | 2        | 28   |
| Ideal Flow (vphpl)                | 1750     | 1750     | 1750  | 1750  | 1750      | 1750        | 1750    | 1750     | 1750     | 1750     | 1750     | 1750 |
| Total Lost time (s)               | 4.0      | 4.5      | 4.0   | 4.0   | 4.5       | 4.0         | 4.0     | 4.0      |          | 4.0      | 4.0      |      |
| Lane Util. Factor                 | 1.00     | 0.95     | 1.00  | 1.00  | 0.95      | 1.00        | 1.00    | 1.00     |          | 0.95     | 0.95     |      |
| Frpb, ped/bikes                   | 1.00     | 1.00     | 0.98  | 1.00  | 1.00      | 1.00        | 1.00    | 1.00     |          | 1.00     | 1.00     |      |
| Flpb, ped/bikes                   | 1.00     | 1.00     | 1.00  | 1.00  | 1.00      | 1.00        | 1.00    | 1.00     |          | 1.00     | 1.00     |      |
| Frt                               | 1.00     | 1.00     | 0.85  | 1.00  | 1.00      | 0.85        | 1.00    | 0.86     |          | 1.00     | 0.99     |      |
| Flt Protected                     | 0.95     | 1.00     | 1.00  | 0.95  | 1.00      | 1.00        | 0.95    | 1.00     |          | 0.95     | 0.96     |      |
| Satd. Flow (prot)                 | 1614     | 2866     | 975   | 1250  | 2866      | 1430        | 1662    | 1162     |          | 1490     | 1477     |      |
| FIt Permitted                     | 0.95     | 1.00     | 1.00  | 0.95  | 1.00      | 1.00        | 0.95    | 1.00     |          | 0.95     | 0.96     |      |
| Satd. Flow (perm)                 | 1614     | 2866     | 975   | 1250  | 2866      | 1430        | 1662    | 1162     |          | 1490     | 1477     |      |
| Peak-hour factor, PHF             | 0.92     | 0.92     | 0.92  | 0.92  | 0.92      | 0.92        | 0.92    | 0.92     | 0.92     | 0.92     | 0.92     | 0.92 |
| Adj. Flow (vph)                   | 36       | 635      | 1     | 36    | 645       | 279         | 3       | 5        | 86       | 809      | 2        | 30   |
| RTOR Reduction (vph)              | 0        | 0        | 1     | 0     | 0         | 65          | 0       | 80       | 0        | 0        | 1        | 0    |
| Lane Group Flow (vph)             | 36       | 635      | 0     | 36    | 645       | 214         | 3       | 11       | 0        | 421      | 419      | 0    |
| Confl. Bikes (#/hr)               | 00       | 000      | 1     |       | 0.10      | 211         |         | ''       |          | 141      | 110      |      |
| Heavy Vehicles (%)                | 3%       | 16%      | 50%   | 33%   | 16%       | 4%          | 0%      | 50%      | 28%      | 6%       | 20%      | 11%  |
| Turn Type                         | Prot     | NA       | pm+ov | Prot  | NA        | pm+ov       | Split   | NA       | 2070     | Split    | NA       | 1170 |
| Protected Phases                  | 5        | 2        | 8     | 1     | 6         | 4           | 8       | 8        |          | 4        | 4        |      |
| Permitted Phases                  | J        |          | 2     | ·     | U         | 6           | U       | U        |          |          | 7        |      |
| Actuated Green, G (s)             | 4.7      | 30.4     | 38.1  | 5.3   | 31.0      | 73.3        | 7.7     | 7.7      |          | 42.3     | 42.3     |      |
| Effective Green, g (s)            | 4.7      | 30.4     | 38.1  | 5.3   | 31.0      | 73.3        | 7.7     | 7.7      |          | 42.3     | 42.3     |      |
| Actuated g/C Ratio                | 0.05     | 0.30     | 0.37  | 0.05  | 0.30      | 0.72        | 0.08    | 0.08     |          | 0.41     | 0.41     |      |
| Clearance Time (s)                | 4.0      | 4.5      | 4.0   | 4.0   | 4.5       | 4.0         | 4.0     | 4.0      |          | 4.0      | 4.0      |      |
| Vehicle Extension (s)             | 2.5      | 4.2      | 2.5   | 2.5   | 4.2       | 2.5         | 2.5     | 2.5      |          | 2.5      | 2.5      |      |
|                                   | 74       | 852      | 363   | 64    | 869       | 1025        | 125     | 87       |          |          | 611      |      |
| Lane Grp Cap (vph)                |          |          |       |       |           |             |         |          |          | 616      |          |      |
| v/s Ratio Prot                    | 0.02     | 0.22     | 0.00  | c0.03 | c0.23     | 0.09        | 0.00    | c0.01    |          | 0.28     | c0.28    |      |
| v/s Ratio Perm                    | 0.40     | 0.75     | 0.00  | 0.56  | 0.74      | 0.06        | 0.00    | 0.42     |          | 0.60     | 0.60     |      |
| v/c Ratio                         | 0.49     | 0.75     | 0.00  | 0.56  | 0.74      | 0.21        | 0.02    | 0.13     |          | 0.68     | 0.69     |      |
| Uniform Delay, d1                 | 47.6     | 32.4     | 20.1  | 47.3  | 32.0      | 4.8         | 43.8    | 44.1     |          | 24.5     | 24.5     |      |
| Progression Factor                | 1.00     | 1.00     | 1.00  | 1.00  | 1.00      | 1.00        | 1.00    | 1.00     |          | 1.00     | 1.00     |      |
| Incremental Delay, d2             | 3.6      | 3.9      | 0.0   | 8.9   | 3.8       | 0.1         | 0.1     | 0.5      |          | 2.9      | 2.9      |      |
| Delay (s)                         | 51.2     | 36.3     | 20.1  | 56.2  | 35.8      | 4.9         | 43.8    | 44.6     |          | 27.3     | 27.4     |      |
| Level of Service                  | D        | D        | С     | Е     | D         | Α           | D       | D        |          | С        | C        |      |
| Approach Delay (s)                |          | 37.1     |       |       | 27.6      |             |         | 44.6     |          |          | 27.4     |      |
| Approach LOS                      |          | D        |       |       | С         |             |         | D        |          |          | С        |      |
| Intersection Summary              |          |          |       |       |           |             |         |          |          |          |          |      |
| HCM 2000 Control Delay            |          |          | 30.6  | Н     | CM 2000   | Level of S  | Service |          | С        |          |          |      |
| HCM 2000 Volume to Capaci         | ty ratio |          | 0.65  |       |           |             |         |          |          |          |          |      |
| Actuated Cycle Length (s)         | •        |          | 102.2 | S     | um of los | st time (s) |         |          | 16.5     |          |          |      |
| Intersection Capacity Utilization | on       |          | 62.4% |       |           | of Service  |         |          | В        |          |          |      |
| Analysis Period (min)             |          |          | 15    |       |           |             |         |          |          |          |          |      |
| c Critical Lane Group             |          |          |       |       |           |             |         |          |          |          |          |      |

|                                   | ۶     | <b>→</b> | •     | €    | <b>—</b>   | 4          | •      | <b>†</b> | <i>&gt;</i> | <b>/</b> | ţ    | -√     |
|-----------------------------------|-------|----------|-------|------|------------|------------|--------|----------|-------------|----------|------|--------|
| Movement                          | EBL   | EBT      | EBR   | WBL  | WBT        | WBR        | NBL    | NBT      | NBR         | SBL      | SBT  | SBR    |
| Lane Configurations               |       | <b>^</b> | 7     |      | <b>^</b>   | 7          |        |          |             | 44       |      | 7      |
| Traffic Volume (vph)              | 0     | 1091     | 462   | 0    | 1081       | 715        | 0      | 0        | 0           | 774      | 0    | 307    |
| Future Volume (vph)               | 0     | 1091     | 462   | 0    | 1081       | 715        | 0      | 0        | 0           | 774      | 0    | 307    |
| Ideal Flow (vphpl)                | 1750  | 1750     | 1750  | 1750 | 1750       | 1750       | 1750   | 1750     | 1750        | 1750     | 1750 | 1750   |
| Total Lost time (s)               |       | 4.5      | 4.0   |      | 4.5        | 4.0        |        |          |             | 4.5      |      | 4.5    |
| Lane Util. Factor                 |       | 0.95     | 1.00  |      | 0.95       | 1.00       |        |          |             | 0.97     |      | 1.00   |
| Frpb, ped/bikes                   |       | 1.00     | 0.98  |      | 1.00       | 0.98       |        |          |             | 1.00     |      | 1.00   |
| Flpb, ped/bikes                   |       | 1.00     | 1.00  |      | 1.00       | 1.00       |        |          |             | 1.00     |      | 1.00   |
| Frt                               |       | 1.00     | 0.85  |      | 1.00       | 0.85       |        |          |             | 1.00     |      | 0.85   |
| Flt Protected                     |       | 1.00     | 1.00  |      | 1.00       | 1.00       |        |          |             | 0.95     |      | 1.00   |
| Satd. Flow (prot)                 |       | 2866     | 1255  |      | 2842       | 1173       |        |          |             | 2710     |      | 1271   |
| FIt Permitted                     |       | 1.00     | 1.00  |      | 1.00       | 1.00       |        |          |             | 0.95     |      | 1.00   |
| Satd. Flow (perm)                 |       | 2866     | 1255  |      | 2842       | 1173       |        |          |             | 2710     |      | 1271   |
| Peak-hour factor, PHF             | 0.98  | 0.98     | 0.98  | 0.98 | 0.98       | 0.98       | 0.98   | 0.98     | 0.98        | 0.98     | 0.98 | 0.98   |
| Adj. Flow (vph)                   | 0     | 1113     | 471   | 0    | 1103       | 730        | 0      | 0        | 0           | 790      | 0    | 313    |
| RTOR Reduction (vph)              | 0     | 0        | 0     | 0    | 0          | 0          | 0      | 0        | 0           | 0        | 0    | 8      |
| Lane Group Flow (vph)             | 0     | 1113     | 471   | 0    | 1103       | 730        | 0      | 0        | 0           | 790      | 0    | 305    |
| Confl. Peds. (#/hr)               | 5     | 4.007    | 2     | 2    |            | 5          | 1      |          | 201         | 400/     | •    | 1      |
| Heavy Vehicles (%)                | 0%    | 16%      | 16%   | 0%   | 17%        | 24%        | 0%     | 0%       | 0%          | 19%      | 0%   | 17%    |
| Turn Type                         |       | NA       | Free  |      | NA         | Free       |        |          |             | Prot     |      | custom |
| Protected Phases                  |       | 2        | _     |      | 6          | _          |        |          |             | 4        |      | 4 5    |
| Permitted Phases                  |       |          | Free  |      |            | Free       |        |          |             |          |      |        |
| Actuated Green, G (s)             |       | 58.4     | 100.0 |      | 44.4       | 100.0      |        |          |             | 32.6     |      | 47.1   |
| Effective Green, g (s)            |       | 58.4     | 100.0 |      | 44.4       | 100.0      |        |          |             | 32.6     |      | 47.1   |
| Actuated g/C Ratio                |       | 0.58     | 1.00  |      | 0.44       | 1.00       |        |          |             | 0.33     |      | 0.47   |
| Clearance Time (s)                |       | 4.5      |       |      | 4.5        |            |        |          |             | 4.5      |      |        |
| Vehicle Extension (s)             |       | 6.0      | 1055  |      | 4.0        | 1170       |        |          |             | 2.5      |      | 500    |
| Lane Grp Cap (vph)                |       | 1673     | 1255  |      | 1261       | 1173       |        |          |             | 883      |      | 598    |
| v/s Ratio Prot                    |       | 0.39     | 0.00  |      | c0.39      | 0.00       |        |          |             | c0.29    |      | 0.24   |
| v/s Ratio Perm                    |       | 0.07     | 0.38  |      | 0.07       | c0.62      |        |          |             | 0.00     |      | 0.54   |
| v/c Ratio                         |       | 0.67     | 0.38  |      | 0.87       | 0.62       |        |          |             | 0.89     |      | 0.51   |
| Uniform Delay, d1                 |       | 14.2     | 0.0   |      | 25.3       | 0.0        |        |          |             | 32.1     |      | 18.4   |
| Progression Factor                |       | 1.00     | 1.00  |      | 1.10       | 1.00       |        |          |             | 1.00     |      | 1.00   |
| Incremental Delay, d2             |       | 2.1      | 0.9   |      | 3.7        | 1.0        |        |          |             | 11.5     |      | 0.5    |
| Delay (s)                         |       | 16.3     | 0.9   |      | 31.5       | 1.0        |        |          |             | 43.5     |      | 18.9   |
| Level of Service                  |       | B        | Α     |      | C          | А          |        | 0.0      |             | D        | 20 5 | В      |
| Approach Delay (s)                |       | 11.7     |       |      | 19.4       |            |        | 0.0      |             |          | 36.5 |        |
| Approach LOS                      |       | В        |       |      | В          |            |        | Α        |             |          | D    |        |
| Intersection Summary              |       |          | 20.0  |      | 014 0000   |            |        |          |             |          |      |        |
| HCM 2000 Control Delay            |       |          | 20.9  | H    | UNI 2000   | Level of S | ervice |          | С           |          |      |        |
| HCM 2000 Volume to Capacity       | ratio |          | 0.88  |      | uma afta   | h 41       |        |          | 12.0        |          |      |        |
| Actuated Cycle Length (s)         |       |          | 100.0 |      | um of lost |            |        |          | 13.0        |          |      |        |
| Intersection Capacity Utilization | 1     |          | 63.8% | IC   | U Level    | of Service |        |          | В           |          |      |        |
| Analysis Period (min)             |       |          | 15    |      |            |            |        |          |             |          |      |        |

|                                | ۶          | <b>→</b>     | •            | •    | <b>←</b>     | 4            | 4            | <b>†</b>     | <b>/</b>     | <b>/</b> | <b>+</b> | 4    |
|--------------------------------|------------|--------------|--------------|------|--------------|--------------|--------------|--------------|--------------|----------|----------|------|
| Movement                       | EBL        | EBT          | EBR          | WBL  | WBT          | WBR          | NBL          | NBT          | NBR          | SBL      | SBT      | SBR  |
| Lane Configurations            |            | <b>^</b>     | 7            |      | <b>^</b>     | 7            | 7            | 4            | 7            |          |          |      |
| Traffic Volume (vph)           | 0          | 1642         | 248          | 0    | 1398         | 472          | 385          | 0            | 692          | 0        | 0        | 0    |
| Future Volume (vph)            | 0          | 1642         | 248          | 0    | 1398         | 472          | 385          | 0            | 692          | 0        | 0        | 0    |
| Ideal Flow (vphpl)             | 1750       | 1750         | 1750         | 1750 | 1750         | 1750         | 1750         | 1750         | 1750         | 1750     | 1750     | 1750 |
| Total Lost time (s)            |            | 4.5          | 4.0          |      | 4.5          | 4.0          | 4.5          | 4.5          | 4.5          |          |          |      |
| Lane Util. Factor              |            | 0.95         | 1.00         |      | 0.95         | 1.00         | 0.95         | 0.91         | 0.95         |          |          |      |
| Frpb, ped/bikes                |            | 1.00         | 0.98         |      | 1.00         | 0.98         | 1.00         | 0.99         | 0.99         |          |          |      |
| Flpb, ped/bikes<br>Frt         |            | 1.00<br>1.00 | 1.00<br>0.85 |      | 1.00<br>1.00 | 1.00<br>0.85 | 1.00         | 1.00<br>0.87 | 1.00<br>0.85 |          |          |      |
| FIt Protected                  |            | 1.00         | 1.00         |      | 1.00         | 1.00         | 1.00<br>0.95 | 0.07         | 1.00         |          |          |      |
| Satd. Flow (prot)              |            | 2866         | 1234         |      | 2725         | 1212         | 1350         | 1106         | 1132         |          |          |      |
| Flt Permitted                  |            | 1.00         | 1.00         |      | 1.00         | 1.00         | 0.95         | 0.99         | 1.00         |          |          |      |
| Satd. Flow (perm)              |            | 2866         | 1234         |      | 2725         | 1212         | 1350         | 1106         | 1132         |          |          |      |
| Peak-hour factor, PHF          | 0.96       | 0.96         | 0.96         | 0.96 | 0.96         | 0.96         | 0.96         | 0.96         | 0.96         | 0.96     | 0.96     | 0.96 |
| Adj. Flow (vph)                | 0.50       | 1710         | 258          | 0.30 | 1456         | 492          | 401          | 0.50         | 721          | 0.50     | 0.50     | 0.50 |
| RTOR Reduction (vph)           | 0          | 0            | 0            | 0    | 0            | 0            | 0            | 10           | 10           | 0        | 0        | 0    |
| Lane Group Flow (vph)          | 0          | 1710         | 258          | 0    | 1456         | 492          | 361          | 376          | 365          | 0        | 0        | 0    |
| Confl. Peds. (#/hr)            | 4          |              | 3            | 3    |              | 4            |              |              | 2            | 2        |          |      |
| Heavy Vehicles (%)             | 0%         | 16%          | 18%          | 0%   | 22%          | 20%          | 17%          | 0%           | 23%          | 0%       | 0%       | 0%   |
| Turn Type                      |            | NA           | Free         |      | NA           | Free         | Perm         | NA           | Perm         |          |          |      |
| Protected Phases               |            | 2            |              |      | 6            |              |              | 8            |              |          |          |      |
| Permitted Phases               |            |              | Free         |      |              | Free         | 8            |              | 8            |          |          |      |
| Actuated Green, G (s)          |            | 56.1         | 100.0        |      | 56.1         | 100.0        | 34.9         | 34.9         | 34.9         |          |          |      |
| Effective Green, g (s)         |            | 56.1         | 100.0        |      | 56.1         | 100.0        | 34.9         | 34.9         | 34.9         |          |          |      |
| Actuated g/C Ratio             |            | 0.56         | 1.00         |      | 0.56         | 1.00         | 0.35         | 0.35         | 0.35         |          |          |      |
| Clearance Time (s)             |            | 4.5          |              |      | 4.5          |              | 4.5          | 4.5          | 4.5          |          |          |      |
| Vehicle Extension (s)          |            | 4.0          |              |      | 6.0          |              | 2.5          | 2.5          | 2.5          |          |          |      |
| Lane Grp Cap (vph)             |            | 1607         | 1234         |      | 1528         | 1212         | 471          | 385          | 395          |          |          |      |
| v/s Ratio Prot                 |            | c0.60        |              |      | 0.53         |              |              |              |              |          |          |      |
| v/s Ratio Perm                 |            |              | 0.21         |      |              | 0.41         | 0.27         | 0.34         | 0.32         |          |          |      |
| v/c Ratio                      |            | 1.06         | 0.21         |      | 0.95         | 0.41         | 0.77         | 0.98         | 0.92         |          |          |      |
| Uniform Delay, d1              |            | 21.9         | 0.0          |      | 20.7         | 0.0          | 28.9         | 32.1         | 31.3         |          |          |      |
| Progression Factor             |            | 1.38         | 1.00         |      | 0.95         | 1.00         | 1.00         | 1.00         | 1.00         |          |          |      |
| Incremental Delay, d2          |            | 38.5<br>68.8 | 0.3          |      | 8.7<br>28.4  | 0.5<br>0.5   | 7.0<br>35.9  | 39.0<br>71.2 | 26.8<br>58.1 |          |          |      |
| Delay (s)<br>Level of Service  |            | 00.0<br>E    | 0.5<br>A     |      | 20.4<br>C    | 0.5<br>A     | 33.9<br>D    | 7 1.Z        | 50.1<br>E    |          |          |      |
| Approach Delay (s)             |            | 59.8         | $\Lambda$    |      | 21.4         | А            | U            | 55.5         | L            |          | 0.0      |      |
| Approach LOS                   |            | E            |              |      | C            |              |              | E            |              |          | A        |      |
| Intersection Summary           |            |              |              |      |              |              |              |              |              |          |          |      |
| HCM 2000 Control Delay         |            |              | 44.0         | Н    | CM 2000      | Level of S   | Service      |              | D            |          |          |      |
| HCM 2000 Volume to Capac       | city ratio |              | 1.03         | - 11 | CIVI 2000    | LCVGI UI V   | JOI VICE     |              | U            |          |          |      |
| Actuated Cycle Length (s)      | only ratio |              | 100.0        | Sı   | um of lost   | time (s)     |              |              | 9.0          |          |          |      |
| Intersection Capacity Utilizat | tion       |              | 88.0%        |      |              | of Service   |              |              | 5.0<br>E     |          |          |      |
| Analysis Period (min)          |            |              | 15           | 10   | 2 20101      |              |              |              | _            |          |          |      |
|                                |            |              |              |      |              |              |              |              |              |          |          |      |

|                              | ٠           | <b>→</b> | •     | •     | <b>←</b>   | •           | •        | <b>†</b> | /         | <b>&gt;</b> | ļ        | 4    |
|------------------------------|-------------|----------|-------|-------|------------|-------------|----------|----------|-----------|-------------|----------|------|
| Movement                     | EBL         | EBT      | EBR   | WBL   | WBT        | WBR         | NBL      | NBT      | NBR       | SBL         | SBT      | SBR  |
| Lane Configurations          | 7           | 44       | 7     | 7     | <b>∱</b> ∱ |             | 7        | ર્ન      | 7         | Ţ           | <b>†</b> | 7    |
| Traffic Volume (vph)         | 84          | 1468     | 256   | 316   | 1144       | 11          | 556      | 24       | 290       | 17          | 36       | 72   |
| Future Volume (vph)          | 84          | 1468     | 256   | 316   | 1144       | 11          | 556      | 24       | 290       | 17          | 36       | 72   |
| Ideal Flow (vphpl)           | 1750        | 1750     | 1750  | 1750  | 1750       | 1750        | 1750     | 1750     | 1750      | 1750        | 1750     | 1750 |
| Total Lost time (s)          | 4.0         | 4.5      | 4.5   | 4.0   | 4.5        |             | 4.5      | 4.5      | 4.5       | 4.5         | 4.5      | 4.5  |
| Lane Util. Factor            | 1.00        | 0.95     | 1.00  | 1.00  | 0.95       |             | 0.95     | 0.95     | 1.00      | 1.00        | 1.00     | 1.00 |
| Frpb, ped/bikes              | 1.00        | 1.00     | 1.00  | 1.00  | 1.00       |             | 1.00     | 1.00     | 0.98      | 1.00        | 1.00     | 0.99 |
| Flpb, ped/bikes              | 1.00        | 1.00     | 1.00  | 1.00  | 1.00       |             | 1.00     | 1.00     | 1.00      | 1.00        | 1.00     | 1.00 |
| Frt                          | 1.00        | 1.00     | 0.85  | 1.00  | 1.00       |             | 1.00     | 1.00     | 0.85      | 1.00        | 1.00     | 0.85 |
| Flt Protected                | 0.95        | 1.00     | 1.00  | 0.95  | 1.00       |             | 0.95     | 0.96     | 1.00      | 0.95        | 1.00     | 1.00 |
| Satd. Flow (prot)            | 1363        | 2842     | 1316  | 1409  | 2836       |             | 1373     | 1389     | 1262      | 1511        | 1651     | 1096 |
| Flt Permitted                | 0.10        | 1.00     | 1.00  | 0.12  | 1.00       |             | 0.95     | 0.96     | 1.00      | 0.95        | 1.00     | 1.00 |
| Satd. Flow (perm)            | 143         | 2842     | 1316  | 182   | 2836       |             | 1373     | 1389     | 1262      | 1511        | 1651     | 1096 |
| Peak-hour factor, PHF        | 0.97        | 0.97     | 0.97  | 0.97  | 0.97       | 0.97        | 0.97     | 0.97     | 0.97      | 0.97        | 0.97     | 0.97 |
| Adj. Flow (vph)              | 87          | 1513     | 264   | 326   | 1179       | 11          | 573      | 25       | 299       | 18          | 37       | 74   |
| RTOR Reduction (vph)         | 0           | 0        | 160   | 0     | 1          | 0           | 0        | 0        | 213       | 0           | 0        | 69   |
| Lane Group Flow (vph)        | 87          | 1513     | 104   | 326   | 1189       | 0           | 298      | 300      | 86        | 18          | 37       | 5    |
| Confl. Peds. (#/hr)          | 3           |          |       |       |            | 3           | 1        |          | 4         | 4           |          | 1    |
| Heavy Vehicles (%)           | 22%         | 17%      | 13%   | 18%   | 17%        | 23%         | 15%      | 8%       | 16%       | 10%         | 6%       | 34%  |
| Turn Type                    | D.P+P       | NA       | Perm  | D.P+P | NA         |             | Split    | NA       | Perm      | Split       | NA       | Perm |
| Protected Phases             | 5           | 2        |       | 1     | 6          |             | . 8      | 8        |           | 4           | 4        |      |
| Permitted Phases             | 6           |          | 2     | 2     |            |             |          |          | 8         |             |          | 4    |
| Actuated Green, G (s)        | 47.4        | 32.6     | 32.6  | 47.4  | 40.0       |             | 28.8     | 28.8     | 28.8      | 6.3         | 6.3      | 6.3  |
| Effective Green, g (s)       | 47.4        | 32.6     | 32.6  | 47.4  | 40.0       |             | 28.8     | 28.8     | 28.8      | 6.3         | 6.3      | 6.3  |
| Actuated g/C Ratio           | 0.47        | 0.33     | 0.33  | 0.47  | 0.40       |             | 0.29     | 0.29     | 0.29      | 0.06        | 0.06     | 0.06 |
| Clearance Time (s)           | 4.0         | 4.5      | 4.5   | 4.0   | 4.5        |             | 4.5      | 4.5      | 4.5       | 4.5         | 4.5      | 4.5  |
| Vehicle Extension (s)        | 2.5         | 6.2      | 6.2   | 2.5   | 6.2        |             | 2.5      | 2.5      | 2.5       | 2.5         | 2.5      | 2.5  |
| Lane Grp Cap (vph)           | 158         | 926      | 429   | 267   | 1134       |             | 395      | 400      | 363       | 95          | 104      | 69   |
| v/s Ratio Prot               | 0.04        | c0.53    |       | c0.18 | 0.42       |             | c0.22    | 0.22     |           | 0.01        | c0.02    |      |
| v/s Ratio Perm               | 0.22        |          | 0.08  | 0.40  |            |             |          |          | 0.07      |             |          | 0.00 |
| v/c Ratio                    | 0.55        | 1.63     | 0.24  | 1.22  | 1.05       |             | 0.75     | 0.75     | 0.24      | 0.19        | 0.36     | 0.07 |
| Uniform Delay, d1            | 19.4        | 33.7     | 24.7  | 39.2  | 30.0       |             | 32.4     | 32.3     | 27.2      | 44.4        | 44.9     | 44.1 |
| Progression Factor           | 0.89        | 0.94     | 1.04  | 0.81  | 0.73       |             | 1.00     | 1.00     | 1.00      | 1.00        | 1.00     | 1.00 |
| Incremental Delay, d2        | 0.3         | 285.7    | 0.1   | 102.7 | 24.7       |             | 7.6      | 7.3      | 0.2       | 0.7         | 1.5      | 0.3  |
| Delay (s)                    | 17.7        | 317.5    | 25.8  | 134.3 | 46.6       |             | 40.0     | 39.7     | 27.5      | 45.1        | 46.4     | 44.4 |
| Level of Service             | В           | F        | С     | F     | D          |             | D        | D        | С         | D           | D        | D    |
| Approach Delay (s)           |             | 262.2    |       |       | 65.4       |             |          | 35.7     |           |             | 45.1     |      |
| Approach LOS                 |             | F        |       |       | Е          |             |          | D        |           |             | D        |      |
| Intersection Summary         |             |          |       |       |            |             |          |          |           |             |          |      |
| HCM 2000 Control Delay       |             |          | 142.0 | Н     | CM 2000    | Level of S  | Service  |          | F         |             |          |      |
| HCM 2000 Volume to Cap       | acity ratio |          | 1.15  |       | JW 2000    | 20101010    | 231 1100 |          |           |             |          |      |
| Actuated Cycle Length (s)    |             |          | 100.0 | S     | um of lost | t time (s)  |          |          | 17.5      |             |          |      |
| Intersection Capacity Utiliz |             |          | 98.0% |       |            | of Service  |          |          | 17.5<br>F |             |          |      |
| Analysis Period (min)        | -40011      |          | 15    | i c   | JO LOVOI ( | J. OCI VIOC |          |          | '         |             |          |      |
| Critical Lana Croup          |             |          | 13    |       |            |             |          |          |           |             |          |      |

|                              | ٠           | <b>→</b>    | •     | •     | +           | •          | •       | <b>†</b> | ~    | <b>/</b> | <b>+</b> | 4    |
|------------------------------|-------------|-------------|-------|-------|-------------|------------|---------|----------|------|----------|----------|------|
| Movement                     | EBL         | EBT         | EBR   | WBL   | WBT         | WBR        | NBL     | NBT      | NBR  | SBL      | SBT      | SBR  |
| Lane Configurations          | Ť           | <b>∱</b> î≽ |       | ሻ     | <b>∱</b> î₃ |            | Ť       | f)       |      | Ť        | f)       |      |
| Traffic Volume (vph)         | 143         | 1618        | 48    | 38    | 1391        | 85         | 33      | 49       | 17   | 102      | 28       | 108  |
| Future Volume (vph)          | 143         | 1618        | 48    | 38    | 1391        | 85         | 33      | 49       | 17   | 102      | 28       | 108  |
| Ideal Flow (vphpl)           | 1750        | 1750        | 1750  | 1750  | 1750        | 1750       | 1750    | 1750     | 1750 | 1750     | 1750     | 1750 |
| Total Lost time (s)          | 4.0         | 4.5         |       | 4.0   | 4.5         |            | 4.0     | 4.0      |      | 4.0      | 4.0      |      |
| Lane Util. Factor            | 1.00        | 0.95        |       | 1.00  | 0.95        |            | 1.00    | 1.00     |      | 1.00     | 1.00     |      |
| Frpb, ped/bikes              | 1.00        | 1.00        |       | 1.00  | 1.00        |            | 1.00    | 1.00     |      | 1.00     | 1.00     |      |
| Flpb, ped/bikes              | 1.00        | 1.00        |       | 1.00  | 1.00        |            | 1.00    | 1.00     |      | 1.00     | 1.00     |      |
| Frt                          | 1.00        | 1.00        |       | 1.00  | 0.99        |            | 1.00    | 0.96     |      | 1.00     | 0.88     |      |
| Flt Protected                | 0.95        | 1.00        |       | 0.95  | 1.00        |            | 0.95    | 1.00     |      | 0.95     | 1.00     |      |
| Satd. Flow (prot)            | 1554        | 2743        |       | 1471  | 2719        |            | 1525    | 1393     |      | 1385     | 1440     |      |
| Flt Permitted                | 0.08        | 1.00        |       | 0.09  | 1.00        |            | 0.95    | 1.00     |      | 0.95     | 1.00     |      |
| Satd. Flow (perm)            | 131         | 2743        |       | 136   | 2719        |            | 1525    | 1393     |      | 1385     | 1440     |      |
| Peak-hour factor, PHF        | 0.96        | 0.96        | 0.96  | 0.96  | 0.96        | 0.96       | 0.96    | 0.96     | 0.96 | 0.96     | 0.96     | 0.96 |
| Adj. Flow (vph)              | 149         | 1685        | 50    | 40    | 1449        | 89         | 34      | 51       | 18   | 106      | 29       | 112  |
| RTOR Reduction (vph)         | 0           | 2           | 0     | 0     | 4           | 0          | 0       | 14       | 0    | 0        | 100      | 0    |
| Lane Group Flow (vph)        | 149         | 1733        | 0     | 40    | 1534        | 0          | 34      | 55       | 0    | 106      | 42       | 0    |
| Confl. Peds. (#/hr)          | 2           |             | 1     | 1     |             | 2          |         |          |      |          |          |      |
| Heavy Vehicles (%)           | 7%          | 20%         | 42%   | 13%   | 22%         | 6%         | 9%      | 21%      | 20%  | 20%      | 7%       | 7%   |
| Turn Type                    | D.P+P       | NA          |       | pm+pt | NA          |            | Prot    | NA       |      | Prot     | NA       |      |
| Protected Phases             | 5           | 2           |       | 1     | 6           |            | 3       | 8        |      | 7        | 4        |      |
| Permitted Phases             | 6           |             |       | 6     |             |            |         |          |      |          |          |      |
| Actuated Green, G (s)        | 62.3        | 57.9        |       | 49.8  | 49.8        |            | 9.4     | 7.9      |      | 13.3     | 11.8     |      |
| Effective Green, g (s)       | 62.3        | 57.9        |       | 49.8  | 49.8        |            | 9.4     | 7.9      |      | 13.3     | 11.8     |      |
| Actuated g/C Ratio           | 0.62        | 0.58        |       | 0.50  | 0.50        |            | 0.09    | 0.08     |      | 0.13     | 0.12     |      |
| Clearance Time (s)           | 4.0         | 4.5         |       | 4.0   | 4.5         |            | 4.0     | 4.0      |      | 4.0      | 4.0      |      |
| Vehicle Extension (s)        | 2.5         | 6.2         |       | 2.5   | 6.2         |            | 2.5     | 2.5      |      | 2.5      | 2.5      |      |
| Lane Grp Cap (vph)           | 259         | 1588        |       | 126   | 1354        |            | 143     | 110      |      | 184      | 169      |      |
| v/s Ratio Prot               | 0.07        | c0.63       |       | 0.01  | c0.56       |            | 0.02    | c0.04    |      | c0.08    | 0.03     |      |
| v/s Ratio Perm               | 0.29        |             |       | 0.14  |             |            |         |          |      |          |          |      |
| v/c Ratio                    | 0.58        | 1.09        |       | 0.32  | 1.13        |            | 0.24    | 0.50     |      | 0.58     | 0.25     |      |
| Uniform Delay, d1            | 33.5        | 21.1        |       | 21.7  | 25.1        |            | 42.0    | 44.2     |      | 40.7     | 40.1     |      |
| Progression Factor           | 0.38        | 1.11        |       | 1.00  | 1.00        |            | 1.00    | 1.00     |      | 1.00     | 1.00     |      |
| Incremental Delay, d2        | 0.2         | 42.4        |       | 1.1   | 69.7        |            | 0.6     | 2.6      |      | 3.5      | 0.6      |      |
| Delay (s)                    | 12.9        | 65.7        |       | 22.8  | 94.8        |            | 42.6    | 46.8     |      | 44.3     | 40.6     |      |
| Level of Service             | В           | Е           |       | С     | F           |            | D       | D        |      | D        | D        |      |
| Approach Delay (s)           |             | 61.5        |       |       | 93.0        |            |         | 45.4     |      |          | 42.2     |      |
| Approach LOS                 |             | E           |       |       | F           |            |         | D        |      |          | D        |      |
| Intersection Summary         |             |             |       |       |             |            |         |          |      |          |          |      |
| HCM 2000 Control Delay       |             |             | 72.8  | Н     | CM 2000     | Level of S | Service |          | Е    |          |          |      |
| HCM 2000 Volume to Capa      | acity ratio |             | 1.00  |       |             |            |         |          |      |          |          |      |
| Actuated Cycle Length (s)    |             |             | 100.0 | S     | um of lost  | time (s)   |         |          | 16.5 |          |          |      |
| Intersection Capacity Utiliz | ation       |             | 79.5% | IC    | CU Level o  | of Service |         |          | D    |          |          |      |
| Analysis Period (min)        |             |             | 15    |       |             |            |         |          |      |          |          |      |
| 0.10.011.00.00               |             |             |       |       |             |            |         |          |      |          |          |      |

c Critical Lane Group

| Interception                          |        |        |        |          |        |      |
|---------------------------------------|--------|--------|--------|----------|--------|------|
| Intersection Int Delay, s/veh         | 1.3    |        |        |          |        |      |
| • ·                                   |        |        | 14/51  | 14/5=    |        | ND E |
| Movement                              | EBT    | EBR    | WBL    | WBT      | NBL    | NBR  |
| Lane Configurations                   | ΦÞ     |        | - ሻ    | <b>^</b> |        | 7    |
|                                       | 1337   | 274    | 29     | 1501     | 0      | 117  |
| · · · · · · · · · · · · · · · · · · · | 1337   | 274    | 29     | 1501     | 0      | 117  |
| Conflicting Peds, #/hr                | 0      | 2      | 2      | 0        | 0      | 0    |
|                                       | Free   | Free   | Free   | Free     | Stop   | Stop |
| RT Channelized                        | -      | None   | -      | None     | -      | None |
| Storage Length                        | -      | -      | 130    | -        | -      | 0    |
| Veh in Median Storage,                | # 0    | -      | -      | 0        | 0      | -    |
| Grade, %                              | 0      | -      | -      | 0        | 0      | -    |
| Peak Hour Factor                      | 94     | 94     | 94     | 94       | 94     | 94   |
| Heavy Vehicles, %                     | 19     | 17     | 10     | 23       | 0      | 24   |
|                                       | 1422   | 291    | 31     | 1597     | 0      | 124  |
|                                       |        | -      |        |          |        |      |
| NA . ' . /NA'                         |        |        | 4      |          | r      |      |
|                                       | lajor1 |        | Major2 |          | Minor1 |      |
| Conflicting Flow All                  | 0      | 0      | 1716   | 0        | -      | 859  |
| Stage 1                               | -      | -      | -      | -        | -      | -    |
| Stage 2                               | -      | -      | -      | -        | -      | -    |
| Critical Hdwy                         | -      | -      | 4.3    | -        | -      | 7.38 |
| Critical Hdwy Stg 1                   | -      | -      | -      | -        | -      | -    |
| Critical Hdwy Stg 2                   | -      | -      | -      | -        | -      | -    |
| Follow-up Hdwy                        | -      | -      | 2.3    | -        | -      | 3.54 |
| Pot Cap-1 Maneuver                    | -      | -      | 332    | -        | 0      | 259  |
| Stage 1                               | -      | -      | -      | -        | 0      | -    |
| Stage 2                               | -      | _      | -      | -        | 0      | -    |
| Platoon blocked, %                    | _      | -      |        | _        |        |      |
| Mov Cap-1 Maneuver                    | _      | -      | 332    | _        | _      | 259  |
| Mov Cap-2 Maneuver                    | _      | _      |        | _        | _      |      |
| Stage 1                               | _      | _      | _      | -        | -      | _    |
| Stage 2                               | _      | _      | _      | _        | _      | _    |
| olaye z                               |        | _      | -      | -        | -      | -    |
|                                       |        |        |        |          |        |      |
| Approach                              | EB     |        | WB     |          | NB     |      |
| HCM Control Delay, s                  | 0      |        | 0.3    |          | 31.1   |      |
| HCM LOS                               |        |        |        |          | D      |      |
|                                       |        |        |        |          |        |      |
| Minor Lang/Major Must                 |        | JDI 51 | EDT    | EDD      | \\/DI  | WDT  |
| Minor Lane/Major Mvmt                 | ľ      | NBLn1  | EBT    | EBR      | WBL    | WBT  |
| Capacity (veh/h)                      |        | 259    | -      | -        | 332    | -    |
| HCM Lane V/C Ratio                    |        | 0.481  | -      | -        | 0.093  | -    |
| HCM Control Delay (s)                 |        | 31.1   | -      | -        | 17     | -    |
| HCM Lane LOS                          |        | D      | -      | -        | С      | -    |
| HCM 95th %tile Q(veh)                 |        | 2.4    | -      | -        | 0.3    | -    |

|                                                            | ٠            | <b>→</b>  | •              | •            | <b>+</b>               | •            | 1            | <b>†</b>     | <b>/</b>     | <b>/</b>     | <b>↓</b>     | 4            |
|------------------------------------------------------------|--------------|-----------|----------------|--------------|------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Movement                                                   | EBL          | EBT       | EBR            | WBL          | WBT                    | WBR          | NBL          | NBT          | NBR          | SBL          | SBT          | SBR          |
| Lane Configurations                                        | ř            | <b>^</b>  | 7              | ¥            | <b>^</b>               | 7            | ř            | <b>†</b>     | 7            | ř            | <b>†</b>     | 7            |
| Traffic Volume (vph)                                       | 181          | 749       | 421            | 72           | 858                    | 70           | 324          | 119          | 49           | 93           | 176          | 201          |
| Future Volume (vph)                                        | 181          | 749       | 421            | 72           | 858                    | 70           | 324          | 119          | 49           | 93           | 176          | 201          |
| Ideal Flow (vphpl)                                         | 1750         | 1750      | 1750           | 1750         | 1750                   | 1750         | 1750         | 1750         | 1750         | 1750         | 1750         | 1750         |
| Total Lost time (s)                                        | 4.5          | 5.0       | 4.5            | 4.5          | 5.0                    | 5.0          | 4.5          | 5.0          | 5.0          | 4.5          | 5.0          | 5.0          |
| Lane Util. Factor                                          | 1.00         | 0.95      | 1.00           | 1.00         | 0.95                   | 1.00         | 1.00         | 1.00         | 1.00         | 1.00         | 1.00         | 1.00         |
| Frpb, ped/bikes                                            | 1.00         | 1.00      | 0.94           | 1.00         | 1.00                   | 0.91         | 1.00         | 1.00         | 0.99         | 1.00         | 1.00         | 0.83         |
| Flpb, ped/bikes<br>Frt                                     | 1.00<br>1.00 | 1.00      | 1.00<br>0.85   | 1.00<br>1.00 | 1.00<br>1.00           | 1.00<br>0.85 | 1.00<br>1.00 | 1.00<br>1.00 | 1.00<br>0.85 | 1.00<br>1.00 | 1.00<br>1.00 | 1.00<br>0.85 |
| FIt Protected                                              | 0.95         | 1.00      | 1.00           | 0.95         | 1.00                   | 1.00         | 0.95         | 1.00         | 1.00         | 0.95         | 1.00         | 1.00         |
| Satd. Flow (prot)                                          | 1446         | 2771      | 1217           | 1484         | 2748                   | 1115         | 1385         | 1483         | 1357         | 1458         | 1446         | 1025         |
| Flt Permitted                                              | 0.95         | 1.00      | 1.00           | 0.95         | 1.00                   | 1.00         | 0.95         | 1.00         | 1.00         | 0.95         | 1.00         | 1.00         |
| Satd. Flow (perm)                                          | 1446         | 2771      | 1217           | 1484         | 2748                   | 1115         | 1385         | 1483         | 1357         | 1458         | 1446         | 1025         |
| Peak-hour factor, PHF                                      | 0.95         | 0.95      | 0.95           | 0.95         | 0.95                   | 0.95         | 0.95         | 0.95         | 0.95         | 0.95         | 0.95         | 0.95         |
| Adj. Flow (vph)                                            | 191          | 788       | 443            | 76           | 903                    | 74           | 341          | 125          | 52           | 98           | 185          | 212          |
| RTOR Reduction (vph)                                       | 0            | 0         | 117            | 0            | 0                      | 47           | 0            | 0            | 40           | 0            | 0            | 178          |
| Lane Group Flow (vph)                                      | 191          | 788       | 326            | 76           | 903                    | 27           | 341          | 125          | 12           | 98           | 185          | 34           |
| Confl. Peds. (#/hr)                                        | 26           | . 00      | 26             | 26           | 000                    | 26           | 118          | 120          | 2            | 2            | 100          | 118          |
| Heavy Vehicles (%)                                         | 15%          | 20%       | 15%            | 12%          | 21%                    | 22%          | 20%          | 18%          | 8%           | 14%          | 21%          | 20%          |
| Turn Type                                                  | Prot         | NA        | pm+ov          | Prot         | NA                     | Perm         | Prot         | NA           | Perm         | Prot         | NA           | Perm         |
| Protected Phases                                           | 5            | 2         | 3              | 1            | 6                      |              | 3            | 8            |              | 7            | 4            |              |
| Permitted Phases                                           |              |           | 2              |              |                        | 6            |              |              | 8            |              |              | 4            |
| Actuated Green, G (s)                                      | 22.0         | 60.6      | 86.0           | 12.2         | 50.8                   | 50.8         | 25.4         | 33.3         | 33.3         | 14.4         | 22.3         | 22.3         |
| Effective Green, g (s)                                     | 22.0         | 60.6      | 86.0           | 12.2         | 50.8                   | 50.8         | 25.4         | 33.3         | 33.3         | 14.4         | 22.3         | 22.3         |
| Actuated g/C Ratio                                         | 0.16         | 0.43      | 0.62           | 0.09         | 0.36                   | 0.36         | 0.18         | 0.24         | 0.24         | 0.10         | 0.16         | 0.16         |
| Clearance Time (s)                                         | 4.5          | 5.0       | 4.5            | 4.5          | 5.0                    | 5.0          | 4.5          | 5.0          | 5.0          | 4.5          | 5.0          | 5.0          |
| Vehicle Extension (s)                                      | 2.5          | 4.8       | 2.5            | 2.5          | 4.8                    | 4.8          | 2.5          | 2.5          | 2.5          | 2.5          | 2.5          | 2.5          |
| Lane Grp Cap (vph)                                         | 228          | 1203      | 750            | 129          | 1000                   | 406          | 252          | 354          | 323          | 150          | 231          | 163          |
| v/s Ratio Prot                                             | c0.13        | 0.28      | 0.08           | 0.05         | c0.33                  |              | c0.25        | 0.08         |              | 0.07         | c0.13        |              |
| v/s Ratio Perm                                             |              |           | 0.19           |              |                        | 0.02         |              |              | 0.01         |              |              | 0.03         |
| v/c Ratio                                                  | 0.84         | 0.66      | 0.43           | 0.59         | 0.90                   | 0.07         | 1.35         | 0.35         | 0.04         | 0.65         | 0.80         | 0.21         |
| Uniform Delay, d1                                          | 57.0         | 31.2      | 14.0           | 61.2         | 42.0                   | 28.9         | 57.0         | 44.1         | 40.8         | 60.1         | 56.5         | 50.9         |
| Progression Factor                                         | 1.00         | 1.00      | 1.00           | 1.00         | 1.00                   | 1.00         | 1.00         | 1.00         | 1.00         | 1.00         | 1.00         | 1.00         |
| Incremental Delay, d2                                      | 22.3         | 1.7       | 0.3            | 5.6          | 11.8                   | 0.1          | 182.7        | 0.4          | 0.0          | 8.8          | 17.3         | 0.5          |
| Delay (s)                                                  | 79.3         | 32.9      | 14.3           | 66.8         | 53.8                   | 29.0         | 239.8        | 44.6         | 40.8         | 68.9         | 73.8         | 51.4         |
| Level of Service                                           | Е            | C         | В              | Е            | D                      | С            | F            | D            | D            | Е            | E            | D            |
| Approach Delay (s) Approach LOS                            |              | 33.3<br>C |                |              | 53.0<br>D              |              |              | 172.7<br>F   |              |              | 63.2<br>E    |              |
|                                                            |              | C         |                |              | U                      |              |              | Г            |              |              | Е            |              |
| Intersection Summary                                       |              |           | C4.0           | - 11         | OM 0000                | 1 1 6 1      |              |              |              |              |              |              |
| HCM 2000 Control Delay                                     | alle contin  |           | 64.2           | Н            | CM 2000                | Level of a   | Service      |              | Е            |              |              |              |
| HCM 2000 Volume to Capa                                    | city ratio   |           | 0.97           | C            | um of loo              | time (a)     |              |              | 19.0         |              |              |              |
| Actuated Cycle Length (s)<br>Intersection Capacity Utiliza | tion         |           | 139.5<br>96.7% |              | um of lost<br>CU Level |              |              |              | 19.0<br>F    |              |              |              |
|                                                            | IIIOH        |           | 90.7%          | IC           | O LEVEL                | JI SEIVICE   |              |              | Г            |              |              |              |
| Analysis Period (min)                                      |              |           | 10             |              |                        |              |              |              |              |              |              |              |

c Critical Lane Group

|                               | •          | <b>→</b>    | •     | •     | -           | 4          | 4       | <b>†</b> | <b>/</b> | <b>/</b> | ļ    | 4    |
|-------------------------------|------------|-------------|-------|-------|-------------|------------|---------|----------|----------|----------|------|------|
| Movement                      | EBL        | EBT         | EBR   | WBL   | WBT         | WBR        | NBL     | NBT      | NBR      | SBL      | SBT  | SBR  |
| Lane Configurations           | ሻ          | <b>∱</b> 1≽ |       | ሻ     | <b>∱</b> 1≽ |            | ሻ       | <b>∱</b> |          | ሻ        | ĵ»   |      |
| Traffic Volume (vph)          | 21         | 794         | 32    | 108   | 933         | 71         | 12      | 10       | 55       | 55       | 27   | 21   |
| Future Volume (vph)           | 21         | 794         | 32    | 108   | 933         | 71         | 12      | 10       | 55       | 55       | 27   | 21   |
| Ideal Flow (vphpl)            | 1750       | 1750        | 1750  | 1750  | 1750        | 1750       | 1750    | 1750     | 1750     | 1750     | 1750 | 1750 |
| Total Lost time (s)           | 5.0        | 5.0         |       | 5.0   | 5.0         |            | 5.0     | 5.0      |          | 5.0      | 5.0  |      |
| Lane Util. Factor             | 1.00       | 0.95        |       | 1.00  | 0.95        |            | 1.00    | 1.00     |          | 1.00     | 1.00 |      |
| Frpb, ped/bikes               | 1.00       | 1.00        |       | 1.00  | 1.00        |            | 1.00    | 0.99     |          | 1.00     | 0.99 |      |
| Flpb, ped/bikes               | 1.00       | 1.00        |       | 1.00  | 1.00        |            | 0.99    | 1.00     |          | 1.00     | 1.00 |      |
| Frt                           | 1.00       | 0.99        |       | 1.00  | 0.99        |            | 1.00    | 0.87     |          | 1.00     | 0.94 |      |
| Flt Protected                 | 0.95       | 1.00        |       | 0.95  | 1.00        |            | 0.95    | 1.00     |          | 0.95     | 1.00 |      |
| Satd. Flow (prot)             | 1484       | 2743        |       | 1338  | 2710        |            | 1235    | 1163     |          | 1285     | 1450 |      |
| Flt Permitted                 | 0.24       | 1.00        |       | 0.29  | 1.00        |            | 0.73    | 1.00     |          | 0.71     | 1.00 |      |
| Satd. Flow (perm)             | 376        | 2743        |       | 415   | 2710        |            | 942     | 1163     |          | 966      | 1450 |      |
| Peak-hour factor, PHF         | 0.98       | 0.98        | 0.98  | 0.98  | 0.98        | 0.98       | 0.98    | 0.98     | 0.98     | 0.98     | 0.98 | 0.98 |
| Adj. Flow (vph)               | 21         | 810         | 33    | 110   | 952         | 72         | 12      | 10       | 56       | 56       | 28   | 21   |
| RTOR Reduction (vph)          | 0          | 2           | 0     | 0     | 3           | 0          | 0       | 49       | 0        | 0        | 18   | 0    |
| Lane Group Flow (vph)         | 21         | 841         | 0     | 110   | 1021        | 0          | 12      | 17       | 0        | 56       | 31   | 0    |
| Confl. Peds. (#/hr)           | 9          |             | 33    | 33    |             | 9          | 18      |          | 4        | 4        |      | 18   |
| Confl. Bikes (#/hr)           |            |             |       |       |             | 1          |         |          |          |          |      |      |
| Heavy Vehicles (%)            | 12%        | 20%         | 27%   | 24%   | 22%         | 10%        | 33%     | 50%      | 26%      | 29%      | 4%   | 22%  |
| Turn Type                     | D.P+P      | NA          |       | D.P+P | NA          |            | Perm    | NA       |          | Perm     | NA   |      |
| Protected Phases              | 5          | 2           |       | 1     | 6           |            |         | 8        |          |          | 4    |      |
| Permitted Phases              | 6          |             |       | 2     |             |            | 8       |          |          | 4        |      |      |
| Actuated Green, G (s)         | 42.0       | 36.5        |       | 42.0  | 40.2        |            | 8.1     | 8.1      |          | 8.1      | 8.1  |      |
| Effective Green, g (s)        | 42.0       | 36.5        |       | 42.0  | 40.2        |            | 8.1     | 8.1      |          | 8.1      | 8.1  |      |
| Actuated g/C Ratio            | 0.65       | 0.56        |       | 0.65  | 0.62        |            | 0.12    | 0.12     |          | 0.12     | 0.12 |      |
| Clearance Time (s)            | 5.0        | 5.0         |       | 5.0   | 5.0         |            | 5.0     | 5.0      |          | 5.0      | 5.0  |      |
| Vehicle Extension (s)         | 2.5        | 5.3         |       | 2.5   | 5.3         |            | 2.5     | 2.5      |          | 2.5      | 2.5  |      |
| Lane Grp Cap (vph)            | 273        | 1537        |       | 345   | 1673        |            | 117     | 144      |          | 120      | 180  |      |
| v/s Ratio Prot                | 0.00       | 0.31        |       | c0.03 | c0.38       |            |         | 0.01     |          |          | 0.02 |      |
| v/s Ratio Perm                | 0.05       |             |       | 0.18  |             |            | 0.01    |          |          | c0.06    |      |      |
| v/c Ratio                     | 0.08       | 0.55        |       | 0.32  | 0.61        |            | 0.10    | 0.12     |          | 0.47     | 0.17 |      |
| Uniform Delay, d1             | 4.4        | 9.1         |       | 4.7   | 7.6         |            | 25.3    | 25.3     |          | 26.5     | 25.5 |      |
| Progression Factor            | 1.00       | 1.00        |       | 1.00  | 1.00        |            | 1.00    | 1.00     |          | 1.00     | 1.00 |      |
| Incremental Delay, d2         | 0.1        | 0.8         |       | 0.4   | 1.0         |            | 0.3     | 0.3      |          | 2.1      | 0.3  |      |
| Delay (s)                     | 4.5        | 9.8         |       | 5.0   | 8.7         |            | 25.6    | 25.6     |          | 28.6     | 25.8 |      |
| Level of Service              | Α          | Α           |       | Α     | Α           |            | С       | С        |          | С        | С    |      |
| Approach Delay (s)            |            | 9.7         |       |       | 8.3         |            |         | 25.6     |          |          | 27.3 |      |
| Approach LOS                  |            | Α           |       |       | Α           |            |         | С        |          |          | С    |      |
| Intersection Summary          |            |             |       |       |             |            |         |          |          |          |      |      |
| HCM 2000 Control Delay        |            |             | 10.4  | H     | CM 2000     | Level of S | Service |          | В        |          |      |      |
| HCM 2000 Volume to Capa       | city ratio |             | 0.59  |       |             |            |         |          |          |          |      |      |
| Actuated Cycle Length (s)     |            |             | 65.1  |       | um of lost  |            |         |          | 15.0     |          |      |      |
| Intersection Capacity Utiliza | ition      |             | 62.8% | IC    | CU Level of | of Service |         |          | В        |          |      |      |
| Analysis Period (min)         |            |             | 15    |       |             |            |         |          |          |          |      |      |
| c Critical Lane Group         |            |             |       |       |             |            |         |          |          |          |      |      |

| Intersection           |        |          |           |         |         |           |                      |                                |
|------------------------|--------|----------|-----------|---------|---------|-----------|----------------------|--------------------------------|
| Int Delay, s/veh       | 52.5   |          |           |         |         |           |                      |                                |
| Movement               | EBL    | EBT      | WBT       | WBR     | SBL     | SBR       |                      |                                |
| Lane Configurations    | ሻ      | <b>^</b> | <b>^</b>  | 7       | ¥       |           |                      |                                |
| Traffic Vol, veh/h     | 150    | 850      | 1068      | 124     | 58      | 100       |                      |                                |
| Future Vol, veh/h      | 150    | 850      | 1068      | 124     | 58      | 100       |                      |                                |
| Conflicting Peds, #/hr | 8      | 0        | 0         | 8       | 0       | 0         |                      |                                |
| Sign Control           | Free   | Free     | Free      | Free    | Stop    | Stop      |                      |                                |
| RT Channelized         | -      | None     | -         | Yield   | -       | None      |                      |                                |
| Storage Length         | 130    | -        | _         | 60      | 0       | -         |                      |                                |
| Veh in Median Storage  |        | 0        | 0         | -       | 0       | -         |                      |                                |
| Grade, %               | -      | 0        | 0         | _       | 0       | _         |                      |                                |
| Peak Hour Factor       | 94     | 94       | 94        | 94      | 94      | 94        |                      |                                |
| Heavy Vehicles, %      | 25     | 21       | 18        | 18      | 30      | 24        |                      |                                |
| Mvmt Flow              | 160    | 904      | 1136      | 132     | 62      | 106       |                      |                                |
| IVIVIIIL I IOW         | 100    | 304      | 1130      | 132     | 02      | 100       |                      |                                |
| Major/Minor I          | Major1 | N        | Major2    | N       | /linor2 |           |                      |                                |
| Conflicting Flow All   | 1144   | 0        | - viajoiz |         | 1915    | 576       |                      |                                |
| Stage 1                | 1144   | -        | _         | -       | 1144    | 570       |                      |                                |
| Stage 1                | -      | -        | -         | -       | 771     | -         |                      |                                |
| Critical Hdwy          | 4.6    | -        |           |         | 7.4     | 7.38      |                      |                                |
|                        |        | -        | -         | -       | 6.4     |           |                      |                                |
| Critical Hdwy Stg 1    | -      | -        | -         | -       |         | -         |                      |                                |
| Critical Hdwy Stg 2    | - 0.45 | -        | -         | -       | 6.4     | -         |                      |                                |
| Follow-up Hdwy         | 2.45   | -        | -         | -       | 3.8     | 3.54      |                      |                                |
| Pot Cap-1 Maneuver     | 490    | -        | -         | -       | ~ 43    | 409       |                      |                                |
| Stage 1                | -      | -        | -         | -       | 214     | -         |                      |                                |
| Stage 2                | -      | -        | -         | -       | 352     | -         |                      |                                |
| Platoon blocked, %     | ,      | -        | -         | -       |         | 400       |                      |                                |
| Mov Cap-1 Maneuver     | 490    | -        | -         | -       | ~ 29    | 406       |                      |                                |
| Mov Cap-2 Maneuver     | -      | -        | -         | -       | ~ 29    | -         |                      |                                |
| Stage 1                | -      | -        | -         | -       | 212     | -         |                      |                                |
| Stage 2                | -      | -        | -         | -       | 235     | -         |                      |                                |
|                        |        |          |           |         |         |           |                      |                                |
| Approach               | EB     |          | WB        |         | SB      |           |                      |                                |
| HCM Control Delay, s   | 2.4    |          | 0         | \$      | 765.4   |           |                      |                                |
| HCM LOS                |        |          |           |         | F       |           |                      |                                |
|                        |        |          |           |         |         |           |                      |                                |
| Minor Lane/Major Mvm   | nt     | EBL      | EBT       | WBT     | WBR     | SBLn1     |                      |                                |
| Capacity (veh/h)       |        | 490      |           | ,,,,,   |         | 70        |                      |                                |
| HCM Lane V/C Ratio     |        | 0.326    | -         | -       |         | 2.401     |                      |                                |
| HCM Control Delay (s)  |        | 15.9     | -         |         |         | 765.4     |                      |                                |
| HCM Lane LOS           |        |          |           | -       |         |           |                      |                                |
|                        | ١      | C<br>1 / | -         | -       | -       | F<br>16.2 |                      |                                |
| HCM 95th %tile Q(veh)  | )      | 1.4      | -         | -       | -       | 16.2      |                      |                                |
| Notes                  |        |          |           |         |         |           |                      |                                |
| ~: Volume exceeds cap  | pacity | \$: De   | lay exc   | eeds 30 | 00s     | +: Com    | outation Not Defined | *: All major volume in platoon |
|                        | •      |          |           |         |         |           |                      | •                              |

| Intersection           |         |            |          |                      |            |          |           |        |       |         |         |            |           |  |
|------------------------|---------|------------|----------|----------------------|------------|----------|-----------|--------|-------|---------|---------|------------|-----------|--|
| Int Delay, s/veh       | 48.3    |            |          |                      |            |          |           |        |       |         |         |            |           |  |
| Movement               | EBL     | EBT        | EBR      | WBL                  | WBT        | WBR      | NBL       | NBT    | NBR   | SBL     | SBT     | SBR        |           |  |
| Lane Configurations    |         | <b>∱</b> } |          |                      | <b>∱</b> } |          |           | 4      |       |         | र्स     | 7          |           |  |
| Traffic Vol, veh/h     | 17      | 698        | 115      | 98                   | 1000       | 10       | 53        | 5      | 125   | 11      | 4       | 76         |           |  |
| Future Vol, veh/h      | 17      | 698        | 115      | 98                   | 1000       | 10       | 53        | 5      | 125   | 11      | 4       | 76         |           |  |
| Conflicting Peds, #/hr | 4       | 0          | 14       | 14                   | 0          | 4        | 22        | 0      | 0     | 0       | 0       | 22         |           |  |
| Sign Control           | Free    | Free       | Free     | Free                 | Free       | Free     | Stop      | Stop   | Stop  | Stop    | Stop    | Stop       |           |  |
| RT Channelized         | _       | -          | None     | _                    | _          | None     | <u>.</u>  | -      | None  | -       | -       | None       |           |  |
| Storage Length         | 90      | -          | _        | 185                  | -          | -        | -         | -      | _     | _       | -       | 55         |           |  |
| Veh in Median Storage, |         | 0          | -        | _                    | 0          | _        | _         | 0      | -     | _       | 0       | -          |           |  |
| Grade, %               | _       | 0          | -        | _                    | 0          | _        | _         | 0      | _     | _       | 0       | -          |           |  |
| Peak Hour Factor       | 91      | 91         | 91       | 91                   | 91         | 91       | 91        | 91     | 91    | 91      | 91      | 91         |           |  |
| Heavy Vehicles, %      | 9       | 23         | 16       | 9                    | 23         | 38       | 0         | 0      | 10    | 9       | 25      | 7          |           |  |
| Mvmt Flow              | 19      | 767        | 126      | 108                  | 1099       | 11       | 58        | 5      | 137   | 12      | 4       | 84         |           |  |
| WWW                    | 10      | 101        | 120      | 100                  | 1000       |          | 50        | J      | 101   | 12      | 7       | 04         |           |  |
| Major/Minor N          | /lajor1 |            | ı        | Major2               |            |          | Minor1    |        |       | Minor2  |         |            |           |  |
| Conflicting Flow All   | 1114    | 0          | 0        | 907                  | 0          | 0        | 1671      | 2211   | 461   | 1748    | 2269    | 581        |           |  |
| Stage 1                | -       | -          | -        | 301                  | -          | -        | 882       | 882    | -     | 1001    | 1324    | -          |           |  |
| Stage 2                | _       | _          | _        | _                    | _          | _        | 789       | 1329   | _     |         | 945     | _          |           |  |
| Critical Hdwy          | 4.28    |            |          | 4.28                 | _          |          | 7.5       | 6.5    | 7.1   | 7.68    | 7       | 7.04       |           |  |
| Critical Hdwy Stg 1    | 4.20    |            | -        | 4.20                 | _          | -        | 6.5       | 5.5    | 7.1   |         | 6       | 7.04       |           |  |
|                        |         | -          | -        | -                    |            |          | 6.5       | 5.5    |       |         | 6       |            |           |  |
| Critical Hdwy Stg 2    | - 20    | -          | -        | 2.20                 | -          | -        |           |        | - 2.4 |         |         | 2 27       |           |  |
| Follow-up Hdwy         | 2.29    | -          | -        | 2.29                 | -          | -        | 3.5       | 4      | 3.4   | 3.59    | 4.25    | 3.37       |           |  |
| Pot Cap-1 Maneuver     | 584     | -          | -        | 704                  | -          | -        | 64        | 45     | 526   | 51      | 30      | 445        |           |  |
| Stage 1                | -       | -          | -        | -                    | -          | -        | 312       | 367    | -     |         | 184     | -          |           |  |
| Stage 2                | -       | -          | -        | -                    | -          | -        | 354       | 226    | -     | 560     | 291     | -          |           |  |
| Platoon blocked, %     |         | -          | -        |                      | -          | -        |           |        | - 10  |         |         | 101        |           |  |
| Mov Cap-1 Maneuver     | 572     | -          | -        | 704                  | -          | -        | ~ 37      | 36     | 519   | 28      | 24      | 434        |           |  |
| Mov Cap-2 Maneuver     | -       | -          | -        | -                    | -          | -        | ~ 37      | 36     | -     |         | 24      | -          |           |  |
| Stage 1                | -       | -          | -        | -                    | -          | -        | 298       | 350    | -     |         | 155     | -          |           |  |
| Stage 2                | -       | -          | -        | -                    | -          | -        | 230       | 191    | -     | 392     | 278     | -          |           |  |
|                        |         |            |          |                      |            |          |           |        |       |         |         |            |           |  |
| Approach               | EB      |            |          | WB                   |            |          | NB        |        |       | SB      |         |            |           |  |
| HCM Control Delay, s   | 0.2     |            |          | 1                    |            | \$       | 549.4     |        |       | 55.8    |         |            |           |  |
| HCM LOS                |         |            |          |                      |            |          | F         |        |       | F       |         |            |           |  |
|                        |         |            |          |                      |            |          |           |        |       |         |         |            |           |  |
| Minor Lane/Major Mvm   | t       | NBLn1      | EBL      | EBT                  | EBR        | WBL      | WBT       | WBR :  | SBLn1 | SBLn2   |         |            |           |  |
| Capacity (veh/h)       |         | 101        | 572      | -                    | -          | 704      | -         | -      | 27    | 434     |         |            |           |  |
| HCM Lane V/C Ratio     |         |            | 0.033    | -                    | -          | 0.153    | -         | -      | 0.611 | 0.192   |         |            |           |  |
| HCM Control Delay (s)  | \$      | 549.4      | 11.5     | -                    | -          | 11       | -         |        | 261.2 |         |         |            |           |  |
| HCM Lane LOS           |         | F          | В        | -                    | -          | В        | -         | -      | F     | С       |         |            |           |  |
| HCM 95th %tile Q(veh)  |         | 17         | 0.1      | -                    | -          | 0.5      | -         | -      | 1.9   | 0.7     |         |            |           |  |
| Notes                  |         |            |          |                      |            |          |           |        |       |         |         |            |           |  |
| ~: Volume exceeds cap  | acity   | \$. Da     | elay exc | oods 30              | ηρε        | +: Com   | nutation  | Not Do | fined | *· \  \ | majory  | oluma ir   | n platoon |  |
| . volume exceeds cap   | acity   | φ. De      | ay exc   | c <del>c</del> us sl | 000        | ·. COIII | JulaliUII | NOT DE | mieu  | . All   | majul V | olullie II | ριαισσιτ  |  |

|                                | ۶          | <b>→</b> | •      | •     | <b>←</b>   | •          | 4       | <b>†</b> | <i>&gt;</i> | <b>/</b> | <b>↓</b>   | 4    |
|--------------------------------|------------|----------|--------|-------|------------|------------|---------|----------|-------------|----------|------------|------|
| Movement                       | EBL        | EBT      | EBR    | WBL   | WBT        | WBR        | NBL     | NBT      | NBR         | SBL      | SBT        | SBR  |
| Lane Configurations            | ሻ          | <b>^</b> | 7      | Ť     | <b>₽</b>   |            | ሻሻ      | <b>^</b> | 7           | 7        | <b>∱</b> ⊅ |      |
| Traffic Volume (vph)           | 169        | 414      | 260    | 307   | 310        | 93         | 248     | 478      | 144         | 235      | 939        | 129  |
| Future Volume (vph)            | 169        | 414      | 260    | 307   | 310        | 93         | 248     | 478      | 144         | 235      | 939        | 129  |
| Ideal Flow (vphpl)             | 1750       | 1750     | 1750   | 1750  | 1750       | 1750       | 1750    | 1750     | 1750        | 1750     | 1750       | 1750 |
| Total Lost time (s)            | 4.5        | 5.5      | 5.5    | 4.5   | 5.5        |            | 4.5     | 5.5      | 5.5         | 4.5      | 5.5        |      |
| Lane Util. Factor              | 1.00       | 1.00     | 1.00   | 1.00  | 1.00       |            | 0.97    | 0.95     | 1.00        | 1.00     | 0.95       |      |
| Frpb, ped/bikes                | 1.00       | 1.00     | 0.98   | 1.00  | 1.00       |            | 1.00    | 1.00     | 0.98        | 1.00     | 1.00       |      |
| Flpb, ped/bikes                | 1.00       | 1.00     | 1.00   | 1.00  | 1.00       |            | 1.00    | 1.00     | 1.00        | 1.00     | 1.00       |      |
| Frt                            | 1.00       | 1.00     | 0.85   | 1.00  | 0.97       |            | 1.00    | 1.00     | 0.85        | 1.00     | 0.98       |      |
| Flt Protected                  | 0.95       | 1.00     | 1.00   | 0.95  | 1.00       |            | 0.95    | 1.00     | 1.00        | 0.95     | 1.00       |      |
| Satd. Flow (prot)              | 1421       | 1483     | 1218   | 1341  | 1315       |            | 2906    | 2639     | 1054        | 1374     | 2939       |      |
| FIt Permitted                  | 0.95       | 1.00     | 1.00   | 0.95  | 1.00       |            | 0.95    | 1.00     | 1.00        | 0.95     | 1.00       |      |
| Satd. Flow (perm)              | 1421       | 1483     | 1218   | 1341  | 1315       |            | 2906    | 2639     | 1054        | 1374     | 2939       |      |
| Peak-hour factor, PHF          | 0.96       | 0.96     | 0.96   | 0.96  | 0.96       | 0.96       | 0.96    | 0.96     | 0.96        | 0.96     | 0.96       | 0.96 |
| Adj. Flow (vph)                | 176        | 431      | 271    | 320   | 323        | 97         | 258     | 498      | 150         | 245      | 978        | 134  |
| RTOR Reduction (vph)           | 0          | 0        | 191    | 0     | 8          | 0          | 0       | 0        | 105         | 0        | 8          | 0    |
| Lane Group Flow (vph)          | 176        | 431      | 80     | 320   | 412        | 0          | 258     | 498      | 45          | 245      | 1104       | 0    |
| Confl. Peds. (#/hr)            |            |          | 5      | 5     |            |            |         |          | 1           | 1        |            |      |
| Heavy Vehicles (%)             | 17%        | 18%      | 20%    | 24%   | 25%        | 40%        | 11%     | 26%      | 38%         | 21%      | 10%        | 19%  |
| Turn Type                      | Prot       | NA       | Perm   | Prot  | NA         |            | Prot    | NA       | custom      | Prot     | NA         |      |
| Protected Phases               | 3          | 8        |        | 7     | 4          |            | 1       | 6        |             | 5        | 2          |      |
| Permitted Phases               |            |          | 8      |       |            |            |         |          | 2           |          |            |      |
| Actuated Green, G (s)          | 25.5       | 30.5     | 30.5   | 25.5  | 30.5       |            | 14.7    | 38.5     | 39.3        | 15.5     | 39.3       |      |
| Effective Green, g (s)         | 25.5       | 30.5     | 30.5   | 25.5  | 30.5       |            | 14.7    | 38.5     | 39.3        | 15.5     | 39.3       |      |
| Actuated g/C Ratio             | 0.20       | 0.23     | 0.23   | 0.20  | 0.23       |            | 0.11    | 0.30     | 0.30        | 0.12     | 0.30       |      |
| Clearance Time (s)             | 4.5        | 5.5      | 5.5    | 4.5   | 5.5        |            | 4.5     | 5.5      | 5.5         | 4.5      | 5.5        |      |
| Vehicle Extension (s)          | 3.0        | 3.2      | 3.2    | 3.0   | 3.5        |            | 3.0     | 5.2      | 5.2         | 3.0      | 5.2        |      |
| Lane Grp Cap (vph)             | 278        | 347      | 285    | 263   | 308        |            | 328     | 781      | 318         | 163      | 888        |      |
| v/s Ratio Prot                 | 0.12       | 0.29     |        | c0.24 | c0.31      |            | c0.09   | 0.19     |             | c0.18    | c0.38      |      |
| v/s Ratio Perm                 |            |          | 0.07   |       |            |            |         |          | 0.04        |          |            |      |
| v/c Ratio                      | 0.63       | 1.24     | 0.28   | 1.22  | 1.34       |            | 0.79    | 0.64     | 0.14        | 1.50     | 1.24       |      |
| Uniform Delay, d1              | 48.0       | 49.8     | 40.7   | 52.2  | 49.8       |            | 56.1    | 39.7     | 33.1        | 57.2     | 45.4       |      |
| Progression Factor             | 1.00       | 1.00     | 1.00   | 1.00  | 1.00       |            | 1.27    | 0.92     | 0.54        | 1.00     | 1.00       |      |
| Incremental Delay, d2          | 4.7        | 131.1    | 0.6    | 127.0 | 171.8      |            | 8.1     | 2.7      | 0.6         | 255.6    | 118.8      |      |
| Delay (s)                      | 52.6       | 180.8    | 41.3   | 179.3 | 221.5      |            | 79.2    | 39.0     | 18.5        | 312.9    | 164.2      |      |
| Level of Service               | D          | F        | D      | F     | F          |            | Е       | D        | В           | F        | F          |      |
| Approach Delay (s)             |            | 112.1    |        |       | 203.3      |            |         | 47.1     |             |          | 191.0      |      |
| Approach LOS                   |            | F        |        |       | F          |            |         | D        |             |          | F          |      |
| Intersection Summary           |            |          |        |       |            |            |         |          |             |          |            |      |
| HCM 2000 Control Delay         |            |          | 141.9  | Н     | CM 2000    | Level of S | Service |          | F           |          |            |      |
| HCM 2000 Volume to Capac       | city ratio |          | 1.22   |       |            |            |         |          |             |          |            |      |
| Actuated Cycle Length (s)      |            |          | 130.0  |       | um of lost |            |         |          | 20.0        |          |            |      |
| Intersection Capacity Utilizat | tion       |          | 100.2% | IC    | CU Level c | of Service |         |          | G           |          |            |      |
| Analysis Period (min)          |            |          | 15     |       |            |            |         |          |             |          |            |      |

| Intersection                                                                                                                                                                         |                |                                                                                                          |                                                                                                       |                                                                                                           |                                                                                                          |      |      |      |      |      |      |      |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------|------|------|------|------|------|------|--|
| Intersection Delay, s/vel                                                                                                                                                            | h 12           |                                                                                                          |                                                                                                       |                                                                                                           |                                                                                                          |      |      |      |      |      |      |      |  |
| Intersection LOS                                                                                                                                                                     | В              |                                                                                                          |                                                                                                       |                                                                                                           |                                                                                                          |      |      |      |      |      |      |      |  |
| morocolon 200                                                                                                                                                                        |                |                                                                                                          |                                                                                                       |                                                                                                           |                                                                                                          |      |      |      |      |      |      |      |  |
|                                                                                                                                                                                      | EDI            | -DT                                                                                                      | <b>EDD</b>                                                                                            | MO                                                                                                        | MOT                                                                                                      | WDD  | NDI  | NDT  | NDD  | ODI  | ODT  | 000  |  |
| Movement                                                                                                                                                                             | EBL            | EBT                                                                                                      | EBR                                                                                                   | WBL                                                                                                       | WBT                                                                                                      | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
| Lane Configurations                                                                                                                                                                  |                | 4                                                                                                        |                                                                                                       |                                                                                                           | 4                                                                                                        |      |      | 4    |      |      | 4    |      |  |
| Traffic Vol, veh/h                                                                                                                                                                   | 25             | 46                                                                                                       | 42                                                                                                    | 32                                                                                                        | 43                                                                                                       | 32   | 9    | 128  | 12   | 47   | 241  | 27   |  |
| Future Vol, veh/h                                                                                                                                                                    | 25             | 46                                                                                                       | 42                                                                                                    | 32                                                                                                        | 43                                                                                                       | 32   | 9    | 128  | 12   | 47   | 241  | 27   |  |
| Peak Hour Factor                                                                                                                                                                     | 0.94           | 0.94                                                                                                     | 0.94                                                                                                  | 0.94                                                                                                      | 0.94                                                                                                     | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 |  |
| Heavy Vehicles, %                                                                                                                                                                    | 39             | 23                                                                                                       | 6                                                                                                     | 31                                                                                                        | 20                                                                                                       | 86   | 22   | 13   | 27   | 36   | 13   | 16   |  |
| Mvmt Flow                                                                                                                                                                            | 27             | 49                                                                                                       | 45                                                                                                    | 34                                                                                                        | 46                                                                                                       | 34   | 10   | 136  | 13   | 50   | 256  | 29   |  |
| Number of Lanes                                                                                                                                                                      | 0              | 1                                                                                                        | 0                                                                                                     | 0                                                                                                         | 1                                                                                                        | 0    | 0    | 1    | 0    | 0    | 1    | 0    |  |
| Approach                                                                                                                                                                             | EB             |                                                                                                          |                                                                                                       | WB                                                                                                        |                                                                                                          |      | NB   |      |      | SB   |      |      |  |
| Opposing Approach                                                                                                                                                                    | WB             |                                                                                                          |                                                                                                       | EB                                                                                                        |                                                                                                          |      | SB   |      |      | NB   |      |      |  |
| Opposing Lanes                                                                                                                                                                       | 1              |                                                                                                          |                                                                                                       | 1                                                                                                         |                                                                                                          |      | 1    |      |      | 1    |      |      |  |
| Conflicting Approach Le                                                                                                                                                              | ft SB          |                                                                                                          |                                                                                                       | NB                                                                                                        |                                                                                                          |      | EB   |      |      | WB   |      |      |  |
| Conflicting Lanes Left                                                                                                                                                               | 1              |                                                                                                          |                                                                                                       | 1                                                                                                         |                                                                                                          |      | 1    |      |      | 1    |      |      |  |
| Conflicting Approach Ri                                                                                                                                                              | gh <b>f</b> NB |                                                                                                          |                                                                                                       | SB                                                                                                        |                                                                                                          |      | WB   |      |      | EB   |      |      |  |
| Conflicting Lanes Right                                                                                                                                                              | 1              |                                                                                                          |                                                                                                       | 1                                                                                                         |                                                                                                          |      | 1    |      |      | 1    |      |      |  |
| HCM Control Delay                                                                                                                                                                    | 10.5           |                                                                                                          |                                                                                                       | 10.3                                                                                                      |                                                                                                          |      | 10.2 |      |      | 14   |      |      |  |
| HCM LOS                                                                                                                                                                              | В              |                                                                                                          |                                                                                                       | В                                                                                                         |                                                                                                          |      | В    |      |      | В    |      |      |  |
|                                                                                                                                                                                      |                |                                                                                                          |                                                                                                       |                                                                                                           |                                                                                                          |      |      |      |      |      |      |      |  |
| Lane                                                                                                                                                                                 | NI             | 3I n1 I                                                                                                  | FBI n1\                                                                                               | VBLn1                                                                                                     | SBI n1                                                                                                   |      |      |      |      |      |      |      |  |
| Vol Left, %                                                                                                                                                                          |                | 6%                                                                                                       |                                                                                                       |                                                                                                           |                                                                                                          |      |      |      |      |      |      |      |  |
| Vol Thru, %                                                                                                                                                                          |                |                                                                                                          | 22%                                                                                                   | 30%                                                                                                       | 15%                                                                                                      |      |      |      |      |      |      |      |  |
| Vol Right, %                                                                                                                                                                         |                |                                                                                                          | 22%<br>41%                                                                                            | 30%<br>40%                                                                                                | 15%<br>77%                                                                                               |      |      |      |      |      |      |      |  |
|                                                                                                                                                                                      |                | 86%                                                                                                      | 41%                                                                                                   | 40%                                                                                                       | 77%                                                                                                      |      |      |      |      |      |      |      |  |
|                                                                                                                                                                                      |                | 86%<br>8%                                                                                                | 41%<br>37%                                                                                            | 40%<br>30%                                                                                                | 77%<br>9%                                                                                                |      |      |      |      |      |      |      |  |
| Sign Control                                                                                                                                                                         |                | 86%<br>8%<br>Stop                                                                                        | 41%<br>37%<br>Stop                                                                                    | 40%<br>30%<br>Stop                                                                                        | 77%<br>9%<br>Stop                                                                                        |      |      |      |      |      |      |      |  |
| Sign Control Traffic Vol by Lane                                                                                                                                                     |                | 86%<br>8%<br>Stop<br>149                                                                                 | 41%<br>37%<br>Stop<br>113                                                                             | 40%<br>30%<br>Stop<br>107                                                                                 | 77%<br>9%<br>Stop<br>315                                                                                 |      |      |      |      |      |      |      |  |
| Sign Control<br>Traffic Vol by Lane<br>LT Vol                                                                                                                                        |                | 86%<br>8%<br>Stop<br>149<br>9                                                                            | 41%<br>37%<br>Stop<br>113<br>25                                                                       | 40%<br>30%<br>Stop<br>107<br>32                                                                           | 77%<br>9%<br>Stop<br>315<br>47                                                                           |      |      |      |      |      |      |      |  |
| Sign Control<br>Traffic Vol by Lane<br>LT Vol<br>Through Vol                                                                                                                         |                | 86%<br>8%<br>Stop<br>149<br>9<br>128                                                                     | 41%<br>37%<br>Stop<br>113<br>25<br>46                                                                 | 40%<br>30%<br>Stop<br>107<br>32<br>43                                                                     | 77%<br>9%<br>Stop<br>315<br>47<br>241                                                                    |      |      |      |      |      |      |      |  |
| Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol                                                                                                                           |                | 86%<br>8%<br>Stop<br>149<br>9<br>128<br>12                                                               | 41%<br>37%<br>Stop<br>113<br>25<br>46<br>42                                                           | 40%<br>30%<br>Stop<br>107<br>32<br>43<br>32                                                               | 77%<br>9%<br>Stop<br>315<br>47<br>241<br>27                                                              |      |      |      |      |      |      |      |  |
| Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate                                                                                                            |                | 86%<br>8%<br>Stop<br>149<br>9<br>128<br>12                                                               | 41%<br>37%<br>Stop<br>113<br>25<br>46<br>42<br>120                                                    | 40%<br>30%<br>Stop<br>107<br>32<br>43<br>32<br>114                                                        | 77%<br>9%<br>Stop<br>315<br>47<br>241<br>27<br>335                                                       |      |      |      |      |      |      |      |  |
| Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp                                                                                               |                | 86%<br>8%<br>Stop<br>149<br>9<br>128<br>12<br>159                                                        | 41%<br>37%<br>Stop<br>113<br>25<br>46<br>42<br>120                                                    | 40%<br>30%<br>Stop<br>107<br>32<br>43<br>32<br>114                                                        | 77%<br>9%<br>Stop<br>315<br>47<br>241<br>27<br>335                                                       |      |      |      |      |      |      |      |  |
| Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)                                                                            | C              | 86%<br>8%<br>Stop<br>149<br>9<br>128<br>12<br>159<br>1                                                   | 41%<br>37%<br>Stop<br>113<br>25<br>46<br>42<br>120<br>1                                               | 40%<br>30%<br>Stop<br>107<br>32<br>43<br>32<br>114<br>1<br>0.187                                          | 77%<br>9%<br>Stop<br>315<br>47<br>241<br>27<br>335<br>1<br>0.51                                          |      |      |      |      |      |      |      |  |
| Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Ho                                                      | C              | 86%<br>8%<br>Stop<br>149<br>9<br>128<br>12<br>159<br>1<br>0.241<br>5.478                                 | 41%<br>37%<br>Stop<br>113<br>25<br>46<br>42<br>120<br>1<br>0.2<br>5.986                               | 40%<br>30%<br>Stop<br>107<br>32<br>43<br>32<br>114<br>1<br>0.187<br>5.923                                 | 77%<br>9%<br>Stop<br>315<br>47<br>241<br>27<br>335<br>1<br>0.51<br>5.479                                 |      |      |      |      |      |      |      |  |
| Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Ho Convergence, Y/N                                     | C              | 86%<br>8%<br>Stop<br>149<br>9<br>128<br>12<br>159<br>1<br>0.241<br>6.478<br>Yes                          | 41%<br>37%<br>Stop<br>113<br>25<br>46<br>42<br>120<br>1<br>0.2<br>5.986<br>Yes                        | 40%<br>30%<br>Stop<br>107<br>32<br>43<br>32<br>114<br>1<br>0.187<br>5.923<br>Yes                          | 77%<br>9%<br>Stop<br>315<br>47<br>241<br>27<br>335<br>1<br>0.51<br>5.479<br>Yes                          |      |      |      |      |      |      |      |  |
| Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Ho Convergence, Y/N Cap                                 | C<br>H) 5      | 86%<br>8%<br>Stop<br>149<br>9<br>128<br>12<br>159<br>1<br>0.241<br>6.478<br>Yes<br>656                   | 41%<br>37%<br>Stop<br>113<br>25<br>46<br>42<br>120<br>1<br>0.2<br>5.986<br>Yes<br>600                 | 40%<br>30%<br>Stop<br>107<br>32<br>43<br>32<br>114<br>1<br>0.187<br>5.923<br>Yes<br>606                   | 77%<br>9%<br>Stop<br>315<br>47<br>241<br>27<br>335<br>1<br>0.51<br>5.479<br>Yes<br>664                   |      |      |      |      |      |      |      |  |
| Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Ho Convergence, Y/N Cap Service Time                    | (d) 5          | 86%<br>8%<br>Stop<br>149<br>9<br>128<br>12<br>159<br>1<br>0.241<br>5.478<br>Yes<br>656<br>8.504          | 41%<br>37%<br>Stop<br>113<br>25<br>46<br>42<br>120<br>1<br>0.2<br>5.986<br>Yes<br>600<br>4.018        | 40%<br>30%<br>Stop<br>107<br>32<br>43<br>32<br>114<br>1<br>0.187<br>5.923<br>Yes<br>606<br>3.956          | 77%<br>9%<br>Stop<br>315<br>47<br>241<br>27<br>335<br>1<br>0.51<br>5.479<br>Yes<br>664<br>3.479          |      |      |      |      |      |      |      |  |
| Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Ho Convergence, Y/N Cap Service Time HCM Lane V/C Ratio | (d) 5          | 86%<br>8%<br>Stop<br>149<br>9<br>128<br>12<br>159<br>1<br>0.241<br>5.478<br>Yes<br>656<br>3.504<br>0.242 | 41%<br>37%<br>Stop<br>113<br>25<br>46<br>42<br>120<br>1<br>0.2<br>5.986<br>Yes<br>600<br>4.018<br>0.2 | 40%<br>30%<br>Stop<br>107<br>32<br>43<br>32<br>114<br>1<br>0.187<br>5.923<br>Yes<br>606<br>3.956<br>0.188 | 77%<br>9%<br>Stop<br>315<br>47<br>241<br>27<br>335<br>1<br>0.51<br>5.479<br>Yes<br>664<br>3.479<br>0.505 |      |      |      |      |      |      |      |  |
| Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Ho Convergence, Y/N Cap Service Time                    | (d) 5          | 86%<br>8%<br>Stop<br>149<br>9<br>128<br>12<br>159<br>1<br>0.241<br>5.478<br>Yes<br>656<br>8.504          | 41%<br>37%<br>Stop<br>113<br>25<br>46<br>42<br>120<br>1<br>0.2<br>5.986<br>Yes<br>600<br>4.018        | 40%<br>30%<br>Stop<br>107<br>32<br>43<br>32<br>114<br>1<br>0.187<br>5.923<br>Yes<br>606<br>3.956          | 77%<br>9%<br>Stop<br>315<br>47<br>241<br>27<br>335<br>1<br>0.51<br>5.479<br>Yes<br>664<br>3.479          |      |      |      |      |      |      |      |  |

0.9 0.7

0.7

2.9

| Intersection                                                                                                                                                                                      |            |                                                                                                            |                                                                                                                 |                                                                                                                 |      |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------|------|
| Intersection Delay, s/veh                                                                                                                                                                         | 12 1       |                                                                                                            |                                                                                                                 |                                                                                                                 |      |      |
| Intersection LOS                                                                                                                                                                                  | 112.1<br>B |                                                                                                            |                                                                                                                 |                                                                                                                 |      |      |
| intersection LOO                                                                                                                                                                                  | D          |                                                                                                            |                                                                                                                 |                                                                                                                 |      |      |
|                                                                                                                                                                                                   |            |                                                                                                            |                                                                                                                 |                                                                                                                 |      |      |
|                                                                                                                                                                                                   |            | WBR                                                                                                        | NBT                                                                                                             | NBR                                                                                                             | SBL  | SBT  |
| Lane Configurations                                                                                                                                                                               | W          |                                                                                                            | f)                                                                                                              |                                                                                                                 |      | 4    |
| Traffic Vol, veh/h                                                                                                                                                                                | 134        | 61                                                                                                         | 132                                                                                                             | 143                                                                                                             | 103  | 139  |
| Future Vol, veh/h                                                                                                                                                                                 | 134        | 61                                                                                                         | 132                                                                                                             | 143                                                                                                             | 103  | 139  |
| Peak Hour Factor                                                                                                                                                                                  | 0.85       | 0.85                                                                                                       | 0.85                                                                                                            | 0.85                                                                                                            | 0.85 | 0.85 |
| Heavy Vehicles, %                                                                                                                                                                                 | 12         | 28                                                                                                         | 15                                                                                                              | 19                                                                                                              | 22   | 24   |
| Mvmt Flow                                                                                                                                                                                         | 158        | 72                                                                                                         | 155                                                                                                             | 168                                                                                                             | 121  | 164  |
| Number of Lanes                                                                                                                                                                                   | 1          | 0                                                                                                          | 1                                                                                                               | 0                                                                                                               | 0    | 1    |
| A                                                                                                                                                                                                 | MD         |                                                                                                            | ND                                                                                                              |                                                                                                                 | CD.  |      |
| Approach                                                                                                                                                                                          | WB         |                                                                                                            | NB                                                                                                              |                                                                                                                 | SB   |      |
| Opposing Approach                                                                                                                                                                                 |            |                                                                                                            | SB                                                                                                              |                                                                                                                 | NB   |      |
| Opposing Lanes                                                                                                                                                                                    | 0          |                                                                                                            | 1                                                                                                               |                                                                                                                 | 1    |      |
| Conflicting Approach Lef                                                                                                                                                                          |            |                                                                                                            |                                                                                                                 |                                                                                                                 | WB   |      |
| Conflicting Lanes Left                                                                                                                                                                            | 1          |                                                                                                            | 0                                                                                                               |                                                                                                                 | 1    |      |
| Conflicting Approach Rig                                                                                                                                                                          | jhtSB      |                                                                                                            | WB                                                                                                              |                                                                                                                 |      |      |
| Conflicting Lanes Right                                                                                                                                                                           | 1          |                                                                                                            | 1                                                                                                               |                                                                                                                 | 0    |      |
| HCM Control Delay                                                                                                                                                                                 | 11.8       |                                                                                                            | 11.9                                                                                                            |                                                                                                                 | 12.7 |      |
| HCM LOS                                                                                                                                                                                           | В          |                                                                                                            | В                                                                                                               |                                                                                                                 | В    |      |
|                                                                                                                                                                                                   |            |                                                                                                            |                                                                                                                 |                                                                                                                 |      |      |
| Lane                                                                                                                                                                                              | N          | IBLn1V                                                                                                     | VBLn1                                                                                                           | SRI n1                                                                                                          |      |      |
| Vol Left, %                                                                                                                                                                                       |            |                                                                                                            |                                                                                                                 |                                                                                                                 |      |      |
| · o. =o.t., /o                                                                                                                                                                                    |            | 0%                                                                                                         |                                                                                                                 |                                                                                                                 |      |      |
| Vol Thru %                                                                                                                                                                                        |            | 0%<br>48%                                                                                                  | 69%                                                                                                             | 43%                                                                                                             |      |      |
| Vol Thru, %                                                                                                                                                                                       |            | 48%                                                                                                        | 69%<br>0%                                                                                                       | 43%<br>57%                                                                                                      |      |      |
| Vol Right, %                                                                                                                                                                                      |            | 48%<br>52%                                                                                                 | 69%<br>0%<br>31%                                                                                                | 43%<br>57%<br>0%                                                                                                |      |      |
| Vol Right, %<br>Sign Control                                                                                                                                                                      |            | 48%<br>52%<br>Stop                                                                                         | 69%<br>0%<br>31%<br>Stop                                                                                        | 43%<br>57%<br>0%<br>Stop                                                                                        |      |      |
| Vol Right, %<br>Sign Control<br>Traffic Vol by Lane                                                                                                                                               |            | 48%<br>52%<br>Stop<br>275                                                                                  | 69%<br>0%<br>31%<br>Stop<br>195                                                                                 | 43%<br>57%<br>0%<br>Stop<br>242                                                                                 |      |      |
| Vol Right, %<br>Sign Control<br>Traffic Vol by Lane<br>LT Vol                                                                                                                                     |            | 48%<br>52%<br>Stop<br>275                                                                                  | 69%<br>0%<br>31%<br>Stop<br>195<br>134                                                                          | 43%<br>57%<br>0%<br>Stop<br>242<br>103                                                                          |      |      |
| Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol                                                                                                                                  |            | 48%<br>52%<br>Stop<br>275<br>0<br>132                                                                      | 69%<br>0%<br>31%<br>Stop<br>195<br>134<br>0                                                                     | 43%<br>57%<br>0%<br>Stop<br>242<br>103<br>139                                                                   |      |      |
| Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol                                                                                                                           |            | 48%<br>52%<br>Stop<br>275<br>0<br>132<br>143                                                               | 69%<br>0%<br>31%<br>Stop<br>195<br>134<br>0<br>61                                                               | 43%<br>57%<br>0%<br>Stop<br>242<br>103<br>139                                                                   |      |      |
| Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate                                                                                                            |            | 48%<br>52%<br>Stop<br>275<br>0<br>132<br>143<br>324                                                        | 69%<br>0%<br>31%<br>Stop<br>195<br>134<br>0<br>61<br>229                                                        | 43%<br>57%<br>0%<br>Stop<br>242<br>103<br>139<br>0<br>285                                                       |      |      |
| Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp                                                                                               |            | 48%<br>52%<br>Stop<br>275<br>0<br>132<br>143<br>324                                                        | 69%<br>0%<br>31%<br>Stop<br>195<br>134<br>0<br>61<br>229                                                        | 43%<br>57%<br>0%<br>Stop<br>242<br>103<br>139<br>0<br>285                                                       |      |      |
| Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)                                                                            |            | 48%<br>52%<br>Stop<br>275<br>0<br>132<br>143<br>324<br>1<br>0.446                                          | 69%<br>0%<br>31%<br>Stop<br>195<br>134<br>0<br>61<br>229<br>1<br>0.358                                          | 43%<br>57%<br>0%<br>Stop<br>242<br>103<br>139<br>0<br>285<br>1<br>0.435                                         |      |      |
| Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd                                                      |            | 48%<br>52%<br>Stop<br>275<br>0<br>132<br>143<br>324<br>1<br>0.446<br>4.968                                 | 69%<br>0%<br>31%<br>Stop<br>195<br>134<br>0<br>61<br>229<br>1<br>0.358<br>5.614                                 | 43%<br>57%<br>0%<br>Stop<br>242<br>103<br>139<br>0<br>285<br>1<br>0.435<br>5.501                                |      |      |
| Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd Convergence, Y/N                                     |            | 48%<br>52%<br>Stop<br>275<br>0<br>132<br>143<br>324<br>1<br>0.446<br>4.968<br>Yes                          | 69%<br>0%<br>31%<br>Stop<br>195<br>134<br>0<br>61<br>229<br>1<br>0.358<br>5.614<br>Yes                          | 43%<br>57%<br>0%<br>Stop<br>242<br>103<br>139<br>0<br>285<br>1<br>0.435<br>5.501<br>Yes                         |      |      |
| Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd Convergence, Y/N Cap                                 | ) 4        | 48%<br>52%<br>Stop<br>275<br>0<br>132<br>143<br>324<br>1<br>0.446<br>4.968<br>Yes<br>728                   | 69%<br>0%<br>31%<br>Stop<br>195<br>134<br>0<br>61<br>229<br>1<br>0.358<br>5.614<br>Yes<br>642                   | 43%<br>57%<br>0%<br>Stop<br>242<br>103<br>139<br>0<br>285<br>1<br>0.435<br>5.501<br>Yes<br>658                  |      |      |
| Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd Convergence, Y/N Cap Service Time                    | ) 4        | 48%<br>52%<br>Stop<br>275<br>0<br>132<br>143<br>324<br>1<br>0.446<br>4.968<br>Yes<br>728<br>2.977          | 69%<br>0%<br>31%<br>Stop<br>195<br>134<br>0<br>61<br>229<br>1<br>0.358<br>5.614<br>Yes<br>642<br>3.644          | 43%<br>57%<br>0%<br>Stop<br>242<br>103<br>139<br>0<br>285<br>1<br>0.435<br>5.501<br>Yes<br>658<br>3.51          |      |      |
| Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd Convergence, Y/N Cap Service Time HCM Lane V/C Ratio | ) 4        | 48%<br>52%<br>Stop<br>275<br>0<br>132<br>143<br>324<br>1<br>0.446<br>4.968<br>Yes<br>728<br>2.977<br>0.445 | 69%<br>0%<br>31%<br>Stop<br>195<br>134<br>0<br>61<br>229<br>1<br>0.358<br>5.614<br>Yes<br>642<br>3.644<br>0.357 | 43%<br>57%<br>0%<br>Stop<br>242<br>103<br>139<br>0<br>285<br>1<br>0.435<br>5.501<br>Yes<br>658<br>3.51<br>0.433 |      |      |
| Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd Convergence, Y/N Cap Service Time                    | ) 4        | 48%<br>52%<br>Stop<br>275<br>0<br>132<br>143<br>324<br>1<br>0.446<br>4.968<br>Yes<br>728<br>2.977          | 69%<br>0%<br>31%<br>Stop<br>195<br>134<br>0<br>61<br>229<br>1<br>0.358<br>5.614<br>Yes<br>642<br>3.644          | 43%<br>57%<br>0%<br>Stop<br>242<br>103<br>139<br>0<br>285<br>1<br>0.435<br>5.501<br>Yes<br>658<br>3.51          |      |      |

2.3 1.6

2.2

| Intersection                                                                |                                         |                                               |                                               |                                       |      |      |      |      |      |      |      |  |
|-----------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------------|------|------|------|------|------|------|------|--|
| Intersection Delay, s/veh                                                   | 19.1                                    |                                               |                                               |                                       |      |      |      |      |      |      |      |  |
| Intersection LOS                                                            | С                                       |                                               |                                               |                                       |      |      |      |      |      |      |      |  |
|                                                                             | _                                       |                                               |                                               |                                       |      |      |      |      |      |      |      |  |
| Movement                                                                    | EBL EB                                  | Γ EBR                                         | WBL                                           | WBT                                   | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
| Lane Configurations                                                         | 4                                       |                                               |                                               | 4                                     |      |      | 4    |      |      | 4    |      |  |
| Traffic Vol, veh/h                                                          | 23 14                                   |                                               | 52                                            | 145                                   | 46   | 20   | 206  | 37   | 14   | 191  | 25   |  |
| Future Vol, veh/h                                                           | 23 14                                   |                                               | 52                                            | 145                                   | 46   | 20   | 206  | 37   | 14   | 191  | 25   |  |
|                                                                             | 0.85 0.8                                |                                               | 0.85                                          | 0.85                                  | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 |  |
| Heavy Vehicles, %                                                           | 25 2                                    |                                               | 16                                            | 25                                    | 18   | 30   | 13   | 28   | 54   | 20   | 9    |  |
| Mvmt Flow                                                                   | 27 17                                   |                                               | 61                                            | 171                                   | 54   | 24   | 242  | 44   | 16   | 225  | 29   |  |
| Number of Lanes                                                             |                                         | 1 0                                           | 0                                             | 1                                     | 0    | 0    | 1    | 0    | 0    | 1    | 0    |  |
|                                                                             | -                                       | . •                                           |                                               | •                                     |      |      | •    |      |      | •    |      |  |
| Approach                                                                    | EB                                      |                                               | WB                                            |                                       |      | NB   |      |      | SB   |      |      |  |
| Opposing Approach                                                           | WB                                      |                                               | EB                                            |                                       |      | SB   |      |      | NB   |      |      |  |
| Opposing Lanes                                                              | 1                                       |                                               | 1                                             |                                       |      | 1    |      |      | 1    |      |      |  |
| Conflicting Approach Left                                                   |                                         |                                               | NB                                            |                                       |      | EB   |      |      | WB   |      |      |  |
| Conflicting Lanes Left                                                      | 1                                       |                                               | 1                                             |                                       |      | 1    |      |      | 1    |      |      |  |
| Conflicting Approach Rig                                                    |                                         |                                               | SB                                            |                                       |      | WB   |      |      | EB   |      |      |  |
| Conflicting Lanes Right                                                     | 1                                       |                                               | 1                                             |                                       |      | 1    |      |      | 1    |      |      |  |
|                                                                             | 17.4                                    |                                               | 18.3                                          |                                       |      | 20.4 |      |      | 20.1 |      |      |  |
| HCM LOS                                                                     | С                                       |                                               | С                                             |                                       |      | С    |      |      | С    |      |      |  |
|                                                                             |                                         |                                               |                                               |                                       |      |      |      |      |      |      |      |  |
| Lane                                                                        |                                         | 1 EBLn1                                       |                                               |                                       |      |      |      |      |      |      |      |  |
| Vol Left, %                                                                 | 89                                      | 6 11%                                         | 21%                                           | 6%                                    |      |      |      |      |      |      |      |  |
| Vol Thru, %                                                                 | 789                                     | 68%                                           | 60%                                           | 83%                                   |      |      |      |      |      |      |      |  |
| Vol Right, %                                                                | 149                                     | 6 21%                                         | 19%                                           | 11%                                   |      |      |      |      |      |      |      |  |
| Sign Control                                                                | Sto                                     | o Stop                                        | Stop                                          | Stop                                  |      |      |      |      |      |      |      |  |
| Traffic Vol by Lane                                                         | 26                                      | 3 219                                         | 243                                           | 230                                   |      |      |      |      |      |      |      |  |
| LT Vol                                                                      | 2                                       | 23                                            | 52                                            | 14                                    |      |      |      |      |      |      |      |  |
| Through Vol                                                                 | 20                                      |                                               | 145                                           | 191                                   |      |      |      |      |      |      |      |  |
| RT Vol                                                                      | 3                                       | 7 47                                          | 46                                            | 25                                    |      |      |      |      |      |      |      |  |
| Lane Flow Rate                                                              | 30                                      | 9 258                                         | 286                                           | 271                                   |      |      |      |      |      |      |      |  |
| Geometry Grp                                                                |                                         | 1 1                                           | 1                                             | 1                                     |      |      |      |      |      |      |      |  |
| Degree of Util (X)                                                          |                                         |                                               |                                               |                                       |      |      |      |      |      |      |      |  |
| Dogroo or our (A)                                                           | 0.60                                    | 5 0.509                                       | 0.55                                          | 0.566                                 |      |      |      |      |      |      |      |  |
| Departure Headway (Hd)                                                      |                                         | 5 0.509<br>6 7.116                            |                                               |                                       |      |      |      |      |      |      |      |  |
|                                                                             |                                         | 7.116                                         |                                               |                                       |      |      |      |      |      |      |      |  |
| Departure Headway (Hd)                                                      | 7.03                                    | 7.116<br>S Yes                                | 6.931<br>Yes                                  | 7.528                                 |      |      |      |      |      |      |      |  |
| Departure Headway (Hd)<br>Convergence, Y/N                                  | 7.03<br>Ye<br>51                        | 7.116<br>S Yes                                | 6.931<br>Yes<br>517                           | 7.528<br>Yes<br>476                   |      |      |      |      |      |      |      |  |
| Departure Headway (Hd)<br>Convergence, Y/N<br>Cap                           | 7.03<br>Ye<br>51<br>5.11                | 7.116<br>s Yes<br>1 502                       | 6.931<br>Yes<br>517<br>5.016                  | 7.528<br>Yes<br>476<br>5.616          |      |      |      |      |      |      |      |  |
| Departure Headway (Hd)<br>Convergence, Y/N<br>Cap<br>Service Time           | 7.03<br>Ye<br>51<br>5.11                | 7.116<br>S Yes<br>1 502<br>9 5.204<br>5 0.514 | 6.931<br>Yes<br>517<br>5.016                  | 7.528<br>Yes<br>476<br>5.616          |      |      |      |      |      |      |      |  |
| Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio | 7.03<br>Ye<br>51<br>5.11<br>0.60<br>20. | 7.116<br>S Yes<br>1 502<br>9 5.204<br>5 0.514 | 6.931<br>Yes<br>517<br>5.016<br>0.553<br>18.3 | 7.528<br>Yes<br>476<br>5.616<br>0.569 |      |      |      |      |      |      |      |  |

| Intersection              |                |         |        |       |       |      |      |      |      |      |      |      |  |
|---------------------------|----------------|---------|--------|-------|-------|------|------|------|------|------|------|------|--|
| Intersection Delay, s/veh | 23.5           |         |        |       |       |      |      |      |      |      |      |      |  |
| Intersection LOS          | C              |         |        |       |       |      |      |      |      |      |      |      |  |
| Intoroccion 200           | J              |         |        |       |       |      |      |      |      |      |      |      |  |
|                           | EDI            | EDT     | EDD    | MDI   | MOT   | WDD  | NDI  | NDT  | NDD  | ODI  | ODT  | 000  |  |
| Movement                  | EBL            | EBT     | EBR    | WBL   | WBT   | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
| Lane Configurations       | 40             | 4       |        |       | 4     | 07   | 40   | 4    |      | 00   | 4    | 0.0  |  |
| Traffic Vol, veh/h        | 13             | 200     | 4      | 70    | 178   | 97   | 10   | 171  | 73   | 93   | 175  | 20   |  |
| Future Vol, veh/h         | 13             | 200     | 4      | 70    | 178   | 97   | 10   | 171  | 73   | 93   | 175  | 20   |  |
| Peak Hour Factor          | 0.92           | 0.92    | 0.92   | 0.92  | 0.92  | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |  |
| Heavy Vehicles, %         | 10             | 20      | 40     | 38    | 23    | 14   | 25   | 15   | 22   | 19   | 18   | 24   |  |
| Mvmt Flow                 | 14             | 217     | 4      | 76    | 193   | 105  | 11   | 186  | 79   | 101  | 190  | 22   |  |
| Number of Lanes           | 0              | 1       | 0      | 0     | 1     | 0    | 0    | 1    | 0    | 0    | 1    | 0    |  |
| Approach                  | EB             |         |        | WB    |       |      | NB   |      |      | SB   |      |      |  |
| Opposing Approach         | WB             |         |        | EB    |       |      | SB   |      |      | NB   |      |      |  |
| Opposing Lanes            | 1              |         |        | 1     |       |      | 1    |      |      | 1    |      |      |  |
| Conflicting Approach Let  | ft SB          |         |        | NB    |       |      | EB   |      |      | WB   |      |      |  |
| Conflicting Lanes Left    | 1              |         |        | 1     |       |      | 1    |      |      | 1    |      |      |  |
| Conflicting Approach Rig  | gh <b>t</b> NB |         |        | SB    |       |      | WB   |      |      | EB   |      |      |  |
| Conflicting Lanes Right   | 1              |         |        | 1     |       |      | 1    |      |      | 1    |      |      |  |
| HCM Control Delay         | 17.4           |         |        | 30.5  |       |      | 19.9 |      |      | 22.8 |      |      |  |
| HCM LOS                   | С              |         |        | D     |       |      | С    |      |      | С    |      |      |  |
|                           |                |         |        |       |       |      |      |      |      |      |      |      |  |
| Lane                      | N              | IBLn1 I | EBLn1V | VBLn1 | SBLn1 |      |      |      |      |      |      |      |  |
| Vol Left, %               |                | 4%      | 6%     | 20%   | 32%   |      |      |      |      |      |      |      |  |
| Vol Thru, %               |                | 67%     | 92%    | 52%   | 61%   |      |      |      |      |      |      |      |  |
| Vol Right, %              |                | 29%     | 2%     | 28%   | 7%    |      |      |      |      |      |      |      |  |
| Sign Control              |                | Stop    | Stop   | Stop  | Stop  |      |      |      |      |      |      |      |  |
| Traffic Vol by Lane       |                | 254     | 217    | 345   | 288   |      |      |      |      |      |      |      |  |
| LT Vol                    |                | 10      | 13     | 70    | 93    |      |      |      |      |      |      |      |  |
| Through Vol               |                | 171     | 200    | 178   | 175   |      |      |      |      |      |      |      |  |
| RT Vol                    |                | 73      | 4      | 97    | 20    |      |      |      |      |      |      |      |  |
| Lane Flow Rate            |                | 276     | 236    | 375   | 313   |      |      |      |      |      |      |      |  |
| Geometry Grp              |                | 1       | 1      | 1     | 1     |      |      |      |      |      |      |      |  |
| Degree of Util (X)        |                |         | 0.488  | 0.764 | 0.642 |      |      |      |      |      |      |      |  |
| Departure Headway (Hd     |                |         |        | 7.334 |       |      |      |      |      |      |      |      |  |
| Convergence, Y/N          | ,              | Yes     | Yes    | Yes   | Yes   |      |      |      |      |      |      |      |  |
| Cap                       |                | 486     | 484    | 491   | 488   |      |      |      |      |      |      |      |  |
| Service Time              |                |         | 5.505  |       | 5.44  |      |      |      |      |      |      |      |  |
| HCM Lane V/C Ratio        |                |         |        | 0.764 |       |      |      |      |      |      |      |      |  |
| HCM Control Delay         |                | 19.9    | 17.4   | 30.5  | 22.8  |      |      |      |      |      |      |      |  |
| HCM Lane LOS              |                | C       | C      | D     | C     |      |      |      |      |      |      |      |  |
| HOM OF HOME               |                | 2 -     | 0      |       | 4 -   |      |      |      |      |      |      |      |  |

2.6

6.6

4.5

3.5

| Intersection              |               |            |      |        |       |       |      |      |      |      |      |      |  |
|---------------------------|---------------|------------|------|--------|-------|-------|------|------|------|------|------|------|--|
| Intersection Delay, s/veh | 15.3          |            |      |        |       |       |      |      |      |      |      |      |  |
| Intersection LOS          | С             |            |      |        |       |       |      |      |      |      |      |      |  |
|                           |               |            |      |        |       |       |      |      |      |      |      |      |  |
| Movement                  | EBL E         | ST E       | 3R   | WBL    | WBT   | WBR   | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
| Lane Configurations       |               | <b>.</b>   |      |        | 4     |       |      | र्स  | 7    |      | 4    |      |  |
| Traffic Vol, veh/h        |               |            | 27   | 71     | 92    | 45    | 16   | 171  | 29   | 59   | 186  | 26   |  |
| Future Vol, veh/h         | 17 1          | 10         | 27   | 71     | 92    | 45    | 16   | 171  | 29   | 59   | 186  | 26   |  |
| Peak Hour Factor          | 0.85 0.8      | 35 0.      | 85   | 0.85   | 0.85  | 0.85  | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 |  |
| Heavy Vehicles, %         | 14            | 23         | 13   | 11     | 28    | 14    | 43   | 18   | 50   | 9    | 21   | 12   |  |
| Mvmt Flow                 | 20 1          | 35         | 32   | 84     | 108   | 53    | 19   | 201  | 34   | 69   | 219  | 31   |  |
| Number of Lanes           | 0             | 1          | 0    | 0      | 1     | 0     | 0    | 1    | 1    | 0    | 1    | 0    |  |
| Approach                  | EB            |            |      | WB     |       |       | NB   |      |      | SB   |      |      |  |
| Opposing Approach         | WB            |            |      | EB     |       |       | SB   |      |      | NB   |      |      |  |
| Opposing Lanes            | 1             |            |      | 1      |       |       | 1    |      |      | 2    |      |      |  |
| Conflicting Approach Left | t SB          |            |      | NB     |       |       | EB   |      |      | WB   |      |      |  |
| Conflicting Lanes Left    | 1             |            |      | 2      |       |       | 1    |      |      | 1    |      |      |  |
| Conflicting Approach Rig  | h <b>t</b> NB |            |      | SB     |       |       | WB   |      |      | EB   |      |      |  |
| Conflicting Lanes Right   | 2             |            |      | 1      |       |       | 1    |      |      | 1    |      |      |  |
| HCM Control Delay         | 13.8          |            |      | 14.4   |       |       | 15.3 |      |      | 17   |      |      |  |
| HCM LOS                   | В             |            |      | В      |       |       | С    |      |      | С    |      |      |  |
|                           |               |            |      |        |       |       |      |      |      |      |      |      |  |
| Lane                      | NBL           | 1 NBL      | n2 E | EBLn1V | VBLn1 | SBLn1 |      |      |      |      |      |      |  |
| Vol Left, %               | Ç             | % (        | )%   | 9%     | 34%   | 22%   |      |      |      |      |      |      |  |
| Vol Thru, %               | 91            |            | )%   | 76%    | 44%   | 69%   |      |      |      |      |      |      |  |
| Vol Right, %              | C             | % 100      | )%   | 15%    | 22%   | 10%   |      |      |      |      |      |      |  |
| Sign Control              | St            | p St       | ор   | Stop   | Stop  | Stop  |      |      |      |      |      |      |  |
| Traffic Vol by Lane       |               | -          | 29   | 184    | 208   | 271   |      |      |      |      |      |      |  |
| LT Vol                    |               | 16         | 0    | 17     | 71    | 59    |      |      |      |      |      |      |  |
| Through Vol               | 1             | <b>7</b> 1 | 0    | 140    | 92    | 186   |      |      |      |      |      |      |  |
| RT Vol                    |               | 0          | 29   | 27     | 45    | 26    |      |      |      |      |      |      |  |
| Lane Flow Rate            | 2:            | 20         | 34   | 216    | 245   | 319   |      |      |      |      |      |      |  |
| Geometry Grp              |               | 7          | 7    | 2      | 2     | 5     |      |      |      |      |      |      |  |
| Degree of Util (X)        | 0.4           | 54 0.0     | 59   | 0.394  | 0.438 | 0.557 |      |      |      |      |      |      |  |
| Departure Headway (Hd)    | 7.4           | 23 6.2     | 31   | 6.554  | 6.444 | 6.286 |      |      |      |      |      |      |  |
| Convergence, Y/N          |               |            | es   | Yes    | Yes   | Yes   |      |      |      |      |      |      |  |
| Сар                       | 4             | 36 5       | 74   | 548    | 558   | 574   |      |      |      |      |      |      |  |
| Service Time              | 5.1           | 3.9        | 75   | 4.601  | 4.488 |       |      |      |      |      |      |      |  |
| HCM Lane V/C Ratio        | 0.4           | 3 0.0      | 59   | 0.394  | 0.439 | 0.556 |      |      |      |      |      |      |  |
| HCM Control Delay         | 16            | .2         | 9.4  | 13.8   | 14.4  | 17    |      |      |      |      |      |      |  |
| HCM Lane LOS              |               | С          | Α    | В      | В     | С     |      |      |      |      |      |      |  |
| LIOMAGEIL III. C          |               |            |      |        |       |       |      |      |      |      |      |      |  |

2.3 0.2

1.9 2.2

3.4

| Intersection              |       |           |       |       |          |         |       |       |       |       |      |      |  |
|---------------------------|-------|-----------|-------|-------|----------|---------|-------|-------|-------|-------|------|------|--|
| Intersection Delay, s/veh | 132.1 |           |       |       |          |         |       |       |       |       |      |      |  |
| Intersection LOS          | D     |           |       |       |          |         |       |       |       |       |      |      |  |
|                           |       |           |       |       |          |         |       |       |       |       |      |      |  |
| Movement                  | EBL   | EBT       | EBR   | WBL   | WBT      | WBR     | NBL   | NBT   | NBR   | SBL   | SBT  | SBR  |  |
| Lane Configurations       | ሻ     | <b>\$</b> | LDIT  | ሻ     | <b>1</b> | · · · · | 1102  | 4     | 7     | - 052 | 4    | 7    |  |
| Traffic Vol, veh/h        | 105   | 172       | 144   | 105   | 159      | 10      | 136   | 149   | 66    | 5     | 173  | 139  |  |
| Future Vol, veh/h         | 105   | 172       | 144   | 105   | 159      | 10      | 136   | 149   | 66    | 5     | 173  | 139  |  |
| Peak Hour Factor          | 0.85  | 0.85      | 0.85  | 0.85  | 0.85     | 0.85    | 0.85  | 0.85  | 0.85  | 0.85  | 0.85 | 0.85 |  |
| Heavy Vehicles, %         | 49    | 27        | 21    | 25    | 37       | 12      | 14    | 9     | 21    | 0.00  | 21   | 28   |  |
| Mvmt Flow                 | 124   | 202       | 169   | 124   | 187      | 12      | 160   | 175   | 78    | 6     | 204  | 164  |  |
| Number of Lanes           | 1     | 1         | 0     | 1     | 1        | 0       | 0     | 1     | 1     | 0     | 1    | 1    |  |
|                           | •     |           |       | ·     | •        |         |       | •     | •     |       |      |      |  |
| Approach                  | EB    |           |       | WB    |          |         | NB    |       |       | SB    |      |      |  |
| Opposing Approach         | WB    |           |       | EB    |          |         | SB    |       |       | NB    |      |      |  |
| Opposing Lanes            | 2     |           |       | 2     |          |         | 2     |       |       | 2     |      |      |  |
| Conflicting Approach Let  |       |           |       | NB    |          |         | EB    |       |       | WB    |      |      |  |
| Conflicting Lanes Left    | 2     |           |       | 2     |          |         | 2     |       |       | 2     |      |      |  |
| Conflicting Approach Rig  |       |           |       | SB    |          |         | WB    |       |       | EB    |      |      |  |
| Conflicting Lanes Right   | 2     |           |       | 2     |          |         | 2     |       |       | 2     |      |      |  |
| HCM Control Delay         | 42.6  |           |       | 20.7  |          |         | 40.1  |       |       | 19.1  |      |      |  |
| HCM LOS                   | Е     |           |       | С     |          |         | Е     |       |       | С     |      |      |  |
|                           |       |           |       |       |          |         |       |       |       |       |      |      |  |
| Lane                      | ١     | NBLn1 I   | NBLn2 | EBLn1 | EBLn2V   | VBLn1\  | VBLn2 | SBLn1 | SBLn2 |       |      |      |  |
| Vol Left, %               |       | 48%       | 0%    | 100%  | 0%       | 100%    | 0%    | 3%    | 0%    |       |      |      |  |
| Vol Thru, %               |       | 52%       | 0%    | 0%    | 54%      | 0%      | 94%   | 97%   | 0%    |       |      |      |  |
| Vol Right, %              |       | 0%        | 100%  | 0%    | 46%      | 0%      | 6%    | 0%    | 100%  |       |      |      |  |
| Sign Control              |       | Stop      | Stop  | Stop  | Stop     | Stop    | Stop  | Stop  | Stop  |       |      |      |  |
| Traffic Vol by Lane       |       | 285       | 66    | 105   | 316      | 105     | 169   | 178   | 139   |       |      |      |  |
| LT Vol                    |       | 136       | 0     | 105   | 0        | 105     | 0     | 5     | 0     |       |      |      |  |
| Through Vol               |       | 149       | 0     | 0     | 172      | 0       | 159   | 173   | 0     |       |      |      |  |
| RT Vol                    |       | 0         | 66    | 0     | 144      | 0       | 10    | 0     | 139   |       |      |      |  |
| Lane Flow Rate            |       | 335       | 78    | 124   | 372      | 124     | 199   | 209   | 164   |       |      |      |  |
| Geometry Grp              |       | 7         | 7     | 7     | 7        | 7       | 7     | 7     | 7     |       |      |      |  |
| Degree of Util (X)        |       | 0.851     | 0.174 | 0.339 | 0.892    | 0.34    | 0.527 | 0.519 | 0.389 |       |      |      |  |
| Departure Headway (Hd     | )     | 9.142     | 8.079 | 9.874 | 8.635    | 9.9     | 9.548 | 8.927 | 8.554 |       |      |      |  |
| Convergence, Y/N          |       | Yes       | Yes   | Yes   | Yes      | Yes     | Yes   | Yes   | Yes   |       |      |      |  |
| Сар                       |       | 396       | 444   | 364   | 420      | 363     | 378   | 404   | 420   |       |      |      |  |
| Service Time              |       |           | 5.826 |       |          |         | 7.302 | 6.679 | 6.306 |       |      |      |  |
| HCM Lane V/C Ratio        |       |           |       | 0.341 |          |         |       |       | 0.39  |       |      |      |  |
| HCM Control Delay         |       | 46.5      | 12.5  | 17.6  | 50.9     | 17.7    | 22.5  | 21    | 16.7  |       |      |      |  |
| HCM Lane LOS              |       | Е         | В     | С     | F        | С       | С     | С     | С     |       |      |      |  |
| HCM 95th-tile Q           |       | 8.1       | 0.6   | 1.5   | 9.3      | 1.5     | 2.9   | 2.9   | 1.8   |       |      |      |  |

|                                   | ۶       | <b>→</b> | •     | •    | -          | •          | 4       | <b>†</b>   | ~    | <b>/</b> | <b>↓</b>   | √    |
|-----------------------------------|---------|----------|-------|------|------------|------------|---------|------------|------|----------|------------|------|
| Movement                          | EBL     | EBT      | EBR   | WBL  | WBT        | WBR        | NBL     | NBT        | NBR  | SBL      | SBT        | SBR  |
| Lane Configurations               |         | र्स      | 7     |      | ર્ન        | 7          | J.      | <b>∱</b> } |      | ¥        | <b>∱</b> } |      |
| Traffic Volume (vph)              | 78      | 55       | 67    | 150  | 41         | 52         | 68      | 1087       | 102  | 73       | 1396       | 90   |
| Future Volume (vph)               | 78      | 55       | 67    | 150  | 41         | 52         | 68      | 1087       | 102  | 73       | 1396       | 90   |
| Ideal Flow (vphpl)                | 1750    | 1750     | 1750  | 1750 | 1750       | 1750       | 1750    | 1750       | 1750 | 1750     | 1750       | 1750 |
| Total Lost time (s)               |         | 4.5      | 4.5   |      | 4.5        | 4.5        | 4.5     | 4.5        |      | 4.5      | 4.5        |      |
| Lane Util. Factor                 |         | 1.00     | 1.00  |      | 1.00       | 1.00       | 1.00    | 0.95       |      | 1.00     | 0.95       |      |
| Frpb, ped/bikes                   |         | 1.00     | 0.98  |      | 1.00       | 0.98       | 1.00    | 1.00       |      | 1.00     | 1.00       |      |
| Flpb, ped/bikes                   |         | 1.00     | 1.00  |      | 1.00       | 1.00       | 1.00    | 1.00       |      | 1.00     | 1.00       |      |
| Frt                               |         | 1.00     | 0.85  |      | 1.00       | 0.85       | 1.00    | 0.99       |      | 1.00     | 0.99       |      |
| FIt Protected                     |         | 0.97     | 1.00  |      | 0.96       | 1.00       | 0.95    | 1.00       |      | 0.95     | 1.00       |      |
| Satd. Flow (prot)                 |         | 1499     | 1227  |      | 1478       | 1206       | 1363    | 2666       |      | 1458     | 2740       |      |
| FIt Permitted                     |         | 0.54     | 1.00  |      | 0.59       | 1.00       | 0.08    | 1.00       |      | 0.15     | 1.00       |      |
| Satd. Flow (perm)                 |         | 839      | 1227  |      | 905        | 1206       | 108     | 2666       |      | 234      | 2740       |      |
| Peak-hour factor, PHF             | 0.94    | 0.94     | 0.94  | 0.94 | 0.94       | 0.94       | 0.94    | 0.94       | 0.94 | 0.94     | 0.94       | 0.94 |
| Adj. Flow (vph)                   | 83      | 59       | 71    | 160  | 44         | 55         | 72      | 1156       | 109  | 78       | 1485       | 96   |
| RTOR Reduction (vph)              | 0       | 0        | 55    | 0    | 0          | 42         | 0       | 5          | 0    | 0        | 3          | 0    |
| Lane Group Flow (vph)             | 0       | 142      | 16    | 0    | 204        | 13         | 72      | 1260       | 0    | 78       | 1578       | 0    |
| Confl. Peds. (#/hr)               | 6       |          | 6     | 6    |            | 6          | 3       |            | 3    | 3        |            | 3    |
| Heavy Vehicles (%)                | 16%     | 9%       | 19%   | 13%  | 15%        | 21%        | 22%     | 23%        | 21%  | 14%      | 20%        | 21%  |
| Turn Type                         | Perm    | NA       | Perm  | Perm | NA         | Perm       | D.P+P   | NA         |      | D.P+P    | NA         |      |
| Protected Phases                  |         | 8        |       |      | 4          |            | 1       | 6          |      | 5        | 2          |      |
| Permitted Phases                  | 8       |          | 8     | 4    |            | 4          | 2       |            |      | 6        |            |      |
| Actuated Green, G (s)             |         | 30.1     | 30.1  |      | 30.1       | 30.1       | 86.4    | 80.3       |      | 86.4     | 77.2       |      |
| Effective Green, g (s)            |         | 30.1     | 30.1  |      | 30.1       | 30.1       | 86.4    | 80.3       |      | 86.4     | 77.2       |      |
| Actuated g/C Ratio                |         | 0.23     | 0.23  |      | 0.23       | 0.23       | 0.66    | 0.62       |      | 0.66     | 0.59       |      |
| Clearance Time (s)                |         | 4.5      | 4.5   |      | 4.5        | 4.5        | 4.5     | 4.5        |      | 4.5      | 4.5        |      |
| Vehicle Extension (s)             |         | 2.5      | 2.5   |      | 2.5        | 2.5        | 2.5     | 4.6        |      | 2.5      | 4.6        |      |
| Lane Grp Cap (vph)                |         | 194      | 284   |      | 209        | 279        | 160     | 1646       |      | 212      | 1627       |      |
| v/s Ratio Prot                    |         |          |       |      |            |            | 0.03    | c0.47      |      | 0.02     | c0.58      |      |
| v/s Ratio Perm                    |         | 0.17     | 0.01  |      | c0.23      | 0.01       | 0.27    |            |      | 0.23     |            |      |
| v/c Ratio                         |         | 0.73     | 0.06  |      | 0.98       | 0.05       | 0.45    | 0.77       |      | 0.37     | 0.97       |      |
| Uniform Delay, d1                 |         | 46.2     | 38.9  |      | 49.6       | 38.8       | 39.4    | 18.0       |      | 10.8     | 25.3       |      |
| Progression Factor                |         | 1.00     | 1.00  |      | 1.00       | 1.00       | 0.77    | 0.70       |      | 1.07     | 1.10       |      |
| Incremental Delay, d2             |         | 12.6     | 0.1   |      | 54.9       | 0.0        | 1.0     | 2.5        |      | 0.1      | 2.7        |      |
| Delay (s)                         |         | 58.8     | 39.0  |      | 104.5      | 38.8       | 31.3    | 15.2       |      | 11.6     | 30.5       |      |
| Level of Service                  |         | Е        | D     |      | F          | D          | С       | В          |      | В        | С          |      |
| Approach Delay (s)                |         | 52.2     |       |      | 90.5       |            |         | 16.0       |      |          | 29.6       |      |
| Approach LOS                      |         | D        |       |      | F          |            |         | В          |      |          | С          |      |
| Intersection Summary              |         |          |       |      |            |            |         |            |      |          |            |      |
| HCM 2000 Control Delay            |         |          | 30.3  | Н    | CM 2000    | Level of   | Service |            | С    |          |            |      |
| HCM 2000 Volume to Capacit        | y ratio |          | 0.97  |      |            |            |         |            |      |          |            |      |
| Actuated Cycle Length (s)         | _       |          | 130.0 | Sı   | um of lost | t time (s) |         |            | 13.5 |          |            |      |
| Intersection Capacity Utilization | on      |          | 80.1% |      | U Level    |            | 9       |            | D    |          |            |      |
| Analysis Period (min)             |         |          | 15    |      |            |            |         |            |      |          |            |      |
| c Critical Lane Group             |         |          |       |      |            |            |         |            |      |          |            |      |

|                                   | ۶     | <b>→</b> | •     | •    | •         | •          | 4       | <b>†</b>   | ~    | <b>&gt;</b> | <b>↓</b>   | 4    |
|-----------------------------------|-------|----------|-------|------|-----------|------------|---------|------------|------|-------------|------------|------|
| Movement                          | EBL   | EBT      | EBR   | WBL  | WBT       | WBR        | NBL     | NBT        | NBR  | SBL         | SBT        | SBR  |
| Lane Configurations               |       | 4        |       |      | ર્ન       | 7          | Ť       | <b>∱</b> } |      | 7           | <b>∱</b> } |      |
| Traffic Volume (vph)              | 106   | 11       | 93    | 28   | 10        | 25         | 77      | 1115       | 15   | 16          | 1528       | 112  |
| Future Volume (vph)               | 106   | 11       | 93    | 28   | 10        | 25         | 77      | 1115       | 15   | 16          | 1528       | 112  |
| Ideal Flow (vphpl)                | 1750  | 1750     | 1750  | 1750 | 1750      | 1750       | 1750    | 1750       | 1750 | 1750        | 1750       | 1750 |
| Total Lost time (s)               |       | 4.5      |       |      | 4.5       | 4.5        | 4.5     | 4.5        |      | 4.5         | 4.5        |      |
| Lane Util. Factor                 |       | 1.00     |       |      | 1.00      | 1.00       | 1.00    | 0.95       |      | 1.00        | 0.95       |      |
| Frpb, ped/bikes                   |       | 0.99     |       |      | 1.00      | 0.97       | 1.00    | 1.00       |      | 1.00        | 1.00       |      |
| Flpb, ped/bikes                   |       | 0.99     |       |      | 1.00      | 1.00       | 1.00    | 1.00       |      | 1.00        | 1.00       |      |
| Frt                               |       | 0.94     |       |      | 1.00      | 0.85       | 1.00    | 1.00       |      | 1.00        | 0.99       |      |
| Flt Protected                     |       | 0.98     |       |      | 0.96      | 1.00       | 0.95    | 1.00       |      | 0.95        | 1.00       |      |
| Satd. Flow (prot)                 |       | 1286     |       |      | 1419      | 1124       | 1446    | 2628       |      | 1289        | 2722       |      |
| Flt Permitted                     |       | 0.82     |       |      | 0.72      | 1.00       | 0.06    | 1.00       |      | 0.18        | 1.00       |      |
| Satd. Flow (perm)                 |       | 1080     |       |      | 1056      | 1124       | 89      | 2628       |      | 238         | 2722       |      |
| Peak-hour factor, PHF             | 0.94  | 0.94     | 0.94  | 0.94 | 0.94      | 0.94       | 0.94    | 0.94       | 0.94 | 0.94        | 0.94       | 0.94 |
| Adj. Flow (vph)                   | 113   | 12       | 99    | 30   | 11        | 27         | 82      | 1186       | 16   | 17          | 1626       | 119  |
| RTOR Reduction (vph)              | 0     | 22       | 0     | 0    | 0         | 22         | 0       | 1          | 0    | 0           | 3          | 0    |
| Lane Group Flow (vph)             | 0     | 202      | 0     | 0    | 41        | 5          | 82      | 1201       | 0    | 17          | 1742       | 0    |
| Confl. Peds. (#/hr)               | 10    |          |       |      |           | 10         | 6       |            | 6    | 6           |            | 6    |
| Confl. Bikes (#/hr)               |       |          | 1     |      |           |            |         |            | 1    |             |            |      |
| Heavy Vehicles (%)                | 19%   | 50%      | 25%   | 5%   | 57%       | 29%        | 15%     | 26%        | 40%  | 29%         | 21%        | 15%  |
| Turn Type                         | Perm  | NA       |       | Perm | NA        | Perm       | D.P+P   | NA         |      | D.P+P       | NA         |      |
| Protected Phases                  |       | 8        |       |      | 4         |            | 1       | 6          |      | 5           | 2          |      |
| Permitted Phases                  | 8     |          |       | 4    |           | 4          | 2       |            |      | 6           |            |      |
| Actuated Green, G (s)             |       | 26.4     |       |      | 26.4      | 26.4       | 90.1    | 83.1       |      | 90.1        | 81.4       |      |
| Effective Green, g (s)            |       | 26.4     |       |      | 26.4      | 26.4       | 90.1    | 83.1       |      | 90.1        | 81.4       |      |
| Actuated g/C Ratio                |       | 0.20     |       |      | 0.20      | 0.20       | 0.69    | 0.64       |      | 0.69        | 0.63       |      |
| Clearance Time (s)                |       | 4.5      |       |      | 4.5       | 4.5        | 4.5     | 4.5        |      | 4.5         | 4.5        |      |
| Vehicle Extension (s)             |       | 2.5      |       |      | 2.5       | 2.5        | 2.5     | 4.6        |      | 2.5         | 4.6        |      |
| Lane Grp Cap (vph)                |       | 219      |       |      | 214       | 228        | 152     | 1679       |      | 221         | 1704       |      |
| v/s Ratio Prot                    |       |          |       |      |           | 220        | 0.04    | c0.46      |      | 0.00        | c0.64      |      |
| v/s Ratio Perm                    |       | c0.19    |       |      | 0.04      | 0.00       | 0.34    | 00.10      |      | 0.05        | 00.01      |      |
| v/c Ratio                         |       | 0.92     |       |      | 0.19      | 0.02       | 0.54    | 0.72       |      | 0.08        | 1.02       |      |
| Uniform Delay, d1                 |       | 50.8     |       |      | 43.0      | 41.5       | 20.1    | 15.6       |      | 15.0        | 24.3       |      |
| Progression Factor                |       | 1.00     |       |      | 1.00      | 1.00       | 1.54    | 0.80       |      | 1.32        | 0.65       |      |
| Incremental Delay, d2             |       | 39.5     |       |      | 0.3       | 0.0        | 2.0     | 1.9        |      | 0.0         | 19.9       |      |
| Delay (s)                         |       | 90.3     |       |      | 43.3      | 41.5       | 33.0    | 14.4       |      | 19.8        | 35.8       |      |
| Level of Service                  |       | F        |       |      | D         | D          | C       | В          |      | В           | D          |      |
| Approach Delay (s)                |       | 90.3     |       |      | 42.6      |            |         | 15.6       |      |             | 35.6       |      |
| Approach LOS                      |       | F        |       |      | D         |            |         | В          |      |             | D          |      |
| Intersection Summary              |       |          |       |      |           |            |         |            |      |             |            |      |
| HCM 2000 Control Delay            |       |          | 31.7  | H    | CM 2000   | Level of   | Service |            | С    |             |            |      |
| HCM 2000 Volume to Capacity       | ratio |          | 0.99  |      |           |            |         |            |      |             |            |      |
| Actuated Cycle Length (s)         |       |          | 130.0 | S    | um of los | t time (s) |         |            | 13.5 |             |            |      |
| Intersection Capacity Utilization | )     |          | 85.5% |      | CU Level  |            | •       |            | E    |             |            |      |
| Analysis Period (min)             |       |          | 15    |      |           |            |         |            |      |             |            |      |
| c Critical Lane Group             |       |          |       |      |           |            |         |            |      |             |            |      |

|                                | ۶          | <b>→</b> | •     | •    | <b>—</b>  | •          | •       | <b>†</b>   | ~    | <b>\</b> | <b>↓</b>   | <b>√</b> |
|--------------------------------|------------|----------|-------|------|-----------|------------|---------|------------|------|----------|------------|----------|
| Movement                       | EBL        | EBT      | EBR   | WBL  | WBT       | WBR        | NBL     | NBT        | NBR  | SBL      | SBT        | SBR      |
| Lane Configurations            | ሻ          | f)       |       |      | ર્ન       | 7          | ሻ       | <b>∱</b> } |      | ሻ        | <b>∱</b> } |          |
| Traffic Volume (vph)           | 151        | 179      | 118   | 98   | 221       | 279        | 80      | 771        | 41   | 264      | 1225       | 139      |
| Future Volume (vph)            | 151        | 179      | 118   | 98   | 221       | 279        | 80      | 771        | 41   | 264      | 1225       | 139      |
| Ideal Flow (vphpl)             | 1750       | 1750     | 1750  | 1750 | 1750      | 1750       | 1750    | 1750       | 1750 | 1750     | 1750       | 1750     |
| Total Lost time (s)            | 4.5        | 4.5      |       |      | 4.5       | 4.5        | 4.5     | 4.5        |      | 4.5      | 4.5        |          |
| Lane Util. Factor              | 1.00       | 1.00     |       |      | 1.00      | 1.00       | 1.00    | 0.95       |      | 1.00     | 0.95       |          |
| Frpb, ped/bikes                | 1.00       | 0.99     |       |      | 1.00      | 1.00       | 1.00    | 1.00       |      | 1.00     | 1.00       |          |
| Flpb, ped/bikes                | 1.00       | 1.00     |       |      | 1.00      | 1.00       | 1.00    | 1.00       |      | 1.00     | 1.00       |          |
| Frt                            | 1.00       | 0.94     |       |      | 1.00      | 0.85       | 1.00    | 0.99       |      | 1.00     | 0.98       |          |
| Flt Protected                  | 0.95       | 1.00     |       |      | 0.98      | 1.00       | 0.95    | 1.00       |      | 0.95     | 1.00       |          |
| Satd. Flow (prot)              | 1222       | 1306     |       |      | 1454      | 1293       | 1179    | 2696       |      | 1374     | 2766       |          |
| Flt Permitted                  | 0.30       | 1.00     |       |      | 0.47      | 1.00       | 0.11    | 1.00       |      | 0.26     | 1.00       |          |
| Satd. Flow (perm)              | 384        | 1306     |       |      | 694       | 1293       | 134     | 2696       |      | 380      | 2766       |          |
| Peak-hour factor, PHF          | 0.99       | 0.99     | 0.99  | 0.99 | 0.99      | 0.99       | 0.99    | 0.99       | 0.99 | 0.99     | 0.99       | 0.99     |
| Adj. Flow (vph)                | 153        | 181      | 119   | 99   | 223       | 282        | 81      | 779        | 41   | 267      | 1237       | 140      |
| RTOR Reduction (vph)           | 0          | 18       | 0     | 0    | 0         | 65         | 0       | 3          | 0    | 0        | 6          | 0        |
| Lane Group Flow (vph)          | 153        | 282      | 0     | 0    | 322       | 217        | 81      | 817        | 0    | 267      | 1371       | 0        |
| Confl. Peds. (#/hr)            |            |          | 4     | 4    |           |            | 1       |            | 2    | 2        |            | 1        |
| Confl. Bikes (#/hr)            |            |          |       |      |           |            |         |            | 1    |          |            |          |
| Heavy Vehicles (%)             | 36%        | 22%      | 30%   | 33%  | 12%       | 15%        | 41%     | 22%        | 27%  | 21%      | 18%        | 19%      |
| Turn Type                      | Perm       | NA       |       | Perm | NA        | Perm       | D.P+P   | NA         |      | D.P+P    | NA         |          |
| Protected Phases               |            | 4        |       |      | 8         |            | 5       | 2          |      | 1        | 6          |          |
| Permitted Phases               | 4          | •        |       | 8    |           | 8          | 6       | _          |      | 2        |            |          |
| Actuated Green, G (s)          | 34.5       | 34.5     |       |      | 34.5      | 34.5       | 82.0    | 66.5       |      | 82.0     | 73.9       |          |
| Effective Green, g (s)         | 34.5       | 34.5     |       |      | 34.5      | 34.5       | 82.0    | 66.5       |      | 82.0     | 73.9       |          |
| Actuated g/C Ratio             | 0.27       | 0.27     |       |      | 0.27      | 0.27       | 0.63    | 0.51       |      | 0.63     | 0.57       |          |
| Clearance Time (s)             | 4.5        | 4.5      |       |      | 4.5       | 4.5        | 4.5     | 4.5        |      | 4.5      | 4.5        |          |
| Vehicle Extension (s)          | 2.5        | 2.5      |       |      | 2.5       | 2.5        | 2.5     | 4.6        |      | 2.5      | 4.6        |          |
| Lane Grp Cap (vph)             | 101        | 346      |       |      | 184       | 343        | 149     | 1379       |      | 358      | 1572       |          |
| v/s Ratio Prot                 | 101        | 0.22     |       |      | 101       | 010        | 0.03    | 0.30       |      | 0.09     | c0.50      |          |
| v/s Ratio Perm                 | 0.40       | U.LL     |       |      | c0.46     | 0.17       | 0.31    | 0.00       |      | c0.38    | 00.00      |          |
| v/c Ratio                      | 1.51       | 0.81     |       |      | 1.75      | 0.63       | 0.54    | 0.59       |      | 0.75     | 0.87       |          |
| Uniform Delay, d1              | 47.8       | 44.7     |       |      | 47.8      | 42.2       | 15.9    | 22.3       |      | 28.5     | 24.0       |          |
| Progression Factor             | 1.00       | 1.00     |       |      | 1.00      | 1.00       | 1.00    | 1.00       |      | 1.35     | 1.36       |          |
| Incremental Delay, d2          | 275.7      | 13.3     |       |      | 359.0     | 3.3        | 3.2     | 1.9        |      | 1.9      | 1.7        |          |
| Delay (s)                      | 323.5      | 58.1     |       |      | 406.7     | 45.5       | 19.1    | 24.1       |      | 40.3     | 34.4       |          |
| Level of Service               | F          | E        |       |      | F         | D          | В       | C          |      | D        | C          |          |
| Approach Delay (s)             |            | 147.7    |       |      | 238.1     |            |         | 23.7       |      |          | 35.3       |          |
| Approach LOS                   |            | F        |       |      | F         |            |         | C          |      |          | D          |          |
| Intersection Summary           |            |          |       |      |           |            |         |            |      |          |            |          |
| HCM 2000 Control Delay         | <u></u>    |          | 80.5  | H    | CM 2000   | Level of   | Service |            | F    |          |            |          |
| HCM 2000 Volume to Capac       | city ratio |          | 1.14  |      |           |            |         |            |      |          |            |          |
| Actuated Cycle Length (s)      |            |          | 130.0 | Sı   | um of los | t time (s) |         |            | 13.5 |          |            |          |
| Intersection Capacity Utilizat | tion       |          | 98.6% |      | U Level   |            | •       |            | F    |          |            |          |
| Analysis Period (min)          |            |          | 15    |      |           |            |         |            |      |          |            |          |
| c Critical Lane Group          |            |          |       |      |           |            |         |            |      |          |            |          |

| Intersection           |          |           |          |            |         |         |                      |                                |
|------------------------|----------|-----------|----------|------------|---------|---------|----------------------|--------------------------------|
| Int Delay, s/veh       | 8.5      |           |          |            |         |         |                      |                                |
| • •                    |          |           |          |            |         |         |                      |                                |
| Movement               | EBL      | EBR       | NBL      | NBT        | SBT     | SBR     |                      |                                |
| Lane Configurations    | <u>ነ</u> | 7         |          | 41         | ħβ      |         |                      |                                |
| Traffic Vol, veh/h     | 78       | 79        | 75       | 907        | 1173    | 217     |                      |                                |
| Future Vol, veh/h      | 78       | 79        | 75       | 907        | 1173    | 217     |                      |                                |
| Conflicting Peds, #/hr | 0        | 1         | 1        | 0          | 0       | 1       |                      |                                |
| Sign Control           | Stop     | Stop      | Free     | Free       | Free    | Free    |                      |                                |
| RT Channelized         | -        | None      | -        | None       | -       | None    |                      |                                |
| Storage Length         | 110      | 0         | -        | -          | -       | -       |                      |                                |
| Veh in Median Storage  | •        | -         | -        | 0          | 0       | -       |                      |                                |
| Grade, %               | 0        | -         | -        | 0          | 0       | -       |                      |                                |
| Peak Hour Factor       | 92       | 92        | 92       | 92         | 92      | 92      |                      |                                |
| Heavy Vehicles, %      | 21       | 35        | 31       | 25         | 29      | 16      |                      |                                |
| Mvmt Flow              | 85       | 86        | 82       | 986        | 1275    | 236     |                      |                                |
|                        |          |           |          |            |         |         |                      |                                |
| Major/Minor            | Minor2   | N         | Major1   | <u> </u>   | //ajor2 |         |                      |                                |
| Conflicting Flow All   | 2050     | 757       | 1512     | 0          | -       | 0       |                      |                                |
| Stage 1                | 1394     | -         | -        | -          | -       | -       |                      |                                |
| Stage 2                | 656      | -         | -        | -          | -       | -       |                      |                                |
| Critical Hdwy          | 7.22     | 7.6       | 4.72     | -          | -       | -       |                      |                                |
| Critical Hdwy Stg 1    | 6.22     | -         | -        | -          | -       | -       |                      |                                |
| Critical Hdwy Stg 2    | 6.22     | -         | -        | -          | -       | -       |                      |                                |
| Follow-up Hdwy         | 3.71     | 3.65      | 2.51     | -          | -       | -       |                      |                                |
| Pot Cap-1 Maneuver     | ~ 38     | 286       | 320      | -          | -       | -       |                      |                                |
| Stage 1                | 164      | -         | -        | -          | -       | -       |                      |                                |
| Stage 2                | 430      | -         | -        | -          | -       | -       |                      |                                |
| Platoon blocked, %     |          |           |          | -          | -       | -       |                      |                                |
| Mov Cap-1 Maneuver     | ~ 16     | 285       | 320      | -          | -       | -       |                      |                                |
| Mov Cap-2 Maneuver     | 87       | -         | -        | -          | -       | -       |                      |                                |
| Stage 1                | 164      | -         | -        | -          | -       | -       |                      |                                |
| Stage 2                | 186      | -         | -        | -          | -       | -       |                      |                                |
|                        |          |           |          |            |         |         |                      |                                |
| Approach               | EB       |           | NB       |            | SB      |         |                      |                                |
| HCM Control Delay, s   | 98.8     |           | 6.1      |            | 0       |         |                      |                                |
| HCM LOS                | F        |           |          |            |         |         |                      |                                |
|                        |          |           |          |            |         |         |                      |                                |
| Minor Lane/Major Mvm   | nt       | NBL       | NRT      | EBLn1 E    | -Bl n2  | SBT     | SBR                  |                                |
| Capacity (veh/h)       |          | 320       | -        | 87         | 285     | -       | -                    |                                |
| HCM Lane V/C Ratio     |          | 0.255     |          | 0.975      |         | -       | <u>-</u>             |                                |
| HCM Control Delay (s)  |          | 20.1      |          | 175.5      | 23      | _       | <u>-</u>             |                                |
| HCM Lane LOS           |          | 20.1<br>C | 4.9<br>A | 175.5<br>F | 23<br>C | _       |                      |                                |
| HCM 95th %tile Q(veh   | )        | 1         | -        | 5.5        | 1.2     | _       | <u>-</u>             |                                |
| `                      | 1        | '         |          | 0.0        | 1.2     |         | -                    |                                |
| Notes                  |          |           |          |            |         |         |                      |                                |
| ~: Volume exceeds cap  | pacity   | \$: De    | lay exc  | eeds 30    | 00s     | +: Comp | outation Not Defined | *: All major volume in platoon |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    | Preliminary Screening Preliminary |             |             |                |           |                           |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------|-------------|-------------|----------------|-----------|---------------------------|--|--|
| Leader                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                    | Environmental                     | Engineering | Land Use    |                | Preferred |                           |  |  |
| Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Solutions Air System                                                               | Impacts                           | Challenges  | Consistency | Project Cost   | Solution  | document                  |  |  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | All System                                                                         |                                   |             |             |                |           |                           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bicycle System                                                                     |                                   |             |             |                |           |                           |  |  |
| ajor Arterials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                    |                                   |             |             |                |           |                           |  |  |
| R 219/OR 214 from Willow Avenue to Progress Way                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Widen roadway and widen bike lanes                                                 | Υ                                 | Υ           | Υ           | \$\$           |           |                           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Widen roadway and install buffered bike lanes                                      | Υ                                 | Υ           | Υ           | \$\$\$         |           |                           |  |  |
| 219 from Butteville Road to Willow Avenue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Widen roadway and install bike lanes                                               | Υ                                 | Y           | Υ           | \$\$           | ✓         | Current TSP               |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Widen roadway and install buffered bike lanes                                      | Υ                                 | Υ           | Υ           | \$\$\$         |           |                           |  |  |
| 214 from Progress Way to OR 99E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Widen roadway and install bike lanes                                               | Υ                                 | Y           | Υ           | \$\$           | ✓         | Current TSP               |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Widen roadway and install buffered bike lanes                                      | Υ                                 | Y           | Υ           | \$\$\$         |           |                           |  |  |
| 99E from northern UGB to Lincoln Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Widen roadway and widen bike lanes                                                 | Y                                 | Y           | Y           | \$\$           |           |                           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Widen roadway and install buffered bike lanes                                      | Y                                 | Y           | Y           | \$\$\$         | ,         |                           |  |  |
| 99E from Lincoln Street to southern City Boundary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Widen roadway and install bike lanes                                               | Y                                 | Y           | Υ           | \$\$           | ✓         | Highway 99E Corridor Plan |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Widen roadway and install buffered bike lanes                                      | Y                                 | Y           | Y           | \$\$\$         |           |                           |  |  |
| 99E from southern City Boundary to southern UGB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Install shared lane markings and signs                                             | N                                 | N           | Υ           | \$             |           | Highway 99E Corridor Plan |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Widen roadway and install bike lanes                                               |                                   |             |             | ***            | ,         |                           |  |  |
| - Askartala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Widen roadway and install buffered bike lanes                                      | Y                                 | Y           | Y           | \$\$\$         | ✓         | Highway 99E Corridor Plan |  |  |
| or Arterials<br>219 from western UGB to Butteville Road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Widen roadway and install bike lanes                                               | Υ                                 | Υ           | Υ           | \$\$           | ✓         |                           |  |  |
| T3 HOIH MEZIGIH OGB TO BRITGAING KOSO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Widen roadway and install bike lanes Widen roadway and install buffered bike lanes | Y                                 | Y<br>Y      | Y<br>Y      | \$\$<br>\$\$\$ | •         |                           |  |  |
| william and for any first the state of the s |                                                                                    | ·                                 |             |             |                | ,         |                           |  |  |
| eville Road/OR 219 from northern UGB to southern UGB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Widen roadway and install bike lanes                                               | Υ                                 | Υ           | Υ           | \$\$           | ✓         |                           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Widen roadway and install buffered bike lanes                                      | Υ                                 | Υ           | Υ           | \$\$\$         |           |                           |  |  |
| green Road from OR 214 to Hayes Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Reduce lane width and install bike lanes                                           | N<br>Y                            | N           | Y           | \$             | ,         |                           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Widen roadway and install bike lanes                                               | Y                                 | Υ           | Υ           | \$\$           | •         |                           |  |  |
| oones Ferry Road from northern UGB to Hazelnut Drive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Perform an engineering study to consider reduction of the posted speed limit       | N                                 | N           | Υ           | \$             |           | BLTS                      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Install shared lane markings and signs                                             | N                                 | N           | Υ           | \$             |           |                           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Widen roadway and install bike lanes                                               | Υ                                 | Y           | Υ           | \$\$           | ✓         |                           |  |  |
| Franchis Alexander Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Widen roadway and install buffered bike lanes                                      | Υ                                 | Y           | Υ           | \$\$\$         |           |                           |  |  |
| son Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Perform an engineering study to consider reduction of the posted speed limit       | N                                 | N           | Υ           | \$             |           | BLTS                      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Reduce lane width and widen bike lanes                                             | N<br>Y                            | N<br>Y      | Y           | \$             |           |                           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Widen roadway and widen bike lanes Widen roadway and install buffered bike lanes   | Ϋ́Υ                               | Y<br>Y      | Y<br>Y      | \$\$<br>\$\$\$ |           |                           |  |  |
| and a Array from Handara St. 11 . 11 . 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ·                                                                                  |                                   |             |             |                | ,         |                           |  |  |
| lemier Avenue from Harrison Street to railroad tracks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Install shared lane markings and signs                                             | N                                 | N           | Υ           | \$             | ✓         | Current TSP               |  |  |
| nes Ferry Road from Dahlia Street to southern UGB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Perform an engineering study to consider reduction of the                          | N                                 | N           | Υ           | Ś              |           |                           |  |  |
| , same sacce to southern odb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | posted speed limit                                                                 | • •                               | •           | ·           | •              |           |                           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Reduce lane width and install bike lanes                                           | N<br>Y                            | N<br>Y      | Y<br>Y      | \$<br>\$\$     | ✓         |                           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Widen roadway and install bike lanes Widen roadway and install buffered bike lanes | Y                                 | Y<br>Y      | Y           | \$\$<br>\$\$\$ | v         |                           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Perform an engineering study to consider reduction of the                          | •                                 |             | •           |                |           |                           |  |  |
| t Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | posted speed limit                                                                 | N                                 | N           | Υ           | \$             |           | Current TSP               |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Reduce lane width and install bike lanes                                           | N                                 | N           | Υ           | \$             |           |                           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Widen roadway and install bike lanes                                               | Υ                                 | Υ           | Υ           | \$\$           | ✓         |                           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Widen roadway and install buffered bike lanes                                      | Υ                                 | Υ           | Υ           | \$\$\$         |           |                           |  |  |
| ield Street from 3rd Street to Front Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Widen roadway and install bike lanes                                               | Υ                                 | Y           | Υ           | \$\$           | <b>√</b>  | Downtown Development Plan |  |  |
| eld Street from Smith Drive to 3rd Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Install shared lane markings and signs                                             | N                                 | N           | Υ           | \$             | ✓         |                           |  |  |
| ng Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Perform an engineering study to consider reduction of the posted speed limit       | N                                 | N           | Υ           | \$             | ✓         |                           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Widen roadway and install bike lanes                                               | Υ                                 | Υ           | Υ           | \$\$           |           |                           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Widen roadway and install buffered bike lanes                                      | Υ                                 | Υ           | Υ           | \$\$\$         |           |                           |  |  |
| 211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Perform an engineering study to consider reduction of the posted speed limit       | N                                 | N           | Υ           | \$             |           | BLTS                      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Reduce lane width and install bike lanes                                           | N                                 | N           | Υ           | \$             |           |                           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Widen roadway and install bike lanes                                               | Υ                                 | Υ           | Υ           | \$\$           | ✓         |                           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                   |             |             |                |           |                           |  |  |

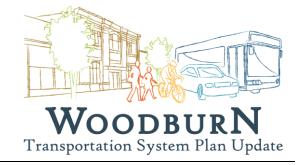
|                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                             | Preliminary Screening Prelim |                   |                                       |                                                              |              | ,                               |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------|---------------------------------------|--------------------------------------------------------------|--------------|---------------------------------|--|--|--|
|                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                             | Environmental                | Engineering       | Land Use                              |                                                              | Preferred    |                                 |  |  |  |
| Location                                                                                                                                                                                                                                                                                         | Solutions                                                                                                                                                                                                                                                                                                                   | Impacts                      | Challenges        | Consistency                           | Project Cost                                                 | Solution     | document                        |  |  |  |
| Arney Road from Robin Avenue to OR 219                                                                                                                                                                                                                                                           | Install shared lane markings and signs                                                                                                                                                                                                                                                                                      | N                            | N                 | Υ                                     | \$                                                           | ✓            |                                 |  |  |  |
| stacy Allison Way from Evergreen Road to Center Street                                                                                                                                                                                                                                           | Reduce lane width and install bike lanes                                                                                                                                                                                                                                                                                    | N                            | N                 | Υ                                     | \$                                                           |              | Current TSP                     |  |  |  |
|                                                                                                                                                                                                                                                                                                  | Widen roadway and install bike lanes                                                                                                                                                                                                                                                                                        | Υ                            | Υ                 | Υ                                     | \$\$                                                         |              |                                 |  |  |  |
|                                                                                                                                                                                                                                                                                                  | Enhance the parallel route of Harvard Drive from Stacy                                                                                                                                                                                                                                                                      |                              |                   |                                       |                                                              |              |                                 |  |  |  |
|                                                                                                                                                                                                                                                                                                  | Allison Way to Evergreen Road. Install buffered bike lanes on                                                                                                                                                                                                                                                               | Υ                            | Υ                 | Υ                                     | \$\$                                                         | ✓            |                                 |  |  |  |
| Hayes Street from Harvard Drive to Cascade Drive                                                                                                                                                                                                                                                 | both sides of the roadway  Reduce lane width and install bike lanes                                                                                                                                                                                                                                                         | N                            | N                 | Υ                                     | \$                                                           | ✓            | 0                               |  |  |  |
| Hayes Street from Cascade Drive to Cascade Drive                                                                                                                                                                                                                                                 | Reduce lane width and install bike lanes                                                                                                                                                                                                                                                                                    | N                            | N<br>N            | Y                                     | \$                                                           | •            | Current TSP                     |  |  |  |
| hayes street from Cascade Drive to settleffiler Avenue                                                                                                                                                                                                                                           | Widen roadway and install bike lanes                                                                                                                                                                                                                                                                                        | Y                            | Y                 | Y                                     | \$\$                                                         | ✓            |                                 |  |  |  |
| Parr Road from western UGB to western City Boundary                                                                                                                                                                                                                                              | Reduce lane width and install bike lanes                                                                                                                                                                                                                                                                                    | N                            | N                 | , , , , , , , , , , , , , , , , , , , | \$                                                           | •            |                                 |  |  |  |
| arr road from western odb to western city boundary                                                                                                                                                                                                                                               | Widen roadway and install bike lanes                                                                                                                                                                                                                                                                                        | Y                            | Y                 | Y                                     | \$\$                                                         | ✓            |                                 |  |  |  |
| incoln Street                                                                                                                                                                                                                                                                                    | Install shared lane markings and signs                                                                                                                                                                                                                                                                                      | N N                          | N N               | ·<br>V                                | \$                                                           | ✓            | Mill Creek Greenway Master Plan |  |  |  |
| Cleveland Street                                                                                                                                                                                                                                                                                 | Install shared lane markings and signs                                                                                                                                                                                                                                                                                      | N                            | N                 | Y                                     | \$                                                           | ✓            |                                 |  |  |  |
|                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                             | N                            | N                 | Y                                     | \$                                                           | <b>√</b>     | Mill Creek Greenway Master Plan |  |  |  |
| Hardcastle Avenue                                                                                                                                                                                                                                                                                | Install shared lane markings and signs                                                                                                                                                                                                                                                                                      |                              |                   | Y                                     |                                                              | •            | Current TSP                     |  |  |  |
|                                                                                                                                                                                                                                                                                                  | Widen roadway and install bike lanes                                                                                                                                                                                                                                                                                        | Y                            | Y                 |                                       | \$\$                                                         |              |                                 |  |  |  |
| Brown Street                                                                                                                                                                                                                                                                                     | Install shared lane markings and signs                                                                                                                                                                                                                                                                                      | N                            | N                 | Υ                                     | \$                                                           | ✓            |                                 |  |  |  |
|                                                                                                                                                                                                                                                                                                  | Widen roadway and install bike lanes                                                                                                                                                                                                                                                                                        | Υ                            | Υ                 | Υ                                     | \$\$                                                         |              |                                 |  |  |  |
| Cooley Road from OR 211 to Aubrey Way                                                                                                                                                                                                                                                            | Widen roadway and install bike lanes                                                                                                                                                                                                                                                                                        | Υ                            | Υ                 | Υ                                     | \$\$                                                         | ✓            |                                 |  |  |  |
|                                                                                                                                                                                                                                                                                                  | Perform an engineering study to consider reduction of the                                                                                                                                                                                                                                                                   | N                            | N                 | Υ                                     | \$                                                           |              | 2172                            |  |  |  |
|                                                                                                                                                                                                                                                                                                  | posted speed limit                                                                                                                                                                                                                                                                                                          |                              |                   |                                       |                                                              |              | BLTS                            |  |  |  |
| Cooley Road from Aubrey Way to Hardcastle Avenue                                                                                                                                                                                                                                                 | Install bike lane striping                                                                                                                                                                                                                                                                                                  | N                            | N                 | Υ                                     | \$                                                           | ✓            |                                 |  |  |  |
|                                                                                                                                                                                                                                                                                                  | Perform an engineering study to consider reduction of the<br>posted speed limit                                                                                                                                                                                                                                             | N                            | N                 | Υ                                     | \$                                                           |              |                                 |  |  |  |
| Access Streets                                                                                                                                                                                                                                                                                   | posted speed limit                                                                                                                                                                                                                                                                                                          |                              |                   |                                       |                                                              |              |                                 |  |  |  |
| Stubb Road                                                                                                                                                                                                                                                                                       | Install shared lane markings and signs                                                                                                                                                                                                                                                                                      | N                            | N                 | Υ                                     | \$                                                           | ✓            |                                 |  |  |  |
| Astor Way                                                                                                                                                                                                                                                                                        | Install shared lane markings and signs                                                                                                                                                                                                                                                                                      | N                            | N                 | Y                                     | \$                                                           | ✓            |                                 |  |  |  |
| ·                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                             |                              |                   |                                       |                                                              |              |                                 |  |  |  |
| ukwila Drive from Boones Ferry Road to Hazelnut Drive                                                                                                                                                                                                                                            | Install shared lane markings and signs                                                                                                                                                                                                                                                                                      | N                            | N                 | Υ                                     | \$                                                           | ✓            |                                 |  |  |  |
| 5th Street                                                                                                                                                                                                                                                                                       | Install shared lane markings and signs                                                                                                                                                                                                                                                                                      | N                            | N                 | Υ                                     | \$                                                           | ✓            | Current TSP                     |  |  |  |
| Satch Street                                                                                                                                                                                                                                                                                     | Install shared lane markings and signs                                                                                                                                                                                                                                                                                      | N                            | N                 | Υ                                     | \$                                                           | ✓            |                                 |  |  |  |
| Park Avenue                                                                                                                                                                                                                                                                                      | Install shared lane markings and signs                                                                                                                                                                                                                                                                                      | N                            | N                 | Y                                     | \$                                                           | ✓            |                                 |  |  |  |
| Local Streets                                                                                                                                                                                                                                                                                    | instant shared rate markings and signs                                                                                                                                                                                                                                                                                      | .,                           | .,                | •                                     | <u> </u>                                                     |              |                                 |  |  |  |
| Evergreen Road from Country Club Court to OR 214                                                                                                                                                                                                                                                 | Install shared lane markings and signs                                                                                                                                                                                                                                                                                      | N                            | N                 | Υ                                     | \$                                                           | ✓            |                                 |  |  |  |
| ·                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                             |                              |                   |                                       |                                                              | ,            |                                 |  |  |  |
| Country Club Road from Evergreen Road to Astor Way                                                                                                                                                                                                                                               | Install shared lane markings and signs                                                                                                                                                                                                                                                                                      | N                            | N                 | Υ                                     | \$                                                           | ✓            |                                 |  |  |  |
| Cascade Drive                                                                                                                                                                                                                                                                                    | Install shared lane markings and signs                                                                                                                                                                                                                                                                                      | N                            | N                 | Υ                                     | \$                                                           | ✓            |                                 |  |  |  |
| Smith Drive from Hayes Street to Garfield Street                                                                                                                                                                                                                                                 | Install shared lane markings and signs                                                                                                                                                                                                                                                                                      | N                            | N                 | Υ                                     | \$                                                           | ✓            |                                 |  |  |  |
| Meridian Drive                                                                                                                                                                                                                                                                                   | Install shared lane markings and signs                                                                                                                                                                                                                                                                                      | N                            | N                 | Υ                                     | \$                                                           | ✓            | Current TSP                     |  |  |  |
|                                                                                                                                                                                                                                                                                                  | Marine System                                                                                                                                                                                                                                                                                                               |                              |                   |                                       |                                                              |              |                                 |  |  |  |
| n/a                                                                                                                                                                                                                                                                                              | ,                                                                                                                                                                                                                                                                                                                           |                              |                   |                                       |                                                              |              | -                               |  |  |  |
|                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                             |                              |                   |                                       |                                                              |              |                                 |  |  |  |
|                                                                                                                                                                                                                                                                                                  | Pedestrian System                                                                                                                                                                                                                                                                                                           |                              |                   |                                       |                                                              |              |                                 |  |  |  |
| Major Arterials                                                                                                                                                                                                                                                                                  | Pedestrian System                                                                                                                                                                                                                                                                                                           |                              |                   |                                       |                                                              |              |                                 |  |  |  |
|                                                                                                                                                                                                                                                                                                  | Pedestrian System  Install new sidewalks                                                                                                                                                                                                                                                                                    | N                            | N                 | Y                                     | \$\$                                                         | ✓            |                                 |  |  |  |
|                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                             | N<br>Y                       | N<br>Y            | Y<br>Y                                | \$\$<br>\$\$\$                                               | ✓            |                                 |  |  |  |
| OR 219 from Butteville Road to Woodland Avenue                                                                                                                                                                                                                                                   | Install new sidewalks                                                                                                                                                                                                                                                                                                       |                              |                   |                                       |                                                              | ✓<br>✓       |                                 |  |  |  |
| DR 219 from Butteville Road to Woodland Avenue<br>DR 99E from northern UGB to Lincoln Street                                                                                                                                                                                                     | Install new sidewalks Install new sidewalks with landscaping                                                                                                                                                                                                                                                                | Υ                            | Υ                 | Υ                                     | \$\$\$                                                       | ✓<br>✓<br>✓  |                                 |  |  |  |
| DR 219 from Butteville Road to Woodland Avenue<br>DR 99E from northern UGB to Lincoln Street                                                                                                                                                                                                     | Install new sidewalks<br>Install new sidewalks with landscaping<br>Evaluate light levels and install street lighting                                                                                                                                                                                                        | Y<br>N                       | Y<br>N            | Y<br>Y                                | \$\$\$<br>\$                                                 | ✓<br>✓<br>✓  |                                 |  |  |  |
| DR 219 from Butteville Road to Woodland Avenue  DR 99E from northern UGB to Lincoln Street  DR 99E from Lincoln Street to southern City Boundary                                                                                                                                                 | Install new sidewalks Install new sidewalks with landscaping Evaluate light levels and install street lighting Install new sidewalks                                                                                                                                                                                        | Y<br>N<br>N                  | Y<br>N<br>N       | Y<br>Y<br>Y                           | \$\$\$<br>\$<br>\$\$                                         | ✓<br>✓<br>✓  |                                 |  |  |  |
| OR 219 from Butteville Road to Woodland Avenue OR 99E from northern UGB to Lincoln Street OR 99E from Lincoln Street to southern City Boundary OR 99E from southern City Boundary to southern UGB                                                                                                | Install new sidewalks Install new sidewalks with landscaping Evaluate light levels and install street lighting Install new sidewalks Install new sidewalks with landscaping                                                                                                                                                 | Y<br>N<br>N<br>Y             | Y<br>N<br>N<br>Y  | Y<br>Y<br>Y                           | \$\$\$<br>\$<br>\$\$<br>\$\$                                 | ✓<br>✓<br>✓  |                                 |  |  |  |
| OR 219 from Butteville Road to Woodland Avenue OR 99E from northern UGB to Lincoln Street OR 99E from Lincoln Street to southern City Boundary OR 99E from southern City Boundary to southern UGB                                                                                                | Install new sidewalks Install new sidewalks with landscaping Evaluate light levels and install street lighting Install new sidewalks Install new sidewalks with landscaping Install new sidewalks                                                                                                                           | Y<br>N<br>N<br>Y             | Y<br>N<br>N<br>Y  | Y Y Y Y Y                             | \$\$\$<br>\$<br>\$\$<br>\$\$\$<br>\$\$\$                     | ✓<br>✓<br>✓  |                                 |  |  |  |
| OR 219 from Butteville Road to Woodland Avenue OR 99E from northern UGB to Lincoln Street OR 99E from Lincoln Street to southern City Boundary OR 99E from southern City Boundary to southern UGB                                                                                                | Install new sidewalks Install new sidewalks with landscaping Evaluate light levels and install street lighting Install new sidewalks Install new sidewalks with landscaping Install new sidewalks Install new sidewalks with landscaping                                                                                    | Y<br>N<br>N<br>Y             | Y<br>N<br>N<br>Y  | Y Y Y Y Y                             | \$\$\$<br>\$<br>\$\$<br>\$\$\$<br>\$\$\$                     | * * *        |                                 |  |  |  |
| OR 219 from Butteville Road to Woodland Avenue OR 99E from northern UGB to Lincoln Street OR 99E from Lincoln Street to southern City Boundary OR 99E from southern City Boundary to southern UGB Winor Arterials                                                                                | Install new sidewalks Install new sidewalks with landscaping Evaluate light levels and install street lighting Install new sidewalks Install new sidewalks with landscaping Install new sidewalks Install new sidewalks with landscaping Install new sidewalks with landscaping                                             | Y<br>N<br>N<br>Y<br>N<br>Y   | Y N N Y N Y N N Y | Y<br>Y<br>Y<br>Y<br>Y                 | \$\$\$<br>\$<br>\$\$<br>\$\$\$<br>\$\$\$<br>\$\$\$<br>\$\$\$ | <b>√ √ √</b> |                                 |  |  |  |
| Major Arterials  OR 219 from Butteville Road to Woodland Avenue  OR 99E from northern UGB to Lincoln Street  OR 99E from Lincoln Street to southern City Boundary  OR 99E from southern City Boundary to southern UGB  Minor Arterials  Butteville Road/OR 219 from northern UGB to southern UGB | Install new sidewalks Install new sidewalks with landscaping Evaluate light levels and install street lighting Install new sidewalks Install new sidewalks with landscaping Install new sidewalks Install new sidewalks with landscaping Install new sidewalks with landscaping Install new sidewalks Install new sidewalks | Y N N Y N Y N N Y            | Y N N Y N Y N N Y | Y Y Y Y Y Y Y Y Y Y                   | \$\$\$<br>\$<br>\$\$<br>\$\$\$<br>\$\$\$<br>\$\$\$<br>\$\$\$ | ✓ ✓ ✓        |                                 |  |  |  |
| OR 219 from Butteville Road to Woodland Avenue OR 99E from northern UGB to Lincoln Street OR 99E from Lincoln Street to southern City Boundary OR 99E from southern City Boundary to southern UGB Winor Arterials Butteville Road/OR 219 from northern UGB to southern UGB                       | Install new sidewalks Install new sidewalks with landscaping Evaluate light levels and install street lighting Install new sidewalks Install new sidewalks with landscaping Install new sidewalks Install new sidewalks with landscaping Install new sidewalks with landscaping                                             | Y<br>N<br>N<br>Y<br>N<br>Y   | Y N N Y N Y N N Y | Y<br>Y<br>Y<br>Y<br>Y                 | \$\$\$<br>\$<br>\$\$<br>\$\$\$<br>\$\$\$<br>\$\$\$<br>\$\$\$ | <b>√ √ √</b> |                                 |  |  |  |
| OR 219 from Butteville Road to Woodland Avenue OR 99E from northern UGB to Lincoln Street OR 99E from Lincoln Street to southern City Boundary OR 99E from southern City Boundary to southern UGB Minor Arterials                                                                                | Install new sidewalks Install new sidewalks with landscaping Evaluate light levels and install street lighting Install new sidewalks Install new sidewalks with landscaping Install new sidewalks Install new sidewalks with landscaping Install new sidewalks with landscaping Install new sidewalks Install new sidewalks | Y N N Y N Y N N Y            | Y N N Y N Y N N Y | Y Y Y Y Y Y Y Y Y Y                   | \$\$\$<br>\$<br>\$\$<br>\$\$\$<br>\$\$\$<br>\$\$\$<br>\$\$\$ | ✓ ✓ ✓        |                                 |  |  |  |

|                                                               |                                                                                  | Preliminary Screening Preliminary |             |             |                |            |                           |  |  |
|---------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------|-------------|-------------|----------------|------------|---------------------------|--|--|
|                                                               |                                                                                  | Environmental                     | Engineering | Land Use    |                | Preferred  |                           |  |  |
| Location                                                      | Solutions                                                                        | Impacts                           | Challenges  | Consistency | Project Cost   | Solution   | document                  |  |  |
| Boones Ferry Road from Parr Road to southern UGB              | Install new sidewalks                                                            | N                                 | N           | Y           | \$             | ✓          |                           |  |  |
| Front Street from northern UGB to Hazelnut Drive              | Install new sidewalks on one side                                                | N                                 | N           | Υ           | \$             | ✓          |                           |  |  |
| Young Street                                                  | Fill in the gaps                                                                 | N                                 | N           | Y           | \$             | ✓          |                           |  |  |
| OR 211                                                        | Install new sidewalks                                                            | N                                 | N           | Υ           | \$\$           | ✓          |                           |  |  |
|                                                               | Install new sidewalks with landscaping                                           | Υ                                 | Y           | Y           | \$\$\$         |            |                           |  |  |
| Service Collectors                                            | ent of                                                                           |                                   |             | .,          | **             | <b>✓</b>   |                           |  |  |
| Hayes Street                                                  | Fill in the gaps                                                                 | N                                 | N           | Y           | \$\$           | <b>∨</b> ✓ |                           |  |  |
| Parr Road                                                     | Install new sidewalks                                                            | N<br>Y                            | N<br>Y      | Y<br>Y      | \$\$<br>***    | •          |                           |  |  |
| Lincoln Street                                                | Install new sidewalks with landscaping Fill in the gaps                          | N N                               | Y<br>N      | Y           | \$\$\$<br>\$\$ | 1          |                           |  |  |
| Industrial Avenue                                             | Install new sidewalks                                                            | N                                 | N           | Y           | \$             | · /        |                           |  |  |
|                                                               | Install new sidewalks                                                            | N                                 | N           | Y           | \$\$           | ./         |                           |  |  |
| Progress Way                                                  |                                                                                  | N                                 | N<br>N      | Y           |                | ./         |                           |  |  |
| Hardcastle Avenue                                             | Fill in the gaps                                                                 |                                   |             | ·           | \$\$           | · /        |                           |  |  |
| Brown Street                                                  | Fill in the gaps                                                                 | N                                 | N           | Y           | \$\$           | •          |                           |  |  |
| Cooley Road                                                   | Fill in the gaps                                                                 | N                                 | N           | Y           | \$\$           | •          |                           |  |  |
| A Chu                                                         | Evaluate light levels and install street lighting                                | N                                 | N           | Y           | \$             |            |                           |  |  |
| Access Streets Woodland Avenue from Jony Street to Arney Road | Install new sidewalks on one side                                                | N                                 | N           | Υ           | \$             | <b>✓</b>   |                           |  |  |
| Woodland Avenue from Jory Street to Arney Road<br>Stubb Road  | Install new sidewalks on one side Install new sidewalks                          | N<br>N                            | N<br>N      | Y           | \$             | <b>∨</b> ✓ |                           |  |  |
|                                                               | Install new sidewalks                                                            | N                                 | N           | Y           |                | <b>∨</b> ✓ |                           |  |  |
| Oregon Way from Country Club Road to OR 214                   |                                                                                  |                                   | N<br>N      | Y           | \$\$<br>\$\$   | •          |                           |  |  |
| Hazelnut Drive from Graystone Drive to Front Street           | Fill in the gaps                                                                 | N                                 |             | ·           |                | <b>v</b>   |                           |  |  |
| Gatch Street                                                  | Fill in the gaps                                                                 | N                                 | N           | Y           | \$             | •          |                           |  |  |
| Park Avenue from Hardcastle Avenue to Lincoln Street          | Install new sidewalks on one side                                                | N                                 | N           | Y           | \$             | ✓          |                           |  |  |
| Local Streets Willow Avenue from McNaught Road to OR 219      | Install new sidewalks on one side                                                | Y                                 | N           | Υ           | \$             |            |                           |  |  |
| Willow Avenue Irom Michaught Road to OK 219                   | Install new sidewalks on both sides                                              | Y                                 | Y           | Y           | \$\$           | ✓          |                           |  |  |
| Casanda Dalina                                                |                                                                                  | N N                               |             | Y           | \$\$           | •          |                           |  |  |
| Cascade Drive<br>Leasure Street                               | Install new sidewalks                                                            | Y                                 | N<br>N      | Y           | \$             | •          |                           |  |  |
| Leasure Street                                                | Install new sidewalks on one side                                                | Y                                 | Y           | Ϋ́          | \$<br>\$\$     | ✓          |                           |  |  |
|                                                               | Install new sidewalks on both sides                                              | Y                                 | Y           | Y           | \$\$           | •          |                           |  |  |
| Church Street from Leasure Street to Settlemier Avenue        | Install new sidewalks on one side                                                | Υ                                 | N           | Υ           | \$             |            |                           |  |  |
|                                                               | Install new sidewalks on both sides                                              | Υ                                 | Υ           | Υ           | \$\$           | ✓          |                           |  |  |
| Garfield Street from Smith Drive to Settlemier Avenue         | Install new sidewalks on one side                                                | Υ                                 | N           | Υ           | \$             |            |                           |  |  |
|                                                               | Install new sidewalks on both sides                                              | Υ                                 | Υ           | Υ           | \$\$           | ✓          |                           |  |  |
| Smith Drive from Hayes Street to Garfield Street              | Install new sidewalks on one side                                                | N                                 | N           | Υ           | \$             |            |                           |  |  |
| '                                                             | Install new sidewalks on both sides                                              | N                                 | Υ           | Υ           | \$\$           | ✓          |                           |  |  |
| Ben Brown Lane                                                | Fill in the gaps                                                                 | Υ                                 | N           | Υ           | \$             | ✓          |                           |  |  |
| Oak Street                                                    | Install new sidewalks on one side                                                | Υ                                 | N           | Υ           | \$             | ✓          |                           |  |  |
| Ogle Street                                                   | Install new sidewalks on one side                                                | Υ                                 | N           | Υ           | \$             |            |                           |  |  |
| ·                                                             | Install new sidewalks on both sides                                              | Υ                                 | Υ           | Υ           | \$\$           | ✓          |                           |  |  |
| Stark Street                                                  | Install new sidewalks on one side                                                | Υ                                 | N           | Υ           | \$             |            |                           |  |  |
|                                                               | Install new sidewalks on both sides                                              | Υ                                 | Υ           | Υ           | \$\$           | ✓          |                           |  |  |
| Intersections                                                 |                                                                                  |                                   |             |             |                |            |                           |  |  |
| Front Street/Young Street                                     | Construct ADA-complaint ramps and sidewalks on the east                          | N                                 | Υ           | Υ           | \$             | ✓          |                           |  |  |
| -                                                             | leg of the intersection  Construct ADA-complaint ramps and sidewalks on the east |                                   |             |             |                |            | Downtown Development Plan |  |  |
| Front Street/Lincoln Street                                   | leg of the intersection                                                          | N                                 | Υ           | Υ           | \$             | ✓          | Downtown Development Plan |  |  |
| Cascade Drive/Hayes Street                                    | Install an enhanced pedestrian crossing                                          | N                                 | N           | Υ           | Ś              | ✓          |                           |  |  |
| Park Avenue/Legion Park Driveway                              | Install an enhanced pedestrian crossing                                          | N                                 | N           | Y           | \$             | <i>√</i>   |                           |  |  |
| Hazelnut Drive/Broadmoor Place Accessway                      | Install an enhanced pedestrian crossing                                          | N                                 | N           | Y           | \$             | ✓          |                           |  |  |
|                                                               |                                                                                  | .,                                | .,          |             | ¥              | •          |                           |  |  |
| OR 99E from OR 214 to Young Street                            | Install enhanced pedestrian crossings along OR 99E at every                      | N                                 | N           | Υ           | \$\$           | ✓          |                           |  |  |
|                                                               | major intersection between OR 214 and Young Street                               |                                   |             |             |                |            | Highway 99E Corridor Plan |  |  |
|                                                               |                                                                                  |                                   |             |             |                | ,          |                           |  |  |
| OR 99E                                                        | Install countdown pedestrian timers and construct ADA                            | N                                 | Υ           | Y           | \$             | ✓          | Highway 99E Corridor Plan |  |  |
|                                                               | enhancements at all signalized intersections along OR 99E                        |                                   |             |             |                |            | HIGHWAY 33E COTTION PIAN  |  |  |

|                                                                                                              |                                                                                                                         |               | Preliminary | Screening   |              | Preliminary | Preliminary                                           |  |  |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------|-------------|-------------|--------------|-------------|-------------------------------------------------------|--|--|
|                                                                                                              |                                                                                                                         | Environmental | Engineering | Land Use    |              | Preferred   |                                                       |  |  |
| Location                                                                                                     | Solutions                                                                                                               | Impacts       | Challenges  | Consistency | Project Cost | Solution    | document                                              |  |  |
|                                                                                                              | Install curb extensions along OR 99E at every major intersection between Arlington Street and Nelson Lane (up to        |               |             |             |              |             |                                                       |  |  |
|                                                                                                              | 15 locations). Potential locations include:                                                                             |               |             |             |              |             |                                                       |  |  |
|                                                                                                              | o Alexandria Avenue                                                                                                     |               |             |             |              |             |                                                       |  |  |
| OR 99E from Arlington Street to Nelson Lane                                                                  | o James Street                                                                                                          | N             | Υ           | Υ           | \$\$         | ✓           |                                                       |  |  |
| on our mining con our ear to nelson zune                                                                     | o Williams Street                                                                                                       |               |             | ·           | <b>*</b> **  |             |                                                       |  |  |
|                                                                                                              | o Blaine Street o Aztec Drive                                                                                           |               |             |             |              |             |                                                       |  |  |
|                                                                                                              | o Laurel Avenue                                                                                                         |               |             |             |              |             |                                                       |  |  |
|                                                                                                              | o Tomlin Avenue                                                                                                         |               |             |             |              |             | Highway 99E Corridor Plan                             |  |  |
| Multi-Use Pathways                                                                                           |                                                                                                                         |               |             |             |              |             |                                                       |  |  |
| Butteville Road/OR 219 from northern UGB to southern UGB                                                     | Widen roadway and install widen shoulders                                                                               | Υ             | Υ           | Υ           | \$\$         |             | Marion County TSP (Figure 9-1)                        |  |  |
| Mill Creek corridor                                                                                          | Construct the Mill Creek Greenway                                                                                       | Υ             | Υ           | Υ           | \$\$\$       | ✓           | Mill Creek Greenway Master Plan                       |  |  |
| Mill Creek corridor                                                                                          | Mill Creek Greenway – Northern tributary                                                                                | Υ             | Υ           | Υ           | \$\$\$       | ✓           |                                                       |  |  |
| Mill Creek corridor                                                                                          | Mill Creek Greenway – Western tributary                                                                                 | Υ             | Υ           | Υ           | \$\$\$       | ✓           |                                                       |  |  |
|                                                                                                              | Evergreen Road extension south to planned Mill Creek                                                                    | ٧             | Υ           | Υ           | \$\$\$       | 1           |                                                       |  |  |
| Mill Creek corridor                                                                                          | Greenway                                                                                                                | T             | Ţ           | T           | \$\$\$       | •           |                                                       |  |  |
| MIII Coople consider                                                                                         | North-south connection on Hardcastle Avenue and Lincoln                                                                 | Υ             | Υ           | Υ           | \$\$\$       | ✓           |                                                       |  |  |
| Mill Creek corridor                                                                                          | Street west of Washington Elementary School Extend Mill Creek corridor off-street pathway to Belle Passi                |               |             |             |              |             |                                                       |  |  |
| Mill Creek corridor                                                                                          | Road                                                                                                                    | Υ             | Υ           | Υ           | \$\$\$       | ✓           | Highway 99E Corridor Plan                             |  |  |
| Safe Routes to School                                                                                        |                                                                                                                         |               |             |             |              |             |                                                       |  |  |
| See Bicycle and Pedestrian Improvements                                                                      |                                                                                                                         |               |             |             |              |             |                                                       |  |  |
| Off-street Improvements                                                                                      |                                                                                                                         |               |             |             |              |             |                                                       |  |  |
| June Way Accessway to OR 99E (near the Audrey Way                                                            | Accordusy                                                                                                               | Υ             | Υ           | Υ           | \$\$         | ✓           | Highway 99E Corridor Plan                             |  |  |
| intersection)                                                                                                | Accessway                                                                                                               | Υ             | Υ           | Υ           | \$\$         | ✓           |                                                       |  |  |
| Johnson Street Accessway to OR 99E Elm Street Accessway to OR 99E                                            | Accessway                                                                                                               | v             | Y           | Y           | \$\$         | <b>→</b>    | Highway 99E Corridor Plan Highway 99E Corridor Plan   |  |  |
| Wilson Street Accessway to OR 99E                                                                            | Accessway                                                                                                               | Y             | Y           | Y           | \$\$         | · /         | Highway 99E Corridor Plan                             |  |  |
|                                                                                                              | Accessway Accessway (possibly part of future street extension)                                                          | · v           | · ·         | y           | \$\$         | ·<br>✓      | Highway 99E Corridor Plan                             |  |  |
| Hawley Street Accessway to OR 99E  A Street Accessway to Cleveland Street                                    | Accessway (possibly part of future street extension)                                                                    | Y             | Y           | Y           | \$           | · /         | rigilway 99E Corridor Flati                           |  |  |
| Mill Creek Greenway crossing at Young Street                                                                 | At-grade mid-block crossing treatment                                                                                   | Y             | Y           | Y           | \$           | ·<br>✓      | Downtown Development Plan                             |  |  |
| Mill Creek Greenway crossing at Hazelnut Drive                                                               | At-grade mid-block crossing treatment                                                                                   | Y             | Y           | Y           | \$           | ·<br>✓      | Downtown Development Plan                             |  |  |
| Mill Creek Greenway crossing at Bulldog Drive - East                                                         | At-grade mid-block crossing treatment                                                                                   | · v           | Y           | ν           | Ś            | ✓           | Mill Creek Greenway Master Plan                       |  |  |
| Mill Creek Greenway crossing at OR 214                                                                       | At-grade mid-block crossing treatment                                                                                   | Y             | Y           | Y           | \$           | ·<br>✓      | Mill Creek Greenway Master Plan                       |  |  |
| Mill Creek Greenway crossing at Hardcastle Avenue                                                            | At-grade mid-block crossing treatment                                                                                   | · v           | Y           | ν           | \$           | · ✓         | Mill Creek Greenway Master Plan                       |  |  |
| Mill Creek Greenway crossing at Lincoln Street                                                               | At-grade mid-block crossing treatment                                                                                   | Y             | Y           | Y           | Ś            | ✓           | Mill Creek Greenway Master Plan                       |  |  |
| Mill Creek Greenway crossing at Elicon Street  Mill Creek Greenway crossing at Cleveland Street and railroad | <u> </u>                                                                                                                |               |             |             |              |             | Will Creek Greenway Waster Flan                       |  |  |
| tracks                                                                                                       | At-grade mid-block crossing treatment                                                                                   | Υ             | Υ           | Υ           | \$           | ✓           | Mill Creek Greenway Master Plan                       |  |  |
| Mill Creek Greenway crossing at Ben Brown Lane                                                               | At-grade mid-block crossing treatment                                                                                   | Υ             | Υ           | Υ           | \$           | ✓           | Mill Creek Greenway Master Plan                       |  |  |
| Mill Creek Greenway crossing at Settlemier Avenue                                                            | At-grade mid-block crossing treatment                                                                                   | Υ             | Υ           | Υ           | \$           | ✓           | Mill Creek Greenway Master Plan                       |  |  |
| Mill Creek Greenway crossing at Parr Road                                                                    | At-grade mid-block crossing treatment                                                                                   | Υ             | Υ           | Υ           | \$           | ✓           | Mill Creek Greenway Master Plan                       |  |  |
| Mill Creek Greenway crossing at Front Street and railroad                                                    |                                                                                                                         | ٧             | Υ           | Υ           | Ś            | ✓           |                                                       |  |  |
| tracks                                                                                                       | At-grade mid-block crossing treatment                                                                                   | •             |             |             | •            |             | Mill Creek Greenway Master Plan                       |  |  |
| Mill Creek Greenway crossing at Bulldog Drive - West                                                         | At-grade mid-block crossing treatment                                                                                   | Υ             | Υ           | Υ           | \$           | ✓           | Mill Creek Greenway Master Plan                       |  |  |
| Mill Creek Greenway crossing at Meridian Drive                                                               | At-grade mid-block crossing treatment                                                                                   | Υ             | Υ           | Υ           | \$           | ✓           | Mill Creek Greenway Master Plan                       |  |  |
| Mill Creek Greenway crossing at Boones Ferry Road                                                            | At-grade mid-block crossing treatment                                                                                   | Υ             | Y           | Y           | \$           | ✓           | Mill Creek Greenway Master Plan                       |  |  |
| - la                                                                                                         | Pipeline System                                                                                                         |               |             |             |              |             |                                                       |  |  |
| n/a                                                                                                          | Rail System                                                                                                             |               |             |             |              |             |                                                       |  |  |
|                                                                                                              | Establish a downtown Amtrak passenger rail stop along Front                                                             |               |             |             |              |             | _                                                     |  |  |
| Front Street                                                                                                 | Street in downtown Woodburn, potentially as a public-                                                                   | Υ             | Υ           | Υ           | \$\$         | ✓           |                                                       |  |  |
| Front Street                                                                                                 | private partnership at the "Y" property adjacent to                                                                     | ř             | ı           | ı           | şŞ           | •           |                                                       |  |  |
|                                                                                                              | Locomotive Park                                                                                                         |               |             |             |              |             | from Woodburn Transit Plan Update - other plan review |  |  |
| Front Street and Cleveland Street                                                                            | Investigate the opportunity to remove private grade railroad<br>crossings by providing alternative access to parcels as | Υ             | Υ           | Υ           | \$           | ✓           |                                                       |  |  |
|                                                                                                              | development and redevelopment occurs                                                                                    |               | ,           |             | Ļ            | ·           | Current TSP                                           |  |  |
|                                                                                                              |                                                                                                                         |               |             |             |              |             |                                                       |  |  |

|                                                    |                                                                                                                                                                                                                                                                                                                            | Preliminary Screening    |                           |                         |              |                       |                                                                      |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------|-------------------------|--------------|-----------------------|----------------------------------------------------------------------|
| Location                                           | Solutions                                                                                                                                                                                                                                                                                                                  | Environmental<br>Impacts | Engineering<br>Challenges | Land Use<br>Consistency | Project Cost | Preferred<br>Solution | document                                                             |
| Butteville Road, north of OR 219                   | Explore a passenger rail stop if commuter rail is extended between Wilsonville and Beaverton down to Salem                                                                                                                                                                                                                 | Υ                        | Υ                         | Υ                       | \$\$\$       |                       | Current TSP                                                          |
| Access Management                                  | Roadway System                                                                                                                                                                                                                                                                                                             |                          |                           |                         |              |                       |                                                                      |
| City-wide                                          | Develop city-wide access spacing standards according to a roadway's functional classification                                                                                                                                                                                                                              | N                        | N                         | Υ                       | \$           | ✓                     | Current TSP and Highway 99E Corridor Plan                            |
| City-wide                                          | Investigate and implement opportunities to provide<br>alternative access to nonstate facilities when reasonable<br>access can occur (consistent with the State's Division 51<br>access management standards)                                                                                                               | N                        | N                         | Y                       | \$           | ✓                     | Current TSP                                                          |
| City-wide                                          | Through development, right-of-way dedications should be<br>provided to facilitate the future planned transportation<br>system in the vicinity of the proposed development                                                                                                                                                  | N                        | N                         | Υ                       | \$\$         | ✓                     | Current TSP                                                          |
| City-wide                                          | Through development, half-street improvements (sidewalks,<br>curb and gutter, bicycle lanes/paths, and/or travel lanes)<br>should be provided along all site frontages that do not have<br>full buildout improvements in place at the time of<br>development                                                               | N                        | N                         | Υ                       | \$           | ✓                     | Current TSP                                                          |
| City-wide                                          | Define a variance process for when the standard cannot be met                                                                                                                                                                                                                                                              | N                        | N                         | Υ                       | \$           | ✓                     |                                                                      |
| City-wide                                          | Establish an approach for access consolidation over time to move in the direction of the standards at each opportunity (see above). Cross-over easements should be provided on all compatible parcels (topography, access, and land use) to facilitate future access between adjacent parcels and interparcel circulation. | N                        | N                         | Υ                       | \$           | ✓                     |                                                                      |
| City-wide                                          | Consider opportunities to restrict certain turning movements at accesses (such as a right in-right out access)                                                                                                                                                                                                             | N                        | N                         | Y                       | \$           | ✓                     | Highway 99E Corridor Plan                                            |
| Street Connectivity                                | Construct the Continue Actorist Construction Develop                                                                                                                                                                                                                                                                       |                          |                           |                         |              |                       | TCD Weedless and in Marin Court TCD (Table 0                         |
| South Arterial                                     | Construct the Southern Arterial from Evergreen Road to OR 99E (2 lanes)                                                                                                                                                                                                                                                    | Υ                        | Υ                         | Υ                       | \$\$\$       | ✓                     | current TSP, Woodburn proposed in Marion County TSP (Table 8-<br>18) |
| Evergreen Road                                     | Extend south to Parr Road                                                                                                                                                                                                                                                                                                  | Υ                        | Υ                         | Υ                       | \$\$         | ✓                     | Current TSP                                                          |
| Stacy Allison Drive                                | Extend south to Parr Road                                                                                                                                                                                                                                                                                                  | Υ                        | Υ                         | Υ                       | \$\$\$       | ✓                     | Current TSP                                                          |
| Brown Street                                       | Extend south to the South Arterial                                                                                                                                                                                                                                                                                         | Υ                        | Υ                         | Υ                       | \$\$         | ✓                     | Current TSP                                                          |
| Woodland Avenue                                    | Extend west to Butteville Road through future development                                                                                                                                                                                                                                                                  | Υ                        | Υ                         | Υ                       | \$\$         | ✓                     |                                                                      |
| Ben Brown Lane from Settlemier Avenue to Elans Way | Re-designate Ben Brown Lane as an Access Street                                                                                                                                                                                                                                                                            | N                        | N                         | N                       | \$           | ✓                     |                                                                      |
| Ben Brown Lane                                     | Extend Ben Brown Lane to Evergreen Road as an Access<br>Street as part of future residential development                                                                                                                                                                                                                   | Υ                        | Υ                         | Υ                       | \$\$         | ✓                     |                                                                      |
| Capacity                                           |                                                                                                                                                                                                                                                                                                                            |                          |                           |                         |              |                       |                                                                      |
| OR 219 from Butteville Road to Woodland Avenue     | Widen roadway to include two lanes in each direction and a two-way left-turn lane                                                                                                                                                                                                                                          | Y                        | Y                         | Υ                       | \$\$         | ✓                     | Current TSP                                                          |
| OR 214 from Cascade Drive to OR 99E                | Widen roadway to include two lanes in each direction and a two-way left-turn lane                                                                                                                                                                                                                                          | Y                        | Υ                         | Υ                       | \$\$\$       | ✓                     | Current TSP                                                          |
| OR 99E from Young Street to south UGB              | Widen roadway to provide a continuous two-way left-turn<br>lane and wider shoulders (in conjunction with pedestrian and<br>bicycle facility improvements)                                                                                                                                                                  | Y                        | Υ                         | Υ                       | \$\$         | ✓                     | Highway 99E Corridor Plan                                            |
| Parr Road                                          | Upgrade to service collector urban standards                                                                                                                                                                                                                                                                               | Υ                        | Υ                         | Υ                       | \$\$         | ✓                     | Current TSP                                                          |
| Butteville Road, south of OR 219                   | Upgrade to minor arterial urban standards                                                                                                                                                                                                                                                                                  | Y                        | Υ                         | Υ                       | \$\$\$       | ✓                     | Current TSP                                                          |
| Brown Street                                       | Upgrade to service collector urban standards                                                                                                                                                                                                                                                                               | Υ                        | Υ                         | Υ                       | \$\$         | ✓                     | Current TSP                                                          |
| OR 214/I-5 Southbound Ramp Intersection            | Signal retiming                                                                                                                                                                                                                                                                                                            | N                        | Y                         | N                       | \$           | ✓                     |                                                                      |
|                                                    | Establish alternative mobility standards                                                                                                                                                                                                                                                                                   | N                        | N                         | N                       | \$           | ✓                     |                                                                      |

| Location                                                | Solutions                                                                                                                                                                             | Environmental<br>Impacts | Preliminary<br>Engineering<br>Challenges | y Screening<br>Land Use<br>Consistency | Project Cost | Preliminary<br>Preferred<br>Solution | document                                                               |
|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------|----------------------------------------|--------------|--------------------------------------|------------------------------------------------------------------------|
| OR 214/I-5 Northbound Ramp Intersection                 | Signal retiming                                                                                                                                                                       | N                        | Υ                                        | N                                      | \$           | ✓                                    |                                                                        |
|                                                         | Establish alternative mobility standards                                                                                                                                              | N                        | N                                        | N                                      | \$           | ✓                                    |                                                                        |
| OR 214/Evergreen Road Intersection                      | Signal retiming                                                                                                                                                                       | N                        | Υ                                        | N                                      | \$           | ✓                                    |                                                                        |
| OR 214/Oregon Way/Country Club Road Intersection        | Signal retiming                                                                                                                                                                       | N                        | Υ                                        | N                                      | \$           | ✓                                    |                                                                        |
| OR 214/Front Street Ramp Intersection                   | Install a traffic signal                                                                                                                                                              | Υ                        | Υ                                        | Υ                                      | \$\$         | ✓                                    | Current TSP                                                            |
| OR 214/Park Street Intersection                         | Install a traffic signal                                                                                                                                                              | Υ                        | Υ                                        | Υ                                      | \$\$         | ✓                                    | Current TSP                                                            |
| OR 214/OR 211/OR 99E Intersection                       | Reconfigure southbound approach to have two turn-lanes<br>and the east leg to have two receiving lanes, including signal<br>retiming                                                  | Υ                        | Υ                                        | Υ                                      | \$\$         | ✓                                    |                                                                        |
| Parr Road/Settlemier Avenue Intersection                | Install a traffic signal                                                                                                                                                              | Υ                        | Υ                                        | Υ                                      | \$\$         | ✓                                    |                                                                        |
| OR 99E/Hardcastle Avenue Intersection                   | Reconfigure the westbound approach to incorporate one left-<br>turn lane and one thru-right turn lane<br>Reconfigure the westbound approach to incorporate one left-                  | Y                        | Y                                        | Y                                      | \$\$         | ✓                                    |                                                                        |
|                                                         | turn lane and one thru-right turn lane and install a separate right-turn lane on the southbound approach, including signal retiming                                                   | Y                        | Y                                        | Y                                      | \$\$         |                                      |                                                                        |
| OR 99E/Lincoln Street Intersection                      | Reconfigure the eastbound approach to incorporate one left-<br>turn lane and one thru-right turn lane<br>Reconfigure the eastbound approach to incorporate one left-                  | Υ                        | Υ                                        | Y                                      | \$\$         | ✓                                    |                                                                        |
|                                                         | turn lane and one thru-right turn lane and install a separate right-turn lane on the southbound approach, including signal retiming                                                   | Y                        | Y                                        | Y                                      | \$\$         |                                      |                                                                        |
| OR 99E/Young Street Intersection                        | Install a third westbound lane to provide separate left, thru, and right turn lanes. Implement protected-permissive left-turn phasing on the eastbound and westbound approaches.      | Y                        | Υ                                        | Υ                                      | \$           | ✓                                    | Highway 99E Corridor Plan                                              |
| OR 99E/Cleveland Street Intersection                    | Install a traffic signal, including OR 99E coordination                                                                                                                               | N                        | Υ                                        | Y                                      | \$           | ✓                                    | Current TSP                                                            |
| Butteville Road/OR 219 Intersection                     | Install a traffic signal                                                                                                                                                              | Υ                        | Υ                                        | Υ                                      | \$\$         | ✓                                    |                                                                        |
| Safety Butteville Road/Parr Road                        | Debuild intersection due to grades an annual ba                                                                                                                                       | Υ                        | Υ                                        | Y                                      | \$\$         | <b>✓</b>                             | from Marian County TCD (Table 9.5)                                     |
| Southern OR 219/Butteville Road                         | Rebuild intersection due to grades on approaches Realign OR 219 to improve intersection(s) with Butteville Road                                                                       | Y                        | Y                                        | Y                                      | \$\$         | <b>√</b>                             | from Marion County TSP (Table 8-5) from Marion County TSP (Table 8-20) |
|                                                         | Enhanced traffic control (traffic signal, roundabout, or other appropriate geometric enhancements)                                                                                    | Υ                        | Υ                                        | Y                                      | \$\$         | ✓                                    | Current TSP                                                            |
| Northern OR 214/Butteville Road Intersection            | Enhanced traffic control (traffic signal, roundabout, or other appropriate geometric enhancements)                                                                                    | Υ                        | Υ                                        | Υ                                      | \$\$         | ✓                                    | Current TSP                                                            |
| OR 99E                                                  | Update roadway lighting to meet ODOT roadway lighting standards                                                                                                                       | Υ                        | Υ                                        | Υ                                      | \$           | ✓                                    | Highway 99E Corridor Plan                                              |
| OR 99E access between Young Street and Cleveland Street | Restrict certain turning movements                                                                                                                                                    | N                        | Υ                                        | Υ                                      | \$           |                                      | Highway 99E Corridor Plan                                              |
|                                                         | Close street accesses and potential lot consolidation Enhanced signs and pavement markings (e.g. stop signs,                                                                          | N                        | Υ                                        | Υ                                      | \$\$         | ✓                                    | Highway 99E Corridor Plan                                              |
| Front Street/Lincoln Street Intersection                | warning signs, and/or beacons)                                                                                                                                                        | N                        | N                                        | Y                                      | \$           | ✓                                    |                                                                        |
| Front Street/Young Street/Garfield Street Intersection  | Evaluate the intersection layout, signing, and striping in correlation to the railroad tracks. Provide clarification for westbound drivers trying to proceed through the intersection | Y                        | Υ                                        | Y                                      | \$           | ✓                                    |                                                                        |
| OR 99E/Tomlin Avenue                                    | Restrict the southbound left-turn movement                                                                                                                                            | N                        | N                                        | Υ                                      | \$           |                                      |                                                                        |
|                                                         | Evaluate the intersection layout, signing, and striping, including any sight distance constraints  Evaluate traffic safety along OR 99E, OR 219/OR214, Front                          | Υ                        | Υ                                        | Y                                      | \$           | ✓                                    |                                                                        |
| City-wide                                               | Street, Evergreen Road, and other key corridors to identify appropriate countermeasures                                                                                               | N                        | Υ                                        | Y                                      | \$           | ✓                                    |                                                                        |
|                                                         | Transit System                                                                                                                                                                        |                          |                                          |                                        |              |                                      |                                                                        |


|                                                                                 |                                                                                                                                                                                                                                                                                  | Preliminary Screening Pr |                           |                         |              |                       |                                                                                |
|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------|-------------------------|--------------|-----------------------|--------------------------------------------------------------------------------|
| Location                                                                        | Solutions -                                                                                                                                                                                                                                                                      | Environmental<br>Impacts | Engineering<br>Challenges | Land Use<br>Consistency | Project Cost | Preferred<br>Solution | document                                                                       |
| Service Enhancements                                                            |                                                                                                                                                                                                                                                                                  |                          |                           |                         |              |                       |                                                                                |
| Woodburn Fleet                                                                  | Purchase of Category B and C vehicles (1 each) for use in the City's expanded transit services. (100% funding level 2020-21)                                                                                                                                                     | N                        | N                         | Υ                       | \$           | ✓                     | from Ted at Cherriots as part of the STIF application for the 2019-21 biennium |
| Woodburn Fleet                                                                  | Purchase a Category B vehicle that will replace the second<br>oldest full size vehicle in the WTS fleet; will be used for the<br>City's existing local fixed route circulator. (130% funding level<br>2021)                                                                      | N                        | N                         | Y                       | \$           | <b>✓</b>              | from Ted at Cherriots as part of the STIF application for the 2019-21 biennium |
| Woodburn Fixed Route                                                            | Addition of weekend service for Woodburn Transit Service fixed route and paratransit services (Sat. 9am-5pm, Sun.9am-3pm) by up to 2,156 revenue hours (FY20-21). (100% funding level 2020-21)                                                                                   | N                        | N                         | Y                       | \$\$         | <b>✓</b>              | from Ted at Cherriots as part of the STIF application for the 2019-21 biennium |
| Woodburn Fixed Route                                                            | Modify the existing 60 minute fixed route loop; add an additional 30 minute route that will serve high frequency stops on weekdays (7am-7pm) within the Woodburn city limits. Total additional service will be up to 6,192 revenue hours (FY20-21). (100% funding level 2020-21) | N                        | N                         | Y                       | \$\$         | ✓                     | from Ted at Cherriots as part of the STIF application for the 2019-21 biennium |
| Woodburn Fixed Route                                                            | Modify the existing 60-min. fixed route by adding a new 30 min. route that serves high frequency stops (up to 1,456 revenue hours); this service will operate Saturdays (9am-5pm) and Sundays (9am-3pm). Also includes Dial-a-Ride (DAR) service. (130% funding level 2020-21)   | N                        | N                         | Υ                       | \$\$         | ✓                     | from Ted at Cherriots as part of the STIF application for the 2019-21 biennium |
| Woodburn Fixed Route                                                            | Increase frequency to 30 minutes                                                                                                                                                                                                                                                 | N                        | N                         | Υ                       | \$\$         | ✓                     | from Woodburn Transit Plan Update (Figure 2-1)                                 |
| Woodburn Fixed Route                                                            | Provide Saturday service                                                                                                                                                                                                                                                         | N                        | N                         | Υ                       | \$           | ✓                     | from Woodburn Transit Plan Update - other plan review                          |
| Woodburn Fixed Route                                                            | Provide Sunday service                                                                                                                                                                                                                                                           | N                        | N                         | Υ                       | \$           | ✓                     | from Woodburn Transit Plan Update - other plan review                          |
| Woodburn Fixed Route                                                            | Convert existing route to two-way operations                                                                                                                                                                                                                                     | N                        | N                         | Υ                       | \$\$         |                       | from Woodburn Transit Plan Update (Figure 2-1)                                 |
|                                                                                 | Separate route into two routes with one-way operations                                                                                                                                                                                                                           | N                        | N                         | Υ                       | \$\$         |                       |                                                                                |
|                                                                                 | Separate route into two routes with two-way operations                                                                                                                                                                                                                           | N                        | N                         | Υ                       | \$\$         | ✓                     |                                                                                |
|                                                                                 | Add a new fixed route in City center (30-minute frequency to major local destinations)                                                                                                                                                                                           | N                        | N                         | Υ                       | \$           |                       | from Woodburn Transit Plan Update (Figure ES-2 and 10-2)                       |
|                                                                                 | Restructure "long" loop, expanded to serve the<br>neighborhood in southeast Woodburn                                                                                                                                                                                             | N                        | N                         | Υ                       | \$           |                       | from Woodburn Transit Plan Update (Figure ES-2 and 10-2)                       |
| Parr Road corridor via an extension of Evergreen Road                           | New or re-routed service (as growth occurs)                                                                                                                                                                                                                                      | N                        | N                         | Υ                       | \$           | ✓                     | from Woodburn Transit Plan Update - other plan review                          |
| Crosby Road corridor                                                            | New or re-routed service (as growth occurs)                                                                                                                                                                                                                                      | N                        | N                         | Υ                       | \$           |                       | from Woodburn Transit Plan Update - other plan review                          |
| Butteville Road corridor                                                        | New or re-routed service (as growth occurs)                                                                                                                                                                                                                                      | N                        | N                         | Υ                       | \$           | ✓                     | from Woodburn Transit Plan Update - other plan review                          |
| Employment center southwest of I-5/OR 214 interchange                           | New or re-routed service (as growth occurs)                                                                                                                                                                                                                                      | N                        | N                         | Υ                       | \$           | ✓                     | from Woodburn Transit Plan Update - other plan review                          |
| Woodburn Industrial Park along the Progress Way and Industrial Avenue corridors | New or re-routed service (as growth occurs)                                                                                                                                                                                                                                      | N                        | N                         | Υ                       | \$           | ✓                     | from Woodburn Transit Plan Update - other plan review                          |
| Gateway subarea                                                                 | New or re-routed service. Refocus local and regional transit<br>service in the Gateway subarea (between Front Street and<br>Mill Creek) to support a mixed-use district                                                                                                          | N                        | N                         | Υ                       | \$           | ✓                     | from Woodburn Transit Plan Update - other plan review                          |
| Woodburn Company Stores                                                         | Establish a free shuttle between the Woodburn Company<br>Stores and Downtown Woodburn, hourly during peak<br>shopping and entertainment hours                                                                                                                                    | N                        | N                         | Υ                       | \$           | ✓                     | from Woodburn Transit Plan Update - other plan review                          |
| City-wide                                                                       | Peak-only employer shuttle                                                                                                                                                                                                                                                       | N                        | N                         | Υ                       | \$\$         |                       | from Woodburn Transit Plan Update - chapter 10                                 |
| Intercity Service Enhancements                                                  |                                                                                                                                                                                                                                                                                  |                          |                           |                         |              |                       |                                                                                |
| Urban and Rural Cherriots Regional Services                                     | Expand service for up to 7,557 revenue hours on urban & rural Regional services. Includes startup costs for hiring new employees, and coordination of schedules with connecting services. Also establishes a Youth fare category (ages 6-18). (100% funding level 2020-21)       | N                        | N                         | Υ                       | \$\$         | <b>√</b>              | from Ted at Cherriots as part of the STIF application for the 2019-21 biennium |

|                                                      |                                                                                                                                                                                                                                                           |               | Preliminar  | y Screening |              | Preliminary | •                                                                                             |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------|-------------|--------------|-------------|-----------------------------------------------------------------------------------------------|
|                                                      | •                                                                                                                                                                                                                                                         | Environmental | Engineering | Land Use    |              | Preferred   |                                                                                               |
| Location                                             | Solutions  Establish one new Regional route from Keizer to Wilsonville                                                                                                                                                                                    | Impacts       | Challenges  | Consistency | Project Cost | Solution    | document                                                                                      |
| Keizer to Wilsonville                                | with a stop at the Woodburn Memorial Park and Ride. Increase service on weekdays by 30 percent on urban & rural Regional services by up to 5,245 revenue hours. (130% funding level 2020-21)                                                              | N             | N           | Y           | \$\$         | ✓           | from Ted at Cherriots as part of the STIF application for the 2019-21 biennium                |
| Urban and Rural Cherriots Regional Services          | Add Saturday service to urban & rural Cherriots Regional services with up to 3,919 revenue hours of new service (FY20-21). Includes coordination of schedules with other connecting services. (100% funding level 2020-21)                                | N             | N           | Y           | \$           | ✓           | from Ted at Cherriots as part of the STIF application for the 2019-21 biennium                |
| Urban and Rural Cherriots Regional Services          | Add 30 percent more Saturday service to urban & rural Regional services by up to 215 revenue hours (FY20-21). In FY21, adds 6 holidays to the same routes. Includes coordination of schedules with connecting services. (130% funding level 2020-21)      | N             | N           | Υ           | \$           | ✓           | from Ted at Cherriots as part of the STIF application for the 2019-21 biennium                |
| City-wide                                            | Coordinate transfers between the different agency services<br>in Woodburn                                                                                                                                                                                 | N             | N           | Υ           | \$           | ✓           | from Woodburn Transit Plan Update - other plan review                                         |
| Woodburn                                             | Provide a stop in Woodburn for SMART Route 1X                                                                                                                                                                                                             | N             | N           | Υ           | \$           | ✓           | from Woodburn Transit Plan Update - other plan review                                         |
| Woodburn to Salem                                    | Provide service to downtown Salem (and east to State offices): Incorporate a stop at the planned Park & Ride for the SMART express route between Wilsonville and Salem                                                                                    | N             | Υ           | Υ           | \$\$\$       | ✓           | from Woodburn Transit Plan Update - other plan review                                         |
| Woodburn to Portland                                 | Provide service to Portland - connect to TriMet via the<br>Tualatin Park-and-Ride, directly into downtown Portland, to<br>the Westside Express Service (southern terminus at<br>Wilsonville SMART Central), or the MAX Orange Line light rail<br>service. | N             | Υ           | Y           | \$\$\$       |             | from Woodburn Transit Plan Update - other plan review                                         |
| Woodburn to Hubbard                                  | Provide a new demand-responsive service to Hubbard one                                                                                                                                                                                                    | N             | Υ           | Υ           | \$\$         |             |                                                                                               |
| Woodburn to Wilsonville                              | day per week Provide service to WES station in Wilsonville                                                                                                                                                                                                | N             | N           | Y           | \$\$         |             | from Woodburn Transit Plan Update - chapter 10 from Woodburn Transit Plan Update - chapter 10 |
| Stop Enhancements                                    | Provide service to WES Station in Wilsonville                                                                                                                                                                                                             | IN            | IN          | <u> </u>    | \$\$         |             | from Woodburn Transit Plan Opdate - chapter 10                                                |
| City-wide                                            | Post static bus route information at bus stops                                                                                                                                                                                                            | N             | N           | Υ           | \$           | ✓           | from Woodburn Transit Plan Update                                                             |
| Stop 755016: Walmart                                 | New shelter                                                                                                                                                                                                                                               | N             | N           | Υ           | \$           | ✓           | · ·                                                                                           |
| Stop 20419: Garfield Street Park-and-Ride Facilities | New shelter                                                                                                                                                                                                                                               | N             | N           | Y           | \$           | ✓           |                                                                                               |
| n/a                                                  |                                                                                                                                                                                                                                                           |               |             |             |              |             |                                                                                               |
| Other Transit Solutions                              | Investigate transferring the paratransit system to a local                                                                                                                                                                                                |               |             |             |              |             |                                                                                               |
| City-wide                                            | social service agency                                                                                                                                                                                                                                     | N             | N           | Υ           | \$           | ✓           | from Woodburn Transit Plan Update - other plan review                                         |
|                                                      | Truck Freight System                                                                                                                                                                                                                                      |               |             |             |              |             |                                                                                               |
| n/a                                                  |                                                                                                                                                                                                                                                           |               |             |             |              |             |                                                                                               |
| Intermodal Route Connectivity                        | Other Solutions                                                                                                                                                                                                                                           |               |             |             |              |             |                                                                                               |
| City-wide                                            | Provide wayfinding to bike routes, multi-use paths, trails (as constructed), parks, schools, and other essential destinations                                                                                                                             | N             | N           | Υ           | \$           | ✓           |                                                                                               |
| City-wide                                            | Provide bike racks at bus stops                                                                                                                                                                                                                           | N             | N           | Y           | \$           | ✓           | from Woodburn Transit Plan Update                                                             |
| TSMO                                                 |                                                                                                                                                                                                                                                           |               |             |             |              |             |                                                                                               |
| City-wide                                            | Lead or provide support of potential TSM and TDM strategies                                                                                                                                                                                               | N             | N           | Y           | \$           | ✓           |                                                                                               |
| City-wide                                            | Identify opportunities for collaborative marketing with local<br>business owners and operators, developers, and transit<br>service providers                                                                                                              | N             | N           | Y           | \$           | ✓           |                                                                                               |
| City-wide                                            | Update the Woodburn Development Ordinance to limit<br>and/or allow for flexible parking requirements                                                                                                                                                      | N             | N           | Υ           | \$           | ✓           |                                                                                               |
| City-wide                                            | Develop access management standards that reflect functional classification of the roadway                                                                                                                                                                 | N             | N           | Υ           | \$           | ✓           |                                                                                               |
| City-wide                                            | Implement truck signal priority at all signalized intersections along OR 214 and OR 99E                                                                                                                                                                   | N             | Υ           | Υ           | \$           | ✓           |                                                                                               |
| City-wide                                            | Promote regional carpool/vanpool program                                                                                                                                                                                                                  | N             | N           | Υ           | \$           | ✓           | from Woodburn Transit Plan Update (Figure ES-2)                                               |
|                                                      |                                                                                                                                                                                                                                                           |               |             |             |              |             |                                                                                               |

|           |          |                                                                                                                                                                                              |                          | Preliminary               | / Screening             |              | Preliminary           |                                                       |
|-----------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------|-------------------------|--------------|-----------------------|-------------------------------------------------------|
|           | Location | Solutions                                                                                                                                                                                    | Environmental<br>Impacts | Engineering<br>Challenges | Land Use<br>Consistency | Project Cost | Preferred<br>Solution | document                                              |
| City-wide |          | Provide transit fare subsidies                                                                                                                                                               | N                        | N                         | Υ                       | \$           | ✓                     | from Woodburn Transit Plan Update - other plan review |
| City-wide |          | Establish carpool matching programs for ride-sharing                                                                                                                                         | N                        | N                         | Υ                       | \$           | ✓                     | from Woodburn Transit Plan Update - other plan review |
| City-wide |          | Establish carpool parking programs                                                                                                                                                           | N                        | N                         | Υ                       | \$           | ✓                     | Current TSP                                           |
| City-wide |          | Schedule shift changes to occur outside of peak travel<br>periods                                                                                                                            | N                        | N                         | Υ                       | \$           | ✓                     | from Woodburn Transit Plan Update - other plan review |
| City-wide |          | Allow employees to work at home one day a week                                                                                                                                               | N                        | N                         | Υ                       | \$           | ✓                     | from Woodburn Transit Plan Update - other plan review |
| City-wide |          | Establish neighborhood commercial and mixed-use nodes within the City                                                                                                                        | N                        | N                         | Υ                       | \$           | ✓                     | from Woodburn Transit Plan Update - other plan review |
| OR 99E    |          | Work with ODDT to develop and implement a Traffic<br>Management Plan for the OR 99E corridor that responds to<br>increased congestion resulting from incidents on I-5 and<br>regional events | N                        | Y                         | Υ                       | \$           | ✓                     | Highway 99E Corridor Plan                             |

# **TECHNICAL MEMORANDUM #6**

**Preferred Alternatives** 



Date: June 7, 2019 Project #: 21071.5

To: Chris Kerr & Eric Liljequist, City of Woodburn

Michael Duncan, Oregon Department of Transportation, Region 2 Technical Advisory Committee and Community Advisory Committee

From: Matt Hughart and Molly McCormick, Kittleson & Associates, Inc.

Subject: Technical Memo #6: Preferred Alternatives (Subtask 5.1)

The purpose of this memorandum is to identify the projects included in the planned and financially constrained transportation systems for the Woodburn Transportation System Plan (TSP) update. Previous technical memorandums documented existing and future transportation system needs, see *Tech Memo 3: Existing Conditions Inventory and Analysis* and *Tech Memo 4: Future Systems Conditions*, and potential solutions to address the needs, see *Tech Memo 5: Alternatives Analysis and Funding Program*. The consultant team combined the information provided in these and other technical memorandums to develop projects for the planned transportation system and identify priorities for the financially constrained transportation system based on the TSP goals and objectives and evaluation criteria, see *Tech Memo 2: Project Goals and Objectives and Evaluation Criteria*. The information provided in this memorandum was revised based on input from the project team and the general public. The projects identified in this memorandum for the planned and financially constrained transportation systems will be incorporated in the Woodburn TSP update.

### PROJECT EVALUATION CRITERIA AND PRIORITIZATION

The project evaluation criteria were used to evaluate projects included in the planned transportation system and identify priorities for the financially constrained transportation system. The projects were identified as high, medium, and low priority projects based on how well they address the goals of the TSP update. The goals are documented in *Tech Memo 2* and summarized below.

- Goal I: Multimodal Mobility Provide a multimodal transportation system that avoids or reduces a reliance on one form of transportation and minimizes energy consumption and air quality impacts.
- Goal II: Connectivity Provide an interconnected street system that is adequately sized to accommodate existing and projected traffic demands in the Woodburn area.
- Goal III: Safety Provide a transportation system that enhances the safety and security of all transportation modes in the Woodburn area.

■ Goal IV: Strategic Investment — Provide a financially sustainable transportation system through responsible stewardship of assets and financial resource.

- Goal V: Land Use and Transportation Integration Review and update land use standards and ordinances to create a balanced built environment where existing and planned land uses are supported by an efficient multi-modal transportation system.
- Goal VI: Coordination Develop a transportation system that is consistent with the City's adopted comprehensive plan and adopted plans of state, regional, and other local jurisdictions.

The evaluation criteria are included in *Attachment A*. Attachment A also indicates how the evaluation criteria were used to evaluate and prioritize the projects. A summary of the evaluations for the plan projects is included in *Attachment B*.

#### PLANNING LEVEL COST ESTIMATES

Planning level cost estimates were developed for the projects based on average unit costs for similar projects within the Pacific Northwest. The cost estimates help provide a realistic plan that reflects the City's financial forecast. The financially constrained plan was developed by identifying forecasted transportation funding (documented in *Tech Memo 3: Existing Conditions Inventory and Analysis*) and selecting higher priority projects from the planned system that can be funded with forecasted funds.

#### TRANSPORTATION FUNDING

The TSP will include a planned transportation system, which identifies all of the projects and programs needed to address all of the transportation needs within the city, and a financially constrained transportation system, which identifies the projects and programs the City anticipates being able to fund over the next 20 years. The amount of local funds available for capital projects in the TSP is estimated to be approximately \$26.2 million or roughly \$1.31 million per year.<sup>1</sup>

<sup>&</sup>lt;sup>1</sup> This number does not include potential additional funding from state and federal grants such as the Statewide Transportation Improvement Program (STIP). While it is likely that these funds will be used to fund some transportation improvements within the city over the next 20 years, these funding sources are not accounted for in the City's revenue forecast because of the uncertainty in acquiring them.

### PLANNED TRANSPORTATION SYSTEM COST SUMMARY

Table 1 provides a summary of the full cost of the planned and financially constrained transportation systems. As shown, the full cost of the planned system is approximately \$129.3 million over the 20-year period, including \$26.2 million in high priority projects, \$101.6 million in medium priority projects, and \$1.5 million in low priority projects. Based on the anticipated funds available for capital improvement projects, the financially constrained plan includes all of the high priority projects. This leaves no forecasted funding for the City to complete medium and low priority projects over the 20-year period.

**Table 1: Planned Transportation System Cost Summary** 

| Project Type      | High Priority<br>(Financially Constrained<br>Plan Projects)<br>(0-5 years) | Medium Priority<br>(5-10 years) | Low Priority<br>(10-20 years) | Total         |  |  |  |
|-------------------|----------------------------------------------------------------------------|---------------------------------|-------------------------------|---------------|--|--|--|
|                   | P                                                                          | lanned Transportation Syster    | m                             |               |  |  |  |
| Bicycle           | \$8,125,000                                                                | \$11,915,000                    | \$100,000                     | \$20,140,000  |  |  |  |
| Pedestrian        | \$6,750,000                                                                | \$10,300,000                    | \$285,000                     | \$17,335,000  |  |  |  |
| Roadway           | \$9,200,000                                                                | \$73,140,000                    | \$500,000                     | \$82,840,000  |  |  |  |
| Safety            | \$2,100,000                                                                | \$5,360,000                     | \$100,000                     | \$7,560,000   |  |  |  |
| Transit           |                                                                            | \$100,000                       | \$15,000                      | \$115,000     |  |  |  |
| TDM <sup>1</sup>  | \$25,000                                                                   | \$100,000                       | \$315,000                     | \$440,000     |  |  |  |
| Land Use          |                                                                            |                                 | \$50,000                      | \$50,000      |  |  |  |
| Access Management |                                                                            | -                               | \$125,000                     | \$125,000     |  |  |  |
| Rail              |                                                                            | \$10,000                        | \$15,000                      | \$25,000      |  |  |  |
| Total             | \$26,200,000                                                               | \$100,925,000                   | \$1,505,000                   | \$128,630,000 |  |  |  |
|                   | Available Funding                                                          |                                 |                               |               |  |  |  |
| Total             | \$6,550,000                                                                | \$6,550,000                     | \$13,100,000                  | \$26,200,000  |  |  |  |

TDM: Transportation Demand Management

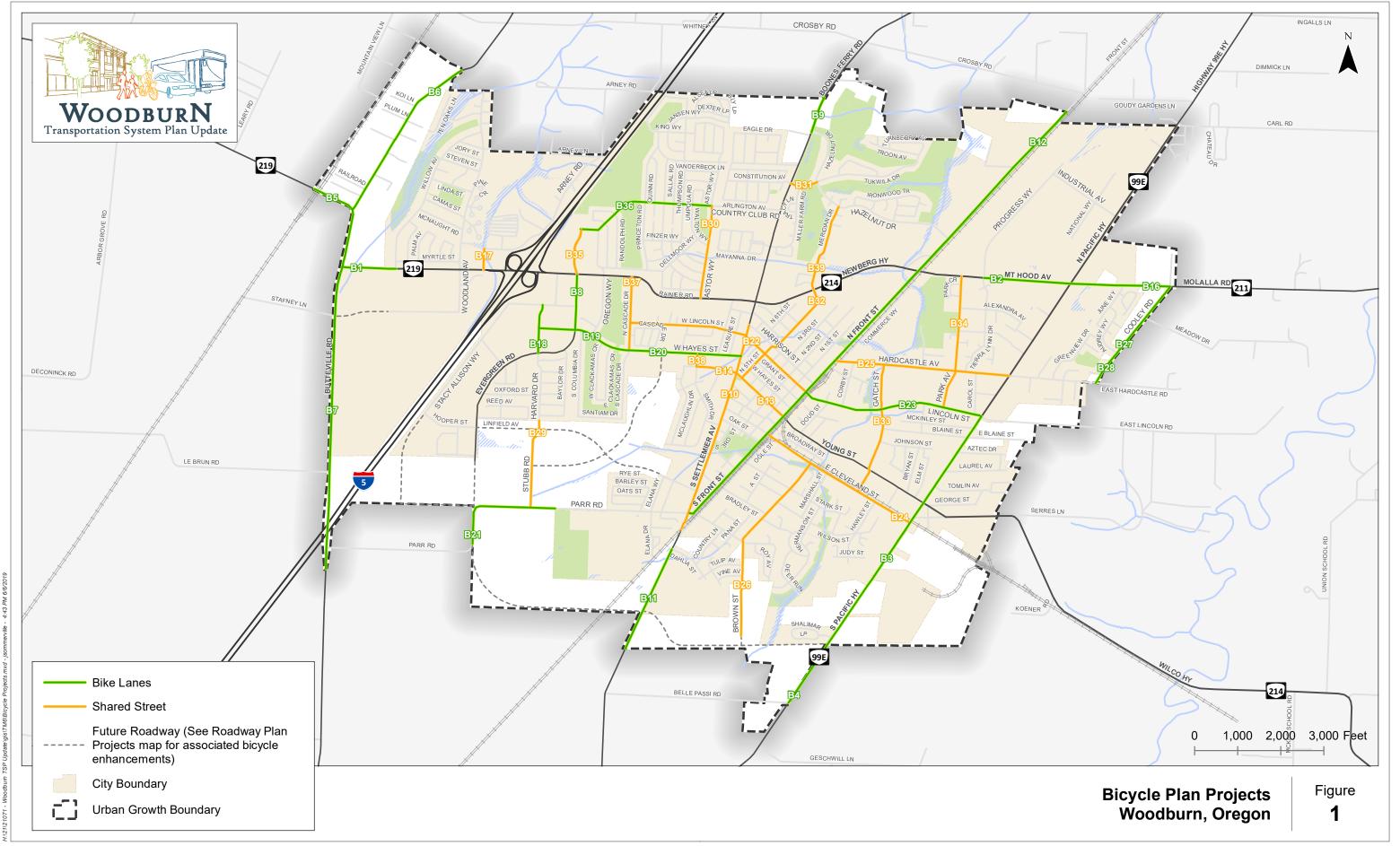
<sup>1:</sup> Includes annual costs occurred every year.

### **BICYCLE PLAN**

On-street bike lanes and other bicycle facilities are currently provided on a few roadways within the city. Therefore, the bicycle plan includes several projects along the city's Major and Minor Arterial and Service Collector streets for connectivity throughout the city. The bicycle plan also includes projects on access and local street that provide direct access to essential destinations.

Table 2 identifies the bicycle plan projects for the Woodburn TSP update. As shown, the projects are separated based on roadway classification. The priorities shown in Table 2 are based on the project evaluation criteria as well as input from the project team and the general public. The cost estimates are based on average unit costs for roadway improvements. Figure 1 illustrates the location of the bicycle plan projects.

**Table 2: Bicycle Plan Projects** 


| Project<br>Number | Location                                                        | Туре             | Description                                                                                                                                                                                   | Priority | Cost<br>Estimate <sup>3</sup>       |  |  |
|-------------------|-----------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------|--|--|
| Major Arte        | Major Arterials                                                 |                  |                                                                                                                                                                                               |          |                                     |  |  |
| B1                | OR 219 from Butteville<br>Road to Willow Avenue                 | Bike lanes       | Widen roadway and install bike lanes in coordination with ODOT                                                                                                                                | Medium   | Cost included in R2 <sup>2</sup>    |  |  |
| B2                | OR 214 from Progress<br>Way to OR 99E                           | Bike lanes       | Widen roadway and install bike lanes in coordination with ODOT                                                                                                                                | Medium   | Cost included in R3 <sup>2</sup>    |  |  |
| В3                | OR 99E from Lincoln<br>Street to southern City<br>Boundary      | Bike lanes       | Widen roadway and install bike lanes in coordination with ODOT                                                                                                                                | Medium   | Cost included in R4 <sup>2</sup>    |  |  |
| B4                | OR 99E from southern City<br>Boundary to southern<br>UGB        | Bike lanes       | Widen roadway and install buffered bike lanes in coordination with ODOT                                                                                                                       | Medium   | Cost included<br>in R4 <sup>2</sup> |  |  |
| Minor Arte        | erials                                                          |                  |                                                                                                                                                                                               | _        |                                     |  |  |
| B5                | OR 219 from western UGB to Butteville Road                      | Bike lanes       | Widen roadway and install bike lanes in coordination with ODOT                                                                                                                                | Medium   | \$650,000                           |  |  |
| В6                | Butteville Road/OR 219<br>from northern UGB to OR<br>219        | Bike lanes       | Widen roadway and install bike lanes in coordination with ODOT                                                                                                                                | Medium   | \$3,200,000                         |  |  |
| В7                | Butteville Road from OR<br>219 to southern UGB                  | Bike lanes       | Widen roadway and install bike lanes                                                                                                                                                          | Medium   | Cost included in R6 <sup>2</sup>    |  |  |
| В8                | Evergreen Road from OR<br>214 to Hayes Street                   | Bike lanes       | Widen roadway and install bike lanes                                                                                                                                                          | Medium   | \$500,000                           |  |  |
| В9                | Boones Ferry Road from<br>northern UGB to Hazelnut<br>Drive     | Bike lanes       | Widen roadway and install bike lanes                                                                                                                                                          | Medium   | \$500,000                           |  |  |
| B10               | Settlemier Avenue from<br>Harrison Street to railroad<br>tracks | Shared<br>street | Install shared lane markings and signs. This project improves safe routes to school for Nellie Muir Elementary School, Heritage Elementary School, Valor Middle School, and St. Luke's School | Medium   | \$25,000                            |  |  |
| B11               | Boones Ferry Road from<br>Dahlia Street to southern<br>UGB      | Bike lanes       | Widen roadway and install bike lanes                                                                                                                                                          | Medium   | \$1,500,000                         |  |  |
| B12               | Front Street from<br>northern UGB to Boones<br>Ferry Road       | Bike lanes       | Widen roadway and install bike lanes. This project improves safe routes to school for Woodburn High School, Heritage Elementary School, Valor Middle School, and St. Luke's School            | High     | \$8,050,000                         |  |  |

| Project<br>Number | Location                                                     | Туре             | Description                                                                                                                                                                                   | Priority | Cost<br>Estimate <sup>3</sup>     |
|-------------------|--------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------|
| B13               | Garfield Street from 3rd<br>Street to Front Street           | Shared<br>street | Install shared lane markings and signs.                                                                                                                                                       | Low      | \$10,000                          |
| B14               | Garfield Street from Smith<br>Drive to 3rd Street            | Shared<br>street | Install shared lane markings and signs.                                                                                                                                                       | Low      | \$10,000                          |
| B15 <sup>1</sup>  | Young Street                                                 | Study            | Perform a corridor evaluation that would consider design treatments to improve bicycle comfort and safety such as striping, signing, and wayfinding                                           | Medium   | \$15,000                          |
| B16               | OR 211 from OR 99E to eastern UGB                            | Bike lanes       | Widen roadway and install bike lanes in coordination with ODOT                                                                                                                                | Medium   | \$1,000,000                       |
| Service Co        | llectors                                                     |                  |                                                                                                                                                                                               |          |                                   |
| B17               | Arney Road from Robin<br>Avenue to OR 219                    | Shared<br>street | Install shared lane markings and signs in coordination with ODOT                                                                                                                              | Low      | \$5,000                           |
| B18               | Harvard Drive from Stacy<br>Allison Way to Evergreen<br>Road | Bike lanes       | Enhance the parallel route of Harvard Drive from Stacy<br>Allison Way to Evergreen Road in place of Stacy Allison<br>Way. Install buffered bike lane striping on both sides of<br>the roadway | Medium   | \$15,000                          |
| B19               | Hayes Street from Harvard<br>Drive to Cascade Drive          | Bike lanes       | Install bike lane striping. This project improves safe routes to school for Nellie Muir Elementary School                                                                                     | Medium   | \$35,000                          |
| B20               | Hayes Street from<br>Cascade Drive to<br>Settlemier Avenue   | Bike lanes       | Widen roadway and install bike lanes. This project improves safe routes to school for Nellie Muir Elementary School                                                                           | Medium   | \$3,000,000                       |
| B21               | Parr Road from western<br>UGB to western City<br>Boundary    | Bike lanes       | Widen roadway and install bike lanes. This project improves safe routes to school for Heritage Elementary School and Valor Middle School                                                      | High     | Cost included in R5 <sup>2</sup>  |
| B22               | Lincoln Street from<br>Cascade Drive to Front<br>Street      | Shared<br>street | Install shared lane markings and signs. This project improves safe routes to school for Washington Elementary School                                                                          | Medium   | \$20,000                          |
| B23               | Lincoln Street from Front<br>Street to OR 99E                | Bike lanes       | Install bike lane striping. This project improves safe routes to school for Washington Elementary School                                                                                      | High     | \$55,000                          |
| B24               | Cleveland Street from<br>Front Street to OR 99E              | Shared<br>street | Install shared lane markings and signs                                                                                                                                                        | Low      | \$15,000                          |
| B25               | Hardcastle Avenue from<br>Front Street to OR 99E             | Shared<br>street | Install shared lane markings and signs. This project improves safe routes to school for Washington Elementary School                                                                          | High     | \$15,000                          |
| B26               | Brown Street from<br>Cleveland Street to end of<br>roadway   | Shared<br>street | Install shared lane markings and signs                                                                                                                                                        | Low      | \$20,000                          |
| B27               | Cooley Road from OR 211<br>to Aubrey Way                     | Bike lanes       | Widen roadway and install bike lanes                                                                                                                                                          | Medium   | \$1,300,000                       |
| B28               | Cooley Road from Aubrey<br>Way to Hardcastle Avenue          | Bike lanes       | Install bike lane striping                                                                                                                                                                    | Medium   | \$15,000                          |
| Access Stre       | eets                                                         |                  |                                                                                                                                                                                               |          |                                   |
| B29               | Stubb Road from Harvard<br>Drive to Parr Road                | Shared<br>street | Install shared lane markings and signs                                                                                                                                                        | Low      | Cost included in R26 <sup>2</sup> |
| B30               | Astor Way from Country<br>Club Road to OR 214                | Shared<br>street | Install shared lane markings and signs                                                                                                                                                        | Low      | \$15,000                          |
| B31               | Tukwila Drive from<br>Boones Ferry Road to<br>Hazelnut Drive | Shared<br>street | Install shared lane markings and signs                                                                                                                                                        | Low      | \$5,000                           |
| B32               | 5th Street from OR 214 to<br>Garfield Street                 | Shared<br>street | Install shared lane markings and signs. This project improves safe routes to school for St Luke's School                                                                                      | Medium   | \$20,000                          |

| Project<br>Number              | Location                                                    | Туре             | Description                                                                                                           | Priority | Cost<br>Estimate <sup>3</sup> |
|--------------------------------|-------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------|----------|-------------------------------|
| B33                            | Gatch Street from<br>Hardcastle Road to<br>Cleveland Street | Shared<br>street | Install shared lane markings and signs. This project improves safe routes to school for Washington Elementary School  | Medium   | \$15,000                      |
| B34                            | Park Avenue from OR 214<br>to Lincoln Street                | Shared<br>street | Install shared lane markings and signs. This project improves safe routes to school for Washington Elementary School  | Medium   | \$20,000                      |
| B35                            | Evergreen Road from<br>Country Club Court to OR<br>214      | Shared<br>street | Install shared lane markings and signs                                                                                | Low      | \$10,000                      |
| Local Stree                    | ts:                                                         |                  |                                                                                                                       |          |                               |
| B36                            | Country Club Road from<br>Evergreen Road to Astor<br>Way    | Bike lanes       | Install bike lane striping                                                                                            | Medium   | \$40,000                      |
| B37                            | Cascade Drive from OR<br>214 to Hayes Street                | Shared<br>street | Install shared lane markings and signs. This project improves safe routes to school for Nellie Muir Elementary School | Medium   | \$10,000                      |
| B38                            | Smith Drive from Hayes<br>Street to Garfield Street         | Shared<br>street | Install shared lane markings and signs. This project improves safe routes to school for Nellie Muir Elementary School | Medium   | \$5,000                       |
| B39                            | Meridian Drive from<br>Hazelnut Drive to OR 214             | Shared<br>street | Install shared lane markings and signs                                                                                | Low      | \$10,000                      |
| B40¹                           | City-wide                                                   | Wayfinding       | Provide wayfinding to bike routes, multi-use paths, parks, schools, and other essential destinations                  | Medium   | \$30,000                      |
| TOTAL High Priority Costs      |                                                             |                  |                                                                                                                       |          | \$8,125,000                   |
| TOTAL Medium Priority Costs    |                                                             |                  |                                                                                                                       |          | \$11,915,000                  |
| TOTAL Low Priority Costs       |                                                             |                  |                                                                                                                       |          | \$100,000                     |
| TOTAL Program Costs (20 years) |                                                             |                  |                                                                                                                       |          | \$20,140,000                  |

- 1. Project not shown on Bicycle Plan Map.
- 2. Cost estimates are not included for projects that would be completed as part of a roadway project, such as locations where additional roadway width is needed to install bike lanes. The cost for these projects is included in the corresponding roadway projects described later in the memo.
- 3. The cost estimates presented to not include costs associated with right-of-way acquisition due to its high variability depending on location, parcel sizes, and other characteristics.

Woodburn TSP Update
June 2019



### PEDESTRIAN PLAN

A majority of city streets currently have sidewalks on at least one side of the roadway. The pedestrian plan includes several projects to construct new sidewalks where they are lacking and to fill in the gaps in the existing sidewalks along the city's streets. Although many of the pedestrian projects are located on Service Collector streets or higher, a few local street pedestrian projects are included to provide access to essential destinations such as schools, parks, churches, etc. The pedestrian plan also includes several enhanced pedestrian crossings as well as multi-use paths and accessways that augment and support the pedestrian system.

Table 3 identifies the pedestrian plan projects for the Woodburn TSP update. As shown, the projects are separated into projects based on roadway classification, as well as projects at intersections and in other locations throughout the city. The priorities shown in Table 3 are based on the project evaluation criteria as well as input from the project team and the general public. The cost estimates are based on average unit costs for roadway improvements. Figure 2 illustrates the location of the pedestrian plan projects.

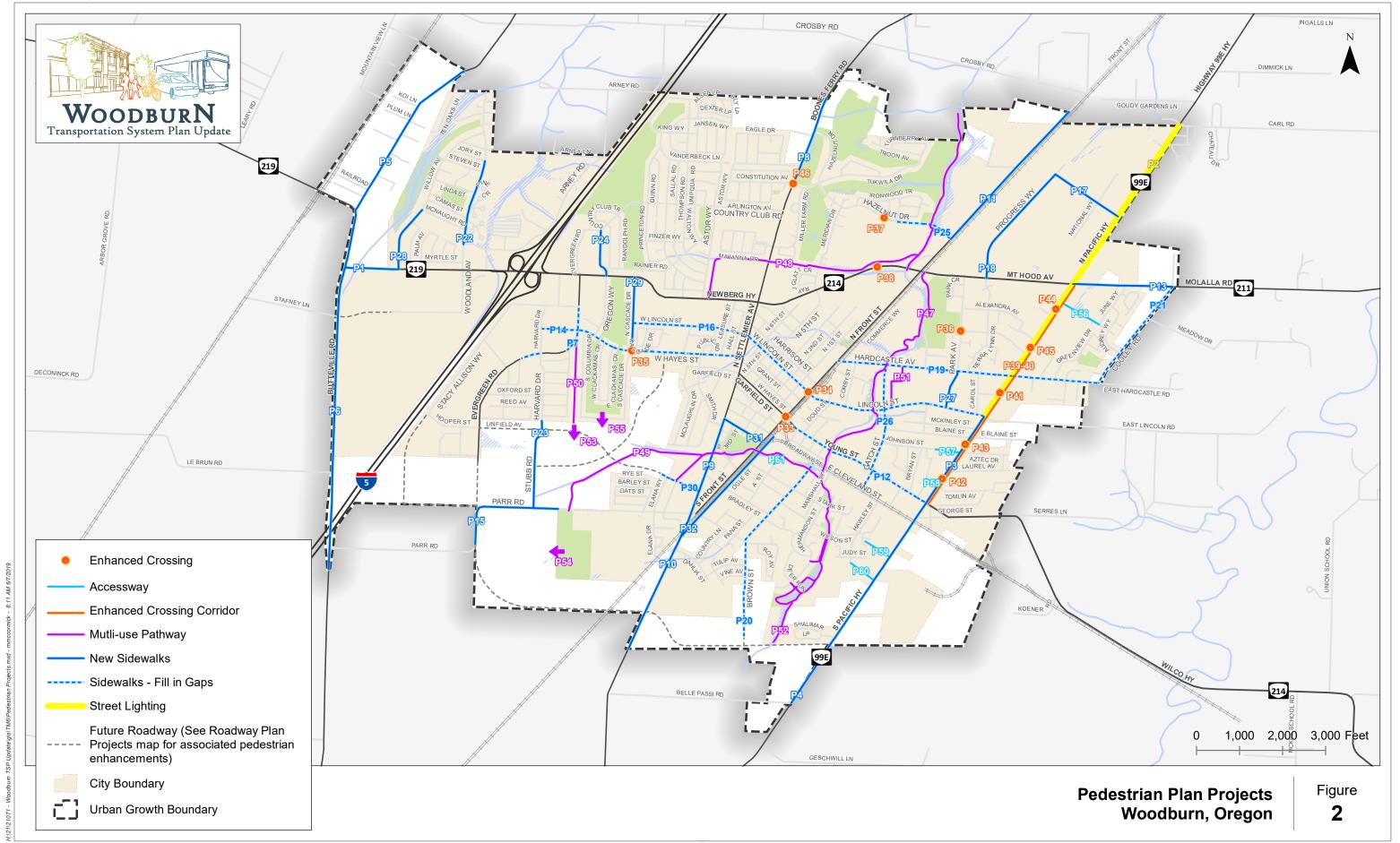
**Table 3: Pedestrian Plan Projects** 

| Project<br>Number | Location                                                    | Туре                        | Description                                                                                                                                                           | Priority | Cost<br>Estimate <sup>3</sup>          |  |  |
|-------------------|-------------------------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------|--|--|
| Major Arte        | Major Arterials                                             |                             |                                                                                                                                                                       |          |                                        |  |  |
| P1                | OR 219 from Butteville<br>Road to Willow Avenue             | New<br>sidewalks            | Install new sidewalks in coordination with ODOT                                                                                                                       | Medium   | Cost<br>included in<br>R2 <sup>2</sup> |  |  |
| P2                | OR 99E from northern<br>UGB to Lincoln Street               | Street<br>lighting          | Evaluate light levels and install street lighting in coordination with ODOT                                                                                           | Medium   | \$700,000                              |  |  |
| P3                | OR 99E from Lincoln<br>Street to southern City<br>Boundary  | New<br>sidewalks            | Remove existing sidewalks and install new sidewalks in coordination with ODOT                                                                                         | Medium   | Cost<br>included in<br>R4 <sup>2</sup> |  |  |
| P4                | OR 99E from southern City<br>Boundary to southern<br>UGB    | New<br>sidewalks            | Install new sidewalks in coordination with ODOT                                                                                                                       | Medium   | Cost<br>included in<br>R4 <sup>2</sup> |  |  |
| Minor Arte        | erials                                                      |                             |                                                                                                                                                                       |          |                                        |  |  |
| P5                | Butteville Road/OR 219<br>from northern UGB to OR<br>219    | New<br>sidewalks            | Install new sidewalks in coordination with ODOT                                                                                                                       | Medium   | \$1,500,000                            |  |  |
| P6                | Butteville Road from OR<br>219 to southern UGB              | New<br>sidewalks            | Install new sidewalks                                                                                                                                                 | Medium   | Cost<br>included in<br>R6 <sup>2</sup> |  |  |
| P7                | Evergreen Road from<br>Stacy Allison Way to<br>Boean Lane   | Sidewalks -<br>Fill in gaps | Fill in the gaps                                                                                                                                                      | High     | \$200,000                              |  |  |
| P8                | Boones Ferry Road from<br>northern UGB to Hazelnut<br>Drive | New<br>sidewalks            | Install new sidewalks on one side                                                                                                                                     | Medium   | \$150,000                              |  |  |
| P9                | Settlemier Avenue from<br>Oak Street to Parr Road           | New<br>sidewalks            | Install new sidewalks on one side. This project improves safe routes to school for Nellie Muir Elementary School, Heritage Elementary School, and Valor Middle School | High     | \$300,000                              |  |  |

| Project<br>Number | Location                                                    | Туре                        | Description                                                                                                               | Priority | Cost<br>Estimate <sup>3</sup>           |
|-------------------|-------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------|
| P10               | Boones Ferry Road from<br>Parr Road to southern<br>UGB      | New<br>sidewalks            | Install new sidewalks. This project improves safe routes to school for Heritage Elementary School and Valor Middle School | High     | \$800,000                               |
| P11               | Front Street from<br>northern UGB to Hazelnut<br>Drive      | New<br>sidewalks            | Install new sidewalks on one side. This project improves safe routes to school for Woodburn High School                   | High     | \$400,000                               |
| P12               | Young Street                                                | Sidewalks -<br>Fill in gaps | Fill in the gaps                                                                                                          | Medium   | \$200,000                               |
| P13               | OR 211 from OR 99E to eastern UGB                           | New<br>sidewalks            | Install new sidewalks in coordination with ODOT                                                                           | Medium   | \$500,000                               |
| Service Col       | lectors                                                     |                             |                                                                                                                           |          |                                         |
| P14               | Hayes Street from Harvard<br>Drive to Settlemier<br>Avenue  | Sidewalks -<br>Fill in gaps | Fill in the gaps. This project improves safe routes to school for Nellie Muir Elementary School                           | High     | \$600,000                               |
| P15               | Parr Road from western<br>UGB to western City<br>Boundary   | New<br>sidewalks            | Install new sidewalks. This project improves safe routes to school for Heritage Elementary School and Valor Middle School | High     | Cost<br>included in<br>R5 <sup>2</sup>  |
| P16               | Lincoln Street from<br>Cascade Drive to OR 99E              | Sidewalks -<br>Fill in gaps | Fill in the gaps. This project improves safe routes to school for Washington Elementary School                            | High     | \$450,000                               |
| P17               | Industrial Avenue from<br>Progress Way to OR 99E            | New<br>sidewalks            | Install new sidewalks                                                                                                     | Medium   | \$500,000                               |
| P18               | Progress Way from<br>Industrial Avenue to OR<br>214         | New<br>sidewalks            | Install new sidewalks                                                                                                     | Medium   | \$850,000                               |
| P19               | Hardcastle Avenue from<br>Front Street to Cooley<br>Road    | Sidewalks -<br>Fill in gaps | Fill in the gaps. This project improves safe routes to school for Washington Elementary School                            | High     | \$450,000                               |
| P20               | Brown Street from<br>Cleveland Street to end of<br>roadway  | Sidewalks -<br>Fill in gaps | Fill in the gaps                                                                                                          | Medium   | Cost<br>included in<br>R7 <sup>2</sup>  |
| P21               | Cooley Road from OR 211<br>to Hardcastle Avenue             | Sidewalks -<br>Fill in gaps | Fill in the gaps                                                                                                          | Medium   | \$650,000                               |
| Access Stre       | eets                                                        |                             |                                                                                                                           |          |                                         |
| P22               | Woodland Avenue from<br>Jory Street to Arney Road           | New<br>sidewalks            | Install new sidewalks on one side                                                                                         | Medium   | \$250,000                               |
| P23               | Stubb Road from Harvard<br>Drive to Parr Road               | New<br>sidewalks            | Install new sidewalks                                                                                                     | Medium   | Cost<br>included in<br>R26 <sup>2</sup> |
| P24               | Oregon Way from Country<br>Club Road to OR 214              | New<br>sidewalks            | Install new sidewalks                                                                                                     | Medium   | \$250,000                               |
| P25               | Hazelnut Drive from<br>Graystone Drive to Front<br>Street   | Sidewalks -<br>Fill in gaps | Fill in the gaps. This project improves safe routes to school for Woodburn High School                                    | High     | \$150,000                               |
| P26               | Gatch Street from<br>Hardcastle Road to<br>Cleveland Street | Sidewalks -<br>Fill in gaps | Fill in the gaps. This project improves safe routes to school for Washington Elementary School                            | High     | \$350,000                               |
| P27               | Park Avenue from<br>Hardcastle Avenue to<br>Lincoln Street  | New<br>sidewalks            | Install new sidewalks on one side. This project improves safe routes to school for Washington Elementary School           | High     | \$65,000                                |
| Local Stree       | ets                                                         |                             |                                                                                                                           |          |                                         |
| P28               | Willow Avenue from<br>McNaught Road to OR 219               | New<br>sidewalks            | Install new sidewalks on both sides                                                                                       | Medium   | \$350,000                               |

| Project<br>Number | Location                                                      | Туре                                                 | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Priority | Cost<br>Estimate <sup>3</sup> |
|-------------------|---------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------|
| P29               | Cascade Drive from OR<br>214 to Hayes Street                  | New<br>sidewalks                                     | Install new sidewalks. This project improves safe routes to school for Nellie Muir Elementary School                                                                                                                                                                                                                                                                                                                                                                  | High     | \$400,000                     |
| P30               | Ben Brown Lane from end<br>of roadway to Boones<br>Ferry Road | Sidewalks -<br>Fill in gaps                          | Fill in the gaps                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Medium   | \$200,000                     |
| P31               | Oak Street from Boones<br>Ferry Road to Front Street          | New<br>sidewalks                                     | Install new sidewalks on one side                                                                                                                                                                                                                                                                                                                                                                                                                                     | Medium   | \$150,000                     |
| P32               | Ogle Street from<br>Cleveland Street to<br>Boones Ferry Road  | New<br>sidewalks                                     | Install new sidewalks on one side                                                                                                                                                                                                                                                                                                                                                                                                                                     | Medium   | \$900,000                     |
| Pedestrian        | Crossing Enhancements                                         |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                               |
| P33               | Front Street/Young Street                                     | Enhanced crossing                                    | Construct ADA-complaint ramps and sidewalks on the east leg of the intersection                                                                                                                                                                                                                                                                                                                                                                                       | Medium   | \$15,000                      |
| P34               | Front Street/Lincoln Street                                   | Enhanced crossing                                    | Construct ADA-complaint ramps and sidewalks on the east leg of the intersection. This project improves safe routes to school for St Luke's School                                                                                                                                                                                                                                                                                                                     | High     | \$15,000                      |
| P35               | Cascade Drive/Hayes<br>Street                                 | Enhanced<br>crossing                                 | Install an enhanced pedestrian crossing. This project improves safe routes to school for Nellie Muir Elementary School                                                                                                                                                                                                                                                                                                                                                | High     | \$65,000                      |
| P36               | Park Avenue/Legion Park<br>Driveway                           | Enhanced crossing                                    | Install an enhanced pedestrian crossing. This project improves access to Legion Park                                                                                                                                                                                                                                                                                                                                                                                  | Medium   | \$65,000                      |
| P37               | Hazelnut<br>Drive/Broadmoor Place<br>Accessway                | Enhanced crossing                                    | Install an enhanced pedestrian crossing. This project improves safe routes to school for Woodburn High School                                                                                                                                                                                                                                                                                                                                                         | High     | \$65,000                      |
| P38               | OR 214/N Bulldog Drive                                        | Enhanced crossing                                    | As identified in the Woodburn OR 214/OR 99E Pedestrian Safety Study, update the existing crossing to an enhanced pedestrian crossing with a pedestrian hybrid beacon coordinated with the surrounding traffic signals in coordination with ODOT. This project improves safe routes to school for Woodburn High School                                                                                                                                                 | High     | \$150,000                     |
| P39               | OR 99E from OR 214 to<br>Young Street                         | Enhanced<br>crossing –<br>Signalized<br>intersection | As identified in the Highway 99E Corridor Plan, install countdown pedestrian timers and construct ADA enhancements at key signalized intersections along OR 99E in coordination with ODOT, including:  OR 214/OR 211 Hardcastle Avenue Lincoln Road Young Street                                                                                                                                                                                                      | Medium   | \$605,000                     |
| P40               | OR 99E from OR 214 to<br>Young Street                         | Enhanced<br>crossing                                 | As identified in the Highway 99E Corridor Plan, install curb extensions on minor street legs of intersections (curb extensions to shorten pedestrian crossing distances parallel to OR 99E, not for crossing of OR 99E) between Arlington Street and Cleveland Street (up to 8 locations) in coordination with ODOT. Potential locations include:  • Alexandria Avenue • James Street • Williams Street • Blaine Street • Aztec Drive • Laurel Avenue • Tomlin Avenue | Medium   | \$950,000                     |

| Project<br>Number | Location                                                  | Туре                 | Description                                                                                                                                                                                                                                                                                                                                                                                                        | Priority | Cost<br>Estimate <sup>3</sup> |
|-------------------|-----------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------|
| P41               | OR 99E, north of Williams<br>Street                       | Enhanced crossing    | As identified in the Woodburn OR 214/OR 99E Pedestrian Safety Study, install an enhanced pedestrian crossing in coordination with ODOT, that may include raised median refuge island, sidewalk infill, supplemental street lighting, and a potential RRFB (RRFB cost not included).                                                                                                                                | High     | \$75,000                      |
| P42               | OR 99E, between NE<br>Laurel Avenue and Tomlin<br>Avenue  | Enhanced crossing    | As identified in the Woodburn OR 214/OR 99E Pedestrian Safety Study, install an enhanced pedestrian crossing in coordination with ODOT, that may include raised median refuge island, sidewalk infill, supplemental street lighting, and a potential RRFB (RRFB cost not included).                                                                                                                                | High     | \$75,000                      |
| P43               | OR 99E, between Blaine<br>Street and Aztec Drive          | Enhanced crossing    | As identified in the Woodburn OR 214/OR 99E Pedestrian Safety Study, install an enhanced pedestrian crossing in coordination with ODOT, that may include raised median refuge island, sidewalk infill, supplemental street lighting, and a potential RRFB (RRFB cost not included).                                                                                                                                | High     | \$75,000                      |
| P44               | OR 99E, north of Mount<br>Jefferson Avenue                | Enhanced crossing    | As identified in the Woodburn OR 214/OR 99E Pedestrian Safety Study, install an enhanced pedestrian crossing in coordination with ODOT, that may include raised median refuge island, sidewalk infill, supplemental street lighting, and a potential RRFB (RRFB cost not included).                                                                                                                                | Medium   | \$75,000                      |
| P45               | OR 99E, north of James<br>Street                          | Enhanced crossing    | As identified in the Woodburn OR 214/OR 99E Pedestrian Safety Study, install an enhanced pedestrian crossing in coordination with ODOT, that may include raised median refuge island, sidewalk infill, supplemental street lighting, and a potential RRFB (RRFB cost not included).                                                                                                                                | Medium   | \$75,000                      |
| P46               | Boones Ferry<br>Road/Constitution<br>Avenue/Tukwila Drive | Enhanced crossing    | Install an enhanced pedestrian crossing. This project improves safe routes to school for Woodburn High School                                                                                                                                                                                                                                                                                                      | High     | \$65,000                      |
| Multi-use         | Pathways                                                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                               |
| P47               | Mill Creek Greenway                                       | Multi-use<br>pathway | As identified in the Mill Creek Greenway Master Plan, construct a multi-use path including at-grade mid-block crossing treatments at the following street connections:  • Hazelnut Drive • Bulldog Drive (east crossing) • OR 214 (state highway) • Hardcastle Avenue • Lincoln Street • Young Street • Cleveland Street and railroad tracks  This project improves safe routes to school for Woodburn High School | High     | \$2,000,000                   |


| Project<br>Number | Location                                       | Туре                 | Description                                                                                                                                                                                                                                                                                                                                                                | Priority | Cost<br>Estimate <sup>3</sup> |
|-------------------|------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------|
| P48               | Mill Creek Greenway –<br>Northern tributary    | Multi-use<br>pathway | As identified in the Mill Creek Greenway Master Plan, construct a multi-use path including at-grade mid-block crossing treatments at the following street connections:  Bulldog Drive (west crossing)  Meridian Drive Boones Ferry Road  This project improves safe routes to school for Woodburn High School, Lincoln Elementary School, and French Prairie Middle School | Medium   | \$700,000                     |
| P49               | Mill Creek Greenway –<br>Western tributary     | Multi-use<br>pathway | As identified in the Mill Creek Greenway Master Plan, construct a multi-use path including at-grade mid-block crossing treatments at the following street connections:  Parr Road Ben Brown Lane Settlemier Avenue Front Street and railroad tracks  This project improves safe routes to school for Heritage Elementary School and Valor Middle School                    | Medium   | \$900,000                     |
| P50               | Evergreen Road Multi-Use<br>Path               | Multi-use<br>pathway | Construct a multi-use path extending from Evergreen<br>Road south to planned Mill Creek Greenway                                                                                                                                                                                                                                                                           | Medium   | \$150,000                     |
| P51               | Washington Elementary<br>School Multi-Use Path | Multi-use<br>pathway | As identified in the Highway 99E Corridor Plan, construct a north-south multi-use path connection between Hardcastle Avenue and Lincoln Street, west of Washington Elementary School. This project improves safe routes to school for Washington Elementary School                                                                                                         | Medium   | \$90,000                      |
| P52               | Mill Creek Greenway -<br>Southern extension    | Multi-use<br>pathway | As identified in the Highway 99E Corridor Plan, construct extension of Mill Creek Greenway multi-use path to Belle Passi Road                                                                                                                                                                                                                                              | Medium   | \$90,000                      |
| P53               | Evergreen Road<br>Pedestrian Connection        | Multi-use<br>pathway | Construct a connection between the Evergreen Road multi-use path and pedestrian facilities that are part of future development to the south                                                                                                                                                                                                                                | Medium   | \$20,000                      |
| P54               | Centennial Park Pedestrian Connection          | Multi-use<br>pathway | Construct a connection between the Centennial Park multi-use path and pedestrian facilities that are part of future development to the west                                                                                                                                                                                                                                | Medium   | \$20,000                      |
| P55               | Santiam Drive Pedestrian<br>Connection         | Multi-use<br>pathway | Construct a connection between Santiam Drive and pedestrian facilities that are part of future development to the south                                                                                                                                                                                                                                                    | Medium   | \$20,000                      |
| Off-street        | I<br>Improvements                              | <u> </u>             |                                                                                                                                                                                                                                                                                                                                                                            | <u> </u> |                               |
| P56               | June Way Accessway                             | Accessway            | As identified in the Highway 99E Corridor Plan and in coordination with ODOT, install a new accessway to OR 99E (near the Audrey Way intersection), may not connect directly as it runs parallel to OR 99E                                                                                                                                                                 | Low      | \$80,000                      |
| P57               | Johnson Street Accessway                       | Accessway            | As identified in the Highway 99E Corridor Plan and in coordination with ODOT, install a new accessway to OR 99E                                                                                                                                                                                                                                                            | Low      | \$45,000                      |

| Project<br>Number              | Location                 | Туре       | Description                                                                                                                                                                                                        | Priority | Cost<br>Estimate <sup>3</sup> |
|--------------------------------|--------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------|
| P58                            | Elm Street Accessway     | Accessway  | As identified in the Highway 99E Corridor Plan and in coordination with ODOT, install a new accessway to OR 99E, may not connect directly as it runs parallel to OR 99E                                            | Low      | \$25,000                      |
| P59                            | Wilson Street Accessway  | Accessway  | As identified in the Highway 99E Corridor Plan and in coordination with ODOT, install a new accessway to OR 99E                                                                                                    | Low      | \$55,000                      |
| P60                            | Hawley Street Accessway  | Accessway  | As identified in the Highway 99E Corridor Plan and in coordination with ODOT, install a new accessway to OR 99E (possibly part of future street extension), may not connect directly as it runs parallel to OR 99E | Low      | \$55,000                      |
| P61                            | A Street Accessway       | Accessway  | Install a new accessway that connects A Street north to Cleveland Street and/or Mill Creek Greenway (western tributary).                                                                                           | Low      | \$25,000                      |
| P62 <sup>1</sup>               | City-wide                | Wayfinding | Provide wayfinding to bike routes, multi-use paths, parks, schools, and other essential destinations                                                                                                               | Medium   | \$30,000                      |
| TOTAL High Priority Costs      |                          |            |                                                                                                                                                                                                                    |          | \$6,750,000                   |
| TOTAL Medium Priority Costs    |                          |            |                                                                                                                                                                                                                    |          | \$10,300,000                  |
|                                | TOTAL Low Priority Costs |            |                                                                                                                                                                                                                    |          |                               |
| TOTAL Program Costs (20 years) |                          |            |                                                                                                                                                                                                                    |          | \$17,335,000                  |

- 1. Project not shown on Pedestrian Plan Map
- 2. Cost estimates are not included for projects that would be completed as part of a roadway project, such as locations where roadway widening will relocate the curb and require new sidewalks to be installed. The cost for these projects is included in the corresponding roadway projects described later in the memo.
- 3. The cost estimates presented to not include costs associated with right-of-way acquisition due to its high variability depending on location, parcel sizes, and other characteristics.

Woodburn TSP Update

June 2019



### **ROADWAY PLAN**

The street system within Woodburn is largely built-out within the city boundary, and there are few opportunities to construct new roadways unless initiated by new development and zone changes. However, there are several operational issues under existing and projected future traffic conditions. Therefore, the roadway plan includes projects based on street system connectivity, capacity of key intersections and segments, and safety.

### **Functional Classification**

The proposed change to the functional classification of roadways within Woodburn was determined based on a review of the existing Woodburn TSP and expected development in southwest Woodburn. Table 4 summarizes the proposed change in functional classification.

**Table 4: Proposed Change in Functional Classification** 

| Street                                        | Segment | Existing Classification | Future Classification |
|-----------------------------------------------|---------|-------------------------|-----------------------|
| Ben Brown Lane Settlemier Avenue to Elans Way |         | Local                   | Access                |

### Street System Connectivity

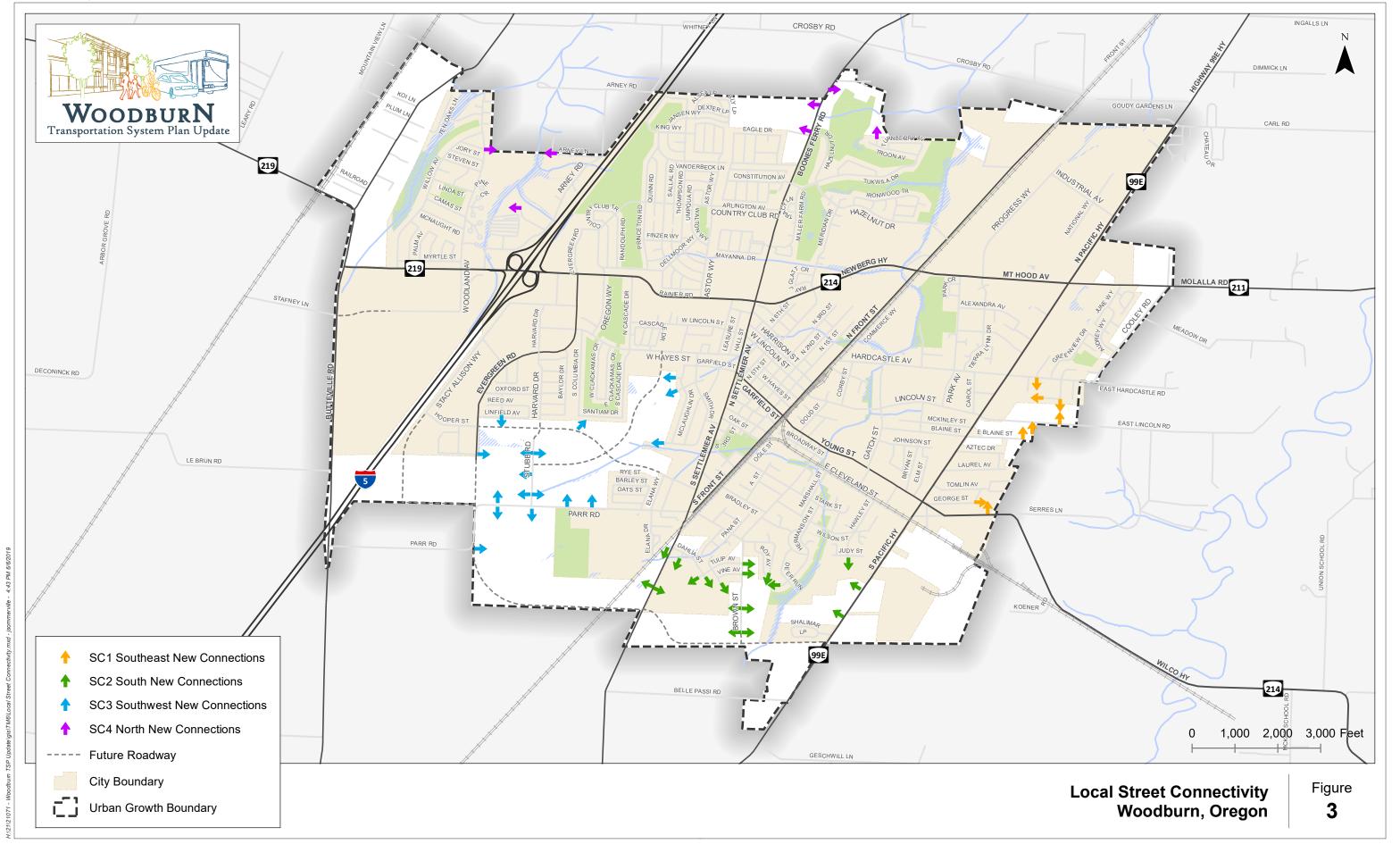

As indicated above, the street system within Woodburn is largely built-out. Therefore, there are limited opportunities for new arterial, Service Collector, or Access Streets. However, there are opportunities for new local streets in select areas throughout the city that could improve access and circulation for all travel modes.

Figure 3 illustrates the general location of the local street connections identified for the Woodburn TSP update. Roadway alignments for each connection are not provided as they are anticipated to be determined as part of future development. Table 5 summarizes the connections and identifies their priority based on the project evaluation criteria. Costs are not provided for these projects as they are anticipated to be constructed by future development. Any local street connectivity projects that are desired to be city-initiated projects should be identified as a high priority and included in the cost-constrained plan.

# **Table 5: Street Connections by Priority**

| Project<br>Number | Location           | Туре              | Description                                                               | Priority |
|-------------------|--------------------|-------------------|---------------------------------------------------------------------------|----------|
| SC1               | Southeast Woodburn | New<br>connection | Fill in the local street network as low-density residential growth occurs | Medium   |
| SC2               | South Woodburn     | New connection    | Fill in the local street network as low-density residential growth occurs | Medium   |
| SC3               | Southwest Woodburn | New connection    | Fill in the local street network as low-density residential growth occurs | Medium   |
| SC4               | North Woodburn     | New connection    | Fill in the local street network as low-density residential growth occurs | Medium   |

Woodburn TSP Update
June 2019



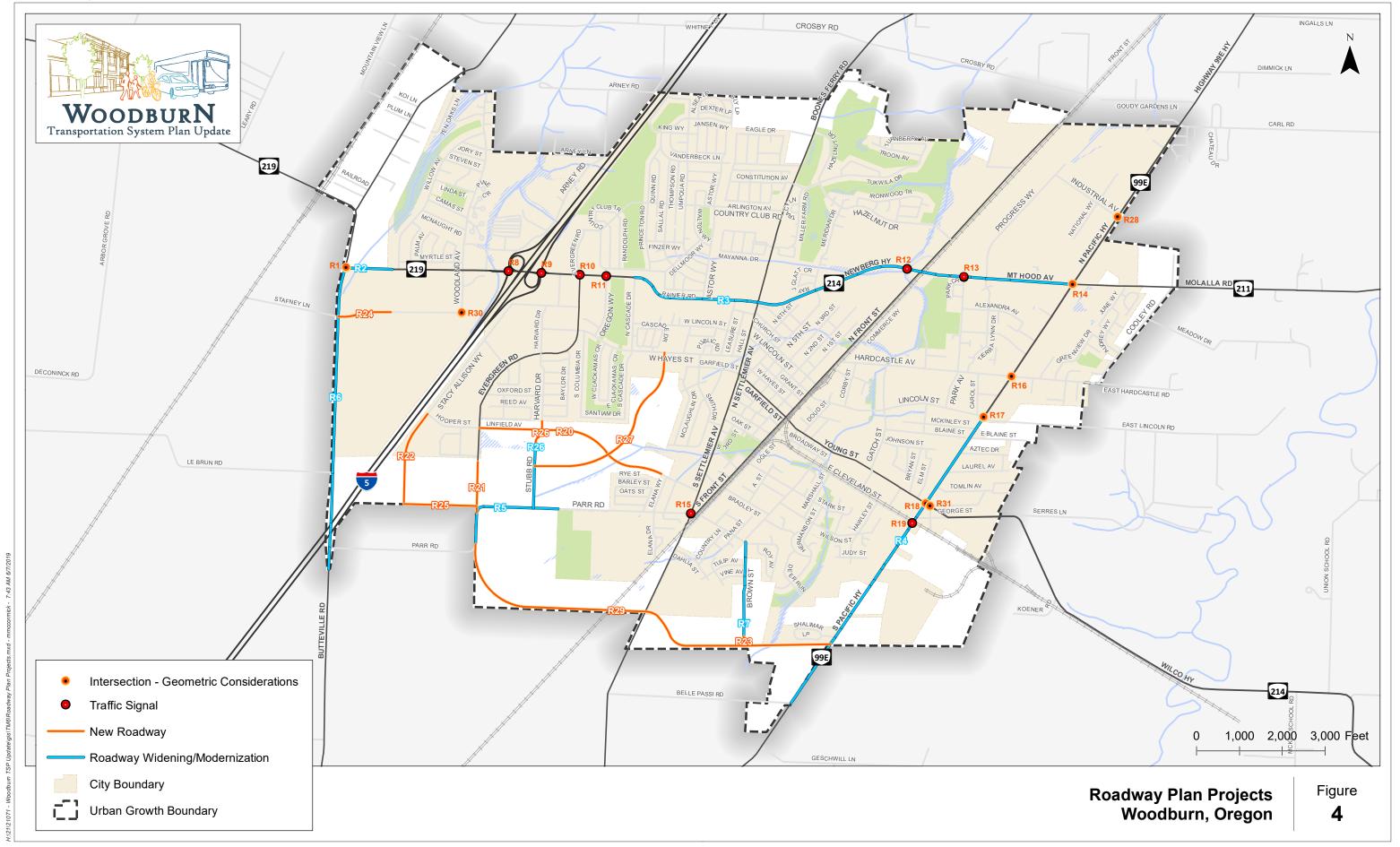
# **Roadway Capacity**

The roadway capacity projects developed for the Woodburn TSP update are summarized in Table 6 and shown in Figure 4. These projects are intended to address existing and projected future transportation system needs for motor vehicles as well as all other modes of transportation that depend on the roadway system for travel, such as pedestrians, bicyclists, transit users, and truck freight.

**Table 6: Roadway Plan Projects** 

| Project<br>Number | Location                                                  | Туре                                          | Description                                                                                                                                                                                                                                                                           | Priority | Cost Estimate <sup>2</sup>                            |
|-------------------|-----------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------|
| R1                | Southern OR<br>219/Butteville Road<br>Intersection        | Intersection -<br>geometric<br>considerations | Enhanced traffic control (traffic signal, roundabout, or other appropriate geometric enhancements) in coordination with ODOT                                                                                                                                                          | High     | \$2,750,000                                           |
| R2                | OR 219 from Butteville<br>Road to Willow Road             | Street design                                 | Widen roadway to include two lanes in each direction and a two-way left-turn lane (in conjunction with pedestrian and bicycle facility improvements) in coordination with ODOT                                                                                                        | High     | \$1,700,000<br>(Cost includes B1<br>and P1)           |
| R3                | OR 214 from Cascade<br>Drive to OR 99E                    | Street design                                 | Widen roadway to include two lanes in each direction and a two-way left-turn lane, including changes to signal timing as appropriate, in coordination with ODOT (and in conjunction with bicycle facility improvements)                                                               | Medium   | \$20,300,000<br>(Cost includes B2)                    |
| R4                | OR 99E from Lincoln<br>Street to south UGB                | Street design                                 | As identified in the Highway 99E Corridor Plan, widen roadway to provide a continuous two-way left-turn lane and wider shoulders, including changes to signal timing as appropriate, in coordination with ODOT (and in conjunction with pedestrian and bicycle facility improvements) | Medium   | \$12,300,000<br>(Cost includes B3,<br>B4, P3, and P4) |
| R5                | Parr Road from<br>western UGB to<br>western City Boundary | Street design                                 | Upgrade to Service Collector urban standards including bicycle and pedestrian enhancements                                                                                                                                                                                            | Low      | \$0 <sup>1</sup><br>(Project includes<br>B21 and P15) |
| R6                | Butteville Road from<br>OR 219 to southern<br>UGB         | Street design                                 | Upgrade to Minor Arterial urban standards including bicycle and pedestrian enhancements                                                                                                                                                                                               | Low      | \$0 <sup>1</sup><br>(Project includes<br>B7 and P6)   |
| R7                | Brown Street from<br>Comstock Avenue to<br>end of roadway | Street design                                 | Upgrade to Service Collector urban standards including bicycle and pedestrian enhancements                                                                                                                                                                                            | Low      | \$0 <sup>1</sup><br>(Project includes<br>P20)         |
| R8                | OR 214/I-5 Southbound<br>Ramp Intersection                | Traffic signal                                | Investigate corridor signal timing and coordination adjustments in coordination with ODOT                                                                                                                                                                                             | Medium   | \$15,000                                              |
| R9                | OR 214/I-5 Northbound<br>Ramp Intersection                | Traffic signal                                | Investigate corridor signal timing and coordination adjustments in coordination with ODOT                                                                                                                                                                                             | Medium   | \$15,000                                              |
| R10               | OR 214/Evergreen<br>Road Intersection                     | Traffic signal                                | Investigate corridor signal timing and coordination adjustments in coordination with ODOT                                                                                                                                                                                             | Medium   | \$15,000                                              |
| R11               | OR 214/Oregon<br>Way/Country Club<br>Road Intersection    | Traffic signal                                | Investigate corridor signal timing and coordination adjustments in coordination with ODOT                                                                                                                                                                                             | Medium   | \$15,000                                              |
| R12               | OR 214/Front Street<br>Ramp Intersection                  | Traffic signal                                | Install intersection capacity improvement such as traffic signal (if warranted), turn lanes, or roundabout in coordination with ODOT                                                                                                                                                  | Medium   | \$500,000                                             |
| R13               | OR 214/Park Street<br>Intersection                        | Traffic signal                                | Install intersection capacity improvement such as traffic signal (if warranted), turn lanes, or roundabout in coordination with ODOT                                                                                                                                                  | Medium   | \$500,000                                             |

| Project<br>Number | Location                                           | Туре                                          | Description                                                                                                                                                                                                                                                             | Priority | Cost Estimate <sup>2</sup> |
|-------------------|----------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------|
| R14               | OR 214/OR 211/OR 99E<br>Intersection               | Intersection -<br>geometric<br>considerations | Install a second left-turn lane on the southbound approach, install a second receiving lane on the east leg, and update signal timing in coordination with ODOT                                                                                                         | Medium   | \$900,000                  |
| R15               | Parr Road/Settlemier<br>Avenue Intersection        | Traffic signal                                | Install intersection capacity improvement such as traffic signal (if warranted), turn lanes, or roundabout                                                                                                                                                              | Low      | \$500,000                  |
| R16               | OR 99E/Hardcastle<br>Avenue Intersection           | Intersection -<br>geometric<br>considerations | Reconfigure the westbound approach to incorporate one left-turn lane and one thru-right turn lane in coordination with ODOT                                                                                                                                             | Medium   | \$20,000                   |
| R17               | OR 99E/Lincoln Street<br>Intersection              | Intersection -<br>geometric<br>considerations | Install a shared through-right turn lane on the eastbound approach and reconfigure the existing approach lane as a separate left-turn lane in coordination with ODOT                                                                                                    | Medium   | \$500,000                  |
| R18               | OR 99E/Young Street<br>Intersection                | Intersection -<br>geometric<br>considerations | As identified in the Highway 99E Corridor Plan, install a third westbound lane to provide separate left, thru, and right turn lanes in coordination with ODOT. Implement protected-permissive left-turn phasing on the eastbound and westbound approaches.              | Medium   | \$550,000                  |
| R19               | OR 99E/Cleveland<br>Street Intersection            | Traffic signal                                | Install intersection capacity improvement such as traffic signal (if warranted), turn lanes, or roundabout in coordination with ODOT. Consideration should be given to railroad preemption and the proximity to the signalized intersection at OR 99E and Young Street. | Medium   | \$500,000                  |
| R20               | Ben Brown Lane                                     | New roadway                                   | Extend Ben Brown Lane to Evergreen Road as an Access Street                                                                                                                                                                                                             | Medium   | \$5,100,000                |
| R21               | Evergreen Road                                     | New roadway                                   | Extend south to Parr Road                                                                                                                                                                                                                                               | High     | \$4,750,000                |
| R22               | Stacy Allison Way                                  | New roadway                                   | Extend south to UGB                                                                                                                                                                                                                                                     | Medium   | \$7,300,000                |
| R23               | Brown Street                                       | New roadway                                   | Extend south to the South Arterial                                                                                                                                                                                                                                      | Medium   | \$800,000                  |
| R24               | Woodland Avenue                                    | New roadway                                   | Extend west to Butteville Road                                                                                                                                                                                                                                          | Medium   | \$2,450,000                |
| R25               | East-west Connection<br>in Southwest<br>Woodburn   | New roadway                                   | Construct a new Local Industrial Street connecting the southern extensions of Stacy Allison Way and Evergreen Road                                                                                                                                                      | Medium   | \$1,800,000                |
| R26               | Stubb Road from<br>Harvard Drive to Parr<br>Road   | Street design<br>and new<br>roadway           | Upgrade the existing roadway to Access Street standards and extend north to Harvard Drive including bicycle and pedestrian enhancements                                                                                                                                 | Medium   | \$1,900,000                |
| R27               | North-south<br>Connection in<br>Southwest Woodburn | New roadway                                   | Construct a new Access Street connecting Hayes<br>Street to Stubb Street                                                                                                                                                                                                | Medium   | \$5,150,000                |
| R28               | OR 99E/Industrial<br>Avenue Intersection           | Intersection -<br>geometric<br>considerations | Evaluate the intersection layout, control, signing, and striping, including any sight distance constraints in coordination with ODOT                                                                                                                                    | Medium   | \$100,000                  |
| R29               | South Arterial                                     | New roadway                                   | Construct the Southern Arterial from Evergreen<br>Road to OR 99E (2 lanes)                                                                                                                                                                                              | Medium   | \$12,250,000               |


| Project<br>Number              | Location                                                     | Туре                                          | Description                                                                                                                                                                      | Priority    | Cost Estimate <sup>2</sup> |
|--------------------------------|--------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------|
| R30                            | Woodland Avenue<br>Curve Modification                        | Intersection -<br>geometric<br>considerations | Modify the intersection layout to address truck turning movement constraints                                                                                                     | Medium      | \$100,000                  |
| R31                            | George Street/Hillsboro<br>Silverton Highway<br>Intersection | Intersection -<br>geometric<br>considerations | As identified in the Highway 99E Corridor Plan, close vehicular access to George Street from Hillsboro Silverton Highway when future local street access is provided to the east | Medium      | \$60,000                   |
|                                |                                                              |                                               | TOTAL High Pri                                                                                                                                                                   | ority Costs | \$9,200,000                |
|                                | TOTAL Medium Priority Costs                                  |                                               |                                                                                                                                                                                  |             |                            |
| TOTAL Low Priority Costs       |                                                              |                                               |                                                                                                                                                                                  |             | \$500,000                  |
| TOTAL Program Costs (20 years) |                                                              |                                               |                                                                                                                                                                                  |             | \$82,840,000               |

<sup>1.</sup> Project to be funded by others

<sup>2.</sup> The cost estimates presented to not include costs associated with right-of-way acquisition due to its high variability depending on location, parcel sizes, and other characteristics.

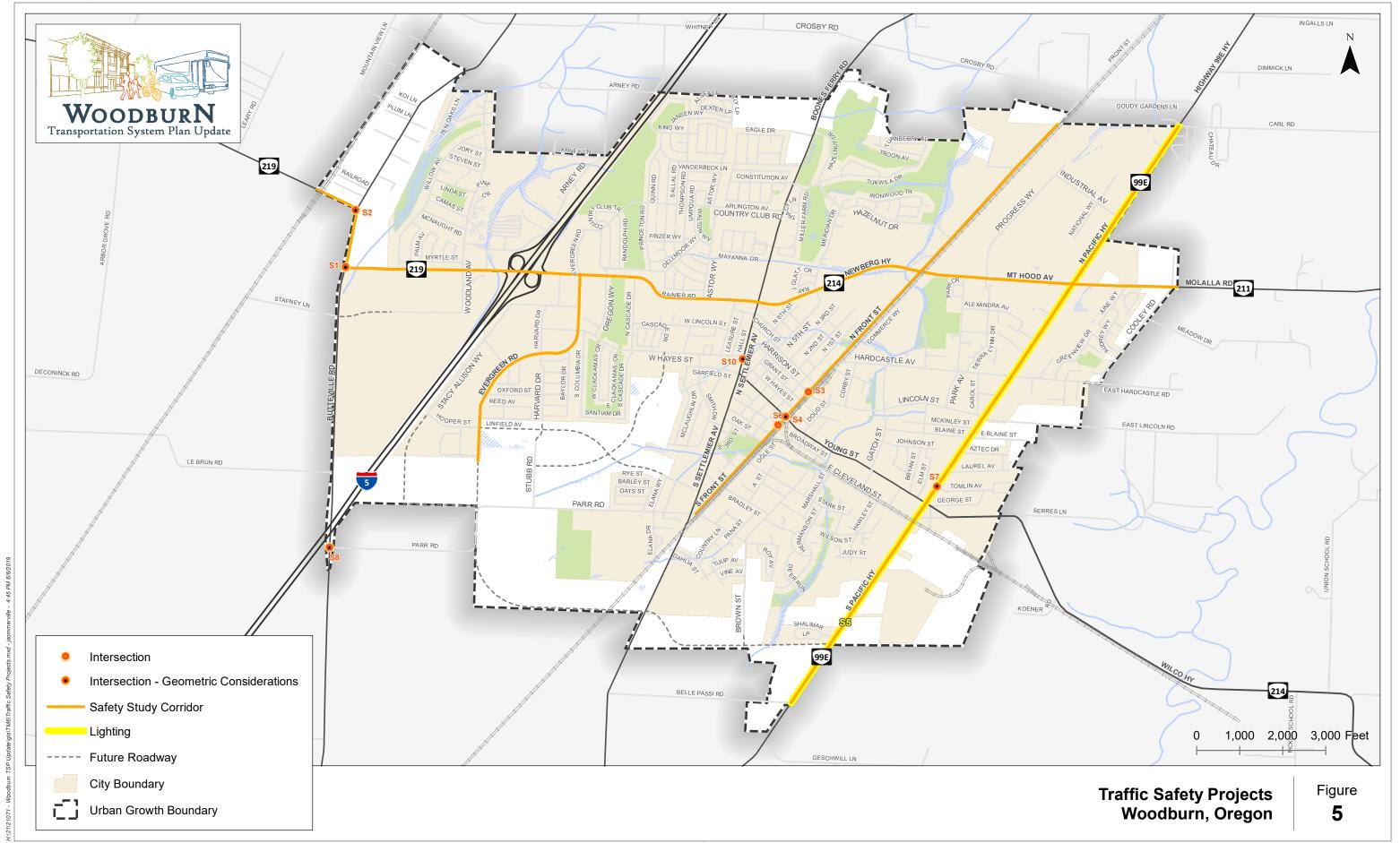
Woodburn TSP Update

June 2019



## **Traffic Safety**

Traffic safety has a significant impact on how people use the transportation system within Woodburn, particularly in areas where real or perceived safety risks prevent people from using more active travel modes, such as walking, biking, and taking transit. The traffic safety solutions identified in *Tech Memo 5* are largely focused on systemic issues that occur along roadways and at intersections throughout the city. Table 6 identifies the traffic safety projects that will be included in the Woodburn TSP update. Additional safety projects and improvements were identified as part of the pedestrian, bicycle, transit, and motor vehicle plans earlier in this memorandum. Figure 5 illustrates the traffic safety plan projects.


**Table 7: Traffic Safety Projects** 

| Project<br>Number | Location                                                         | Туре                                          | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Priority | Cost Estimate <sup>2</sup>               |
|-------------------|------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------|
| S1                | Southern OR<br>219/Butteville Road                               | Intersection -<br>geometric<br>considerations | Enhanced traffic control (traffic signal, roundabout, or other appropriate geometric enhancements) if/when warranted and in coordination with ODOT                                                                                                                                                                                                                                                                                                                                                                                         | High     | Cost included in R1                      |
| S2                | Northern OR<br>214/Butteville Road<br>Intersection               | Intersection -<br>geometric<br>considerations | Enhanced traffic control (traffic signal, roundabout, or other appropriate geometric enhancements) if/when warranted and in coordination with ODOT                                                                                                                                                                                                                                                                                                                                                                                         | Medium   | \$500,000 to<br>\$2,000,000 <sup>1</sup> |
| S3                | Front Street/Lincoln<br>Street Intersection                      | Intersection                                  | Enhanced signs and pavement markings (e.g. stop signs, warning signs, and/or beacons)                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Medium   | \$50,000                                 |
| S4                | Front Street/Young<br>Street/Garfield Street<br>Intersection     | Intersection -<br>geometric<br>considerations | Evaluate the intersection layout, signing, and striping in correlation to the railroad tracks.  Provide clarification for westbound drivers trying to proceed through the intersection                                                                                                                                                                                                                                                                                                                                                     | Medium   | \$100,000                                |
| S5                | OR 99E                                                           | Lighting                                      | As identified in the Highway 99E Corridor Plan,<br>update roadway lighting to meet ODOT roadway<br>lighting standards in coordination with ODOT                                                                                                                                                                                                                                                                                                                                                                                            | Medium   | \$2,150,000                              |
| \$ <b>6</b>       | OR 99E access<br>between Young<br>Street and Cleveland<br>Street | Intersection                                  | As identified in the Highway 99E Corridor Plan and in coordination with ODOT:  Restrict left-turn movements and eventually close the Silverton Avenue intersection on OR 99E and vacate the segment of Silverton Avenue between OR 99E and Birds Eye Avenue  Restrict left-turn movements onto Birds Eye Avenue from Hillsboro Silverton Highway and eventually close the Birds Eye Avenue intersection on Hillsboro Silverton Highway and vacate the segment of Birds Eye Avenue between Hillsboro Silverton Highway and Silverton Avenue | Medium   | \$60,000                                 |
| S7                | OR 99E/Tomlin<br>Avenue                                          | Intersection -<br>geometric<br>considerations | Evaluate the intersection layout, signing, and striping in coordination with ODOT, including any sight distance constraints. Consider restricting the southbound left-turn movement                                                                                                                                                                                                                                                                                                                                                        | High     | \$100,000                                |
| S8                | Butteville Road/Parr<br>Road                                     | Intersection -<br>geometric<br>considerations | Modify intersection to address existing sight distance and geometric limitations                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Medium   | \$100,000,000                            |

| Project<br>Number              | Location                          | Туре                                          | Description                                                                                                                                       | Priority    | Cost Estimate <sup>2</sup>               |  |
|--------------------------------|-----------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------|--|
| \$9                            | City-wide                         | Study                                         | Evaluate traffic safety along OR 99E, OR 219/OR214, Front Street, Evergreen Road, and other key corridors to identify appropriate countermeasures | Low         | \$100,000                                |  |
| S10                            | Settlemier<br>Avenue/Hayes Street | Intersection -<br>geometric<br>considerations | Enhanced traffic control (traffic signal, roundabout, or other appropriate geometric enhancements)                                                | High        | \$500,000 to<br>\$2,000,000 <sup>1</sup> |  |
|                                |                                   |                                               | TOTAL High Pri                                                                                                                                    | ority Costs | \$2,100,000                              |  |
|                                | TOTAL Medium Priority Costs       |                                               |                                                                                                                                                   |             |                                          |  |
| TOTAL Low Priority Costs       |                                   |                                               |                                                                                                                                                   |             | \$100,000                                |  |
| TOTAL Program Costs (20 years) |                                   |                                               |                                                                                                                                                   |             |                                          |  |

<sup>1.</sup> A cost estimate range is provided to allow for a design project to determine the appropriate intersection control using additional data, such as right-of-way information and surrounding environmental conditions. \$500,000 is the planning-level cost estimate if a traffic signal is determined, and \$2,000,000 is the planning-level cost estimate if a roundabout is determined. The higher cost estimate was included in all totals.

<sup>2.</sup> The cost estimates presented to not include costs associated with right-of-way acquisition due to its high variability depending on location, parcel sizes, and other characteristics.



### TRANSIT PLAN

Public transit can provide important connections to destinations for people that do not drive or bike and can provide an additional option for all transportation system users. Public transit complements walking, bicycling, or driving trips: users can walk to and from transit stops and their homes, shopping or work places, people can drive to park-and-ride locations to access a bus, or people can bring their bikes on transit vehicles and bicycle from a transit stop to their final destination.

Providing transit service in smaller cities is generally led by a local or regional transit agency and relies on appropriate land uses and densities that can support transit service. The city can plan for transit-supportive land use patterns and support future transit viability by designing and building streets that will comfortably accommodate transit stops and include the right-of-way that could allow for transit stops to be located as close as possible to important destinations in the city. At a minimum, a transit stop should be well-signed and have a comfortable space to wait. Benches and shelter from the weather can improve user comfort and including bike parking near bus stops allows people to leave their bike at one trip-end instead of taking it with them on the bus.

Public transit service within Woodburn is provided by Woodburn Transit Service, supplemented by regional service provided by Cherriots Regional and Canby Area Transit. In addition to coordinating as needed with local and regional transit agencies to help implement their planned service enhancements, the City of Woodburn can support improved transit service by providing easy and safe walking and bicycling connections between key roadways, neighborhoods, and local destinations; by providing amenities, such as shelters and benches, at transit stops; by encouraging an appropriate mix and density of uses that support public transit; and by providing and planning for park-and-ride locations. Table 8 summarizes the transit plan identified for Woodburn.

**Table 8: Transit Plan** 

| Project<br>Number | Location       | Agency<br>Responsible | Description                                                                                                                                                                                                                                                                                   | Priority | Cost Estimate |
|-------------------|----------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------|
| T1                | Woodburn Fleet | Woodburn<br>Transit   | Coordinate with Woodburn Transit to deliver service enhancements funded through the STIF:  Purchase of Category B and C vehicles (1 each) for use in the City's expanded transit services. (100% funding level 2020-21)                                                                       | Medium   | \$5,000       |
| T2                | Woodburn Fleet | Woodburn<br>Transit   | Coordinate with Woodburn Transit to deliver service enhancements funded through the STIF:  Purchase a Category B vehicle that will replace the second oldest full-size vehicle in the WTS fleet; will be used for the City's existing local fixed route circulator. (130% funding level 2021) | Medium   | \$5,000       |

| Project<br>Number | Location                                             | Agency<br>Responsible | Description                                                                                                                                                                                                                                                                                                                                                                                                                           | Priority | Cost Estimate    |
|-------------------|------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------|
| ТЗ                | Woodburn Fixed<br>Route                              | Woodburn<br>Transit   | Coordinate with Woodburn Transit to deliver service enhancements funded through the STIF:  Addition of weekend service for Woodburn Transit Service fixed route and paratransit services (Sat. 9am-5pm, Sun.9am-3pm) by up to 2,156 revenue hours (FY20-21). (100% funding level 2020-21)                                                                                                                                             | Medium   | \$5,000          |
| T4                | Woodburn Fixed<br>Route                              | Woodburn<br>Transit   | Coordinate with Woodburn Transit to deliver service enhancements funded through the STIF:  Modify the existing 60-minute fixed route loop; add an additional 30-minute route that will serve high frequency stops on weekdays (7am-7pm) within the Woodburn city limits. Total additional service will be up to 6,192 revenue hours (FY20-21). (100% funding level 2020-21)                                                           | Medium   | \$5,000          |
| T5                | Woodburn Fixed<br>Route                              | Woodburn<br>Transit   | Coordinate with Woodburn Transit to deliver service enhancements funded through the STIF:  Modify the existing 60-min. fixed route by adding a new 30 min. route that serves high frequency stops (up to 1,456 revenue hours); this service will operate Saturdays (9am-5pm) and Sundays (9am-3pm). Also includes Dial-a-Ride (DAR) service. (130% funding level 2020-21)                                                             | Medium   | \$5,000          |
| T6                | Woodburn Fixed<br>Route                              | Woodburn<br>Transit   | Increase frequency of existing route to 30 minutes                                                                                                                                                                                                                                                                                                                                                                                    | Medium   | \$0 <sup>1</sup> |
| Т7                | Woodburn Fixed<br>Route                              | Woodburn<br>Transit   | Convert existing route to two-way operations                                                                                                                                                                                                                                                                                                                                                                                          | Medium   | \$0 <sup>1</sup> |
| Т8                | City-wide                                            | Woodburn<br>Transit   | Work with Woodburn Transit as growth occurs to provide new or re-routed service to other areas of Woodburn including:  Parr Road via an extension of Evergreen Road Crosby Road Butteville Road The employment center southwest of the I-5/OR 214 interchange Woodburn Industrial Park along the Progress Way and Industrial Avenue corridors Gateway subarea between Front Street and Mill Creek Neighborhoods in southeast Woodburn | Medium   | \$5,000          |
| Т9                | Woodburn<br>Company Stores                           | Woodburn<br>Transit   | Coordinate with Woodburn Transit to establish a free shuttle between the Woodburn Company Stores and Downtown Woodburn, hourly during peak shopping and entertainment hours                                                                                                                                                                                                                                                           | Medium   | \$5,000          |
| T10               | City-wide                                            | Woodburn<br>Transit   | Coordinate with Woodburn Transit and major employers to establish a peak-only employer shuttle                                                                                                                                                                                                                                                                                                                                        | Medium   | \$5,000          |
| T11               | Urban and Rural<br>Cherriots<br>Regional<br>Services | Cherriots             | Coordinate with Cherriots to deliver service enhancements funded through the STIF:  Expand service for up to 7,557 revenue hours on urban & rural Regional services. Includes startup costs for hiring new employees, and coordination of schedules with connecting services. Also establishes a Youth fare category (ages 6-18).(100% funding level 2020-21)                                                                         | Medium   | \$5,000          |

| Project<br>Number              | Location                                             | Agency<br>Responsible                | Description                                                                                                                                                                                                                                                                                                                                  | Priority | Cost Estimate         |
|--------------------------------|------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------|
| T12                            | Keizer to<br>Wilsonville                             | Cherriots                            | Coordinate with Cherriots to deliver service enhancements funded through the STIF:  Establish one new Regional route from Keizer to Wilsonville with a stop at the Woodburn Memorial Park and Ride. Increase service on weekdays by 30 percent on urban & rural Regional services by up to 5,245 revenue hours. (130% funding level 2020-21) | Medium   | \$5,000               |
| T13                            | Urban and Rural<br>Cherriots<br>Regional<br>Services | Cherriots                            | Coordinate with Cherriots to deliver service enhancements funded through the STIF:  Add Saturday service to urban & rural Cherriots Regional services with up to 3,919 revenue hours of new service (FY20-21). Includes coordination of schedules with other connecting services. (100% funding level 2020-21)                               | Medium   | \$5,000               |
| T14                            | Urban and Rural<br>Cherriots<br>Regional<br>Services | Cherriots                            | Coordinate with Cherriots to deliver service enhancements funded through the STIF:  Add 30 percent more Saturday service to urban & rural Regional services by up to 215 revenue hours (FY20-21). In FY21, adds 6 holidays to the same routes. Includes coordination of schedules with connecting services. (130% funding level 2020-21)     | Medium   | \$5,000               |
| T15                            | City-wide                                            | Woodburn<br>Transit and<br>Cherriots | Coordinate transfers between the different agency services in Woodburn                                                                                                                                                                                                                                                                       | Medium   | \$5,000               |
| T16                            | Woodburn                                             | Cherriots                            | Coordinate with Cherriots to provide a stop in Woodburn for SMART Route 1X, providing service to WES station in Wilsonville and downtown Salem                                                                                                                                                                                               | Medium   | \$5,000               |
| T17                            | Woodburn to<br>Portland                              | Cherriots                            | Coordinate with Cherriots to consider further new service connections for Woodburn including:  Service to Portland - connect to TriMet via the Tualatin Park-and-Ride, directly into downtown Portland, or the MAX Orange Line light rail service.  Demand-responsive service to Hubbard one day per week                                    | Medium   | \$5,000               |
| T18                            | City-wide                                            | Woodburn<br>Transit and<br>Cherriots | Evaluate all bus stops to verify static bus route information signage is visible and accessible and that bike racks are available at major bus stops                                                                                                                                                                                         | Medium   | \$25,000              |
| T19                            | Stop 755016:<br>Walmart                              | Woodburn<br>Transit                  | New shelter                                                                                                                                                                                                                                                                                                                                  | Low      | \$5,000               |
| T20                            | Stop 20419:<br>Garfield Street                       | Woodburn<br>Transit                  | New shelter                                                                                                                                                                                                                                                                                                                                  | Low      | \$5,000               |
| T21                            | City-wide                                            | Woodburn<br>Transit                  | Investigate transferring the paratransit system to a local social service agency                                                                                                                                                                                                                                                             | Low      | \$5,000               |
| TOTAL High Priority Costs      |                                                      |                                      |                                                                                                                                                                                                                                                                                                                                              |          | \$0                   |
| TOTAL Medium Priority Costs    |                                                      |                                      |                                                                                                                                                                                                                                                                                                                                              |          | \$100,000<br>\$15,000 |
| TOTAL Drogger Costs (20 years) |                                                      |                                      |                                                                                                                                                                                                                                                                                                                                              |          |                       |
| TOTAL Program Costs (20 years) |                                                      |                                      |                                                                                                                                                                                                                                                                                                                                              |          |                       |

<sup>1.</sup> Project to be funded by others.

# TRANSPORTATION SYSTEM MANAGEMENT AND OPERATIONS (TSMO) PLAN

Transportation System Management and Operations (TSMO) is a set of integrated transportation solutions intended to improve the performance of existing transportation infrastructure. Transportation Demand Management (TDM) and Transportation System Management (TSM) strategies are two complementary approaches to managing transportation and maximizing the efficiency of the existing system. TDM addresses the *demand* on the system: the number of vehicles traveling on the roadways each day. TDM measures include any method intended to shift travel demand from single occupant vehicles to non-auto modes or carpooling, travel at less congested times of the day, etc. TSM addresses the *supply* of the system: using strategies to improve the system efficiency without increasing roadway widths or building new roads. TSM measures are focused on improving operations by enhancing capacity during peak times, typically with advanced technologies to improve traffic operations.

### Transportation System Management (TSM)

Transportation System Management (TSM) focuses on low cost strategies that can be implemented within the existing transportation infrastructure to enhance operational performance. Finding ways to better manage transportation while maximizing urban mobility and treating all modes of travel as a coordinated system is a priority. TSM strategies include traffic signal timing and phasing, traffic signal coordination, traffic calming, access management, local street connectivity and intelligent transportation systems (ITS). Traffic signal coordination and ITS typically provide the most significant tangible benefits to the traveling public. The primary focus of TSM measures are region-wide improvements, however there are a number of TSM measures that could be used in a smaller-scale environment such as within the City of Woodburn. TSM projects and programs that are recommended for the City of Woodburn to explore include the following:

- Update signal timing plans and coordinate signals to better match prevailing traffic conditions
  - OR 99E from Hardcastle Avenue to Young Street (or to the potential future Cleveland Street traffic signal) is one candidate corridor for coordination, as identified in the Highway 99E Corridor Plan
- Implement truck signal priority at key signalized intersections along OR 214 and OR 99E
- Work with ODOT to develop and implement a Traffic Management Plan for the OR 99E corridor that responds to increased congestion resulting from incidents on I-5 and regional events, as identified in the Highway 99E Corridor Plan

## Transportation Demand Management (TDM)

Transportation Demand Management (TDM) is a policy tool as well as a general term used to describe any action that removes single occupant vehicle trips from the roadway during peak travel demand periods. As growth in the City of Woodburn occurs, the number of vehicle trips and travel demand in the area will also increase. The ability to change a user's travel behavior and provide alternative mode choices will help accommodate this potential growth in trips.

Tech Memo 5 identifies several policies and programs that may be effective for managing transportation demand in the City of Woodburn, especially within the next 10 to 20 years. Table 10 summarizes the strategies that best meet the goals and objectives of the TSP update. As with all new public and private investments, the implementation of TDM strategies is sure to draw opposition from some. Given Woodburn's lack of experience with TDM strategies, it is important that decision-makers understand their long-term costs and benefits and are able evaluate these along-side arguments from opponents in achieving outcomes that best reflect the City's vision and goals while effectively reducing travel demand.

**Table 9: Transportation Demand Management Program Strategies** 

| Program/Project<br>Number   | Name                                            | Description                                                                                                                                                                                   | Priority | Cost Estimate |  |
|-----------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------|--|
| TDM1                        | Carpool/Vanpool Match<br>Services               | Coordinate a rideshare/carpool/vanpool program that regional commuters can use to find other commuters with similar routes to work                                                            | Low      | \$5,000/year  |  |
| TDM2                        | Carpool/Vanpool Parking<br>Program              | Coordinate with employers to designate carpool/vanpool preferential parking                                                                                                                   | Low      | \$5,000/year  |  |
| TDM3                        | Collaborative Marketing                         | Work with nearby cities, employers, transit service providers, and developers to collaborate on marketing for transportation options that provide an alternative to single-occupancy vehicles | Medium   | \$5,000/year  |  |
| TDM4                        | Limited and/or Flexible<br>Parking Requirements | Update the Woodburn Development Ordinance to include strategies that encourage multi-modal transportation                                                                                     | High     | \$25,000      |  |
| TDM5                        | Parking Management                              | Modify the City's current parking policy to allow for the potential to charge for parking                                                                                                     | Low      | \$10,000      |  |
| TDM6                        | Transit Fare Subsidies                          | Work with Woodburn Transit to provide transit fare subsidies                                                                                                                                  | Low      | \$5,000       |  |
| TDM7                        | Employer TDM Measures                           | Work with employers to encourage TDM measures such as allowing employees to work at home one day a week and scheduling shift changes to occur outside of peak travel periods                  | Low      | \$5,000/year  |  |
|                             | TOTAL High Priority Costs                       |                                                                                                                                                                                               |          |               |  |
| TOTAL Medium Priority Costs |                                                 |                                                                                                                                                                                               |          |               |  |
| TOTAL Low Priority Costs    |                                                 |                                                                                                                                                                                               |          |               |  |
|                             | TOTAL Program Costs (20 years)                  |                                                                                                                                                                                               |          |               |  |

### Other potential TDM projects include:

Encourage the development of high-speed communication in all part of the city (fiber optic, digital cable, DSL, etc). The objective would be to allow employers and residents the maximum opportunity to rely upon other systems for conducting business and activities than the transportation system during peak periods.

Encourage developments that effectively mix land uses to reduce vehicle trip generation. These plans may include development linkages (particularly non-auto) that support greater use of alternative modes.

#### Land Use

The types and intensities of land uses are closely correlated with travel demand. Land use patterns in many areas of the city are suburban in nature with low densities throughout the city and more industrial and commercial uses in the eastern part of the city near OR 99E. In the future the city will continue to have a mixture of housing and industrial densities, as well as areas of mixed-use development (i.e., a mix of residential, retail, commercial and/or office uses). *Tech Memo 5* identifies several land use strategies that could be implemented in Woodburn. Table 11 summarizes the strategies that best meet the goals and objectives of the TSP update.

**Table 10: Land Use Projects** 

| Project<br>Number | Name                              | Description                                                                                                                                                                                                                                      | Priority            | Cost Estimate    |  |
|-------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------|--|
| LU1               | Commercial and Mixed-use<br>Nodes | Establish neighborhood commercial and mixed-use nodes within the city                                                                                                                                                                            | Low                 | \$25,000         |  |
| LU2               | Alternative Mobility Standards    | Work with ODOT to develop alternative mobility standards at the I-5 interchange ramps                                                                                                                                                            | Low                 | \$25,000         |  |
| LU3               | Right-of-way Dedications          | Through development, right-of-way dedications should be provided to facilitate the future planned transportation system in the vicinity of the proposed development                                                                              | Low                 | \$0 <sup>1</sup> |  |
| LU4               | Half-street Improvements          | Through development, half-street improvements (sidewalks, curb and gutter, bicycle lanes/paths, and/or travel lanes) should be provided along all site frontages that do not have full buildout improvements in place at the time of development | High                | \$0 <sup>1</sup> |  |
|                   |                                   | TOTAL F                                                                                                                                                                                                                                          | ligh Priority Costs | \$0              |  |
|                   | TOTAL Medium Priority Costs       |                                                                                                                                                                                                                                                  |                     |                  |  |
|                   | TOTAL Low Priority Costs          |                                                                                                                                                                                                                                                  |                     |                  |  |
|                   |                                   | TOTAL Program                                                                                                                                                                                                                                    | n Costs (20 years)  | \$50,000         |  |

<sup>1.</sup> Project to be funded by others.

### Access Management Plan

Access management is a set of measures regulating access to streets, roads, and highways, from public roads and private driveways. Access management is a policy tool which seeks to balance mobility, the need to provide efficient, safe and timely travel with the ability to allow access to individual properties. Proper implementation of access management techniques should guarantee reduced congestion, reduced accident rates, less need for roadway widening, conservation of energy, and reduced air pollution. Measures may include but are not limited to restrictions on the type and amount of access to roadways, and use of physical controls, such as signals and channelization including raised medians, to reduce impacts of approach road traffic on the main facility.

Numerous driveways or street intersections increase the number of conflicts and potential for collisions and decrease mobility and traffic flow. The City of Woodburn, as with every city, needs a balance of streets that provide access with streets that serve mobility. *Tech Memo 5* identifies a number of potential access management techniques and strategies that help to preserve transportation system investments and guard against deteriorations in safety and increased congestion. Table 12 summarizes the projects that best meet the goals and objectives of the TSP update.

**Table 11: Access Management Projects** 

| Project<br>Number | Name                                    | Description                                                                                                                                                                                                                                                                                                     | Priority            | Cost Estimate |  |
|-------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------|--|
| AM1               | Access Spacing Standard<br>Modification | Develop access management standards that reflect functional classification of the roadway and that coordinate with the ODOT standards that regulate several major roadways in Woodburn                                                                                                                          | Low                 | \$25,000      |  |
| AM2               | Alternative Access                      | Investigate and implement opportunities to provide alternative access to nonstate facilities when reasonable access can occur (consistent with the State's Division 51 access management standards)                                                                                                             | Low                 | \$25,000      |  |
| AM3               | Access Variance Process                 | Define a variance process for when the standard cannot be met                                                                                                                                                                                                                                                   | Low                 | \$25,000      |  |
| AM4               | Access Consolidation                    | Establish an approach for access consolidation over time to move in the direction of the standards at each opportunity. Cross-over easements should be provided on all compatible parcels (topography, access, and land use) to facilitate future access between adjacent parcels and inter-parcel circulation. | Low                 | \$25,000      |  |
| AM5               | Access Movement<br>Restrictions         | Consider opportunities to restrict certain turning movements at accesses (such as a right in-right out access)                                                                                                                                                                                                  | Low                 | \$25,000      |  |
|                   |                                         | TOTAL H                                                                                                                                                                                                                                                                                                         | ligh Priority Costs | \$0           |  |
|                   | TOTAL Medium Priority Costs             |                                                                                                                                                                                                                                                                                                                 |                     |               |  |
|                   | TOTAL Low Priority Costs                |                                                                                                                                                                                                                                                                                                                 |                     |               |  |
|                   | TOTAL Program Costs (20 years)          |                                                                                                                                                                                                                                                                                                                 |                     |               |  |

### **OTHER**

Other modes and systems examined through the TSP update process include air, marine, pipeline, rail and truck freight. With the exception of the rail system, no planned projects have been identified for inclusion in the TSP update.

#### Rail

Through review of previous planning efforts, *Tech Memo 5* identifies a several projects to be considered for the rail system in Woodburn. Table 13 summarizes the projects that best meet the goals and objectives of the TSP update.

**Table 12: Rail Projects** 

| Project Number | Location                             | Description                                                                                                                                                                          | Priority               | Cost Estimate |  |
|----------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------|--|
| RA1            | Front Street                         | Establish a downtown Amtrak passenger rail stop along Front Street in downtown Woodburn, potentially as a public-private partnership at the "Y" property adjacent to Locomotive Park | Low                    | \$10,000      |  |
| RA2            | Front Street and Cleveland<br>Street | Investigate the opportunity to remove private grade railroad crossings by providing alternative access to parcels as development and redevelopment occurs                            | Medium                 | \$10,000      |  |
| RA3            | Butteville Road, north of OR 219     | Explore a passenger rail stop if commuter rail is extended between Wilsonville and Beaverton down to Salem                                                                           | Low                    | \$5,000       |  |
|                |                                      | TOTA                                                                                                                                                                                 | AL High Priority Costs | \$0           |  |
|                | TOTAL Medium Priority Costs          |                                                                                                                                                                                      |                        |               |  |
|                | TOTAL Low Priority Costs             |                                                                                                                                                                                      |                        |               |  |
|                | TOTAL Program Costs (20 years)       |                                                                                                                                                                                      |                        |               |  |

Attachment A Project Evaluation Criteria

### PROPOSED EVALUATION CRITERIA

The proposed evaluation criteria are based on the proposed goals and policies. A qualitative process using the evaluation criteria will be used to evaluate potential modal solutions and prioritize projects developed through the TSP update. The rating method used to evaluate the alternatives is described below.

- Most Desirable: The concept addresses the criterion and/or makes substantial improvements in the criteria category. (+1)
- No Effect: The criterion does not apply to the concept or the concept has no influence on the criteria. (0)
- Least Desirable: The concept does not support the intent of and/or negatively impacts the criteria category. (-1)

At this level of screening, the criteria will not be weighted; the ratings will be used to inform discussions about the benefits and tradeoffs of each alternative. Table 1 presents the evaluation criteria that will be used to qualitatively evaluate the solutions developed through the TSP update.

| Objective                                                                                   | Evaluation Criteria                                                             | Evaluation Score    |
|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------|
| <b>Goal 1</b> Provide a multimodal transportation system tha air quality impacts.           | t avoids or reduces a reliance on one form of transportation and minimizes ener | rgy consumption and |
|                                                                                             | Project will expand and improve the bus transit system                          | +1                  |
| Develop an expanded intracity bus transit system                                            | Project will have no impact to the bus transit system                           | 0                   |
| System                                                                                      | Project will negatively impact the bus transit system                           | -1                  |
|                                                                                             | Project will contribute to a comprehensive bicycle system                       | +1                  |
| Develop a comprehensive system of bicycle facilities                                        | Project will not contribute to a comprehensive bicycle system                   | 0                   |
| Tuellities                                                                                  | Project will impede a comprehensive bicycle system                              | -1                  |
|                                                                                             | Project will contribute to a comprehensive pedestrian system                    | +1                  |
| Develop a comprehensive system of pedestrian facilities                                     | Project will not contribute to a comprehensive pedestrian system                | 0                   |
| pedestriam racinges                                                                         | Project will impede a comprehensive pedestrian system                           | -1                  |
| <b>Goal 2</b> Provide an interconnected street system that is a                             | adequately sized to accommodate existing and projected traffic demands in the   | Woodburn area.      |
|                                                                                             | Project will result in new east-west and/or north-south connections             | +1                  |
| Develop new east-west and/or north-south                                                    | Project will have no impact on east-west and/or north-south connections         | 0                   |
| collector/minor arterial streets within the City                                            | Project will result in increased traffic demands on OR 219/214 and 99E          | -1                  |
| <b>Goal 3</b> Provide a transportation system that enhances to                              | the safety and security of all transportation modes in the Woodburn area.       |                     |
|                                                                                             | Project will address existing or potential future safety issue                  | +1                  |
| Address existing and potential future safety issues.                                        | Project will have no impact on an existing or potential future safety issue     | 0                   |
| issues.                                                                                     | Project will worsen existing or potential future safety issue                   | -1                  |
| Identify street and railroad crossings in need of improvement, as well as those that should | Project will lead to the improvement, closure, or relocation of a rail crossing | +1                  |
| be closed or relocated.                                                                     | Project will have no impact on rail crossings                                   | 0                   |
|                                                                                             | Project will not improve rail crossings or will result in a new rail crossing   | -1                  |
| Develop a plan for designated truck routes                                                  | Project will enhance truck and freight movements                                | +1                  |
| through the City, and a plan to handle truck and rail hazardous cargoes                     | Project will have no impact on truck and freight movements                      | 0                   |
| and ran hazardous cargoes                                                                   | Project will worsen truck and freight movements                                 | -1                  |

Kittelson & Associates, Inc. Portland, Oregon

| <b>Goal 4</b> Provide a financially sustainable transportation s                                                                                      | system through responsible stewardship of assets and financial resources.     |                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------|
|                                                                                                                                                       | Project is eligible for new and/or innovative funding                         | +1                   |
| Identify new and innovative funding sources for transportation improvements                                                                           | Project may not be eligible for new and/or innovative funding                 | 0                    |
| ior dansportation improvements                                                                                                                        | Project is not eligible for new and/or innovative funding                     | -1                   |
|                                                                                                                                                       | Project will preserve and maintain the existing transportation system         | +1                   |
| Preserve and maintain the existing transportation system assets to extend their                                                                       | Project will not impact the existing transportation system                    | 0                    |
| useful life                                                                                                                                           | Project will have a negative impact on the existing transportation system     | -1                   |
| <b>Goal 5 – Land Use and Transportation Integrati</b> Review and update land use standards and ordin by an efficient multi-modal transportation syste | nances to create a balanced built environment where existing and planned land | l uses are supported |
|                                                                                                                                                       |                                                                               |                      |
| TBD                                                                                                                                                   |                                                                               |                      |
|                                                                                                                                                       |                                                                               |                      |

Kittelson & Associates, Inc. Portland, Oregon

Attachment B

Project Evaluation Matrix

| Project    |                                                                                                |                                |                                                                                                                                                                                               |             |                                |                   |                          | Evaluati    | ion Criteria          |             |                          |                        |        |                  |          |             |
|------------|------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------|-------------------|--------------------------|-------------|-----------------------|-------------|--------------------------|------------------------|--------|------------------|----------|-------------|
| Number     |                                                                                                | Туре                           | Description                                                                                                                                                                                   | Objective A | Multimodal Mobilit Objective B | ty<br>Objective C | Connectivity Objective A | Objective A | Safety<br>Objective B | Objective C | Strategic<br>Objective A | Investment Objective B | Total  | Priority         | Cost (   | (1000s)     |
|            | Bicycle System                                                                                 | 1,750                          | Description                                                                                                                                                                                   | Objective A | Objective b                    | Objective C       | Objective A              | Objective A | Objective B           | Objective C | Objective A              | Objective b            |        |                  |          |             |
|            | Major Arterials                                                                                |                                | Widen roadway and install bike lanes in coordination with                                                                                                                                     |             |                                |                   |                          |             |                       |             |                          |                        |        |                  |          |             |
| B1         | OR 219 from Butteville Road to Willow Avenue                                                   | Bike lanes                     | ODOT                                                                                                                                                                                          | 0           | 1                              | 0                 | 0                        | 0           | 0                     | 0           | 0                        | 1                      | 2      | Medium           |          |             |
| B2         | OR 214 from Progress Way to OR 99E                                                             | Bike lanes                     | Widen roadway and install bike lanes in coordination with ODOT                                                                                                                                | 0           | 1                              | 0                 | 0                        | 0           | 0                     | 0           | 0                        | 1                      | 2      | Medium           |          |             |
| В3         | OR 99E from Lincoln Street to southern City Boundary                                           | Bike lanes                     | Widen roadway and install bike lanes in coordination with ODOT                                                                                                                                | 0           | 1                              | 0                 | 0                        | 0           | 0                     | 0           | 0                        | 1                      | 2      | Medium           |          |             |
| В4         | OR 99E from southern City Boundary to southern UGB                                             | Bike lanes                     | Widen roadway and install buffered bike lanes in coordination                                                                                                                                 | 0           | 1                              | 0                 | 0                        | 0           | 0                     | 0           | 0                        | 1                      | 2      | Medium           |          |             |
|            | Minor Arterials                                                                                |                                | with ODOT                                                                                                                                                                                     |             |                                |                   |                          |             |                       |             |                          |                        |        |                  |          |             |
| B5         | OR 219 from western UGB to Butteville Road                                                     | Bike lanes                     | Widen roadway and install bike lanes in coordination with ODOT                                                                                                                                | 0           | 1                              | 0                 | 0                        | 0           | 0                     | 0           | 0                        | 1                      | 2      | Medium           | \$       | 650         |
| В6         | Butteville Road/OR 219 from northern UGB to OR 219                                             | Bike lanes                     | Widen roadway and install bike lanes in coordination with                                                                                                                                     | 0           | 1                              | 0                 | 0                        | 0           | 0                     | 0           | 0                        | 1                      | 2      | Medium           | \$       | 3,200       |
| В7         | Butteville Road from OR 219 to southern UGB                                                    | Bike lanes                     | ODOT Widen roadway and install bike lanes                                                                                                                                                     | 0           | 1                              | 0                 | 0                        | 0           | 0                     | 0           | 0                        | 1                      | 2      | Medium           | \$       | -           |
| В8         | Evergreen Road from OR 214 to Hayes Street                                                     | Bike lanes                     | Widen roadway and install bike lanes                                                                                                                                                          | 0           | 1                              | 0                 | 0                        | 0           | 0                     | 0           | 0                        | 1                      | 2      | Medium           | \$       | 500         |
| В9         | Boones Ferry Road from northern UGB to Hazelnut Drive                                          | Bike lanes                     | Widen roadway and install bike lanes                                                                                                                                                          | 0           | 1                              | 0                 | 0                        | 0           | 0                     | 0           | 0                        | 1                      | 2      | Medium           | \$       | 500         |
| B10        | Settlemier Avenue from Harrison Street to railroad tracks                                      | Shared street                  | Install shared lane markings and signs. This project improves safe routes to school for Nellie Muir Elementary School, Heritage Elementary School, Valor Middle School, and St. Luke's School | 0           | 1                              | 0                 | 0                        | 1           | 0                     | 0           | 0                        | 0                      | 2      | Medium           | \$       | 25          |
| B11        | Boones Ferry Road from Dahlia Street to southern UGB                                           | Bike lanes                     | Widen roadway and install bike lanes                                                                                                                                                          | 0           | 1                              | 0                 | 0                        | 0           | 0                     | 0           | 0                        | 1                      | 2      | Medium           | \$       | 1,500       |
| B12        | Front Street from northern UGB to Boones Ferry Road                                            | Bike lanes                     | Widen roadway and install bike lanes. This project improves safe routes to school for Woodburn High School, Heritage Elementary School, Valor Middle School, and St. Luke's School            | 0           | 1                              | 0                 | 0                        | 1           | 0                     | 0           | 0                        | 1                      | 3      | High             | \$       | 8,050       |
| B13<br>B14 | Garfield Street from 3rd Street to Front Street Garfield Street from Smith Drive to 3rd Street | Shared street<br>Shared street | Install shared lane markings and signs. Install shared lane markings and signs.                                                                                                               | 0           | 1                              | 0<br>0            | 0                        | 0<br>0      | 0<br>0                | 0           | 0                        | 0<br>0                 | 1<br>1 | Low<br>Low       | \$<br>\$ | 10<br>10    |
| Б14        | Garrield Street from Smith Drive to Sid Street                                                 | Shared Street                  | Perform a corridor evaluation that would consider design                                                                                                                                      | U           | 1                              | U                 | U                        | U           | U                     | U           | U                        | U                      | 1      | LOW              | ş        | 10          |
| B15        | Young Street                                                                                   | Study                          | treatments to improve bicycle comfort and safety such as<br>striping, signing, and wayfinding                                                                                                 | 0           | 1                              | 1                 | 0                        | 0           | 0                     | 0           | 0                        | 0                      | 2      | Medium           | \$       | 15          |
| B16        | OR 211 from OR 99E to eastern UGB                                                              | Bike lanes                     | Widen roadway and install bike lanes in coordination with ODOT                                                                                                                                | 0           | 1                              | 0                 | 0                        | 0           | 0                     | 0           | 0                        | 1                      | 2      | Medium           | \$       | 1,000       |
|            | Service Collectors                                                                             |                                |                                                                                                                                                                                               |             |                                |                   |                          |             |                       |             |                          |                        |        |                  |          |             |
| B17        | Arney Road from Robin Avenue to OR 219                                                         | Shared street                  | Install shared lane markings and signs in coordination with<br>ODOT                                                                                                                           | 0           | 1                              | 0                 | 0                        | 0           | 0                     | 0           | 0                        | 0                      | 1      | Low              | \$       | 5           |
| B18        | Harvard Drive from Stacy Allison Way to Evergreen Road                                         | Bike lanes                     | Enhance the parallel route of Harvard Drive from Stacy Allison Way to Evergreen Road in place of Stacy Allison Way. Install buffered bike lane striping on both sides of the roadway          | 0           | 1                              | 0                 | 0                        | 0           | 0                     | 0           | 0                        | 1                      | 2      | Medium           | \$       | 15          |
| B19        | Hayes Street from Harvard Drive to Cascade Drive                                               | Bike lanes                     | Install bike lane striping. This project improves safe routes to school for Nellie Muir Elementary School                                                                                     | 0           | 1                              | 0                 | 0                        | 1           | 0                     | 0           | 0                        | 1                      | 3      | Medium           | \$       | 35          |
| B20        | Hayes Street from Cascade Drive to Settlemier Avenue                                           | Bike lanes                     | Widen roadway and install bike lanes. This project improves safe routes to school for Nellie Muir Elementary School                                                                           | 0           | 1                              | 0                 | 0                        | 1           | 0                     | 0           | 0                        | 1                      | 3      | Medium           | \$       | 3,000       |
|            |                                                                                                |                                | Widen roadway and install bike lanes. This project improves                                                                                                                                   |             |                                |                   |                          |             |                       |             |                          |                        |        |                  |          |             |
| B21        | Parr Road from western UGB to western City Boundary                                            | Bike lanes                     | safe routes to school for Heritage Elementary School and<br>Valor Middle School                                                                                                               | 0           | 1                              | 0                 | 0                        | 1           | 0                     | 0           | 0                        | 1                      | 3      | High             | \$       | -           |
| B22        | Lincoln Street from Cascade Drive to Front Street                                              | Shared street                  | Install shared lane markings and signs. This project improves safe routes to school for Washington Elementary School                                                                          | 0           | 1                              | 0                 | 0                        | 1           | 0                     | 0           | 0                        | 0                      | 2      | Medium           | \$       | 20          |
| B23        | Lincoln Street from Front Street to OR 99E                                                     | Bike lanes                     | Install bike lane striping. This project improves safe routes to school for Washington Elementary School                                                                                      | 0           | 1                              | 0                 | 0                        | 1           | 0                     | 0           | 0                        | 1                      | 3      | High             | \$       | 55          |
| B24        | Cleveland Street from Front Street to OR 99E                                                   | Shared street                  | Install shared lane markings and signs                                                                                                                                                        | 0           | 1                              | 0                 | 0                        | 0           | 0                     | 0           | 0                        | 0                      | 1      | Low              | \$       | 15          |
| B25        | Hardcastle Avenue from Front Street to OR 99E                                                  | Shared street                  | Install shared lane markings and signs. This project improves safe routes to school for Washington Elementary School                                                                          | 0           | 1                              | 0                 | 0                        | 1           | 0                     | 0           | 0                        | 1                      | 3      | High             | \$       | 20          |
| B26        | Brown Street from Cleveland Street to end of roadway                                           | Shared street                  | Install shared lane markings and signs                                                                                                                                                        | 0           | 1                              | 0                 | 0                        | 0           | 0                     | 0           | 0                        | 0                      | 1      | Low              | \$       | 20          |
| B27<br>B28 | Cooley Road from OR 211 to Aubrey Way Cooley Road from Aubrey Way to Hardcastle Avenue         | Bike lanes<br>Bike lanes       | Widen roadway and install bike lanes<br>Install bike lane striping                                                                                                                            | 0           | 1                              | 0<br>0            | 0<br>0                   | 0<br>0      | 0                     | 0           | 0                        | 1<br>1                 | 2<br>2 | Medium<br>Medium | \$<br>\$ | 1,300<br>15 |
| 028        | Access Streets                                                                                 | טועב ומוובי                    | тэсан ыке тапе эттринд                                                                                                                                                                        | U           | 1                              | U                 | U                        | U           | U                     | U           | U                        | 1                      | ۷      | ivieuluiii       | ږ        | 13          |
| B29        | Stubb Road from Harvard Drive to Parr Road                                                     | Shared street                  | Install shared lane markings and signs                                                                                                                                                        | 0           | 1                              | 0                 | 0                        | 0           | 0                     | 0           | 0                        | 0                      | 1      | Low              |          |             |
| B30        | Astor Way from Country Club Road to OR 214                                                     | Shared street                  | Install shared lane markings and signs                                                                                                                                                        | 0           | 1                              | 0                 | 0                        | 0           | 0                     | 0           | 0                        | 0                      | 1      | Low              | \$       | 15          |
| B31        | Tukwila Drive from Boones Ferry Road to Hazelnut Drive                                         | Shared street                  | Install shared lane markings and signs                                                                                                                                                        | 0           | 1                              | 0                 | 0                        | 0           | 0                     | 0           | 0                        | 0                      | 1      | Low              | Ş        | 5           |
| B32        | 5th Street from OR 214 to Garfield Street                                                      | Shared street                  | Install shared lane markings and signs. This project improves safe routes to school for St Luke's School                                                                                      | 0           | 1                              | 0                 | 0                        | 1           | 0                     | 0           | 0                        | 0                      | 2      | Medium           | \$       | 20          |

|                   |                                                                                                   |                                                      |                                                                                                                                                                       |             |                                  |                   |                             | Fvaluati    | on Criteria           |             |                          |                           |        |                  |          |          |
|-------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------|-------------------|-----------------------------|-------------|-----------------------|-------------|--------------------------|---------------------------|--------|------------------|----------|----------|
| Project<br>Numbei |                                                                                                   | Туре                                                 | Description                                                                                                                                                           | Objective A | Multimodal Mobili<br>Objective B | ty<br>Objective C | Connectivity<br>Objective A | Objective A | Safety<br>Objective B | Objective C | Strategic<br>Objective A | Investment<br>Objective B | Total  | Priority         | Cost     | (1000s)  |
| B33               | Gatch Street from Hardcastle Road to Cleveland Street                                             | Shared street                                        | Install shared lane markings and signs. This project improves safe routes to school for Washington Elementary School                                                  | 0           | 1                                | 0                 | 0                           | 1           | 0                     | 0           | 0                        | 0                         | 2      | Medium           | \$       | 15       |
| B34               | Park Avenue from OR 214 to Lincoln Street                                                         | Shared street                                        | Install shared lane markings and signs. This project improves safe routes to school for Washington Elementary School                                                  | 0           | 1                                | 0                 | 0                           | 1           | 0                     | 0           | 0                        | 0                         | 2      | Medium           | \$       | 20       |
| B35               | Evergreen Road from Country Club Court to OR 214                                                  | Shared street                                        | Install shared lane markings and signs                                                                                                                                | 0           | 1                                | 0                 | 0                           | 0           | 0                     | 0           | 0                        | 0                         | 1      | Low              | \$       | 10       |
| B36               | Local Streets Country Club Road from Evergreen Road to Astor Way                                  | Bike lanes                                           | Install bike lane striping                                                                                                                                            | 0           | 1                                | 0                 | 0                           | 0           | 0                     | 0           | 0                        | 1                         | 2      | Medium           | \$       | 40       |
| B37               | Cascade Drive from OR 214 to Hayes Street                                                         | Shared street                                        | Install shared lane markings and signs. This project improves safe routes to school for Nellie Muir Elementary School                                                 | 0           | 1                                | 0                 | 0                           | 1           | 0                     | 0           | 0                        | 0                         | 2      | Medium           | \$       | 10       |
| B38               | Smith Drive from Hayes Street to Garfield Street                                                  | Shared street                                        | Install shared lane markings and signs. This project improves safe routes to school for Nellie Muir Elementary School                                                 | 0           | 1                                | 0                 | 0                           | 1           | 0                     | 0           | 0                        | 0                         | 2      | Medium           | \$       | 5        |
| B39               | Meridian Drive from Hazelnut Drive to OR 214                                                      | Shared street                                        | Install shared lane markings and signs                                                                                                                                | 0           | 1                                | 0                 | 0                           | 0           | 0                     | 0           | 0                        | 0                         | 1      | Low              | \$       | 10       |
| B40               | City-wide                                                                                         | Wayfinding                                           | Provide wayfinding to bike routes, multi-use paths, trails (as constructed), parks, schools, and other essential destinations                                         | 0           | 1                                | 1                 | 0                           | 0           | 0                     | 0           | 0                        | 0                         | 2      | Medium           | \$       | 30       |
|                   | Pedestrian System<br>Major Arterials                                                              |                                                      |                                                                                                                                                                       |             |                                  |                   |                             |             |                       |             |                          |                           |        |                  |          |          |
| P1                | OR 219 from Butteville Road to Willow Avenue                                                      | New sidewalks                                        | Install new sidewalks in coordination with ODOT                                                                                                                       | 0           | 0                                | 1                 | 0                           | 0           | 0                     | 0           | 0                        | 1                         | 2      | Medium           |          |          |
| P2                | OR 99E from Lincoln Street to southern City Boundary                                              | New sidewalks                                        | Remove existing sidewalks and install new sidewalks in coordination with ODOT                                                                                         | 0           | 0                                | 1                 | 0                           | 0           | 0                     | 0           | 0                        | 1                         | 2      | Medium           |          |          |
| Р3                | OR 99E from southern City Boundary to southern UGB                                                | New sidewalks                                        | Install new sidewalks in coordination with ODOT                                                                                                                       | 0           | 0                                | 1                 | 0                           | 0           | 0                     | 0           | 0                        | 1                         | 2      | Medium           |          |          |
| P4                | Minor Arterials  Butteville Road/OR 219 from northern UGB to OR 219                               | New sidewalks                                        | Install new sidewalks in coordination with ODOT                                                                                                                       | 0           | 0                                | 1                 | 0                           | 0           | 0                     | 0           | 0                        | 1                         | 2      | Medium           | Ś        | 1,500    |
| P5                | Butteville Road from OR 219 to southern UGB                                                       | New sidewalks                                        | Install new sidewalks                                                                                                                                                 | 0           | 0                                | 1                 | 0                           | 0           | 0                     | 0           | 0                        | 1                         | 2      | Medium           | \$       | -        |
| P6                | Evergreen Road from Stacy Allison Way to Boean Lane                                               | Sidewalks - Fill in gaps                             | Fill in the gaps                                                                                                                                                      | 0           | 0                                | 1                 | 0                           | 1           | 0                     | 0           | 0                        | 1                         | 3      | High             | \$       | 200      |
| P7                | Boones Ferry Road from northern UGB to Hazelnut Drive                                             | New sidewalks                                        | Install new sidewalks on one side                                                                                                                                     | 0           | 0                                | 1                 | 0                           | 0           | 0                     | 0           | 0                        | 1                         | 2      | Medium           | \$       | 150      |
| P8                | Settlemier Avenue from Oak Street to Parr Road                                                    | New sidewalks                                        | Install new sidewalks on one side. This project improves safe routes to school for Nellie Muir Elementary School, Heritage Elementary School, and Valor Middle School | 0           | 0                                | 1                 | 0                           | 1           | 0                     | 0           | 0                        | 1                         | 3      | High             | \$       | 300      |
| Р9                | Boones Ferry Road from Parr Road to southern UGB                                                  | New sidewalks                                        | Install new sidewalks. This project improves safe routes to school for Heritage Elementary School and Valor Middle School                                             | 0           | 0                                | 1                 | 0                           | 1           | 0                     | 0           | 0                        | 1                         | 3      | High             | \$       | 800      |
| P10               | Front Street from northern UGB to Hazelnut Drive                                                  | New sidewalks                                        | Install new sidewalks on one side. This project improves safe routes to school for Woodburn High School                                                               | 0           | 0                                | 1                 | 0                           | 1           | 0                     | 0           | 0                        | 1                         | 3      | High             | \$       | 400      |
| P11               | Young Street                                                                                      | Sidewalks - Fill in gaps                             | Fill in the gaps                                                                                                                                                      | 0           | 0                                | 1                 | 0                           | 0           | 0                     | 0           | 0                        | 1                         | 2      | Medium           | \$       | 200      |
| P12               | OR 211 from OR 99E to eastern UGB Service Collectors                                              | New sidewalks                                        | Install new sidewalks in coordination with ODOT                                                                                                                       | 0           | 0                                | 1                 | 0                           | 0           | 0                     | 0           | 0                        | 1                         | 2      | Medium           | \$       | 500      |
| P13               | Hayes Street from Harvard Drive to Settlemier Avenue                                              | Sidewalks - Fill in gaps                             | Fill in the gaps. This project improves safe routes to school for                                                                                                     | 0           | 0                                | 1                 | 0                           | 1           | 0                     | 0           | 0                        | 1                         | 3      | High             | \$       | 600      |
| P14               | Parr Road from western UGB to western City Boundary                                               | New sidewalks                                        | Nellie Muir Elementary School<br>Install new sidewalks. This project improves safe routes to<br>school for Heritage Elementary School and Valor Middle                | 0           | 0                                | 1                 | 0                           | 1           | 0                     | 0           | 0                        | 1                         | 3      | High             | ·        |          |
| P15               | Lincoln Street from Cascade Drive to OR 99E                                                       | Sidewalks - Fill in gaps                             | School  Fill in the gaps. This project improves safe routes to school for                                                                                             | 0           | 0                                | 1                 | 0                           | 1           | 0                     | 0           | 0                        | 1                         | 3      | High             | \$<br>\$ | -<br>450 |
| P16               | Industrial Avenue from Progress Way to OR 99E                                                     | New sidewalks                                        | Washington Elementary School Install new sidewalks                                                                                                                    | 0           | 0                                | 1                 | 0                           | 0           | 0                     | 0           | 0                        | 1                         | 2      | Medium           | Ś        | 500      |
| P17               | Progress Way from Industrial Avenue to OR 214                                                     | New sidewalks                                        | Install new sidewalks                                                                                                                                                 | 0           | 0                                | 1                 | 0                           | 0           | 0                     | 0           | 0                        | 1                         | 2      | Medium           | \$       | 850      |
| P18               | Hardcastle Avenue from Front Street to Cooley Road                                                | Sidewalks - Fill in gaps                             | Fill in the gaps. This project improves safe routes to school for<br>Washington Elementary School                                                                     | 0           | 0                                | 1                 | 0                           | 1           | 0                     | 0           | 0                        | 1                         | 3      | High             | \$       | 450      |
| P19<br>P20        | Brown Street from Cleveland Street to end of roadway Cooley Road from OR 211 to Hardcastle Avenue | Sidewalks - Fill in gaps<br>Sidewalks - Fill in gaps | Fill in the gaps<br>Fill in the gaps                                                                                                                                  | 0           | 0                                | 1                 | 0<br>0                      | 0<br>0      | 0                     | 0           | 0<br>0                   | 1<br>1                    | 2<br>2 | Medium<br>Medium | \$<br>\$ | -<br>650 |
| F20               | Access Streets                                                                                    | Sidewaiks - Fill III gaps                            | riii iii uie gaps                                                                                                                                                     | U           | 0                                | 1                 | U                           | U           | 0                     | U           | 0                        | 1                         | 2      | Medium           | ٦        | 030      |
| P21               | Woodland Avenue from Jory Street to Arney Road                                                    | New sidewalks                                        | Install new sidewalks on one side                                                                                                                                     | 0           | 0                                | 1                 | 0                           | 0           | 0<br>0                | 0           | 0<br>0                   | 1<br>1                    | 2      | Medium           | \$       | 250      |
| P22<br>P23        | Stubb Road from Harvard Drive to Parr Road Oregon Way from Country Club Road to OR 214            | New sidewalks<br>New sidewalks                       | Install new sidewalks<br>Install new sidewalks                                                                                                                        | 0           | 0                                | 1                 | 0                           | 0<br>0      | 0                     | 0           | 0                        | 1                         | 2<br>2 | Medium<br>Medium | \$       | 250      |
| P24               | Hazelnut Drive from Graystone Drive to Front Street                                               | Sidewalks - Fill in gaps                             | Fill in the gaps. This project improves safe routes to school for                                                                                                     | 0           | 0                                | 1                 | 0                           | 1           | 0                     | 0           | 0                        | 1                         | 3      | High             | \$       | 150      |
| P25               | Gatch Street from Hardcastle Road to Cleveland Street                                             | Sidewalks - Fill in gaps                             | Woodburn High School Fill in the gaps. This project improves safe routes to school for Washington Elementary School                                                   | 0           | 0                                | 1                 | 0                           | 1           | 0                     | 0           | 0                        | 1                         | 3      | High             | \$       | 350      |
| P26               | Park Avenue from Hardcastle Avenue to Lincoln Street                                              | New sidewalks                                        | Install new sidewalks on one side. This project improves safe routes to school for Washington Elementary School                                                       | 0           | 0                                | 1                 | 0                           | 1           | 0                     | 0           | 0                        | 1                         | 3      | High             | \$       | 65       |
| P27               | Local Streets<br>Willow Avenue from McNaught Road to OR 219                                       | New sidewalks                                        | Install new sidewalks on both sides                                                                                                                                   | 0           | 0                                | 1                 | 0                           | 0           | 0                     | 0           | 0                        | 1                         | 2      | Medium           | \$       | 350      |

| Project           |                                                                                         |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                    |             |              | Evaluatio   | on Criteria |             |             |             |       |            |             |       |
|-------------------|-----------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------|-------------|--------------|-------------|-------------|-------------|-------------|-------------|-------|------------|-------------|-------|
| Project<br>Number | 1                                                                                       | -                              | December 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 01: 11: 1   | Multimodal Mobilit |             | Connectivity |             | Safety      |             |             | Investment  | Total | Priority   | Cost (10    | 000s) |
|                   | Location/Name                                                                           | Туре                           | Description Install new sidewalks. This project improves safe routes to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Objective A | Objective B        | Objective C | Objective A  | Objective A | Objective B | Objective C | Objective A | Objective B |       |            |             |       |
| P28               | Cascade Drive from OR 214 to Hayes Street                                               | new sidewalks                  | school for Nellie Muir Elementary School                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0           | 0                  | 1           | 0            | 1           | 0           | 0           | 0           | 1           | 3     | High       | \$          | 400   |
| P29               | Ben Brown Lane from end of roadway to Boones Ferry Road                                 | Sidewalks - Fill in gaps       | Fill in the gaps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0           | 0                  | 1           | 0            | 0           | 0           | 0           | 0           | 1           | 2     | Medium     | \$          | 200   |
| P30               | Oak Street from Boones Ferry Road to Front Street                                       | New sidewalks                  | Install new sidewalks on one side                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0           | 0                  | 1           | 0            | 0           | 0           | 0           | 0           | 1           | 2     | Medium     | \$          | 150   |
| P31               | Ogle Street from Cleveland Street to Boones Ferry Road Pedestrian Crossing Enhancements | New sidewalks                  | Install new sidewalks on one side                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0           | 0                  | 1           | 0            | 0           | 0           | 0           | 0           | 1           | 2     | Medium     | \$          | 900   |
|                   | •                                                                                       |                                | Construct ADA-complaint ramps and sidewalks on the east leg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                    |             |              |             |             |             |             |             |       |            |             |       |
| P32               | Front Street/Young Street                                                               | Enhanced crossing              | of the intersection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0           | 0                  | 1           | 0            | 1           | 0           | 0           | 0           | 1           | 3     | Medium     | \$          | 15    |
|                   |                                                                                         |                                | Construct ADA-complaint ramps and sidewalks on the east leg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                    |             |              |             |             |             |             |             |       |            |             |       |
| P33               | Front Street/Lincoln Street                                                             | Enhanced crossing              | of the intersection. This project improves safe routes to school for St Luke's School                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0           | 0                  | 1           | 0            | 1           | 0           | 0           | 0           | 1           | 3     | High       | \$          | 15    |
| D2.4              | Country Drive (the confirmation)                                                        | E.L                            | lockell on only one death of the control of the con |             | 2                  |             | 2            |             | 0           | 0           | 0           |             | 2     | rest.      |             | 65    |
| P34               | Cascade Drive/Hayes Street                                                              | Enhanced crossing              | Install an enhanced pedestrian crossing. This project improves safe routes to school for Nellie Muir Elementary School                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0           | 0                  | 1           | 0            | 1           | 0           | 0           | 0           | 1           | 3     | High       | \$          | 65    |
| P35               | Park Avenue/Legion Park Driveway                                                        | Enhanced crossing              | Install an enhanced pedestrian crossing. This project improves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0           | 0                  | 1           | 0            | 1           | 0           | 0           | 0           | 1           | 3     | Medium     | ć           | 65    |
| F33               | raik Avenue/Legion raik Dilveway                                                        | Elillaticea crossing           | access to Legion Park                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U           | Ü                  | 1           | U            | 1           | U           | U           | U           | 1           | 3     | ivieululli | ş           | 03    |
| P36               | HazeInut Drive/Broadmoor Place Accessway                                                | Enhanced crossing              | Install an enhanced pedestrian crossing. This project improves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0           | 0                  | 1           | 0            | 1           | 0           | 0           | 0           | 1           | 3     | High       | \$          | 65    |
|                   |                                                                                         |                                | safe routes to school for Woodburn High School                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |                    |             |              |             |             |             |             |             |       |            |             |       |
|                   |                                                                                         |                                | As identified in the Woodburn OR 214/OR 99E Pedestrian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                    |             |              |             |             |             |             |             |       |            |             |       |
|                   |                                                                                         |                                | Safety Study, update the existing crossing to an enhanced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                    |             |              |             |             |             |             |             |       |            |             | 450   |
| P37               | OR 214/N Bulldog Drive                                                                  | Enhanced crossing              | pedestrian crossing with a pedestrian hybrid beacon coordinated with the surrounding traffic signals in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                    |             |              |             |             |             |             |             |       | High       | \$          | 150   |
|                   |                                                                                         |                                | coordination with ODOT. This project improves safe routes to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |                    |             |              |             |             |             |             |             |       |            |             |       |
|                   |                                                                                         |                                | school for Woodburn High School                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                    |             |              |             |             |             |             |             |       |            |             |       |
|                   |                                                                                         |                                | As identified in the Highway 99E Corridor Plan, install                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                    |             |              |             |             |             |             |             |       |            |             |       |
|                   |                                                                                         |                                | countdown pedestrian timers and construct ADA enhancements at key signalized intersections along OR 99E in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                    |             |              |             |             |             |             |             |       |            |             |       |
| D20               | OR OOF from OR 214 to Voung Street                                                      | Enhanced crossing - Signalized | coordination with ODOT, including:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0           | 0                  | 1           | 0            | 0           | 0           | 0           | 0           | 1           | 2     | Madium     | ċ           | 650   |
| P38               | P38 OR 99F from OR 214 to Young Street                                                  | intersection                   | o OR 214/OR 211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U           | U                  | 1           | U            | U           | U           | U           | U           | 1           | 2     | iviedium   | <b>&gt;</b> | 650   |
|                   |                                                                                         |                                | o Hardcastle Avenue<br>o Lincoln Road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                    |             |              |             |             |             |             |             |       |            |             |       |
|                   |                                                                                         |                                | o Young Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |                    |             |              |             |             |             |             |             |       |            |             |       |
|                   |                                                                                         |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                    |             |              |             |             |             |             |             |       |            |             |       |
|                   |                                                                                         |                                | As identified in the Highway 99E Corridor Plan, install curb extensions on minor street legs of intersections (curb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                    |             |              |             |             |             |             |             |       |            |             |       |
|                   |                                                                                         |                                | extensions to shorten pedestrian crossing distances parallel to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                    |             |              |             |             |             |             |             |       |            |             |       |
|                   |                                                                                         |                                | OR 99E, not for crossing of OR 99E) between Arlington Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |                    |             |              |             |             |             |             |             |       |            |             |       |
|                   |                                                                                         |                                | and Cleveland Street (up to 8 locations) in coordination with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                    |             |              |             |             |             |             |             |       |            |             |       |
| P39               | OR 99E from OR 214 to Young Street                                                      | Enhanced crossing              | ODOT. Potential locations include: o Alexandria Avenue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0           | 0                  | 1           | 0            | 0           | 0           | 0           | 1           | 1           | 3     | Medium     | \$          | 950   |
|                   |                                                                                         |                                | o James Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |                    |             |              |             |             |             |             |             |       |            |             |       |
|                   |                                                                                         |                                | o Williams Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                    |             |              |             |             |             |             |             |       |            |             |       |
|                   |                                                                                         |                                | o Blaine Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                    |             |              |             |             |             |             |             |       |            |             |       |
|                   |                                                                                         |                                | o Aztec Drive o Laurel Avenue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                    |             |              |             |             |             |             |             |       |            |             |       |
|                   |                                                                                         |                                | o Tomlin Avenue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                    |             |              |             |             |             |             |             |       |            |             |       |
|                   |                                                                                         |                                | As identified in the Woodburn OR 214/OR 99E Pedestrian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                    |             |              |             |             |             |             |             |       |            |             |       |
| D40               | OR OOF morth of Williams Street                                                         | Enhanced grassing              | Safety Study, install an enhanced pedestrian crossing in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                    |             |              |             |             |             |             |             |       | Hiah       | Ś           | 75    |
| P40               | OR 99E, north of Williams Street                                                        | Enhanced crossing              | coordination with ODOT, that may include raised median                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                    |             |              |             |             |             |             |             |       | High       | Ş           | 75    |
|                   |                                                                                         |                                | refuge island, sidewalk infill, supplemental street lighting, and a potential RRFB (RRFB cost not included).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |                    |             |              |             |             |             |             |             |       |            |             |       |
|                   |                                                                                         |                                | a potential KM B (KM B cost not included).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                    |             |              |             |             |             |             |             |       |            |             |       |
|                   |                                                                                         |                                | As identified in the Woodburn OR 214/OR 99E Pedestrian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                    |             |              |             |             |             |             |             |       |            |             |       |
| P41               | OR 99E, between NE Laurel Avenue and Tomlin Avenue                                      | Enhanced crossing              | Safety Study, install an enhanced pedestrian crossing in coordination with ODOT, that may include raised median                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                    |             |              |             |             |             |             |             |       | High       | \$          | 75    |
|                   |                                                                                         |                                | refuge island, sidewalk infill, supplemental street lighting, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                    |             |              |             |             |             |             |             |       |            |             |       |
|                   |                                                                                         |                                | a potential RRFB (RRFB cost not included).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                    |             |              |             |             |             |             |             |       |            |             |       |
|                   |                                                                                         |                                | As identified in the Woodburn OR 214/OR 99E Pedestrian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                    |             |              |             |             |             |             |             |       |            |             |       |
|                   |                                                                                         |                                | Safety Study, install an enhanced pedestrian crossing in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                    |             |              |             |             |             |             |             |       |            |             |       |
| P42               | OR 99E, between Blaine Street and Aztec Drive                                           | Enhanced crossing              | coordination with ODOT, that may include raised median                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                    |             |              |             |             |             |             |             |       | High       | \$          | 75    |
|                   |                                                                                         |                                | refuge island, sidewalk infill, supplemental street lighting, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                    |             |              |             |             |             |             |             |       |            |             |       |
|                   |                                                                                         |                                | a potential RRFB (RRFB cost not included).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                    |             |              |             |             |             |             |             |       |            |             |       |

|                   |                                                               |                                      |                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                   |                   |                             | Evaluatio   | on Criteria           |             |                          |                           |       |          | -      |        |
|-------------------|---------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------|-------------------|-----------------------------|-------------|-----------------------|-------------|--------------------------|---------------------------|-------|----------|--------|--------|
| Project<br>Number |                                                               | Туре                                 | Description                                                                                                                                                                                                                                                                                                                                                                                                  | Objective A | Multimodal Mobilit<br>Objective B | ty<br>Objective C | Connectivity<br>Objective A | Objective A | Safety<br>Objective B | Objective C | Strategic<br>Objective A | Investment<br>Objective B | Total | Priority | Cost ( | 1000s) |
| P43               | OR 99E, north of Mount Jefferson Avenue                       | Enhanced crossing                    | As identified in the Woodburn OR 214/OR 99E Pedestrian Safety Study, install an enhanced pedestrian crossing in coordination with ODOT, that may include raised median refuge island, sidewalk infill, supplemental street lighting, and a potential RRFB (RRFB cost not included).                                                                                                                          |             |                                   |                   |                             |             |                       |             |                          |                           |       | Medium   | \$     | 75     |
| P44               | OR 99E, north of James Street                                 | Enhanced crossing                    | As identified in the Woodburn OR 214/OR 99E Pedestrian Safety Study, install an enhanced pedestrian crossing in coordination with ODOT, that may include raised median refuge island, sidewalk infill, supplemental street lighting, and a potential RRFB (RRFB cost not included).                                                                                                                          |             |                                   |                   |                             |             |                       |             |                          |                           |       | Medium   | \$     | 75     |
| P45               | Boones Ferry Road/Constitution Avenue/Tukwila Drive           | Enhanced crossing                    | Install an enhanced pedestrian crossing. This project improves safe routes to school for Woodburn High School                                                                                                                                                                                                                                                                                                | 0           | 0                                 | 1                 | 0                           | 1           | 0                     | 0           | 0                        | 1                         | 3     | High     | \$     | 65     |
|                   | Multi-Use Pathways                                            |                                      |                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                   |                   |                             |             |                       |             |                          |                           |       |          |        |        |
| P46               |                                                               |                                      | As identified in the Mill Creek Greenway Master Plan, construct a multi-use path including at-grade mid-block crossing treatments at the following street connections:  o Hazelnut Drive  o Bulldog Drive (east crossing)  o OR 214 (state highway)  o Hardcastle Avenue  o Lincoln Street  o Young Street  o Cleveland Street and railroad tracks  This project improves safe routes to school for Woodburn | 0           | 1                                 | 1                 | 0                           | 0           | 0                     | 0           | 1                        | 0                         | 3     | High     | \$     | 2,000  |
| P47               | Mill Creek Greenway  Mill Creek Greenway – Northern tributary | Multi-use pathway  Multi-use pathway | High School  As identified in the Mill Creek Greenway Master Plane, construct a multi-use path including at-grade mid-block crossing treatments at the following street connections: o Bulldog Drive (west crossing) o Meridian Drive o Boones Ferry Road This project improves safe routes to school for Woodburn High School, Lincoln Elementary School, and French Prairie Middle School                  | 0           | 1                                 | 1                 | 0                           | 0           | 0                     | 0           | 1                        | 0                         | 3     | Medium   | \$     | 700    |
| P48               | Mill Creek Greenway – Western tributary                       | Multi-use pathway                    | Construct a multi-use path including at-grade mid-block crossing treatments at the following street connections: o Parr Road o Ben Brown Lane o Settlemier Avenue o Front Street and railroad tracks This project improves safe routes to school for Heritage Elementary School and Valor Middle School                                                                                                      | 0           | 1                                 | 1                 | 0                           | 0           | 0                     | 0           | 1                        | 0                         | 3     | Medium   | \$     | 900    |
| P49               | Evergreen Road Multi-Use Path                                 | Multi-use pathway                    | Construct a multi-use path extending from Evergreen Road                                                                                                                                                                                                                                                                                                                                                     | 0           | 1                                 | 1                 | 0                           | 0           | 0                     | 0           | 0                        | 0                         | 2     | Medium   | \$     | 150    |
| P50               | Washington Elementary School Multi-Use Path                   | Multi-use pathway                    | As identified in the Highway 99E Corridor Plan, construct a north-south multi-use path connection between Hardcastle Avenue and Lincoln Street, west of Washington Elementary School. This project improves safe routes to school for Washington Elementary School                                                                                                                                           | 0           | 1                                 | 1                 | 0                           | 0           | 0                     | 0           | 0                        | 0                         | 2     | Medium   | \$     | 90     |
| P51               | Mill Creek Greenway - Southern extension                      | Multi-use pathway                    | As identified in the Highway 99E Corridor Plan, construct<br>extension of Mill Creek Greenway multi-use path to Belle Passi<br>Road                                                                                                                                                                                                                                                                          | 0           | 1                                 | 1                 | 0                           | 0           | 0                     | 0           | 0                        | 0                         | 2     | Medium   | \$     | 90     |
| P52               | Evergreen Road Pedestrian Connection                          | Multi-use pathway                    | Construct a connection between the Evergreen Road multi-<br>use path and pedestrian facilities that are part of future<br>development to the south<br>Construct a connection between the Centennial Park multi-                                                                                                                                                                                              | 0           | 1                                 | 1                 | 0                           | 0           | 0                     | 0           | 0                        | 0                         | 2     | Medium   | \$     | 20     |
| P53               | Centennial Park Pedestrian Connection                         | Multi-use pathway                    | use path and pedestrian facilities that are part of future development to the west                                                                                                                                                                                                                                                                                                                           | 0           | 1                                 | 1                 | 0                           | 0           | 0                     | 0           | 0                        | 0                         | 2     | Medium   | \$     | 20     |
| P54               | Santiam Drive Pedestrian Connection                           | Multi-use pathway                    | Construct a connection between Santiam Drive and pedestrian facilities that are part of future development to the south                                                                                                                                                                                                                                                                                      | 0           | 1                                 | 1                 | 0                           | 0           | 0                     | 0           | 0                        | 0                         | 2     | Medium   | \$     | 20     |

|               |                                                     |                          |                                                                                                                           |             |                    |             |              | Evaluatio   | on Criteria |             |             |             |          |           |     |           |
|---------------|-----------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------|--------------------|-------------|--------------|-------------|-------------|-------------|-------------|-------------|----------|-----------|-----|-----------|
| Proje<br>Numb |                                                     |                          |                                                                                                                           |             | Multimodal Mobilit | :y          | Connectivity |             | Safety      |             | Strategio   | Investment  | Total    | Priority  | Cos | t (1000s) |
| Nullib        | Location/Name                                       | Туре                     | Description                                                                                                               | Objective A | A Objective B      | Objective C | Objective A  | Objective A | Objective B | Objective C | Objective A | Objective B | Total    |           |     |           |
|               |                                                     |                          | As identified in the Highway 99E Corridor Plan and in                                                                     |             |                    |             |              |             |             |             |             |             |          |           |     |           |
| P55           |                                                     |                          | coordination with ODOT, install a new accessway to OR 99E                                                                 | 0           | 0                  | 1           | 0            | 0           | 0           | 0           | 0           | 0           | 1        | Low       | \$  | 80        |
|               | June Way Accessway                                  | Multi uso pathway        | (near the Audrey Way intersection), may not connect directly as it runs parallel to OR 99E                                |             |                    |             |              |             |             |             |             |             |          |           |     |           |
|               | Julie Way Accessway                                 | Multi-use pathway        | as it fulls parallel to OK 33E                                                                                            |             |                    |             |              |             |             |             |             |             |          |           |     |           |
| P56           |                                                     |                          | As identified in the Highway 99E Corridor Plan and in                                                                     | 0           | 0                  | 1           | 0            | 0           | 0           | 0           | 0           | 0           | 1        | Low       | Ś   | 45        |
|               | Johnson Street Accessway                            | Multi-use pathway        | coordination with ODOT, install a new accessway to OR 99E                                                                 |             |                    |             |              |             |             |             |             |             |          |           | *   |           |
|               | ,                                                   |                          | ,                                                                                                                         |             |                    |             |              |             |             |             |             |             |          |           |     |           |
| P57           |                                                     |                          | As identified in the Highway 99E Corridor Plan and in                                                                     | 0           | 0                  | 1           | 0            | 0           | 0           | 0           | 0           | 0           | 1        | Low       | \$  | 25        |
| F 37          |                                                     |                          | coordination with ODOT, install a new accessway to OR 99E,                                                                | U           | U                  | 1           | O            | O           | O           | O           | O           | O           | 1        | LOW       | Ą   | 25        |
|               | Elm Street Accessway                                | Multi-use pathway        | may not connect directly as it runs parallel to OR 99E                                                                    |             |                    |             |              |             |             |             |             |             |          |           |     |           |
| DE0           |                                                     |                          | As identified in the Highway OOF Consider Discound in                                                                     |             | 2                  | 4           | 0            |             |             |             | •           | 0           | 4        |           | •   |           |
| P58           | Wilson Street Accessway                             | Multi-use pathway        | As identified in the Highway 99E Corridor Plan and in<br>coordination with ODOT, install a new accessway to OR 99E        | U           | U                  | 1           | U            | 0           | U           | U           | 0           | U           | 1        | Low       | \$  | 55        |
|               | wilson street Accessway                             | water use patriway       | As identified in the Highway 99E Corridor Plan and in                                                                     |             |                    |             |              |             |             |             |             |             |          |           |     |           |
|               |                                                     |                          | coordination with ODOT, install a new accessway to OR 99E                                                                 | _           | _                  |             | _            | _           | _           | _           | _           | _           | _        |           |     |           |
| P59           |                                                     |                          | (possibly part of future street extension), may not connect                                                               | 0           | 0                  | 1           | 0            | 0           | 0           | 0           | 0           | 0           | 1        | Low       | \$  | 55        |
|               | Hawley Street Accessway                             | Multi-use pathway        | directly as it runs parallel to OR 99E                                                                                    |             |                    |             |              |             |             |             |             |             |          |           |     |           |
|               |                                                     |                          | Install a new accessway that connects A Street north to                                                                   |             |                    |             |              |             |             |             |             |             |          |           |     |           |
| P60           |                                                     |                          | Cleveland Street and/or Mill Creek Greenway (western                                                                      | 0           | 0                  | 1           | 0            | 0           | 0           | 0           | 0           | 0           | 1        | Low       | \$  | 25        |
|               | A Street Accessway                                  | Multi-use pathway        | tributary).                                                                                                               |             |                    |             |              |             |             |             |             |             |          |           |     |           |
| P61           | City wide                                           | Wayfinding               | Provide wayfinding to bike routes, multi-use paths, trails (as                                                            | 0           | 1                  | 1           | 0            | 0           | 0           | 0           | 0           | 0           | 2        | Madium    | ċ   | 30        |
| P01           | City-wide                                           | Wayfinding               | constructed), parks, schools, and other essential destinations                                                            | U           | 1                  | 1           | U            | U           | U           | U           | U           | U           | 2        | Medium    | Ş   | 30        |
|               | Roadway System                                      |                          | constructed, parks, schools, and other essential destinations                                                             |             |                    |             |              |             |             |             |             |             |          |           |     |           |
|               | Street Connectivity                                 |                          |                                                                                                                           |             |                    |             |              |             |             |             |             |             |          |           |     |           |
| SC1           | Southeast Woodburn                                  | New connection           | Fill in the local street network as low-density residential                                                               | 0           | 0                  | 0           | 1            | 0           | 0           | 0           | 0           | 1           | 2        | Medium    |     |           |
| 3C1           | Southeast Woodburn                                  | New connection           | growth occurs                                                                                                             | U           | U                  | U           | 1            | U           | U           | U           | U           | 1           | 2        | Medium    | \$  | -         |
| SC2           | South Woodburn                                      | New connection           | Fill in the local street network as low-density residential                                                               | 0           | 0                  | 0           | 1            | 0           | 0           | 0           | 0           | 1           | 2        | Medium    |     |           |
|               |                                                     |                          | growth occurs                                                                                                             |             |                    |             |              |             |             |             |             |             |          |           | \$  | -         |
| SC3           | Southwest Woodburn                                  | New connection           | Fill in the local street network as low-density residential                                                               | 0           | 0                  | 0           | 1            | 0           | 0           | 0           | 0           | 1           | 2        | Medium    | ė   |           |
|               |                                                     |                          | growth occurs  Fill in the local street network as low-density residential                                                |             |                    |             |              |             |             |             |             |             |          |           | Ş   | -         |
| SC4           | North Woodburn                                      | New connection           | growth occurs                                                                                                             | 0           | 0                  | 0           | 1            | 0           | 0           | 0           | 0           | 1           | 2        | Medium    | Ś   | -         |
|               | Capacity                                            |                          |                                                                                                                           |             |                    |             |              |             |             |             |             |             |          |           | ·   |           |
|               |                                                     | Intersection - geometric | Enhanced traffic control (traffic signal, roundabout, or other                                                            |             |                    |             |              |             |             |             |             |             |          |           |     |           |
| R1            | Southern OR 219/Butteville Road Intersection        | considerations           | appropriate geometric enhancements) in coordination with                                                                  | 0           | 0                  | 0           | 0            | 1           | 0           | 1           | 0           | 1           | 3        | High      | \$  | 2,750     |
|               |                                                     | considerations           | ODOT                                                                                                                      |             |                    |             |              |             |             |             |             |             |          |           |     |           |
|               |                                                     |                          |                                                                                                                           |             |                    |             |              |             |             |             |             |             |          |           |     |           |
| R2            | OR 219 from Butteville Road to Willow Road          | Street design            | Widen roadway to include two lanes in each direction and a<br>two-way left-turn lane (in conjunction with pedestrian and  | 0           | 0                  | 0           | 0            | 0           | 0           | 1           | 0           | 1           | 2        | High      | \$  | 1,700     |
|               |                                                     |                          | bicycle facility improvements) in coordination with ODOT                                                                  |             |                    |             |              |             |             |             |             |             |          |           |     |           |
|               |                                                     |                          | bicycle racinty improvements, in coordination with obot                                                                   |             |                    |             |              |             |             |             |             |             |          |           |     |           |
|               |                                                     |                          | Widen roadway to include two lanes in each direction and a                                                                |             |                    |             |              |             |             |             |             |             |          |           |     |           |
| R3            | OR 214 from Cascade Drive to OR 99E                 | Street design            | two-way left-turn lane, including changes to signal timing as                                                             | 0           | 0                  | 0           | 0            | 0           | 0           | 1           | 0           | 1           | 2        | Medium    | \$  | 20,300    |
|               |                                                     |                          | appropriate, in coordination with ODOT (and in conjunction                                                                |             |                    |             |              |             |             |             |             |             |          |           |     |           |
|               |                                                     |                          | with bicycle facility improvements)                                                                                       |             |                    |             |              |             |             |             |             |             |          |           |     |           |
|               |                                                     |                          |                                                                                                                           |             |                    |             |              |             |             |             |             |             |          |           |     |           |
|               |                                                     |                          | As identified in the Highway 99E Corridor Plan, widen roadway                                                             |             |                    |             |              |             |             |             |             |             |          |           |     |           |
| R4            | OR 99E from Lincoln Street to south UGB             | Street design            | to provide a continuous two-way left-turn lane and wider<br>shoulders, including changes to signal timing as appropriate, | 0           | 0                  | 0           | 0            | 0           | 0           | 1           | 0           | 1           | 2        | Medium    | \$  | 12,300    |
|               |                                                     |                          | in coordination with ODOT (and in conjunction with                                                                        |             |                    |             |              |             |             |             |             |             |          |           |     |           |
|               |                                                     |                          | pedestrian and bicycle facility improvements)                                                                             |             |                    |             |              |             |             |             |             |             |          |           |     |           |
|               |                                                     |                          | Upgrade to Service Collector urban standards including bicycle                                                            |             |                    |             |              |             |             |             |             | _           | _        |           |     |           |
| R5            | Parr Road from western UGB to western City Boundary | Street design            | and pedestrian enhancements                                                                                               | 0           | 0                  | 0           | 0            | 0           | 0           | 0           | 0           | 1           | 1        | Low       | \$  | -         |
| R6            | Butteville Road from OR 219 to southern UGB         | Street design            | Upgrade to Minor Arterial urban standards including bicycle                                                               | 0           | 0                  | 0           | 0            | 0           | 0           | 0           | 0           | 1           | 1        | Low       |     |           |
| NO            | Butteville Road Hoff ON 219 to southern odb         | Street design            | and pedestrian enhancements                                                                                               | -           | U                  | O           | O            | O           | O           | O           | O           | 1           | 1        | LOW       | \$  | -         |
| R7            | Brown Street from Comstock Avenue to end of roadway | Street design            | Upgrade to Service Collector urban standards including bicycle                                                            | 0           | 0                  | 0           | 0            | 0           | 0           | 0           | 0           | 1           | 1        | Low       |     |           |
|               |                                                     | <b>5</b>                 | and pedestrian enhancements                                                                                               |             |                    |             |              |             |             |             |             |             |          |           | \$  | -         |
| R8            | OR 214/I-5 Southbound Ramp Intersection             | Traffic signal           | Investigate corridor signal timing and coordination<br>adjustments in coordination with ODOT                              | 0           | 0                  | 0           | 0            | 0           | 0           | 1           | 0           | 1           | 2        | Medium    | \$  | 15        |
|               |                                                     |                          | Investigate corridor signal timing and coordination                                                                       |             |                    |             |              |             |             |             |             |             |          |           |     |           |
| R9            | OR 214/I-5 Northbound Ramp Intersection             | Traffic signal           | adjustments in coordination with ODOT                                                                                     | 0           | 0                  | 0           | 0            | 0           | 0           | 1           | 0           | 1           | 2        | Medium    | \$  | 15        |
|               | 000445                                              |                          | Investigate corridor signal timing and coordination                                                                       | _           | _                  | _           | -            | -           | _           |             | _           | _           | -        |           |     |           |
| R10           | OR 214/Evergreen Road Intersection                  | Traffic signal           | adjustments in coordination with ODOT                                                                                     | 0           | 0                  | 0           | 0            | 0           | 0           | 1           | 0           | 1           | 2        | Medium    | \$  | 15        |
| R11           | OR 214/Oregon Way/Country Club Road Intersection    | Traffic signal           | Investigate corridor signal timing and coordination                                                                       | 0           | 0                  | 0           | 0            | 0           | 0           | 1           | 0           | 1           | 2        | Medium    | Ś   | 15        |
| IVII          | 5 21-7 oregon way, country class hode intersection  | Traine signal            | adjustments in coordination with ODOT                                                                                     | 3           | U                  | J           | · ·          | J           | U           | <b>-</b>    | J           | 1           | <b>~</b> | Wicalulli | Y   | 13        |
| <b>.</b>      | OD 244/5 v. 4 St. v. 4 D. v. 4 i i i i i i          | T (() 1 1                | Install intersection capacity improvement such as traffic signal                                                          | _           | •                  | •           | 6            | 6           | -           | _           | •           | _           | 2        |           |     |           |
| R12           | OR 214/Front Street Ramp Intersection               | Traffic signal           | (if warranted), turn lanes, or roundabout in coordination with ODOT                                                       | 0           | 0                  | 0           | 0            | 0           | 0           | 1           | 0           | 1           | 2        | Medium    | \$  | 500       |
|               |                                                     |                          | 0001                                                                                                                      |             |                    |             |              |             |             |             |             |             |          |           |     |           |
|               |                                                     |                          |                                                                                                                           |             |                    |             |              |             |             |             |             |             |          |           |     |           |

| Draiost           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                                                                                                                             |             |                    |              |              | Evaluatio   | on Criteria |             |             |             |       |          |      |         |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------|--------------------|--------------|--------------|-------------|-------------|-------------|-------------|-------------|-------|----------|------|---------|
| Project<br>Number |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                                                                                                                             |             | Multimodal Mobilit |              | Connectivity |             | Safety      |             |             | Investment  | Total | Priority | Cost | (1000s) |
| 14dillbei         | Location/Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Туре                     | Description                                                                                                                 | Objective A | Objective B        | Objective C  | Objective A  | Objective A | Objective B | Objective C | Objective A | Objective B | Total |          |      |         |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | Install intersection capacity improvement such as traffic signal                                                            |             |                    |              |              |             |             |             |             |             |       |          |      |         |
| R13               | OR 214/Park Street Intersection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Traffic signal           | (if warranted), turn lanes, or roundabout in coordination with                                                              | 0           | 0                  | 0            | 0            | 0           | 0           | 1           | 0           | 1           | 2     | Medium   | \$   | 500     |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | ODOT                                                                                                                        |             |                    |              |              |             |             |             |             |             |       |          |      |         |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                                                                                                                             |             |                    |              |              |             |             |             |             |             |       |          |      |         |
| R14               | OR 214/OR 211/OR 99E Intersection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Intersection - geometric | Install a second left-turn lane on the southbound approach,                                                                 | 0           | 0                  | 0            | 0            | 0           | 0           | 1           | 0           | 1           | 2     | Medium   | \$   | 900     |
| 112-7             | ON 2147 ON 2117 ON 332 Intersection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | considerations           | install a second receiving lane on the east leg, and update                                                                 | Ü           | · ·                | Ü            | · ·          | Ü           | Ŭ           | -           | Ü           | -           | -     | Wicalam  | 7    | 300     |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | signal timing in coordination with ODOT                                                                                     |             |                    |              |              |             |             |             |             |             |       |          |      |         |
| D1E               | Parr Road/Settlemier Avenue Intersection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Traffic signal           | Install intersection capcity improvement such as traffic signal                                                             | 0           | 0                  | 0            | 0            | 0           | 0           | 0           | 0           | 1           | 1     | Low      | ċ    | 500     |
| R15               | Pair Road/Settleffile: Aveilue liftersection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Traffic signal           | (if warranted), turn lanes, or roundabout                                                                                   | U           | U                  | U            | U            | U           | U           | U           | U           | 1           | 1     | Low      | Ş    | 300     |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Internation constitution | Reconfigure the westbound approach to incorporate one left-                                                                 |             |                    |              |              |             |             |             |             |             |       |          |      |         |
| R16               | OR 99E/Hardcastle Avenue Intersection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Intersection - geometric | turn lane and one thru-right turn lane in coordination with                                                                 | 0           | 0                  | 0            | 0            | 0           | 0           | 1           | 0           | 1           | 2     | Medium   | \$   | 20      |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | considerations           | ODOT                                                                                                                        |             |                    |              |              |             |             |             |             |             |       |          |      |         |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                                                                                                                             |             |                    |              |              |             |             |             |             |             |       |          |      |         |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Intersection - geometric | Install a shared through-right turn lane on the eastbound                                                                   | _           | _                  | _            | _            | _           | _           |             | _           |             | _     |          |      |         |
| R17               | OR 99E/Lincoln Street Intersection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | considerations           | approach and reconfigure the existing approach lane as a                                                                    | 0           | 0                  | 0            | 0            | 0           | 0           | 1           | 0           | 1           | 2     | Medium   | \$   | 500     |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | separate left-turn lane in coordination with ODOT                                                                           |             |                    |              |              |             |             |             |             |             |       |          |      |         |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                                                                                                                             |             |                    |              |              |             |             |             |             |             |       |          |      |         |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | Install a third westbound lane to provide separate left, thru,                                                              |             |                    |              |              |             |             |             |             |             |       |          |      |         |
| R18               | OR 99E/Young Street Intersection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Intersection - geometric | and right turn lanes in coordination with ODOT. Implement                                                                   | 0           | 0                  | 0            | 0            | 0           | 0           | 1           | 0           | 1           | 2     | Medium   | \$   | 550     |
| 1120              | on 352) roung street intersection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | considerations           | protected-permissive left-turn phasing on the eastbound and                                                                 | Ü           | · ·                | Ü            | Ü            | Ü           | Ŭ           | -           | Ü           | -           | -     | Wicalam  | 7    | 330     |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | westbound approaches.                                                                                                       |             |                    |              |              |             |             |             |             |             |       |          |      |         |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | westbodild approacties.                                                                                                     |             |                    |              |              |             |             |             |             |             |       |          |      |         |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | Install intersection capacity improvement such as traffic signal                                                            |             |                    |              |              |             |             |             |             |             |       |          |      |         |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                                                                                                                             |             |                    |              |              |             |             |             |             |             |       |          |      |         |
| R19               | OR 99E/Cleveland Street Intersection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Traffic signal           | (if warranted), turn lanes, or roundabout in coordination with                                                              | 0           | 0                  | 0            | 0            | 0           | 0           | 1           | 0           | 1           | 2     | Medium   | \$   | 500     |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | ODOT. Consideration should be given to railroad preemption                                                                  |             |                    |              |              |             |             |             |             |             |       |          |      |         |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | and the proximity to the signalized intersection at OR 99E and                                                              |             |                    |              |              |             |             |             |             |             |       |          |      |         |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | Young Street.                                                                                                               |             |                    |              |              |             |             |             |             |             |       |          |      |         |
| R20               | Ben Brown Lane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | New roadway              |                                                                                                                             | 0           | 0                  | 0            | 1            | 0           | 0           | 0           | 0           | 1           | 2     | Medium   |      |         |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | Extend Ben Brown Lane to Evergreen Road as an Access Street                                                                 |             |                    |              |              |             |             |             |             |             |       |          | \$   | 5,100   |
| R21               | Evergreen Road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | New roadway              | Extend south to Parr Road                                                                                                   | 0           | 0                  | 1            | 1            | 0           | 0           | 0           | 0           | 1           | 3     | High     | \$   | 4,750   |
| R22               | Stacy Allison Way                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | New roadway              | Extend south to UGB                                                                                                         | 0           | 0                  | 0            | 1            | 0           | 0           | 0           | 0           | 1           | 2     | Medium   | \$   | 7,300   |
| R23               | Brown Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | New roadway              | Extend south to the South Arterial                                                                                          | 0           | 0                  | 0            | 1            | 0           | 0           | 0           | 0           | 1           | 2     | Medium   | \$   | 800     |
| R24               | Woodland Avenue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | New roadway              | Extend west to Butteville Road                                                                                              | 0           | 0                  | 0            | 1            | 0           | 0           | 0           | 0           | 1           | 2     | Medium   | \$   | 2,450   |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                                                                                                                             |             |                    |              |              |             |             |             |             |             |       |          |      |         |
| R25               | East-west Connection in Southwest Woodburn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | New roadway              | Construct a new Local Industrial Street connecting the                                                                      | 0           | 0                  | 0            | 1            | 0           | 0           | 1           | 0           | 0           | 2     | Medium   |      |         |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | southern extensions of Stacy Allison Way and Evergreen Road                                                                 |             |                    |              |              |             |             |             |             |             |       |          | \$   | 1,800   |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | Upgrade the existing roadway to Access Street standards and                                                                 |             |                    |              |              |             |             |             |             |             |       |          |      |         |
| R26               | Stubb Road from Harvard Drive to Parr Road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Street design and new    | extend north to Harvard Drive including bicycle and                                                                         | 0           | 0                  | 0            | 1            | 0           | 0           | 1           | 0           | 0           | 2     | Medium   |      |         |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | roadway                  | pedestrian enhancements                                                                                                     |             |                    |              |              |             |             |             |             |             |       |          | \$   | 1,900   |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | Construct a new Access Street connecting Hayes Street to                                                                    |             |                    |              |              |             |             |             |             |             |       |          |      |         |
| R27               | North-south Connection in Southwest Woodburn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | New roadway              | Stubb Street                                                                                                                | 0           | 0                  | 0            | 1            | 0           | 0           | 1           | 0           | 0           | 2     | Medium   | \$   | 5,150   |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | Evaluate the intersection layout, control, signing, and striping,                                                           |             |                    |              |              |             |             |             |             |             |       |          | *    | -,      |
| R28               | OR 99E/Industrial Avenue Intersection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Intersection - geometric | including any sight distance constraints in coordination with                                                               | 0           | 0                  | 0            | 0            | 0           | 0           | 1           | 0           | 1           | 2     | Medium   | \$   | 100     |
| 1120              | on 352/ maastra. Wenae meersestion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | considerations           | ODOT                                                                                                                        | ŭ           | · ·                | ŭ            | Ü            | · ·         | ŭ           | -           | ŭ           | -           | -     | ····caia | Ψ    | 200     |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | Construct the Southern Arterial from Evergreen Road to OR                                                                   |             |                    |              |              |             |             |             |             |             |       |          |      |         |
| R29               | South Arterial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | New roadway              | 99E (2 lanes)                                                                                                               | 0           | 0                  | 0            | 1            | 0           | 0           | 1           | 0           | 0           | 2     | Medium   | \$   | 12,250  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Intersection - geometric | Modify the intersection layout to address truck turning                                                                     |             |                    |              |              |             |             |             |             |             |       |          |      |         |
| R30               | Woodland Avenue Curve Modification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | considerations           | movement constraints                                                                                                        | 0           | 0                  | 0            | 0            | 0           | 0           | 1           | 0           | 1           | 2     | Medium   | \$   | 100     |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CONSIGCI BLIONS          |                                                                                                                             |             |                    |              |              |             |             |             |             |             |       |          |      |         |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Intersection - geometric | As identified in the Highway 99E Corridor Plan, close vehicular                                                             |             |                    |              |              |             |             |             |             |             |       |          |      |         |
| R31               | George Street/Hillsboro Silverton Highway Intersection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | considerations           | access to George Street from Hillsboro Silverton Highway                                                                    |             |                    |              |              |             |             |             |             |             |       | Medium   | \$   | 60      |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Considerations           | when future local street access is provided to the east                                                                     |             |                    |              |              |             |             |             |             |             |       |          |      |         |
|                   | Cofoty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          | when future local street access is provided to the east                                                                     |             |                    |              |              |             |             |             |             |             |       |          |      |         |
|                   | Safety                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          | Enhanced traffic control (traffic cignal, roundahout, or other                                                              |             |                    |              |              |             |             |             |             |             |       |          |      |         |
| <b>S1</b>         | Southern OR 219/Butteville Road Intersection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Intersection - geometric | Enhanced traffic control (traffic signal, roundabout, or other<br>appropriate geometric enhancements) if/when warranted and | 0           | 0                  | 0            | 0            | 1           | 0           | 1           | 0           | 1           | 3     | High     |      |         |
| 31                | Southern OK 213/Butteville Road Intersection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | considerations           |                                                                                                                             | U           | U                  | U            | U            | 1           | U           | 1           | U           | 1           | 3     | півіі    |      |         |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | in coordination with ODOT                                                                                                   |             |                    |              |              |             |             |             |             |             |       |          |      |         |
|                   | North or OD 244/D to the Day of the Control of the | Intersection - geometric | Enhanced traffic control (traffic signal, roundabout, or other                                                              | _           | •                  | -            | •            | ٠           | -           |             | •           | _           | -     |          |      | 2 22-   |
| S2                | Northern OR 214/Butteville Road Intersection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | considerations           | appropriate geometric enhancements) if/when warranted and                                                                   | 0           | 0                  | 0            | 0            | 1           | 0           | 1           | 0           | 1           | 3     | Medium   | \$   | 2,000   |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | in coordination with ODOT                                                                                                   |             |                    |              |              |             |             |             |             |             |       |          |      |         |
| S3                | Front Street/Lincoln Street Intersection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Intersection             | Enhanced signs and pavement markings (e.g. stop signs,                                                                      | 0           | 0                  | 0            | 0            | 1           | 0           | 0           | 0           | 1           | 2     | Medium   | \$   | 50      |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <=:=::                   | warning signs, and/or beacons)                                                                                              | -           | -                  | <del>-</del> | -            | =           | -           | -           | -           | =           | -     |          | *    |         |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                                                                                                                             |             |                    |              |              |             |             |             |             |             |       |          |      |         |
| <b>S4</b>         | Front Street/Young Street/Garfield Street Intersection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Intersection - geometric | Evaluate the intersection layout, signing, and striping in                                                                  | n           | Ω                  | n            | 0            | 1           | 0           | 0           | Ω           | 1           | 2     | Medium   | \$   | 100     |
| J <del>-</del>    | Street, roung street, same to street intersection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | considerations           | correlation to the railroad tracks. Provide clarification for                                                               | U           | J                  | 3            | J            | 4           | 3           | 3           | J           | -           | -     | iviculum | 7    | 100     |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | westbound drivers trying to proceed through the intersection                                                                |             |                    |              |              |             |             |             |             |             |       |          |      |         |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | As identified in the Highway 99E Corridor Plan, update                                                                      |             |                    |              |              |             |             |             |             |             |       |          |      |         |
| S5                | OR 99E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lighting                 | roadway lighting to meet ODOT roadway lighting standards in                                                                 | 0           | 0                  | 0            | 0            | 1           | 0           | 0           | 0           | 1           | 2     | Medium   | \$   | 2,150   |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | coordination with ODOT                                                                                                      |             |                    |              |              |             |             |             |             |             |       |          |      |         |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                                                                                                                             |             |                    |              |              |             |             |             |             |             |       |          |      |         |

| Proje         | c†                                                      |                                         |                                                                                                                                                                                                                                                                                                                                                                            |             |                   |             |              | Evaluatio   | on Criteria           |             |             |             |       |                  |           |       |
|---------------|---------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------|-------------|--------------|-------------|-----------------------|-------------|-------------|-------------|-------|------------------|-----------|-------|
| Proje<br>Numb | er                                                      | Typo                                    | Description                                                                                                                                                                                                                                                                                                                                                                |             | Multimodal Mobili |             | Connectivity | Objective A | Safety<br>Objective B | Objective C |             | nvestment   | Total | Priority         | Cost (100 | 00s)  |
|               | Location/Name                                           | Туре                                    | Description                                                                                                                                                                                                                                                                                                                                                                | Objective A | Objective B       | Objective C | Objective A  | Objective A | Objective B           | Objective C | Objective A | Objective B |       |                  |           |       |
| \$6           | OR 99E access between Young Street and Cleveland Street | Intersection                            | As identified in teh Highway 99E Corridor Plan and in coordination with ODOT:  Restrict left-turn movements and eventually close the Silverton Avenue intersection on OR 99E and vacate the segment of Silverton Avenue between OR 99E and Birds Eye Avenue Restrict left-turn movements onto Birds Eye Avenue from                                                        | 0           | 0                 | 0           | 0            | 1           | 1                     | 0           | 0           | 0           | 2     | Medium           | \$        | 60    |
|               |                                                         | Intersection - geometric                | Hillsboro Silverton Highway and eventually close the Birds Eye<br>Avenue intersection on Hillsboro Silverton Highway and<br>vacate the segment of Birds Eye Avenue between Hillsboro<br>Silverton Highway and Silverton Avenue<br>Evaluate the intersection layout, signing, and striping in<br>coordination with ODOT, including any sight distance                       |             |                   |             |              |             |                       |             |             |             |       |                  |           |       |
| S7            | OR 99E/Tomlin Avenue                                    | considerations                          | constraints. Consider restricting the southbound left-turn movement                                                                                                                                                                                                                                                                                                        | 0           | 0                 | 0           | 0            | 1           | 1                     | 0           | 0           | 1           | 3     | High             | \$        | 100   |
| \$8           | Butteville Road/Parr Road                               | Intersection - geometric considerations | Modify intersection to address existing sight distance and geometric limitations  Evaluate traffic safety along OR 99E, OR 219/OR214, Front                                                                                                                                                                                                                                | 0           | 0                 | 0           | 0            | 1           | 0                     | 0           | 0           | 1           | 2     | Medium           | \$        | 1,000 |
| S9            | City-wide                                               | Study                                   | Street, Evergreen Road, and other key corridors to identify appropriate countermeasures                                                                                                                                                                                                                                                                                    | 0           | 0                 | 0           | 0            | 1           | 0                     | 0           | 0           | 0           | 1     | Low              | \$        | 100   |
| \$10          | Settlemier Avenue/Hayes Street  Transit System          | Intersection - geometric considerations | Enhanced traffic control (traffic signal, roundabout, or other appropriate geometric enhancements)                                                                                                                                                                                                                                                                         | 0           | 0                 | 0           | 0            | 1           | 0                     | 1           | 0           | 1           | 3     | High             | \$        | 2,000 |
|               | Service Enhancements                                    |                                         |                                                                                                                                                                                                                                                                                                                                                                            |             |                   |             |              |             |                       |             |             |             |       |                  |           |       |
| T1            | Woodburn Fleet                                          |                                         | Coordinate with Woodburn Transit to deliver service enhancements funded through the STIF: Purchase of Category B and C vehicles (1 each) for use in the City's expanded transit services. (100% funding level 2020-21)                                                                                                                                                     | 1           | 0                 | 0           | 0            | 0           | 0                     | 0           | 1           | 0           | 2     | Medium           | \$        | 5     |
| T2            | Woodburn Fleet                                          |                                         | Coordinate with Woodburn Transit to deliver service enhancements funded through the STIF: Purchase a Category B vehicle that will replace the second oldest full size vehicle in the WTS fleet; will be used for the City's existing local fixed route circulator. (130% funding level 2021)                                                                               | 1           | 0                 | 0           | 0            | 0           | 0                     | 0           | 1           | 0           | 2     | Medium           | \$        | 5     |
| T3            | Woodburn Fixed Route                                    |                                         | Coordinate with Woodburn Transit to deliver service enhancements funded through the STIF: Addition of weekend service for Woodburn Transit Service fixed route and paratransit services (Sat. 9am-5pm, Sun.9am-3pm) by up to 2,156 revenue hours (FY20-21). (100% funding level 2020-21)                                                                                   | 1           | 0                 | 0           | 0            | 0           | 0                     | 0           | 1           | 0           | 2     | Medium           | \$        | 5     |
| Т4            | Woodburn Fixed Route                                    |                                         | Coordinate with Woodburn Transit to deliver service enhancements funded through the STIF: Modify the existing 60 minute fixed route loop; add an additional 30 minute route that will serve high frequency stops on weekdays (7am-7pm) within the Woodburn city limits. Total additional service will be up to 6,192 revenue hours (FY20-21). (100% funding level 2020-21) | 1           | 0                 | 0           | 0            | 0           | 0                     | 0           | 1           | 0           | 2     | Medium           | \$        | 5     |
| T5            |                                                         |                                         | Coordinate with Woodburn Transit to deliver service enhancements funded through the STIF: Modify the existing 60-min. fixed route by adding a new 30 min. route that serves high frequency stops (up to 1,456 revenue hours); this service will operate Saturdays (9am-5pm) and Sundays (9am-3pm). Also includes Dial-a-Ride (DAR) service. (130% funding level 2020-21)   | 1           | 0                 | 0           | 0            | 0           | 0                     | 0           | 1           | 0           | 2     | Medium           | \$        | 5     |
| T6<br>T7      | Woodburn Fixed Route<br>Woodburn Fixed Route            |                                         | Increase frequency of existing route to 30 minutes Convert existing route to two-way operations                                                                                                                                                                                                                                                                            | 1           | 0                 | 0           | 0            | 0           | 0                     | 0           | 1           | 0           | 2     | Medium<br>Medium | \$<br>\$  | -     |

| Project    |                                             |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | Multimodal Mobilit | tv          | Connectivity | Evaluatio   | on Criteria<br>Safety |             | Strategic I | nvestment |       | Priority      | Cost (1000s)  |
|------------|---------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------|-------------|--------------|-------------|-----------------------|-------------|-------------|-----------|-------|---------------|---------------|
| Number     | r<br>Location/Name                          | Туре | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Objective A | Objective B        | Objective C | Objective A  | Objective A | Objective B           | Objective C | Objective A |           | Total | ,             |               |
| Т8         | City-wide                                   |      | Work with Woodburn Transit as growth occurs to provide new or re-routed service to other areas of Woodburn including: o Parr Road via an extension of Evergreen Road o Crosby Road o Butteville Road o Butteville Road o The employment center southwest of the I-5/OR 214 interchange o Woodburn Industrial Park along the Progress Way and Industrial Avenue corridors o Gateway subarea between Front Street and Mill Creek o Neighborhoods in southeast Woodburn | 1           | 0                  | 0           | 0            | 0           | 0                     | 0           | 1           | 0         | 2     | Medium        | \$ 5          |
| Т9         | Woodburn Company Stores                     |      | Coordinate with Woodburn Transit to establish a free shuttle between the Woodburn Company Stores and Downtown Woodburn, hourly during peak shopping and entertainment hours                                                                                                                                                                                                                                                                                          | 1           | 0                  | 0           | 0            | 0           | 0                     | 0           | 1           | 0         | 2     | Medium        | \$ 5          |
| T10        | City-wide                                   |      | Coordinate with Woodburn Transit and major employers to<br>establish a peak-only employer shuttle                                                                                                                                                                                                                                                                                                                                                                    | 1           | 0                  | 0           | 0            | 0           | 0                     | 0           | 1           | 0         | 2     | Medium        | \$ 5          |
|            | Intercity Service Enhancements              |      | p y empreyer entre                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |                    |             |              |             |                       |             |             |           |       |               |               |
| T11        | Urban and Rural Cherriots Regional Services |      | Coordinate with Cherriots to deliver service enhancements funded through the STIF: Expand service for up to 7,557 revenue hours on urban & rural Regional services. Includes startup costs for hiring new employees, and coordination of schedules with connecting services. Also establishes a Youth fare category (ages 6-18). (100% funding level 2020-21)                                                                                                        | 1           | 0                  | 0           | 0            | 0           | 0                     | 0           | 1           | 0         | 2     | Medium        | \$ 5          |
| T12        | Keizer to Wilsonville                       |      | Coordinate with Cherriots to deliver service enhancements funded through the STIF: Establish one new Regional route from Keizer to Wilsonville with a stop at the Woodburn Memorial Park and Ride. Increase service on weekdays by 30 percent on urban & rural Regional services by up to 5,245 revenue hours. (130% funding level 2020-21)                                                                                                                          | 1           | 0                  | 0           | 0            | 0           | 0                     | 0           | 1           | 0         | 2     | Medium        | \$ 5          |
| T13        | Urban and Rural Cherriots Regional Services |      | Coordinate with Cherriots to deliver service enhancements funded through the STIF: Add Saturday service to urban & rural Cherriots Regional services with up to 3,919 revenue hours of new service (FY20-21). Includes coordination of schedules with other connecting services. (100% funding level 2020-21)                                                                                                                                                        | 1           | 0                  | 0           | 0            | 0           | 0                     | 0           | 1           | 0         | 2     | Medium        | \$ 5          |
| T14        | Urban and Rural Cherriots Regional Services |      | Coordinate with Cherriots to deliver service enhancements funded through the STIF: Add 30 percent more Saturday service to urban & rural Regional services by up to 215 revenue hours (FY20-21). In FY21, adds 6 holidays to the same routes. Includes coordination of schedules with connecting services. (130% funding level 2020-21)                                                                                                                              | 1           | 0                  | 0           | 0            | 0           | 0                     | 0           | 1           | 0         | 2     | Medium        | \$ 5          |
| T15        | City-wide                                   |      | Coordinate transfers between the different agency services in                                                                                                                                                                                                                                                                                                                                                                                                        | 1           | 0                  | 0           | 0            | 0           | 0                     | 0           | 1           | 0         | 2     | Medium        | , ,           |
| T16        |                                             |      | Woodburn Coordinate with Cherriots to provide a stop in Woodburn for SMART Route 1X, providing service to WES station in Wilsonville and downtown Salem                                                                                                                                                                                                                                                                                                              | 1           | 0                  | 0           | 0            | 0           | 0                     | 0           | 1           | 0         | 2     | Medium        | \$ 5          |
| Т17        | Woodburn to Portland                        |      | Coordinate with Cherriots to consider further new service connections for Woodburn including: o Service to Portland - connect to TriMet via the Tualatin Park-and-Ride, directly into downtown Portland, or the MAX Orange Line light rail service. o Demand-responsive service to Hubbard one day per week                                                                                                                                                          | 1           | 0                  | 0           | 0            | 0           | 0                     | 0           | 1           | 0         | 2     | Medium        | \$ 5          |
|            | Stop Enhancements                           |      | Evaluate all bus stops to verify static bus route information                                                                                                                                                                                                                                                                                                                                                                                                        |             |                    |             |              |             |                       |             |             |           |       |               |               |
| T18<br>T19 | ,                                           |      | signage is visible and accessible and that bike racks are available at major bus stops  New shelter                                                                                                                                                                                                                                                                                                                                                                  | 1           | 1                  | 0           | 0            | 0           | 0                     | 0           | 0           | 0         | 2     | Medium<br>Low | \$ 25<br>\$ 5 |
| T20        | Stop 20419: Garfield Street                 |      | New shelter                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1           | 0                  | 0           | 0            | 0           | 0                     | 0           | 0           | 0         | 1     | Low           | \$ 5          |
| T21        | Other Transit Solutions  City-wide          |      | Investigate transferring the paratransit system to a local social service agency                                                                                                                                                                                                                                                                                                                                                                                     | 1           | 0                  | 0           | 0            | 0           | 0                     | 0           | 0           | 0         | 1     | Low           | \$ 5          |
|            | TSMO<br>TDM                                 |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                    |             |              |             |                       |             |             |           |       |               |               |
|            | I DIVI                                      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                    |             |              |             |                       |             |             |           |       |               |               |

| Project |                                              |                                       |                                                                                                                                                                     |             |                     |             |              | Evaluatio   | n Criteria  |             |              |             |       |          |              |   |
|---------|----------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------|-------------|--------------|-------------|-------------|-------------|--------------|-------------|-------|----------|--------------|---|
| Number  |                                              | Tuna                                  | Description                                                                                                                                                         | Objective A | Multimodal Mobility |             | Connectivity | Objective A | Safety      | Objective C | Strategic In |             | Total | Priority | Cost (1000s) |   |
|         | Location/Name                                | Type                                  | Description nate a rideshare/carpool/vanpool program that                                                                                                           | Objective A | Objective B         | Objective C | Objective A  | Objective A | Objective B | Objective C | Objective A  | Objective B |       |          |              |   |
| TDM1    | Carpool/Vanpool Match Services               | regiona                               | I commuters can use to find other commuters with routes to work                                                                                                     | 0           | 0                   | 0           | 0            | 0           | 0           | 0           | 0            | 0           | 0     | Low      | \$ 100       | ) |
| TDM2    | Carpool/Vanpool Parking Program              | Coordin                               | nate with employers to designate carpool/vanpool ntial parking                                                                                                      | 0           | 0                   | 0           | 0            | 0           | 0           | 0           | 0            | 0           | 0     | Low      | \$ 100       |   |
| TDM3    | Collaborative Marketing                      | and de                                | with nearby cities, employers, transit service providers, relopers to collaborate on marketing for transportation                                                   | 0           | 1                   | 1           | 0            | 0           | 0           | 0           | 0            | 0           | 2     | Medium   |              |   |
|         | ·                                            | options<br>vehicle                    | that provide an alternative to single-occupancy                                                                                                                     |             |                     |             |              |             |             |             |              |             |       |          | \$ 100       | ) |
| TDM4    | Limited and/or Flexible Parking Requirements |                                       | the Woodburn Development Ordinance to include es that encourage multi-modal transportation                                                                          | 1           | 1                   | 1           | 0            | 0           | 0           | 0           | 0            | 0           | 3     | High     | \$ 25        | ; |
| TDM5    | Parking Management                           |                                       | the City's current parking policy to allow for the all to charge for parking                                                                                        | 1           | 0                   | 0           | 0            | 0           | 0           | 0           | 0            | 0           | 1     | Low      | \$ 10        | ) |
| TDM6    | Transit Fare Subsidies                       |                                       | ith Woodburn Transit to provide transit fare subsidies if the employers to encourage TDM measures such as                                                           | 1           | 0                   | 0           | 0            | 0           | 0           | 0           | 0            | 0           | 1     | Low      | \$ 5         | i |
| TDM7    | Employer TDM Measures                        | allowin                               | g employees to work at home one day a week and<br>ing shift changes to occur outside of peak travel                                                                 | 0           | 0                   | 0           | 0            | 0           | 0           | 0           | 0            | 0           | 0     | Low      | \$ 100       | ) |
|         | Land Use                                     | , , , , , , , , , , , , , , , , , , , |                                                                                                                                                                     |             |                     |             |              |             |             |             |              |             |       |          | ,            |   |
| LU1     | Commercial and Mixed-use Nodes               | Establis<br>within                    | h neighborhood commercial and mixed-use nodes<br>he city                                                                                                            | 0           | 0                   | 0           | 0            | 0           | 0           | 0           | 0            | 0           | 0     | Low      | \$ 25        | ; |
| LU2     | Alternative Mobility Standards               | Work w                                | with ODOT to develop alternative mobility standards at interchange ramps                                                                                            | 0           | 0                   | 0           | 0            | 0           | 0           | 0           | 0            | 0           | 0     | Low      | \$ 25        |   |
| LU3     | Right-of-way Dedications                     |                                       | n development, right-of-way dedications should be<br>d to facilitate the future planned transportation                                                              | 0           | 0                   | 0           | 0            | 0           | 0           | 0           | 0            | 0           | 0     | Low      |              |   |
|         |                                              | Throug                                | in the vicinity of the proposed development<br>h development, half-street improvements (sidewalks,<br>d gutter, bicycle lanes/paths, and/or travel lanes)           |             |                     |             |              |             |             |             |              |             |       |          | \$ -         |   |
| LU4     | Half-street Improvements                     |                                       | be provided along all site frontages that do not have dout improvements in place at the time of sment                                                               | 0           | 1                   | 1           | 0            | 0           | 0           | 0           | 0            | 1           | 3     | High     | \$ -         |   |
|         | Access Management                            | ucreio <sub>i</sub>                   | c.n                                                                                                                                                                 |             |                     |             |              |             |             |             |              |             |       |          |              |   |
| AM1     | Access Spacing Standard Modification         | classific                             | o access management standards that reflect functional<br>ation of the roadway and that coordinate with the<br>tandards that regulate several major roadways in      | 0           | 0                   | 0           | 0            | 0           | 0           | 0           | 0            | 0           | 0     | Low      |              |   |
|         |                                              |                                       | urn<br>gate and implement opportunities to provide<br>tive access to nonstate facilities when reasonable                                                            |             |                     |             |              |             |             |             |              |             |       |          | \$ 25        |   |
| AM2     | Alternative Access                           | access                                | can occur (consistent with the State's Division 51 management standards)                                                                                            | 0           | 0                   | 0           | 0            | 0           | 1           | 0           | 0            | 0           | 1     | Low      | \$ 25        | ; |
| AM3     | Access Variance Process                      | Define<br>met                         | a variance process for when the standard cannot be                                                                                                                  | 0           | 0                   | 0           | 0            | 0           | 1           | 0           | 0            | 0           | 1     | Low      | \$ 25        | í |
| AM4     | Access Consolidation                         | move in                               | h an approach for access consolidation over time to                                                                                                                 | 0           | 0                   | 0           | 0            | 0           | 1           | 0           | 0            | 0           | 1     | Low      |              |   |
|         |                                              | parcels                               | ver easements should be provided on all compatible (topography, access, and land use) to facilitate future between adjacent parcels and inter-parcel circulation.   |             |                     |             |              |             |             |             |              |             |       |          | \$ 25        | j |
| AM5     | Access Movement Restrictions                 |                                       | er opportunities to restrict certain turning movements see (such as a right in-right out access)                                                                    | 0           | 0                   | 0           | 0            | 0           | 1           | 0           | 0            | 0           | 1     | Low      | \$ 25        | ; |
|         | Other Solutions                              |                                       |                                                                                                                                                                     |             |                     |             |              |             |             |             |              |             |       |          |              |   |
|         | Rail System                                  |                                       |                                                                                                                                                                     |             |                     |             |              |             |             |             |              |             |       |          |              |   |
|         |                                              |                                       |                                                                                                                                                                     |             |                     |             |              |             |             |             |              |             |       |          |              |   |
| RA1     | Front Street                                 | Street i                              | h a downtown Amtrak passenger rail stop along Front<br>n downtown Woodburn, potentially as a public-private<br>ship at the "Y" property adjacent to Locomotive Park | 0           | 0                   | 0           | 0            | 0           | 0           | 0           | 0            | 0           | 0     | Low      | \$ 10        | 1 |
|         |                                              | Investig                              | ate the opportunity to remove private grade railroad                                                                                                                |             |                     |             |              |             |             |             |              |             |       |          | )1 ب         |   |
| RA2     | Front Street and Cleveland Street            |                                       | gs by providing alternative access to parcels as<br>ment and redevelopment occurs                                                                                   | 0           | 0                   | 0           | 0            | 0           | 1           | 1           | 0            | 0           | 2     | Medium   | \$ 10        | ) |
| RA3     | Butteville Road, north of OR 219             |                                       | a passenger rail stop if commuter rail is extended<br>n Wilsonville and Beaverton down to Salem                                                                     | 0           | 0                   | 0           | 0            | 0           | 0           | 0           | 0            | 0           | 0     | Low      | \$ 5         | ; |